JP5824902B2 - Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same - Google Patents

Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same Download PDF

Info

Publication number
JP5824902B2
JP5824902B2 JP2011139102A JP2011139102A JP5824902B2 JP 5824902 B2 JP5824902 B2 JP 5824902B2 JP 2011139102 A JP2011139102 A JP 2011139102A JP 2011139102 A JP2011139102 A JP 2011139102A JP 5824902 B2 JP5824902 B2 JP 5824902B2
Authority
JP
Japan
Prior art keywords
solar cell
ethylene
component
resin composition
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011139102A
Other languages
Japanese (ja)
Other versions
JP2012025946A (en
Inventor
雨宮 隆浩
隆浩 雨宮
珠美 尾中
珠美 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyethylene Corp
Original Assignee
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polyethylene Corp filed Critical Japan Polyethylene Corp
Priority to JP2011139102A priority Critical patent/JP5824902B2/en
Publication of JP2012025946A publication Critical patent/JP2012025946A/en
Application granted granted Critical
Publication of JP5824902B2 publication Critical patent/JP5824902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、太陽電池封止材用樹脂組成物、及びそれを用いた太陽電池封止材と太陽電池モジュールに関し、より詳しくは、エチレン・α−オレフィン共重合体とシランカップリング剤などを含有し、耐熱性、透明性、柔軟性、及びガラス基板への接着性に優れ、剛性と架橋効率とのバランスもよい太陽電池封止材用樹脂組成物、及びそれを用いた太陽電池封止材と太陽電池モジュールに関するものである。   The present invention relates to a resin composition for a solar cell encapsulant, and a solar cell encapsulant and a solar cell module using the same, and more specifically, an ethylene / α-olefin copolymer and a silane coupling agent. Resin composition for solar cell encapsulant having excellent heat resistance, transparency, flexibility, adhesion to glass substrate, and good balance between rigidity and crosslinking efficiency, and solar cell encapsulant using the same And the solar cell module.

二酸化炭素の増加など地球環境問題がクローズアップされる中で、水力、風力、地熱などの有効利用とともに太陽光発電が再び注目されるようになった。
太陽光発電は、一般にシリコン、ガリウム−砒素、銅−インジウム−セレンなどの太陽電池素子を上部透明保護材と下部基板保護材とで保護し、太陽電池素子と保護材とを樹脂製の封止材で固定し、パッケージ化した太陽電池モジュールを用いるものであり、水力、風力などと比べて規模は小さいものの、電力が必要な場所に分散して配置できることから、発電効率等の性能向上と価格の低下を目指した研究開発が推進されている。また、国や自治体で住宅用太陽光発電システム導入促進事業として設置費用を補助する施策が採られることで、徐々にその普及が進みつつある。しかしながら、更なる普及には一層の低コスト化が必要であり、そのため従来型のシリコンやガリウム−砒素などに代わる新たな素材を用いた太陽電池素子の開発だけでなく、太陽電池モジュールの製造コストをより一層低減する努力も地道に続けられている。
As global environmental issues such as an increase in carbon dioxide are highlighted, solar power generation has come into focus again along with the effective use of hydropower, wind power, and geothermal heat.
Photovoltaic power generation generally protects solar cell elements such as silicon, gallium-arsenic, copper-indium-selenium with an upper transparent protective material and a lower substrate protective material, and the solar cell element and the protective material are sealed with resin. It uses solar cell modules that are fixed with materials and packaged, and although it is smaller in scale than hydropower and wind power, it can be distributed and placed in places where power is required. Research and development aimed at lowering the level is being promoted. In addition, the government and local governments are gradually promoting the spread of measures by substituting installation costs as a residential solar power generation system introduction promotion project. However, further cost reduction is necessary for further spread, so that not only the development of solar cell elements using new materials to replace conventional silicon and gallium arsenide, but also the manufacturing cost of solar cell modules Efforts to further reduce this are continuing.

太陽電池モジュールを構成する太陽電池封止材の条件としては、太陽電池の発電効率を低下しないように、太陽光の入射量を確保するため、透明性が良好なことが求められている。また、太陽電池モジュールは通常、屋外に設置されるから長期間太陽光に晒され温度上昇する。それにより樹脂製の封止材が流動し、モジュールが変形したりするトラブルを避けるために、耐熱性を有するものでなければならない。また年々、太陽電池素子の材料コストを削減するために薄肉化が進んでおり、一層柔軟性に優れた封止材も求められている。   As a condition of the solar cell encapsulant constituting the solar cell module, in order to ensure the incident amount of sunlight so as not to decrease the power generation efficiency of the solar cell, good transparency is required. Moreover, since a solar cell module is usually installed outdoors, it is exposed to sunlight for a long period of time and the temperature rises. Therefore, in order to avoid troubles in which the resin sealing material flows and the module is deformed, it must have heat resistance. Moreover, in order to reduce the material cost of a solar cell element year by year, the thickness has been reduced, and a sealing material with further flexibility is also required.

現在、太陽電池モジュールにおける太陽電池素子の封止材では、柔軟性、透明性等の観点から、酢酸ビニル含量の高いエチレン・酢酸ビニル共重合体が樹脂成分として採用され、これに有機過酸化物が架橋剤として併用されている(たとえば、特許文献1参照)。
そして、太陽電池素子の封止作業では、太陽電池素子を樹脂製の封止材でカバーした後、数分から十数分程度加熱して仮接着し、オーブン内において有機過酸化物が分解する高温で数分から1時間加熱処理して接着させている(たとえば、特許文献2参照)。
At present, a sealing material for a solar cell element in a solar cell module uses an ethylene / vinyl acetate copolymer having a high vinyl acetate content as a resin component from the viewpoint of flexibility, transparency, etc. Are used together as a crosslinking agent (see, for example, Patent Document 1).
And in the sealing operation of the solar cell element, after the solar cell element is covered with a resin sealing material, the solar cell element is heated for several minutes to tens of minutes and temporarily bonded, and the organic peroxide is decomposed in the oven. Then, the heat treatment is performed for several minutes to 1 hour (see, for example, Patent Document 2).

しかしながら、太陽電池モジュールの製造コストを抑えるために、封止作業に要する時間のさらなる短縮が求められており、封止材の樹脂成分であるエチレン・酢酸ビニル共重合体に代わり、結晶化度が40%以下の非晶性又は低結晶性のα−オレフィン系共重合体からなる太陽電池封止材が提案されている(特許文献3参照)。この特許文献3には、非晶質又は低結晶性のエチレン・ブテン共重合体に、有機過酸化物を混合し、異型押出機を用いて加工温度100℃でシートを作製することが例示されているが、加工温度が低いため十分な生産性は得られない。   However, in order to reduce the manufacturing cost of the solar cell module, further shortening of the time required for the sealing work is required, and instead of the ethylene / vinyl acetate copolymer that is the resin component of the sealing material, the degree of crystallinity is A solar cell encapsulant made of an amorphous or low crystalline α-olefin copolymer of 40% or less has been proposed (see Patent Document 3). This Patent Document 3 exemplifies that an amorphous or low crystalline ethylene / butene copolymer is mixed with an organic peroxide and a sheet is produced at a processing temperature of 100 ° C. using a profile extruder. However, sufficient productivity cannot be obtained due to the low processing temperature.

太陽電池モジュールは、前記のとおり、屋外に設置されるから長期間太陽光に晒され温度が上昇し、それによりガラス基板と樹脂製封止材との接着力が低下して、ガラス基板から樹脂製封止材が分離し、その空間に空気や水分が入って、モジュールが変形したりすることもあった。前記特許文献1には、封止材樹脂にシランカップリング剤を配合することが記載されているが、フッ素樹脂フィルムなどのフレキシブル基板を用いた太陽電池モジュールに関するものであり、シランカップリング剤の詳細は明らかにしていない。前記特許文献2にも、封止材樹脂へのシランカップリング剤の配合が記載されているが、EVAフィルムとFRP基板を用いた太陽電池モジュールに関するものであり、基板との接着性は十分ではない。   Since the solar cell module is installed outdoors as described above, it is exposed to sunlight for a long period of time and the temperature rises, thereby reducing the adhesive force between the glass substrate and the resin sealing material, and the resin from the glass substrate. In some cases, the sealing material is separated, and air or moisture enters the space to deform the module. In Patent Document 1, it is described that a silane coupling agent is blended in a sealing material resin, but it relates to a solar cell module using a flexible substrate such as a fluororesin film. Details are not disclosed. Although the patent document 2 also describes the blending of the silane coupling agent into the sealing material resin, it relates to a solar cell module using an EVA film and an FRP substrate, and the adhesion to the substrate is not sufficient. Absent.

また、太陽電池モジュールの封止材として、(a)約0.90g/cc未満の密度、(b)ASTM D−882−02により測定して約150メガパスカル(mPa)未満の2%割線係数、(c)約95℃未満の融点、(d)ポリマーの重量に基づいて約15〜50重量%のα−オレフィン含量、(e)約−35℃未満のTg、ならびに(f)少なくとも約50のSCBDI、の条件の1以上を満たすポリオレフィンコポリマーを含むポリマー材料が提案されている(特許文献4参照)。
太陽電池モジュールでは、太陽電池素子の薄膜化に伴い、太陽電池封止材も薄膜化する傾向がある。その際、太陽電池封止材の上部または下部保護材側から衝撃が加わると、配線が断線しやすいことが問題となっていた。それを改良するため、封止材の剛性を高くすることが求められるが、特許文献4のポリマー材料では剛性を高くすると、架橋効率が悪くなることが問題となっていた。
Moreover, as a sealing material for solar cell modules, (a) a density of less than about 0.90 g / cc, (b) a 2% secant coefficient of less than about 150 megapascals (mPa) as measured by ASTM D-882-02 (C) a melting point of less than about 95 ° C., (d) an α-olefin content of about 15-50% by weight based on the weight of the polymer, (e) a Tg of less than about −35 ° C., and (f) at least about 50 A polymer material containing a polyolefin copolymer satisfying one or more of the conditions of SCBDI of the present invention has been proposed (see Patent Document 4).
In the solar cell module, the solar cell encapsulant tends to become thinner as the solar cell element becomes thinner. At that time, when an impact is applied from the upper or lower protective material side of the solar cell sealing material, the wiring is likely to be disconnected. In order to improve it, it is required to increase the rigidity of the sealing material. However, in the polymer material of Patent Document 4, if the rigidity is increased, there is a problem that the crosslinking efficiency is deteriorated.

このように従来の技術では、生産性、耐熱性、透明性、柔軟性及びガラス基板への接着性に優れる太陽電池封止材用樹脂組成物は得られていなかった。   Thus, according to the conventional technology, a resin composition for a solar cell encapsulant that is excellent in productivity, heat resistance, transparency, flexibility, and adhesion to a glass substrate has not been obtained.

特開平9−116182号公報JP-A-9-116182 特開2003−204073号公報JP 2003-204073 A 特開2006−210906号公報JP 2006-210906 A 特表2010−504647号公報JP 2010-504647 A

本発明の目的は、エチレン・α−オレフィン共重合体とシランカップリング剤などを含有し、耐熱性、透明性、柔軟性に優れる太陽電池封止材用樹脂組成物、及びそれを用いた太陽電池封止材と太陽電池モジュールを提供することにある。   An object of the present invention is to contain an ethylene / α-olefin copolymer, a silane coupling agent, and the like, and to be excellent in heat resistance, transparency and flexibility, and a solar cell encapsulant resin composition and a solar cell using the same It is providing a battery sealing material and a solar cell module.

本発明者らは、上記問題を解決すべく鋭意検討した結果、樹脂成分としてメタロセン触媒などを用いて重合された特定の密度、分子量分布、溶融粘度特性を有するエチレン・α−オレフィン共重合体を選択し、これにシランカップリング剤を配合した樹脂組成物を用いることにより、耐熱性、透明性、柔軟性に優れる太陽電池封止材が得られ、これを用いれば太陽電池モジュールの生産性が大幅に向上するとの知見を得て、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have obtained an ethylene / α-olefin copolymer having a specific density, molecular weight distribution, and melt viscosity characteristics polymerized using a metallocene catalyst as a resin component. By selecting and using a resin composition containing a silane coupling agent, a solar cell encapsulant with excellent heat resistance, transparency and flexibility can be obtained. The knowledge that it is greatly improved has been obtained, and the present invention has been completed.

即ち、本発明の第1の発明によれば、下記の成分(A)及び成分(B)を含有することを特徴とする太陽電池封止材用樹脂組成物が提供される。
成分(A):下記(a1)〜(a5)の特性を有するエチレン・α−オレフィン共重合体(ただし、190℃、2.16kg荷重で測定したMFRが15g/10分以上のものを除く)
(a1)密度が0.860〜0.920g/cm
(a2)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
(a3)100℃で測定した、せん断速度が2.43×10s−1での溶融粘度(η )が1.2×10poise以上
(a4)100℃で測定した、せん断速度が2.43×102s−1での溶融粘度(η )が2.0×10poise以上
(a5)エチレン・α−オレフィン共重合体中のコモノマーによる分岐数(N)が下記式(a)を満たす。
式(a): N ≧ −0.67×E+53
( ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの分岐数であり、Eは、ISO1184−1983に準拠して測定した、シートの引張弾性率である。)
成分(B):シランカップリング剤
That is, according to 1st invention of this invention, the resin composition for solar cell sealing materials characterized by containing the following component (A) and component (B) is provided.
Component (A): an ethylene / α-olefin copolymer having the following properties (a1) to (a5) (excluding those having an MFR measured at 190 ° C. under a load of 2.16 kg of 15 g / 10 min or more)
(A1) Density is 0.860-0.920 g / cm 3
(A2) The ratio (Mz / Mn) of Z average molecular weight (Mz) and number average molecular weight (Mn) determined by gel permeation chromatography (GPC) was 8.0 or less (a3) Shear measured at 100 ° C. Melt viscosity (η * 1 ) at a speed of 2.43 × 10 s −1 is 1.2 × 10 5 poise or more (a4) Melt viscosity at a shear rate of 2.43 × 102 s −1 measured at 100 ° C. (Η * 2 ) is 2.0 × 10 4 poise or more (a5) The number of branches (N) due to the comonomer in the ethylene / α-olefin copolymer satisfies the following formula (a).
Formula (a): N ≧ −0.67 × E + 53
(Where N is the number of branches per 1000 carbon atoms in total of the main chain and side chain measured by NMR, and E is the tensile modulus of the sheet measured in accordance with ISO 1184-1983.) )
Component (B): Silane coupling agent

また、本発明の第2の発明によれば、第1の発明において、(a5)エチレン・α−オレフィン共重合体中のコモノマーによる分岐数(N)が、下記式(a’)を満たすことを特徴とする太陽電池封止材用樹脂組成物が提供される。
式(a’): −0.67×E+100 ≧ N ≧ −0.67×E+53
( ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの分岐数であり、Eは、ISO1184−1983に準拠して測定した、シートの引張弾性率である。)
また、本発明の第3の発明によれば、第1又は2の発明において、(a5)エチレン・α−オレフィン共重合体中のコモノマーによる分岐数(N)が、下記式(a’’)を満たすことを特徴とする太陽電池封止材用樹脂組成物が提供される。
式(a’’): −0.67×E+80 ≧ N ≧ −0.67×E+53
( ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの分岐数であり、Eは、ISO1184−1983に準拠して測定した、シートの引張弾性率である。
According to the second invention of the present invention, in the first invention, (a5) the number of branches (N) by the comonomer in the ethylene / α-olefin copolymer satisfies the following formula (a ′). The resin composition for solar cell sealing materials characterized by these is provided.
Formula (a ′): −0.67 × E + 100 ≧ N ≧ −0.67 × E + 53
(Where N is the number of branches per 1000 carbon atoms in total of the main chain and side chain measured by NMR, and E is the tensile modulus of the sheet measured in accordance with ISO 1184-1983.) )
According to the third invention of the present invention, in the first or second invention, (a5) the number of branches (N) by the comonomer in the ethylene / α-olefin copolymer is represented by the following formula (a ″): The resin composition for solar cell sealing materials characterized by satisfy | filling is provided.
Formula (a ″): −0.67 × E + 80 ≧ N ≧ −0.67 × E + 53
(Where N is the number of branches per 1000 carbon atoms in total of the main chain and side chain measured by NMR, and E is the tensile modulus of the sheet measured in accordance with ISO 1184-1983.)

また、本発明の第4の発明によれば、下記の成分(A)及び成分(B)を含有することを特徴とする太陽電池封止材用樹脂組成物が提供される。
成分(A):下記(a1)〜(a4)及び(a6)の特性を有するエチレン・α−オレフィン共重合体(ただし、190℃、2.16kg荷重で測定したMFRが15g/10分以上のものを除く)
(a1)密度が0.860〜0.920g/cm
(a2)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
(a3)100℃で測定した、せん断速度が2.43×10s−1での溶融粘度(η )が1.2×10poise以上
(a4)100℃で測定した、せん断速度が2.43×10−1での溶融粘度(η )が2.0×10poise以上
(a6)フローレシオ(FR):190℃における10kg荷重でのMFR測定値であるI10と、190℃における2.16kg荷重でのMFR測定値であるI2.16との比(I10/I2.16)が7.0未満
成分(B):シランカップリング剤
Moreover, according to the 4th invention of this invention, the resin composition for solar cell sealing materials characterized by containing the following component (A) and component (B) is provided.
Component (A): ethylene / α-olefin copolymer having the following properties (a1) to (a4) and (a6) (however, the MFR measured at 190 ° C. under a load of 2.16 kg is 15 g / 10 min or more) Excluding things)
(A1) Density is 0.860-0.920 g / cm 3
(A2) The ratio (Mz / Mn) of Z average molecular weight (Mz) and number average molecular weight (Mn) determined by gel permeation chromatography (GPC) was 8.0 or less (a3) Shear measured at 100 ° C. rate melt viscosity at 2.43 × 10s -1 (η * 1 ) was measured at 1.2 × 10 5 poise or (a4) 100 ℃, shear rate at 2.43 × 10 2 s -1 Melt viscosity (η * 2 ) is 2.0 × 10 4 poise or more (a6) Flow ratio (FR): I10 which is MFR measured value at 10 ° C. load at 190 ° C. and 2.16 kg load at 190 ° C. Component (B) having a ratio (I 10 / I 2.16 ) of less than 7.0 with I 2.16 which is an MFR measurement value: Silane coupling agent

また、本発明の第5の発明によれば、第4の発明において、特性(a6)のフローレシオ(FR)が、5.0〜6.2であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
また、本発明の第6の発明によれば、第1〜5のいずれかの発明において、成分(B)の含有量が、成分(A)100重量部に対して、0.01〜5重量部であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
また、本発明の第7の発明によれば、第1〜6のいずれかの発明において、下記の成分(C)を成分(A)100重量部に対して、0.2〜5重量部含有することを特徴とする太陽電池封止材用樹脂組成物が提供される。
成分(C):有機過酸化物
また、本発明の第8の発明によれば、第1〜7のいずれかの発明において、さらに、下記の成分(D)を含有することを特徴とする請求項1〜3に記載の太陽電池封止材用樹脂組成物が提供される。
成分(D):ヒンダードアミン系光安定化剤
また、本発明の第9の発明によれば、第8の発明において、成分(D)の含有量が、成分(A)100重量部に対して、0.01〜2.5重量部であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
また、本発明の第10の発明によれば、第1〜9のいずれかの発明において、成分(A)が、エチレン・プロピレン共重合体、エチレン・1−ブテン共重合体又はエチレン・1−ヘキセン共重合体であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
また、本発明の第11の発明によれば、第1〜9のいずれかの発明において、成分(A)が、エチレン・プロピレン・1−ヘキセン三元共重合体であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
According to a fifth aspect of the present invention, in the fourth aspect, the solar cell encapsulant is characterized in that the flow ratio (FR) of the characteristic (a6) is 5.0 to 6.2. A resin composition is provided.
According to the sixth invention of the present invention, in any one of the first to fifth inventions, the content of the component (B) is 0.01 to 5 weights with respect to 100 parts by weight of the component (A). The resin composition for solar cell sealing materials characterized by being a part is provided.
According to the seventh invention of the present invention, in any one of the first to sixth inventions, the following component (C) is contained in an amount of 0.2 to 5 parts by weight with respect to 100 parts by weight of the component (A). A resin composition for a solar cell encapsulant is provided.
Component (C): Organic peroxide Further, according to the eighth invention of the present invention, in any one of the first to seventh inventions, it further comprises the following component (D): The resin composition for solar cell sealing materials of claim | item 1-3 is provided.
Component (D): Hindered amine light stabilizer Further, according to the ninth aspect of the present invention, in the eighth aspect, the content of the component (D) is 100 parts by weight of the component (A). Provided is a resin composition for a solar cell sealing material, which is 0.01 to 2.5 parts by weight.
According to a tenth aspect of the present invention, in any one of the first to ninth aspects, the component (A) is an ethylene / propylene copolymer, an ethylene / 1-butene copolymer or an ethylene / 1- A resin composition for a solar cell encapsulant, which is a hexene copolymer, is provided.
According to an eleventh aspect of the present invention, in any one of the first to ninth aspects, the component (A) is an ethylene / propylene / 1-hexene terpolymer. A resin composition for a battery sealing material is provided.

一方、本発明の第12の発明によれば、第1〜11のいずれかの発明の太陽電池封止材用樹脂組成物をペレット化し、あるいはシート化してなる太陽電池封止材が提供される。
また、本発明の第13の発明によれば、第12の発明の太陽電池封止材を用いた太陽電池モジュールが提供される。
On the other hand, according to the twelfth aspect of the present invention, there is provided a solar cell encapsulant formed by pelletizing or sheeting the resin composition for a solar cell encapsulant of any one of the first to eleventh aspects. .
According to the thirteenth aspect of the present invention, there is provided a solar cell module using the solar cell sealing material of the twelfth aspect.

本発明の太陽電池封止材用樹脂組成物は、特定の密度、分子量分布、溶融粘度特性を有するエチレン・α−オレフィン共重合体を主成分とし、これにシランカップリング剤を配合しているため、ガラス基板に対して接着性がよく、また、有機過酸化物が配合されていると、この樹脂組成物をシート化する際には、エチレン・α−オレフィン共重合体が比較的短時間で架橋して十分な接着力を有し、剛性と架橋効率とのバランスもよく、太陽電池モジュールの形成が容易であり、製造コストを低減することができる。また、カレンダー成形性が良いので、生産性が向上する。また、得られた太陽電池モジュールは、透明性、柔軟性、耐候性等に優れるものとなり、長期間安定した変換効率を維持することが期待できる。   The resin composition for a solar cell encapsulant of the present invention is mainly composed of an ethylene / α-olefin copolymer having specific density, molecular weight distribution, and melt viscosity characteristics, and a silane coupling agent is blended therein. Therefore, the adhesiveness to the glass substrate is good, and when an organic peroxide is blended, when the resin composition is formed into a sheet, the ethylene / α-olefin copolymer is relatively short. It has sufficient adhesive strength by crosslinking and has a good balance between rigidity and crosslinking efficiency, so that the solar cell module can be easily formed, and the manufacturing cost can be reduced. Moreover, since the calendar formability is good, productivity is improved. Moreover, the obtained solar cell module becomes excellent in transparency, flexibility, weather resistance, etc., and it can be expected to maintain stable conversion efficiency for a long period of time.

樹脂組成物中の成分(A)の分岐数と、シート状樹脂組成物の引張弾性率との関係を規定する式(a)の範囲を示すグラフである。It is a graph which shows the range of Formula (a) which prescribes | regulates the relationship between the branch number of the component (A) in a resin composition, and the tensile elasticity modulus of a sheet-like resin composition.

1.太陽電池封止材用樹脂組成物
本発明の太陽電池封止材用樹脂組成物(以下、単に樹脂組成物ともいう)は、下記のエチレン・α−オレフィン共重合体成分(A)及びシランカップリング剤(C)を含有する。
1. Resin composition for solar cell encapsulant The resin composition for solar cell encapsulant of the present invention (hereinafter also simply referred to as resin composition) comprises the following ethylene / α-olefin copolymer component (A) and silane cup: Contains a ring agent (C).

(1)成分(A)
本発明に用いる成分(A)は、下記(a1)〜(a4)の特性を有し、かつ必要に応じて(a5)及び/又は(a6)の特性を有したエチレン・α−オレフィン共重合体(ただし、190℃、2.16kg荷重で測定したMFRが15g/10分以上のものを除く)である。
(1) Component (A)
Component (A) used in the present invention has the following characteristics (a1) to (a4), and (a5) and / or (a6), if necessary, ethylene / α-olefin copolymer It is a coalescence (excluding those with MFR measured at 190 ° C. and 2.16 kg load of 15 g / 10 min or more) .

(a1)密度が0.860〜0.920g/cm
(a2)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
(a3)100℃で測定した、せん断速度が2.43×10s−1での溶融粘度(η )が1.2×10poise以上
(a4)100℃で測定した、せん断速度が2.43×10−1での溶融粘度(η )が2.0×10poise以上
(A1) Density is 0.860-0.920 g / cm 3
(A2) The ratio (Mz / Mn) of Z average molecular weight (Mz) and number average molecular weight (Mn) determined by gel permeation chromatography (GPC) was 8.0 or less (a3) Shear measured at 100 ° C. rate melt viscosity at 2.43 × 10s -1 (η * 1 ) was measured at 1.2 × 10 5 poise or (a4) 100 ℃, shear rate at 2.43 × 10 2 s -1 Melt viscosity (η * 2 ) is 2.0 × 10 4 poise or more

(a5)ポリマー中のコモノマーによる分岐数(N)が下記式(a)を満たす。
式(a): N ≧ −0.67×E+53
( ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの個数であり、Eは、ISO1184−1983に準拠して測定した、シートの引張弾性率である。)
(a6)フローレシオ(FR):190℃における10kg荷重でのMFR測定値であるI10と、190℃における2.16kg荷重でのMFR測定値であるI2.16との比(I10/I2.16)が7.0未満
(A5) The number of branches (N) due to the comonomer in the polymer satisfies the following formula (a).
Formula (a): N ≧ −0.67 × E + 53
(However, N is the number per 1000 carbon atoms in total of the main chain and side chain measured by NMR, and E is the tensile modulus of the sheet measured according to ISO 1184-1983.)
(A6) Flow ratio (FR): ratio of I10, which is an MFR measurement value at 190 ° C. under a 10 kg load, to I 2.16 , which is an MFR measurement value at 190 ° C. under a 2.16 kg load (I 10 / I 2.16 ) is less than 7.0

(i)成分(A)のモノマー構成
本発明に使用されるエチレン・α−オレフィン共重合体は、エチレンから誘導される構成単位を主成分としたエチレンとα−オレフィンのランダム共重合体である。
コモノマーとして用いられるα−オレフィンは、好ましくは炭素数3〜12のα−オレフィンである。具体的には、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−ヘプテン、4−メチル−ペンテン−1、4−メチル−ヘキセン−1、4,4−ジメチルペンテン−1等を挙げることができる。かかるエチレン・α−オレフィン共重合体の具体例としては、エチレン・プロピレン共重合体、エチレン・1−ブテン共重合体、エチレン・1−ヘキセン共重合体、エチレン・1−オクテン共重合体、エチレン・4−メチル−ペンテン−1共重合体等が挙げられる。なかでも、エチレン・1−ブテン共重合体、エチレン・1−ヘキセン共重合体が好ましい。また、α−オレフィンは1種または2種以上の組み合わせでもよい。2種のα−オレフィンを組み合わせて三元共重合体とする場合は、エチレン・プロピレン・1−ヘキセン三元共重合体、エチレン・1−ブテン・1−ヘキセン三元共重合体、エチレン・プロピレン・1−オクテン三元共重合体、エチレン・1−ブテン・1−オクテン三元共重合体等が挙げられる。
コモノマーとして、1,5−ヘキサジエン、1,6−ヘプタジエン、1,7−オクタジエン、1,8−ノナジエン、及び1,9−デカジエン等のジエン化合物を、α−オレフィンに少量配合してもよい。これらのジエン化合物を配合すると、長鎖分岐ができるので、エチレン・α−オレフィン共重合体の結晶性を低下させ、透明性、柔軟性、接着性等が良くなり、分子間の架橋剤ともなるので、機械的強度が増加する。また長鎖分岐の末端基は、不飽和基であるから、有機過酸化物による架橋反応や、酸無水物基含有化合物若しくはエポキシ基含有化合物との共重合反応やグラフト反応を容易におこすことができる。
本発明で用いるエチレン・α−オレフィン共重合体は、そのα−オレフィンの含有量が5〜40重量%であり、好ましくは10〜35重量%、より好ましくは15〜30重量%である。この範囲であれば柔軟性と耐熱性が良好である。
ここでα−オレフィンの含有量は、下記の条件の13C−NMR法によって計測される値である。
装置:日本電子製 JEOL−GSX270
濃度:300mg/2mL
溶媒:オルソジクロロベンゼン
(I) Monomer structure of component (A) The ethylene / α-olefin copolymer used in the present invention is a random copolymer of ethylene and α-olefin, the main component of which is a structural unit derived from ethylene. .
The α-olefin used as a comonomer is preferably an α-olefin having 3 to 12 carbon atoms. Specifically, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-heptene, 4-methyl-pentene-1, 4-methyl-hexene-1, 4,4-dimethylpentene- 1 etc. can be mentioned. Specific examples of such ethylene / α-olefin copolymers include ethylene / propylene copolymers, ethylene / 1-butene copolymers, ethylene / 1-hexene copolymers, ethylene / 1-octene copolymers, ethylene -4-methyl-pentene-1 copolymer etc. are mentioned. Of these, ethylene / 1-butene copolymer and ethylene / 1-hexene copolymer are preferable. Moreover, 1 type, or 2 or more types of combination may be sufficient as an alpha olefin. When combining two kinds of α-olefins to form a terpolymer, ethylene / propylene / 1-hexene terpolymer, ethylene / 1-butene / 1-hexene terpolymer, ethylene / propylene -1-octene terpolymer, ethylene / 1-butene / 1-octene terpolymer, etc. are mentioned.
As a comonomer, a small amount of a diene compound such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, 1,8-nonadiene, and 1,9-decadiene may be added to the α-olefin. When these diene compounds are blended, long-chain branching is possible, so that the crystallinity of the ethylene / α-olefin copolymer is lowered, transparency, flexibility, adhesiveness, etc. are improved, and it becomes an intermolecular crosslinking agent. So the mechanical strength increases. Moreover, since the terminal group of the long chain branch is an unsaturated group, it can easily undergo a crosslinking reaction with an organic peroxide, a copolymerization reaction with an acid anhydride group-containing compound or an epoxy group-containing compound, and a graft reaction. it can.
The ethylene / α-olefin copolymer used in the present invention has an α-olefin content of 5 to 40% by weight, preferably 10 to 35% by weight, and more preferably 15 to 30% by weight. Within this range, flexibility and heat resistance are good.
Here, the content of α-olefin is a value measured by a 13C-NMR method under the following conditions.
Device: JEOL-GSX270 manufactured by JEOL
Concentration: 300 mg / 2 mL
Solvent: Orthodichlorobenzene

(ii)成分(A)の重合触媒及び重合法
本発明で用いるエチレン・α−オレフィン共重合体は、チーグラー触媒、バナジウム触媒又はメタロセン触媒等、好ましくはバナジウム触媒又はメタロセン触媒、より好ましくはメタロセン触媒を使用して製造することができる。製造法としては、高圧イオン重合法、気相法、溶液法、スラリー法等が挙げられる。
メタロセン触媒としては、特に限定されるわけではないが、シクロペンタジエニル骨格を有する基等が配位したジルコニウム化合物などのメタロセン化合物と助触媒とを触媒成分とする触媒が挙げられる。市販品としては、日本ポリエチレン社製のハーモレックス(登録商標)シリーズ、カーネル(登録商標)シリーズ、プライムポリマー社製のエボリュー(登録商標)シリーズ、住友化学社製のエクセレン(登録商標)GMHシリーズ、エクセレン(登録商標)FXシリーズが挙げられる。バナジウム触媒としては、可溶性バナジウム化合物と有機アルミニウムハライドとを触媒成分とする触媒が挙げられる。
(Ii) Polymerization catalyst and polymerization method of component (A) The ethylene / α-olefin copolymer used in the present invention is a Ziegler catalyst, vanadium catalyst or metallocene catalyst, preferably a vanadium catalyst or metallocene catalyst, more preferably a metallocene catalyst. Can be manufactured using. Examples of the production method include a high-pressure ion polymerization method, a gas phase method, a solution method, and a slurry method.
Although it does not necessarily limit as a metallocene catalyst, The catalyst which uses a metallocene compound, such as a zirconium compound coordinated with the group which has a cyclopentadienyl skeleton, etc., and a promoter as a catalyst component is mentioned. Commercially available products include Harmolex (registered trademark) series, Kernel (registered trademark) series manufactured by Japan Polyethylene, Evolue (registered trademark) series manufactured by Prime Polymer, Exelen (registered trademark) GMH series manufactured by Sumitomo Chemical, Exelen (registered trademark) FX series may be mentioned. Examples of the vanadium catalyst include a catalyst having a soluble vanadium compound and an organic aluminum halide as catalyst components.

(iii)成分(A)の特性
(a1)密度
本発明で用いるエチレン・α−オレフィン共重合体は、密度が0.860〜0.920g/cmであり、好ましくは0.870〜0.915g/cm、さらに好ましくは0.875〜0.910g/cmである。エチレン・α−オレフィン共重合体の密度が0.860g/cm未満では、加工後のシートがブロッキングしてしまい、密度が0.920g/cmを超えると加工後のシートの剛性が高すぎて、取り扱い性に欠けるものとなる。
(Iii) Characteristics of component (A) (a1) Density The ethylene / α-olefin copolymer used in the present invention has a density of 0.860 to 0.920 g / cm 3 , preferably 0.870 to 0.8. It is 915 g / cm 3 , more preferably 0.875 to 0.910 g / cm 3 . When the density of the ethylene / α-olefin copolymer is less than 0.860 g / cm 3 , the processed sheet is blocked, and when the density exceeds 0.920 g / cm 3 , the processed sheet has too high rigidity. Thus, the handling property is lacking.

ポリマーの密度を調節するには、例えばα−オレフィン含有量、重合温度、触媒量など適宜調節する方法がとられる。なお、エチレン・α−オレフィン共重合体の密度は、JIS−K6922−2:1997附属書(低密度ポリエチレンの場合)に準拠して測定する(23℃)。   In order to adjust the density of the polymer, for example, a method of appropriately adjusting the α-olefin content, the polymerization temperature, the catalyst amount and the like is employed. The density of the ethylene / α-olefin copolymer is measured according to JIS-K6922-2: 1997 appendix (in the case of low density polyethylene) (23 ° C.).

(a2)Z平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)
本発明で用いるエチレン・α−オレフィン共重合体は、ゲルパーミエーションクロマグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下であり、好ましくは5.0以下、より好ましくは4.0以下である。また、Mz/Mnは、2.0以上、好ましくは2.5以上、より好ましくは3.0以上である。ただし、Mz/Mnが8.0を超えると透明性が悪化する。Mz/Mnを所定の範囲に調整するには、適当な触媒系を選択する方法等によることができる。
(A2) Ratio of Z average molecular weight (Mz) to number average molecular weight (Mn) (Mz / Mn)
The ethylene / α-olefin copolymer used in the present invention has a ratio (Mz / Mn) of Z average molecular weight (Mz) to number average molecular weight (Mn) determined by gel permeation chromatography (GPC) of 8.0. Or less, preferably 5.0 or less, more preferably 4.0 or less. Moreover, Mz / Mn is 2.0 or more, preferably 2.5 or more, more preferably 3.0 or more. However, when Mz / Mn exceeds 8.0, transparency deteriorates. In order to adjust Mz / Mn to a predetermined range, a method of selecting an appropriate catalyst system can be used.

なお、Mz/Mnの測定は、ゲルパーミエーションクロマトグラフィー(GPC)で行い、測定条件は次のとおりである。
装置:ウオーターズ社製GPC 150C型
検出器:MIRAN社製 1A赤外分光光度計(測定波長、3.42μm)
カラム:昭和電工製AD806M/S 3本(カラムの較正は、東ソー製単分散ポリスチレン(A500,A2500,F1,F2,F4,F10,F20,F40,F288の各0.5mg/ml溶液)の測定を行い、溶出体積と分子量の対数値を2次式で近似した。また、試料の分子量は、ポリスチレンとポリエチレンの粘度式を用いてポリエチレンに換算した。ここでポリスチレンの粘度式の係数は、α=0.723、logK=−3.967であり、ポリエチレンはα=0.733、logK=−3.407である。)
測定温度:140℃
濃度:20mg/10mL
注入量:0.2ml
溶媒:オルソジクロロベンゼン
流速:1.0ml/分
In addition, the measurement of Mz / Mn is performed by gel permeation chromatography (GPC), and the measurement conditions are as follows.
Apparatus: Waters GPC 150C type detector: MIRAN 1A infrared spectrophotometer (measurement wavelength: 3.42 μm)
Column: Showa Denko 3 AD806M / S (column calibration is Tosoh monodispersed polystyrene (0.5 mg / ml solution of each of A500, A2500, F1, F2, F4, F10, F20, F40, and F288) The logarithmic value of the elution volume and molecular weight was approximated by a quadratic equation, and the molecular weight of the sample was converted to polyethylene using the viscosity equation of polystyrene and polyethylene, where the coefficient of the viscosity equation of polystyrene is α = 0.723, log K = -3.967, polyethylene is α = 0.733, log K = -3.407.)
Measurement temperature: 140 ° C
Concentration: 20 mg / 10 mL
Injection volume: 0.2ml
Solvent: Orthodichlorobenzene Flow rate: 1.0 ml / min

なお、Z平均分子量(Mz)は、高分子量成分の平均分子量への寄与が大きいので、Mz/Mnは、Mw/Mnに比べて高分子量成分の存在を確認しやすい。高分子量成分は、透明性に影響を与える要因であり、高分子量成分が多いと透明性は悪化する。また、架橋効率も悪化する傾向が見られる。よって、Mz/Mnは小さい方が好ましい。   Since the Z average molecular weight (Mz) greatly contributes to the average molecular weight of the high molecular weight component, Mz / Mn is easier to confirm the presence of the high molecular weight component than Mw / Mn. The high molecular weight component is a factor that affects the transparency, and when the high molecular weight component is large, the transparency is deteriorated. Moreover, the tendency for a crosslinking efficiency to deteriorate is seen. Therefore, a smaller Mz / Mn is preferable.

(a3)、(a4)溶融粘度
本発明で用いるエチレン・α−オレフィン共重合体は、100℃で測定した、せん断速度が特定の範囲でなければならない。100℃で測定した、せん断速度に着目するのは、当該温度での組成物を製品化する際の製品への影響を推定するためである。
すなわち、せん断速度2.43×10sec−1での溶融粘度(η )が1.2×10poise以上、好ましくは1.3×10poise以上、より好ましくは1.4×10poise以上、さらに好ましくは1.5×10poise以上、さらにまた好ましくは1.6×10poise以上である。溶融粘度(η )は、9.0×10poise以下、さらには5.0×10poise以下であることが好ましい。溶融粘度(η )がこの範囲にあれば低温で低速成形時の生産性がよく、製品への加工に問題が生じない。
溶融粘度(η )は、エチレン・α−オレフィン共重合体のメルトフローレート(MFR)や分子量分布などにより調整可能である。メルトフローレートの値を低くすると溶融粘度(η )は大きくなる傾向がある。分子量分布など他の性状が異なれば、大小関係が逆転することもありうるが、たとえば、好ましくはMFR(JIS−K6922−2:1997附属書(190℃、21.18N荷重))が0.1〜2.5g/10分であり、より好ましくは0.5〜2.3g/10分、さらに好ましくは0.7〜2.0g/10分、最も好ましくは0.8〜1.5g/10分とすることで、溶融粘度(η )を所定の範囲に収めやすい。
(A3), (a4) Melt viscosity The ethylene / α-olefin copolymer used in the present invention must have a shear rate in a specific range measured at 100 ° C. The reason for paying attention to the shear rate measured at 100 ° C. is to estimate the influence on the product when the composition at that temperature is commercialized.
That is, the melt viscosity (η * 1 ) at a shear rate of 2.43 × 10 sec −1 is 1.2 × 10 5 poise or more, preferably 1.3 × 10 5 poise or more, more preferably 1.4 × 10 5 poise. Poise or more, more preferably 1.5 × 10 5 poise or more, and still more preferably 1.6 × 10 5 poise or more. The melt viscosity (η * 1 ) is preferably 9.0 × 10 5 poise or less, more preferably 5.0 × 10 5 poise or less. If the melt viscosity (η * 1 ) is within this range, the productivity at low temperature and low speed molding is good, and there is no problem in processing into products.
The melt viscosity (η * 1 ) can be adjusted by the melt flow rate (MFR) or molecular weight distribution of the ethylene / α-olefin copolymer. When the value of the melt flow rate is lowered, the melt viscosity (η * 1 ) tends to increase. If other properties such as molecular weight distribution are different, the magnitude relationship may be reversed. For example, preferably MFR (JIS-K6922-2: 1997 annex (190 ° C., 21.18 N load)) is 0.1. To 2.5 g / 10 min, more preferably 0.5 to 2.3 g / 10 min, still more preferably 0.7 to 2.0 g / 10 min, most preferably 0.8 to 1.5 g / 10. By setting it as minutes, the melt viscosity (η * 1 ) can be easily kept within a predetermined range.

さらに、本発明で用いるエチレン・α−オレフィン共重合体は、100℃で測定した、せん断速度2.43×10sec−1での溶融粘度(η )が、2.0×10poise以上、好ましくは2.1×10poise以上、より好ましくは2.2×10poise以上、さらに好ましくは2.3×10poise以上、最も好ましくは2.4×10poise以上である。溶融粘度(η )は、9.0×10poise以下、さらには5.0×10poise以下であることが好ましい。溶融粘度(η )がこの範囲にあれば低温で高速成形時の生産性がよく、製品への加工に問題が生じない。
ここで、溶融粘度(η )、(η )は、径1.0mm、L/D=10のキャピラリーを有するキャピラリーレオメーターを用いて得られる測定値である。
2種類のせん断速度を設けるのは、低速成形時、高速成形時の製品の表面への影響が小さく、それぞれの成形速度領域で同様の製品が得られるようにするためである。
Furthermore, the ethylene / α-olefin copolymer used in the present invention has a melt viscosity (η * 2 ) of 2.0 × 10 4 measured at 100 ° C. at a shear rate of 2.43 × 10 2 sec −1. poise or more, preferably 2.1 × 10 4 poise or more, more preferably 2.2 × 10 4 poise or more, more preferably 2.3 × 10 4 poise or more, most preferably 2.4 × 10 4 poise or more is there. The melt viscosity (η * 2 ) is preferably 9.0 × 10 4 poise or less, more preferably 5.0 × 10 4 poise or less. If the melt viscosity (η * 2 ) is within this range, productivity at high speed molding at low temperatures is good, and there is no problem in processing into products.
Here, the melt viscosities (η * 1 ) and (η * 2 ) are measured values obtained using a capillary rheometer having a capillary with a diameter of 1.0 mm and L / D = 10.
The two kinds of shear rates are provided so that the influence on the surface of the product at the time of low speed molding and high speed molding is small, and the same product can be obtained in each molding speed region.

また、本発明で用いるエチレン・α−オレフィン共重合体は、η とη との比(η /η )が、好ましくは8.0以下、より好ましくは7.0以下、さらに好ましくは6.8以下、特に好ましくは6.5以下である。η とη との比(η /η )は、好ましくは1.5以上、より好ましくは2.0以上、さらに好ましくは3.0以上、特に好ましくは4.0以上であることが好ましい。(η /η )が上記範囲であれば、低速成形時、高速成形時のシート表面への影響が少なく好ましい。 In the ethylene / α-olefin copolymer used in the present invention, the ratio of η * 1 to η * 2* 1 / η * 2 ) is preferably 8.0 or less, more preferably 7.0. Hereinafter, it is more preferably 6.8 or less, particularly preferably 6.5 or less. The ratio of η * 1 and η * 2* 1 / η * 2 ) is preferably 1.5 or more, more preferably 2.0 or more, still more preferably 3.0 or more, and particularly preferably 4.0. The above is preferable. If (η * 1 / η * 2 ) is in the above range, the influence on the sheet surface during low speed molding and high speed molding is small, which is preferable.

(a5)ポリマー中のコモノマーによる分岐数(N)
本発明で用いるエチレン・α−オレフィン共重合体は、ポリマー中のコモノマーによる分岐数(N)と、引張弾性率(E)が下記式(a)を満たしていることが好ましい。
式(a): N ≧ −0.67×E+53
( ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの分岐数であり、Eは、ISO1184−1983に準拠して測定した、シートの引張弾性率である。)
ここで、ポリマー中のコモノマーによる分岐数(N)は、例えばE. W. Hansen, R. Blom, and O. M. Bade, Polymer, 36巻 4295頁(1997年)を参考にC−NMRスペクトルから算出することができる。
樹脂組成物中の成分(A)の分岐数と、シート状樹脂組成物の引張弾性率との関係をグラフ化すると図1のようになる。本発明で規定する式(a)の範囲は、破線及び破線よりも上方の領域である。この領域内(■印、◆印)では、樹脂組成物の剛性と架橋効率とのバランスが良好となり本発明の太陽電池封止材を得るのに好ましいが、この領域よりも下方(▲印)になるとこのバランスが悪化して本発明の太陽電池封止材が得られにくくなってしまう。
(A5) Number of branches by comonomer in the polymer (N)
In the ethylene / α-olefin copolymer used in the present invention, the number of branches (N) by the comonomer in the polymer and the tensile modulus (E) preferably satisfy the following formula (a).
Formula (a): N ≧ −0.67 × E + 53
(Where N is the number of branches per 1000 carbon atoms in total of the main chain and side chain measured by NMR, and E is the tensile modulus of the sheet measured in accordance with ISO 1184-1983.) )
Here, the number of branches (N) due to the comonomer in the polymer is, for example, E.I. W. Hansen, R.A. Blom, and O.M. M.M. It can be calculated from the C-NMR spectrum with reference to Bade, Polymer, 36, 4295 (1997).
The relationship between the number of branches of the component (A) in the resin composition and the tensile elastic modulus of the sheet-shaped resin composition is graphed as shown in FIG. The range of the formula (a) defined in the present invention is a broken line and a region above the broken line. Within this region (■ mark, ◆ mark), the balance between the rigidity of the resin composition and the crosslinking efficiency is good, and this is preferable for obtaining the solar cell encapsulant of the present invention, but below this region (▲ mark). Then, this balance deteriorates and it becomes difficult to obtain the solar cell sealing material of the present invention.

太陽電池モジュールでは、太陽電池素子の薄膜化に伴い、太陽電池封止材も薄膜化する傾向がある。薄膜化した太陽電池封止材では、上部または下部保護材側から衝撃が加わると、配線が断線しやすいため、封止材の剛性を高くすることが求められる。剛性を高くすると、架橋効率が悪くなるので、高分子鎖の分岐度がある程度高い共重合体を用いて、架橋前の共重合体の流動性を向上させ、成形性に優れた材料として使用する必要がある。本発明では、エチレン・α−オレフィン共重合体のコモノマーによる分岐数(N)が式(a)を満たすポリマー構造となっているものを選択することで、剛性と架橋効率のバランスを良好なものとすることができる。   In the solar cell module, the solar cell encapsulant tends to become thinner as the solar cell element becomes thinner. In the solar cell encapsulating material having a reduced thickness, when an impact is applied from the upper or lower protective material side, the wiring is easily disconnected, so that the rigidity of the encapsulating material is required to be increased. When the rigidity is increased, the crosslinking efficiency is deteriorated. Therefore, a copolymer having a high degree of branching of the polymer chain is used to improve the fluidity of the copolymer before crosslinking and to be used as a material having excellent moldability. There is a need. In the present invention, by selecting a polymer structure in which the number of branches (N) by the comonomer of the ethylene / α-olefin copolymer satisfies the formula (a), the balance between rigidity and crosslinking efficiency is good. It can be.

本発明に係るエチレン・α−オレフィン共重合体は、上述した様に、触媒を用いた共重合反応により製造できるが、共重合させる原料単量体の組成比や使用する触媒の種類を選択することにより、その高分子鎖中の分岐度を容易に調整することが可能である。本発明で用いるエチレン・α−オレフィン共重合体が式(a)を満たすためには、エチレン・α−オレフィン共重合体中のコモノマーは、プロピレン、1−ブテン、又は1−ヘキセンから選択するのが好ましい。また、気相法、高圧法を用いて製造するのが好ましく、特に、高圧法を選択するのがより好ましい。
より具体的にはEを固定してNを増減させるためには、主にエチレンと共重合させるコモノマーの炭素数を変更する方法によることができる。エチレンに対して1−ブテン又は1−ヘキセンの量が60〜80wt%となるように混合し、メタロセン触媒を使用して、重合温度130〜200℃で反応させエチレン・α−オレフィン共重合体を製造することが好ましい。これにより、エチレン・α−オレフィン共重合体の分岐数Nが適度に調整でき、得られるシートの引張弾性率Eが、40MPa以下となって、式(a)が示す範囲のエチレン・α−オレフィン共重合体を得ることができる。
The ethylene / α-olefin copolymer according to the present invention can be produced by a copolymerization reaction using a catalyst as described above, but the composition ratio of raw material monomers to be copolymerized and the type of catalyst to be used are selected. Thus, the degree of branching in the polymer chain can be easily adjusted. In order for the ethylene / α-olefin copolymer used in the present invention to satisfy the formula (a), the comonomer in the ethylene / α-olefin copolymer is selected from propylene, 1-butene, or 1-hexene. Is preferred. Moreover, it is preferable to produce using a vapor phase method or a high pressure method, and it is more preferable to select a high pressure method.
More specifically, in order to fix E and increase / decrease N, it is possible to mainly use a method of changing the carbon number of the comonomer copolymerized with ethylene. The ethylene / α-olefin copolymer is mixed by mixing so that the amount of 1-butene or 1-hexene is 60 to 80 wt% with respect to ethylene and using a metallocene catalyst to react at a polymerization temperature of 130 to 200 ° C. It is preferable to manufacture. Thereby, the number of branches N of the ethylene / α-olefin copolymer can be adjusted appropriately, and the resulting sheet has a tensile elastic modulus E of 40 MPa or less, and the ethylene / α-olefin within the range represented by the formula (a). A copolymer can be obtained.

本発明では、特性(a5)の関係式が、下記式(a’)で示されることが好ましい。また、特性(a5)の関係式は、下記式(a’’)であることがより好ましく、下記式(a’’’)であることが特に好ましい。このような条件を満たすことで、樹脂組成物の剛性と架橋効率とのバランスがさらに良好なものとなる。
式(a’): −0.67×E+100 ≧ N ≧ −0.67×E+53
式(a’’): −0.67×E+80 ≧ N ≧ −0.67×E+53
式(a’’’): −0.67×E+75 ≧ N ≧ −0.67×E+54
In the present invention, the relational expression of the characteristic (a5) is preferably represented by the following expression (a ′). Further, the relational expression of the characteristic (a5) is more preferably the following expression (a ″), and particularly preferably the following expression (a ′ ″). By satisfying such conditions, the balance between the rigidity of the resin composition and the crosslinking efficiency is further improved.
Formula (a ′): −0.67 × E + 100 ≧ N ≧ −0.67 × E + 53
Formula (a ″): −0.67 × E + 80 ≧ N ≧ −0.67 × E + 53
Formula (a ′ ″): −0.67 × E + 75 ≧ N ≧ −0.67 × E + 54

(a6)フローレシオ(FR)
本発明で用いるエチレン・α−オレフィン共重合体は、フローレシオ(FR)、すなわち190℃における10kg荷重でのMFR測定値であるI10と、190℃における2.16kg荷重でのMFR測定値であるI2.16との比(I10/I2.16)が7.0未満であることが好ましい。なお、メルトフローレート(MFR)は、JIS−K7210−1999に準拠して測定した値である。
(A6) Flow ratio (FR)
Ethylene · alpha-olefin copolymer used in the present invention, the I 10 a MFR value measured at 10kg load in the flow ratio (FR), i.e. 190 ° C., in MFR measured at 2.16kg load at 190 ° C. it is preferable ratio between certain I 2.16 (I 10 / I 2.16 ) is less than 7.0. The melt flow rate (MFR) is a value measured according to JIS-K7210-1999.

FRは、エチレン・α−オレフィン共重合体の分子量分布、長鎖分岐の量と相関が深いことが知られている。本発明では、上記(a1)〜(a4)の条件を満たすポリマーの中でも、190℃における10kg荷重でのMFR測定値(I10)と、190℃における2.16kg荷重でのMFR測定値(I2.16)との比(I10/I2.16)が7.0未満であるものを使用する。このような長鎖分岐に特徴があるポリマー構造となっている共重合体を用いることで、剛性と架橋効率のバランスが良好なものとなる。これに対して、FRが7.0以上であると、太陽電池封止材として架橋する際の架橋効率が悪くなる傾向にある。
本発明で用いるエチレン・α−オレフィン共重合体のFRは、7.0未満であり、好ましくは、6.5未満、より好ましくは、6.3未満である。ただし、FRが5.0未満であると、太陽電池封止材として十分な剛性が得られにくくなることがある。特性(a6)のフローレシオ(FR)は、5.0〜6.2であることが最も好ましい。
It is known that FR has a strong correlation with the molecular weight distribution of ethylene / α-olefin copolymer and the amount of long chain branching. In the present invention, among polymers satisfying the above conditions (a1) to (a4), the MFR measurement value (I 10 ) at 190 ° C. under a 10 kg load and the MFR measurement value (I 10 ) at 190 ° C. under a 2.16 kg load (I 2.16 ) and a ratio (I 10 / I 2.16 ) of less than 7.0 are used. By using a copolymer having a polymer structure characterized by such long-chain branching, the balance between rigidity and crosslinking efficiency is good. On the other hand, when FR is 7.0 or more, the crosslinking efficiency at the time of crosslinking as a solar cell sealing material tends to deteriorate.
The FR of the ethylene / α-olefin copolymer used in the present invention is less than 7.0, preferably less than 6.5, and more preferably less than 6.3. However, if the FR is less than 5.0, it may be difficult to obtain sufficient rigidity as a solar cell encapsulant. The flow ratio (FR) of the characteristic (a6) is most preferably 5.0 to 6.2.

(2)成分(B)
本発明で樹脂組成物に用いる成分(B)は、シランカップリング剤であり、主に太陽電池の上部保護材や太陽電池素子との接着力を向上させる目的で用いられる。
本発明におけるシランカップリング剤としては、例えばγ−クロロプロピルトリメトキシシラン;ビニルトリクロルシラン;ビニルトリエトキシシラン;ビニルトリメトキシシラン;ビニル−トリス−(β−メトキシエトキシ)シラン;γ−メタクリロキシプロピルトリメトキシシラン;β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン;γ−グリシドキシプロピルトリメトキシシラン;ビニルトリアセトキシシラン;γ−メルカプトプロピルトリメトキシシラン;γ−アミノプロピルトリメトキシシラン;N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシラン等を挙げることができる。好ましくは、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシランである。
これらのシランカップリング剤は、エチレン・α−オレフィン共重合体100重量部に対して、0.01〜5重量部、好ましくは0.01〜2重量部、より好ましくは0.05〜1重量部で使用される。
(2) Component (B)
The component (B) used in the resin composition in the present invention is a silane coupling agent, and is mainly used for the purpose of improving the adhesive strength between the solar cell upper protective material and the solar cell element.
Examples of the silane coupling agent in the present invention include γ-chloropropyltrimethoxysilane; vinyltrichlorosilane; vinyltriethoxysilane; vinyltrimethoxysilane; vinyl-tris- (β-methoxyethoxy) silane; γ-methacryloxypropyl. Β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane; γ-glycidoxypropyltrimethoxysilane; vinyltriacetoxysilane; γ-mercaptopropyltrimethoxysilane; γ-aminopropyltrimethoxysilane; N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane and the like can be mentioned. Vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and 3-acryloxypropyltrimethoxysilane are preferable.
These silane coupling agents are 0.01 to 5 parts by weight, preferably 0.01 to 2 parts by weight, more preferably 0.05 to 1 part by weight, based on 100 parts by weight of the ethylene / α-olefin copolymer. Used in the department.

(3)成分(C)
本発明における成分(C)の有機過酸化物は、主に成分(A)を架橋するために用いられる。
有機過酸化物としては、分解温度(半減期が1時間である温度)が70〜180℃、とくに90〜160℃の有機過酸化物を用いることができる。このような有機過酸化物として、例えば、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、1,1−ジ(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、メチルエチルケトンパーオキサイド、2,5−ジメチルヘキシル−2,5−ジパーオキシベンゾエート、t−ブチルハイドロパーオキサイド、p−メンタンハイドロパーオキサイド、ベンゾイルパーオキサイド、p−クロルベンゾイルパーオキサイド、t−ブチルパーオキシイソブチレート、ヒドロキシヘプチルパーオキサイド、ジクロヘキサノンパーオキサイドなどが挙げられる。
(3) Component (C)
The organic peroxide of component (C) in the present invention is mainly used for crosslinking component (A).
As the organic peroxide, an organic peroxide having a decomposition temperature (temperature at which the half-life is 1 hour) is 70 to 180 ° C., particularly 90 to 160 ° C. can be used. Examples of such organic peroxides include t-butyl peroxyisopropyl carbonate, t-butyl peroxy-2-ethylhexyl carbonate, t-butyl peroxyacetate, t-butyl peroxybenzoate, dicumyl peroxide, 2 , 5-dimethyl-2,5-di (t-butylperoxy) hexane, di-t-butylperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, 1 , 1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-butylperoxy) cyclohexane, methyl ethyl ketone peroxide, 2,5-dimethylhexyl-2,5- Diperoxybenzoate, t-butyl hydroperoxide, p-menthane hydroperoxy Id, benzoyl peroxide, p- chlorobenzoyl peroxide, t- butyl peroxy isobutyrate, hydroxyheptyl peroxide, and di cyclohexanone peroxide.

成分(C)の配合割合は、成分(A)を100重量部としたときに、好ましくは、0.2〜5重量部であり、より好ましくは、0.5〜3重量部、さらに好ましくは、1〜2重量部である。成分(C)の配合割合が上記範囲よりも少ないと、架橋しないかまたは架橋に時間がかかる傾向にあり、上記範囲よりも大きいと、分散が不十分となり架橋度が不均一になりやすい。   The blending ratio of component (C) is preferably 0.2 to 5 parts by weight, more preferably 0.5 to 3 parts by weight, even more preferably when component (A) is 100 parts by weight. 1 to 2 parts by weight. When the blending ratio of the component (C) is less than the above range, crosslinking does not occur or it takes a long time for crosslinking. When it exceeds the above range, dispersion is insufficient and the degree of crosslinking tends to be nonuniform.

(4)ヒンダードアミン系光安定化剤(D)
本発明において、樹脂組成物にはヒンダードアミン系光安定化剤を配合することが好ましい。ヒンダードアミン系光安定化剤は、ポリマーに対して有害なラジカル種を補足し、新たなラジカルを発生しないようにするものである。ヒンダードアミン系光安定化剤には、低分子量のものから高分子量のものまで多くの種類の化合物があるが、従来公知のものであれば特に制限されずに用いることができる。
(4) Hindered amine light stabilizer (D)
In the present invention, it is preferable to blend a hindered amine light stabilizer in the resin composition. The hindered amine light stabilizer captures radical species harmful to the polymer and prevents generation of new radicals. There are many types of hindered amine light stabilizers ranging from low molecular weight compounds to high molecular weight compounds, but any conventionally known compounds can be used without particular limitation.

低分子量のヒンダードアミン系光安定化剤としては、デカン二酸ビス(2,2,6,6−テトラメチル−1(オクチルオキシ)−4−ピペリジニル)エステル、1,1−ジメチルエチルヒドロパーオキサイド及びオクタンの反応生成物(分子量737)70重量%とポリプロピレン30重量%からなるもの;ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ブチルマロネート(分子量685);ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート及びメチル−1,2,2,6,6−ペンタメチル−4−ピペリジルセバケート混合物(分子量509);ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート(分子量481);テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート(分子量791);テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート(分子量847);2,2,6,6−テトラメチル−4−ピペリジル−1,2,3,4−ブタンテトラカルボキシレートとトリデシル−1,2,3,4−ブタンテトラカルボキシレートの混合物(分子量900);1,2,2,6,6−ペンタメチル−4−ピペリジル−1,2,3,4−ブタンテトラカルボキシレートとトリデシル−1,2,3,4−ブタンテトラカルボキシレートの混合物(分子量900)などが挙げられる。   Low molecular weight hindered amine light stabilizers include decanedioic acid bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, 1,1-dimethylethyl hydroperoxide and Consists of 70% by weight of a reaction product of octane (molecular weight 737) and 30% by weight of polypropylene; bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1 -Dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate (molecular weight 685); bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6 6-pentamethyl-4-piperidyl sebacate mixture (molecular weight 509); bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate ( 481); tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate (molecular weight 791); tetrakis (1,2,2,6, 6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate (molecular weight 847); 2,2,6,6-tetramethyl-4-piperidyl-1,2,3,4-butane Mixture of tetracarboxylate and tridecyl-1,2,3,4-butanetetracarboxylate (molecular weight 900); 1,2,2,6,6-pentamethyl-4-piperidyl-1,2,3,4-butane Examples thereof include a mixture (molecular weight 900) of tetracarboxylate and tridecyl-1,2,3,4-butanetetracarboxylate.

高分子量のヒンダードアミン系光安定化剤としては、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}](分子量2,000〜3,100);コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(分子量3,100〜4,000);N,N’,N”,N”‘−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン(分子量2,286)と上記コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物の混合物;ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物(分子量2,600〜3,400)、並びに、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1,2,2,6,6−ペンタメチルピペリジン、4−アクリロイルオキシ−1−エチル−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1−プロピル−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1−ブチル−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−1,2,2,6,6−ペンタメチルペリジン、4−メタクリロイルオキシ−1−エチル−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−1−ブチル−2,2,6,6−テトラメチルピペリジン、4−クロトノイルオキシ−2,2,6,6−テトラメチルピペリジン、4−クロトノイルオキシ−1−プロピル−2,2,6,6−テトラメチルピペリジン等の環状アミノビニル化合物とエチレンとの共重合体などが挙げられる。上述したヒンダードアミン系光安定化剤は、一種単独で用いられてもよく、二種以上を混合して用いてもよい。   As the high molecular weight hindered amine light stabilizer, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2, 2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}] (molecular weight 2,000-3,100); succinic acid Polymer of dimethyl and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (molecular weight 3,100 to 4,000); N, N ′, N ″, N ″ ′-tetrakis- ( 4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10- Diamine (molecular weight 2,286) and above A mixture of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol; dibutylamine, 1,3,5-triazine, N, N′-bis (2,2 , 6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate (molecular weight 2,600-3) 400) and 4-acryloyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-1,2,2,6,6-pentamethylpiperidine, 4-acryloyloxy-1-ethyl -2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-1-propyl-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy 1-butyl-2,2,6,6-tetramethylpiperidine, 4-methacryloyloxy-2,2,6,6-tetramethylpiperidine, 4-methacryloyloxy-1,2,2,6,6-pentamethyl Peridine, 4-methacryloyloxy-1-ethyl-2,2,6,6-tetramethylpiperidine, 4-methacryloyloxy-1-butyl-2,2,6,6-tetramethylpiperidine, 4-crotonoyloxy Examples include copolymers of cyclic aminovinyl compounds such as -2,2,6,6-tetramethylpiperidine, 4-crotonoyloxy-1-propyl-2,2,6,6-tetramethylpiperidine and ethylene. The above-mentioned hindered amine light stabilizers may be used alone or in combination of two or more.

これらの中でも、ヒンダードアミン系光安定化剤としては、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}](分子量2,000〜3,100);コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(分子量3,100〜4,000);N,N’,N”,N”‘−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン(分子量2,286)と上記コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物の混合物;ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物(分子量2,600〜3,400)環状アミノビニル化合物とエチレンとの共重合体を用いるのが好ましい。製品使用時に経時でのヒンダードアミン系光安定剤のブリードアウトが妨げられるからである。また、ヒンダードアミン系光安定化剤は、融点が、60℃以上であるものを用いるのが、組成物の作製しやすさの観点から好ましい。   Among these, as the hindered amine light stabilizer, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2 , 2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}] (molecular weight 2,000-3,100); Polymer of dimethyl acid and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (molecular weight 3,100 to 4,000); N, N ′, N ″, N ″ ′-tetrakis- (4,6-Bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10 -Diamine (molecular weight 2,286) A mixture of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol; dibutylamine, 1,3,5-triazine, N, N′-bis (2 , 2,6,6-Tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate (molecular weight 2,600) ~ 3,400) It is preferable to use a copolymer of a cyclic aminovinyl compound and ethylene, because the hindered amine light stabilizer is prevented from bleeding out over time when the product is used. An agent having a melting point of 60 ° C. or higher is preferably used from the viewpoint of easy preparation of the composition.

本発明において、ヒンダードアミン系光安定化剤の含有量は、前記エチレン・α−オレフィン共重合体100重量部に対して、0.01〜2.5重量部とし、好ましくは0.01〜1.0重量部、より好ましくは0.01〜0.5重量部、さらに好ましくは0.01〜0.2重量部、最も好ましくは0.03〜0.1重量部とするのがよい。
前記含有量を0.01重量部以上とすることにより安定化への効果が十分に得られ、2.5重量部以下とすることによりヒンダードアミン系光安定化剤の過剰な添加による樹脂の変色を抑えることができる
また、本発明において、前記有機過酸化物(C)と前記ヒンダードアミン系光安定化剤(D)との重量比(C:D)を、1:0.01〜1:10とし、好ましくは1:0.02〜1:6.5とする。これにより、樹脂の黄変を顕著に抑制することが可能となる。
In the present invention, the content of the hindered amine light stabilizer is 0.01 to 2.5 parts by weight, preferably 0.01 to 1 part by weight based on 100 parts by weight of the ethylene / α-olefin copolymer. 0 parts by weight, more preferably 0.01 to 0.5 parts by weight, still more preferably 0.01 to 0.2 parts by weight, and most preferably 0.03 to 0.1 parts by weight.
When the content is 0.01 parts by weight or more, a sufficient stabilizing effect is obtained, and when the content is 2.5 parts by weight or less, the resin is discolored due to excessive addition of a hindered amine light stabilizer. In the present invention, the weight ratio (C: D) of the organic peroxide (C) to the hindered amine light stabilizer (D) is 1: 0.01 to 1:10. , Preferably 1: 0.02 to 1: 6.5. Thereby, it becomes possible to remarkably suppress yellowing of the resin.

(5)架橋助剤
また、本発明では樹脂組成物に架橋助剤を配合することができる。架橋助剤は、架橋反応を促進させ、エチレン・α−オレフィン共重合体の架橋度を高めるのに有効であり、その具体例としては、ポリアリル化合物やポリ(メタ)アクリロキシ化合物のような多不飽和化合物を例示することができる。
より具体的には、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエートのようなポリアリル化合物、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートのようなポリ(メタ)アクリロキシ化合物、ジビニルベンゼンなどを挙げることができる。架橋助剤は、成分(A)100重量部に対し、0〜5重量部程度の割合で配合することができる。
(5) Crosslinking aid In the present invention, a crosslinking aid can be added to the resin composition. The crosslinking aid is effective in promoting the crosslinking reaction and increasing the degree of crosslinking of the ethylene / α-olefin copolymer. Specific examples thereof include polyaryl compounds and poly (meth) acryloxy compounds. Saturated compounds can be exemplified.
More specifically, polyallyl compounds such as triallyl isocyanurate, triallyl cyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, etc. Examples include poly (meth) acryloxy compounds and divinylbenzene. A crosslinking adjuvant can be mix | blended in the ratio of about 0-5 weight part with respect to 100 weight part of component (A).

(6)紫外線吸収剤
本発明では樹脂組成物に紫外線吸収剤を配合することができる。紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸エステル系など各種タイプのものを挙げることができる。
ベンゾフェノン系紫外線吸収剤としては、例えば、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−n−オクタデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、2−ヒドロキシ−5−クロロベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノンなどを挙げることができる。
(6) Ultraviolet absorber In this invention, a ultraviolet absorber can be mix | blended with a resin composition. Examples of the ultraviolet absorber include various types such as benzophenone, benzotriazole, triazine, and salicylic acid ester.
Examples of benzophenone-based ultraviolet absorbers include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, and 2-hydroxy-4. -N-dodecyloxybenzophenone, 2-hydroxy-4-n-octadecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2-hydroxy-5-chlorobenzophenone 2,2-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, etc. To mention Can.

ベンゾトリアゾール系紫外線吸収剤としては、ヒドロキシフェニル置換ベンゾトリアゾール化合物であって、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジメチルフェニル)ベンゾトリアゾール、2−(2−メチル−4−ヒドロキシフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3−メチル−5−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−t−アミルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)ベンゾトリアゾール、などを挙げることができる。またトリアジン系紫外線吸収剤としては、2−[4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル]−5−(オクチルオキシ)フェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−(ヘキシルオキシ)フェノールなどを挙げることができる。サリチル酸エステル系としては、フェニルサリチレート、p−オクチルフェニルサリチレートなどを挙げることができる。
これら紫外線吸収剤は、エチレン・α−オレフィン共重合体100重量部に対し0〜2.0重量部配合し、好ましくは0.05〜2.0重量部、より好ましくは0.1〜1.0重量部、さらに好ましくは0.1〜0.5重量部、最も好ましくは0.2〜0.4重量部配合するのがよい。
The benzotriazole ultraviolet absorber is a hydroxyphenyl-substituted benzotriazole compound, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-t-butylphenyl) Benzotriazole, 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3-methyl-5-t- Butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-amylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, and the like. Can be mentioned. Examples of triazine ultraviolet absorbers include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- ( And 4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol. Examples of salicylic acid esters include phenyl salicylate and p-octylphenyl salicylate.
These ultraviolet absorbers are blended in an amount of 0 to 2.0 parts by weight, preferably 0.05 to 2.0 parts by weight, more preferably 0.1 to 1. part by weight based on 100 parts by weight of the ethylene / α-olefin copolymer. 0 parts by weight, more preferably 0.1 to 0.5 parts by weight, and most preferably 0.2 to 0.4 parts by weight.

(7)他の添加成分
この樹脂組成物には、本発明の目的を著しく損なわない範囲で、他の付加的任意成分を配合することができる。このような任意成分としては、通常のポリオレフィン系樹脂材料に使用される酸化防止剤、結晶核剤、透明化剤、滑剤、着色剤、分散剤、充填剤、蛍光増白剤、紫外線吸収剤、光安定剤等を挙げることができる。
(7) Other additive components In this resin composition, other additional arbitrary components can be mix | blended in the range which does not impair the objective of this invention remarkably. As such optional components, antioxidants, crystal nucleating agents, clearing agents, lubricants, colorants, dispersants, fillers, fluorescent whitening agents, UV absorbers used in ordinary polyolefin resin materials, A light stabilizer etc. can be mentioned.

また、樹脂組成物には、柔軟性等を付与するため、本発明の目的を損なわない範囲で、チーグラー系又はメタロセン系触媒によって重合された結晶性のエチレン・α−オレフィン共重合体及び/又はEBR、EPR等のエチレン・α−オレフィンエラストマー若しくはSEBS、水添スチレンブロック共重合体等のスチレン系エラストマー等のゴム系化合物を上記樹脂組成物100重量部に対して、3〜75重量部配合することもできる。さらに、溶融張力等を付与するため、高圧法低密度ポリエチレン、エチレン・酢酸ビニル共重合体を3〜75重量部配合することもできる。   In addition, in order to impart flexibility and the like to the resin composition, a crystalline ethylene / α-olefin copolymer polymerized with a Ziegler-based or metallocene-based catalyst and / or within a range not impairing the object of the present invention. 3 to 75 parts by weight of rubber compound such as ethylene / α-olefin elastomer such as EBR and EPR or styrene elastomer such as SEBS and hydrogenated styrene block copolymer is added to 100 parts by weight of the resin composition. You can also. Furthermore, 3 to 75 parts by weight of high-pressure low-density polyethylene and ethylene / vinyl acetate copolymer can be blended in order to impart melt tension and the like.

2.太陽電池封止材
本発明の太陽電池封止材(以下、単に封止材ともいう)は、上記樹脂組成物を用いたものであり、ペレット化し、あるいはシート化して使用される。
2. Solar cell encapsulant The solar cell encapsulant of the present invention (hereinafter also simply referred to as encapsulant) uses the above resin composition, and is used after being pelletized or formed into a sheet.

本発明の太陽電池封止材は、ペレットとしてもよいが、通常、0.1〜1mm程度の厚みのシート状に成形して使用される。0.1mmよりも薄いと強度が小さく、接着が不十分となり、1mmよりも厚いと透明性が低下して問題になる場合がある。好ましい厚さは、0.1〜0.8mmである。   Although the solar cell sealing material of this invention is good also as a pellet, normally, it shape | molds and uses it for the sheet form of thickness about 0.1-1 mm. If the thickness is less than 0.1 mm, the strength is small and the adhesion is insufficient. If the thickness is more than 1 mm, the transparency may be lowered, which may be a problem. A preferred thickness is 0.1 to 0.8 mm.

シート状太陽電池封止材は、カレンダー成形機を使用するカレンダー成形など公知のシート成形法によって製造することができる。カレンダー成形は、樹脂材料を加熱ロールで溶融しながら圧延し、数本のロールを通してシート化する方法である。
カレンダー成形では、エチレン・α−オレフィン共重合体に、シランカップリング剤、架橋剤を添加し、必要に応じて、ヒンダードアミン系光安定化剤、さらには架橋助剤、紫外線吸収剤、酸化防止剤、光安定剤等の添加剤を予めドライブレンドして溶融混練後、混練物をコンベアで搬送して練りロールに供給する。このドライブレンドに際して、一部又は全部の添加剤は、マスターバッチの形で使用することができる。また、予め非晶性α−オレフィン系共重合体に一部又は全部の添加剤を、一軸押出機、二軸押出機、バンバリーミキサー、ニーダーなどを用いて溶融混合して得た樹脂組成物を使用することもできる。
練りロールで練られた混練物はコンベアにより搬送し、80〜130℃に加熱された4本のカレンダーロールで圧延し、圧延されたシートをテイクオフロールで取り出す。その後、圧延されたシートは冷却ロールで冷却して、冷却されたシートを巻き取り機で巻き取ればよい。
The sheet-like solar cell encapsulant can be produced by a known sheet molding method such as calendar molding using a calendar molding machine. Calendar molding is a method in which a resin material is rolled while being melted with a heating roll, and is formed into a sheet through several rolls.
In calendar molding, a silane coupling agent and a crosslinking agent are added to the ethylene / α-olefin copolymer, and if necessary, a hindered amine light stabilizer, a crosslinking aid, an ultraviolet absorber, and an antioxidant. Then, additives such as light stabilizers are dry blended in advance and after melt kneading, the kneaded product is conveyed by a conveyor and supplied to a kneading roll. In this dry blending, some or all of the additives can be used in the form of a masterbatch. In addition, a resin composition obtained by melt-mixing a part or all of an additive to an amorphous α-olefin copolymer in advance using a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, or the like. It can also be used.
The kneaded material kneaded with the kneading roll is conveyed by a conveyor, rolled with four calender rolls heated to 80 to 130 ° C., and the rolled sheet is taken out with a take-off roll. Thereafter, the rolled sheet is cooled by a cooling roll, and the cooled sheet may be wound by a winder.

3.太陽電池モジュール
本発明では、上記太陽電池封止材を用い、太陽電池素子を封止し、さらに保護材で固定することにより太陽電池モジュールを製作することができる。
このような太陽電池モジュールとしては、種々のタイプのものを例示することができる。例えば上部透明保護材/封止材/太陽電池素子/封止材/下部保護材のように太陽電池素子の両側から封止材で挟む構成のもの、下部基板保護材の内周面上に形成させた太陽電池素子上に封止材と上部透明保護材を形成させるような構成のもの、上部透明保護材の内周面上に形成させた太陽電池素子、例えばフッ素樹脂系透明保護材上にアモルファス太陽電池素子をスパッタリング等で作成したものの上に封止材と下部保護材を形成させるような構成のものなどを挙げることができる。
3. Solar cell module In this invention, a solar cell module can be manufactured by sealing a solar cell element using the said solar cell sealing material, and also fixing with a protective material.
Examples of such solar cell modules include various types. For example, the upper transparent protective material / encapsulant / solar cell element / encapsulant / lower protective material sandwiched between the solar cell elements from both sides, formed on the inner peripheral surface of the lower substrate protective material A solar cell element formed on the inner peripheral surface of the upper transparent protective material, for example, a fluororesin-based transparent protective material. The thing of the structure which forms a sealing material and a lower protective material on what created the amorphous solar cell element by sputtering etc. can be mentioned.

太陽電池素子としては、特に制限されず、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、ガリウム−砒素、銅−インジウム−セレン、カドミウム−テルルなどのIII−V族やII−VI族化合物半導体系等の各種太陽電池素子を用いることができる。本発明においては、基板としてガラスを用いたものが好ましい。
太陽電池モジュールを構成する上部保護材としては、ガラス、アクリル樹脂、ポリカーボネート、ポリエステル、フッ素含有樹脂などを例示することができる。
また、下部保護材としては、金属や各種熱可塑性樹脂フィルムなどの単体もしくは多層のシートであり、例えば、錫、アルミ、ステンレススチールなどの金属、ガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィンなどの1層もしくは多層の保護材を例示することができる。このような上部及び/又は下部の保護材には、封止材との接着性を高めるためにプライマー処理を施すことができる。本発明においては、上部保護材としてガラスが好ましい。
The solar cell element is not particularly limited, and is based on silicon such as single crystal silicon, polycrystalline silicon, amorphous silicon, III-V group or II-VI group such as gallium-arsenic, copper-indium-selenium, cadmium-tellurium. Various solar cell elements such as compound semiconductors can be used. In the present invention, those using glass as the substrate are preferred.
Examples of the upper protective material constituting the solar cell module include glass, acrylic resin, polycarbonate, polyester, and fluorine-containing resin.
The lower protective material is a single or multilayer sheet such as a metal or various thermoplastic resin films, for example, a metal such as tin, aluminum or stainless steel, an inorganic material such as glass, polyester, an inorganic vapor-deposited polyester, or fluorine. Examples of the protective material include a single layer or a multilayer such as a containing resin and polyolefin. Such an upper and / or lower protective material can be subjected to a primer treatment in order to enhance the adhesion to the sealing material. In the present invention, glass is preferred as the upper protective material.

太陽電池モジュールを製造するに当たっては、本発明の封止材のシートを予め作っておき、封止材の樹脂組成物が溶融する温度、例えば150〜200℃で圧着するという方法によって、前記のような構成のモジュールを形成することができる。また本発明の封止材を押出コーティングすることによって太陽電池素子や上部保護材あるいは下部保護材と積層する方法を採用すれば、わざわざシート成形することなく一段階で太陽電池モジュールを製造することが可能である。したがって本発明の封止材を使用すれば、モジュールの生産性を格段に改良することができる。   In manufacturing the solar cell module, the sheet of the sealing material of the present invention is prepared in advance, and the above-described method is performed by pressure bonding at a temperature at which the resin composition of the sealing material melts, for example, 150 to 200 ° C. A module having a simple structure can be formed. Moreover, if the method of laminating with the solar cell element, the upper protective material or the lower protective material by extrusion coating the sealing material of the present invention is adopted, the solar cell module can be manufactured in one step without bothering to form a sheet. Is possible. Therefore, if the sealing material of this invention is used, the productivity of a module can be improved markedly.

一方、太陽電池モジュールを製造する際、有機過酸化物が実質的に分解せず、かつ本発明の封止材が溶融するような温度で、太陽電池素子や保護材に該封止材を仮接着し、次いで昇温して充分な接着とエチレン・α−オレフィン共重合体の架橋を行うこともできる。この場合は、封止材層の融点(DSC法)が85℃以上、150℃の貯蔵弾性率が10Pa以上の耐熱性が良好な太陽電池モジュールを得るために、封止材層におけるゲル分率(試料1gをキシレン100mlに浸漬し、110℃、24時間加熱した後、20メッシュ金網で濾過し未溶融分の質量分率を測定)が50〜98%、好ましくは70〜95%程度になるように架橋するのがよい。 On the other hand, when the solar cell module is manufactured, the sealing material is temporarily applied to the solar cell element or the protective material at a temperature at which the organic peroxide is not substantially decomposed and the sealing material of the present invention is melted. Adhesion is then carried out to raise the temperature, and sufficient adhesion and crosslinking of the ethylene / α-olefin copolymer can be carried out. In this case, the gel in the encapsulant layer is used in order to obtain a solar cell module with good heat resistance having a melting point (DSC method) of the encapsulant layer of 85 ° C. or higher and a storage elastic modulus of 150 ° C. of 10 3 Pa or higher. Fraction (1 g of sample is immersed in 100 ml of xylene, heated at 110 ° C. for 24 hours, then filtered through a 20 mesh wire net and the mass fraction of unmelted portion is measured) is 50 to 98%, preferably about 70 to 95% It is better to crosslink so that

なお、前記特許文献3では、非晶質又は低結晶性エチレン・ブテン共重合体100重量部に、有機過酸化物として2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサンを1.5重量部および架橋助剤としてトリアリルイソシアヌレートを2重量部混合した混合物を、異型押出機を用いて加工温度100℃で厚み0.5mmのシートを作製している(実施例3)。しかしながら、このような組成物を選択したのでは、加工温度が低いため十分な生産性を得ることはできない。   In Patent Document 3, 100 parts by weight of an amorphous or low crystalline ethylene / butene copolymer is added to 2,5-dimethyl-2,5-di (t-butylperoxy) hexane as an organic peroxide. A mixture of 1.5 parts by weight and 2 parts by weight of triallyl isocyanurate as a crosslinking aid was produced using a profile extruder at a processing temperature of 100 ° C. and a thickness of 0.5 mm (Example 3). ). However, when such a composition is selected, sufficient productivity cannot be obtained because the processing temperature is low.

太陽電池素子の封止作業では、太陽電池素子を上記本発明の封止材でカバーした後、有機過酸化物が分解しない程度の温度に数分から10分程度加熱して仮接着し、次に、オーブン内において有機過酸化物が分解する150〜200℃程度の高温で5分から30分間加熱処理して接着させる等の方法がある。   In the sealing operation of the solar cell element, after covering the solar cell element with the sealing material of the present invention, the solar cell element is temporarily bonded by heating to a temperature at which the organic peroxide is not decomposed for several minutes to 10 minutes, In addition, there is a method in which the organic peroxide is decomposed in the oven at a high temperature of about 150 to 200 ° C. for 5 to 30 minutes to be bonded.

以下、本発明を実施例によって、具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例、比較例で用いた評価方法及び使用樹脂は、以下の通りである。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The evaluation methods and resins used in the examples and comparative examples are as follows.

1.樹脂物性の評価方法
(1)メルトフローレート(MFR):エチレン・α−オレフィン共重合体のMFRは、JIS−K6922−2:1997附属書(190℃、21.18N荷重)に準拠して測定した。
(2)密度:前述の通り、エチレン・α−オレフィン共重合体の密度は、JIS−K6922−2:1997附属書(23℃、低密度ポリエチレンの場合)に準拠して測定した。
(3)Mz/Mn:前述の通り、GPCにより測定した。
(4)溶融粘度:JIS−K−7199−1999に準拠して、東洋精機製作所製キャピログラフ1−Bを用い、設定温度:100℃、D=1mm、L/D=10のキャピラリーを用いて、せん断速度2.43×10sec−1での溶融粘度(η )、せん断速度2.43×10sec−1での溶融粘度(η )の測定を行う。
1. Evaluation method of resin physical properties (1) Melt flow rate (MFR): MFR of ethylene / α-olefin copolymer is measured according to JIS-K6922-2: 1997 appendix (190 ° C., 21.18 N load). did.
(2) Density: As described above, the density of the ethylene / α-olefin copolymer was measured according to JIS-K6922-2: 1997 appendix (23 ° C., in the case of low density polyethylene).
(3) Mz / Mn: Measured by GPC as described above.
(4) Melt viscosity: In accordance with JIS-K-7199-1999, using Capillograph 1-B manufactured by Toyo Seiki Seisakusho, using a capillary with set temperature: 100 ° C., D = 1 mm, L / D = 10, melt viscosity at a shear rate of 2.43 × 10sec -1 (η * 1 ), to measure the melt viscosity at a shear rate of 2.43 × 10 2 sec -1 (η * 2).

(5)分岐数:ポリマー中の分岐数(N)は、NMRにより次の条件で測定し、コモノマー量は、主鎖及び側鎖の合計1000個の炭素あたりの個数で求めた。
装置 : ブルカー・バイオスピン(株) AVANCE III cryo−400MHz
溶媒 : o−ジクロロベンゼン/重化ブロモベンゼン = 8/2混合溶液
<試料量>
460mg/2.3ml
<C−NMR>
・Hデカップル、NOEあり
・積算回数:256scan
・フリップ角:90°
・パルス間隔20秒
・AQ(取り込み時間)=5.45s D1(待ち時間)=14.55s
(6)FR:JIS−K7210−1999に準拠し、190℃、10kg荷重の条件下で測定したMFR(I10)と、190℃、2.16kg荷重の条件下で測定したMFR(I2.16)との比(I10/I2.16)を計算し、FRとした。
(5) Number of branches: The number of branches (N) in the polymer was measured by NMR under the following conditions, and the amount of comonomer was determined by the number of main chains and side chains per 1000 carbons in total.
Equipment: Bruker BioSpin Corporation AVANCE III cryo-400MHz
Solvent: o-dichlorobenzene / deuterated bromobenzene = 8/2 mixed solution <sample amount>
460mg / 2.3ml
<C-NMR>
・ H decouple, NOE available ・ Number of integration: 256scan
・ Flip angle: 90 °
Pulse interval 20 seconds ・ AQ (acquisition time) = 5.45 s D1 (waiting time) = 14.55 s
(6) FR: Based on JIS-K7210-1999, MFR (I 10 ) measured under conditions of 190 ° C. and 10 kg load, and MFR (I 2.) measured under conditions of 190 ° C. and 2.16 kg load . 16 ) and the ratio (I 10 / I 2.16 ) was calculated as FR.

2.押出成形物(シート)の評価方法
(1)カレンダー成形性
樹脂組成物を溶融混練後、カレンダー成形機に供給し、カレンダーロールで、シート状に押出成形した。カレンダーロールの温度は100℃とし、回転速度は10m/分とした。その際、カレンダーロールにより成形できる場合をカレンダー成形性が良好(○)とし、一方、成形できない場合をカレンダー成形性が不良(×)と評価した。
2. Evaluation Method of Extruded Product (Sheet) (1) Calendar Formability After the resin composition was melt-kneaded, it was supplied to a calender molding machine and extruded into a sheet with a calender roll. The temperature of the calendar roll was 100 ° C., and the rotation speed was 10 m / min. At that time, the case where molding was possible with a calendar roll was evaluated as good (o), and the case where molding was impossible was evaluated as poor (x).

(2)HAZE
厚み0.7mmのプレスシートを用いて、JIS−K7136−2000に準拠して測定した。プレスシート片を関東化学製特級流動パラフィンを入れたガラス製セルにセットし測定した。プレスシートは、160℃の条件で熱プレス機に30分間保管し、架橋させ準備した。HAZE値は、小さいほど良い。
(2) HAZE
It measured based on JIS-K7136-2000 using the press sheet of thickness 0.7mm. The press sheet piece was set in a glass cell containing special liquid paraffin made by Kanto Chemical Co., Ltd. and measured. The press sheet was stored in a hot press machine at 160 ° C. for 30 minutes, and prepared by crosslinking. The smaller the HAZE value, the better.

(3)光線透過率
厚み0.7mmのプレスシートを用いて、JIS−K7361−1−1997に準拠して測定した。プレスシート片を関東化学製特級流動パラフィンを入れたガラス製セルにセットし測定した。プレスシートは、160℃の条件で熱プレス機に30分間保管し、架橋させ準備した。
光線透過率は、80%以上であり、好ましくは、85%以上、さらに好ましくは90%以上である。
(3) Light transmittance It measured based on JIS-K7361-1-1997 using the press sheet of thickness 0.7mm. The press sheet piece was set in a glass cell containing special liquid paraffin made by Kanto Chemical Co., Ltd. and measured. The press sheet was stored in a hot press machine at 160 ° C. for 30 minutes, and prepared by crosslinking.
The light transmittance is 80% or more, preferably 85% or more, and more preferably 90% or more.

(4)引張弾性率
160℃で30分架橋した厚み0.7mmのプレスシートを用いて、ISO1184−1983に準拠して測定した。尚、引張速度1mm/min、試験片幅10mm、つかみ具間を100mmとし、伸び率1%のときの引張弾性率を求めた。この値が小さい程、柔軟性に優れていることを示す。
(4) Tensile elasticity modulus It measured based on ISO1184-1983 using the press sheet of thickness 0.7mm bridge | crosslinked at 160 degreeC for 30 minutes. The tensile elastic modulus was determined when the tensile rate was 1 mm / min, the test piece width was 10 mm, the distance between grips was 100 mm, and the elongation was 1%. It shows that it is excellent in the softness, so that this value is small.

(5)耐熱性
160℃で架橋したシート及び150℃で30分架橋したシートのゲル分率で評価した。ゲル分率が高いほど架橋が進行しており、耐熱性が高いと評価できる。ゲル分率が70wt%以上のものを、耐熱性評価「○」とした。尚、ゲル分率は、当該シートを、約1gを切り取り精秤して、キシレン100ccに浸漬し110℃で24時間処理し、ろ過後残渣を乾燥し精秤して、処理前の重量で割りゲル分率を算出する。
(5) Heat resistance It evaluated by the gel fraction of the sheet | seat bridge | crosslinked at 160 degreeC and the sheet | seat bridge | crosslinked at 150 degreeC for 30 minutes. It can be evaluated that the higher the gel fraction, the more the crosslinking proceeds and the higher the heat resistance. A gel fraction having a gel fraction of 70 wt% or more was designated as a heat resistance evaluation “◯”. As for the gel fraction, about 1 g of the sheet is cut out and weighed accurately, immersed in 100 cc of xylene, treated at 110 ° C. for 24 hours, the residue after filtration is dried and weighed, and divided by the weight before treatment. Calculate the gel fraction.

(6)ガラスとの接着性
縦7.6cm×横2.6cm×厚み1mmのスライドガラスを用いた。樹脂組成物とスライドガラスを接触させ、160℃で30分の条件でプレス機を用いて加熱を行った。23℃雰囲気下に、24時間放置後、ガラスから樹脂を手で剥がせる場合を「×」、剥がせない場合を「○」として評価を行った。
(6) Adhesiveness with glass A slide glass having a length of 7.6 cm, a width of 2.6 cm, and a thickness of 1 mm was used. The resin composition and the slide glass were brought into contact with each other and heated using a press machine at 160 ° C. for 30 minutes. The evaluation was made with “x” when the resin could be peeled off from the glass by hand in a 23 ° C. atmosphere for 24 hours, and “◯” when it could not be peeled off.

3.使用原料
(1)成分(A): エチレン・α−オレフィン共重合体
下記の<製造例1>で重合したエチレンと1−ヘキセンの共重合体(PE−1)、<製造例2>で重合したエチレンと1−ブテンの共重合体(PE−2)、<製造例3、4>で重合したエチレンと1−ヘキセンの共重合体(PE−3)(PE−4)、<製造例5>で重合したエチレン、プロピレンと1−ヘキセンの共重合体(PE−9)、及び市販のエチレン・α−オレフィン共重合体(PE−5)(PE−6)(PE−7)(PE−8)を用いた。物性を表1、図1に示す。
(2)有機過酸化物:2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン(アルケマ吉富社製、ルペロックス101)
(3)シランカップリング剤:γ−メタクリロキシプロピルトリメトキシシラン(信越化学工業社製、KBM503)
(4)ヒンダードアミン系光安定化剤:コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(BASF社製、TINUVIN 622LD)
(5)紫外線吸収剤:2−ヒドロキシ−4−n−オクトキシベンゾフェノン(サンケミカル社製、CYTEC UV531)
3. Raw Material Used (1) Component (A): Ethylene / α-Olefin Copolymer Ethylene and 1-hexene copolymer (PE-1) polymerized in the following <Production Example 1>, polymerized in <Production Example 2> Copolymer of ethylene and 1-butene (PE-2), copolymer of ethylene and 1-hexene polymerized in <Production Examples 3 and 4> (PE-3) (PE-4), and <Production Example 5 >, Ethylene, propylene and 1-hexene copolymer (PE-9), and commercially available ethylene / α-olefin copolymer (PE-5) (PE-6) (PE-7) (PE- 8) was used. The physical properties are shown in Table 1 and FIG.
(2) Organic peroxide: 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (manufactured by Arkema Yoshitomi, Luperox 101)
(3) Silane coupling agent: γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM503)
(4) Hindered amine light stabilizer: polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (manufactured by BASF, TINUVIN 622LD)
(5) Ultraviolet absorber: 2-hydroxy-4-n-octoxybenzophenone (manufactured by Sun Chemical Co., Ltd., CYTEC UV531)

<製造例1>
(i)触媒の調製
エチレンと1−ヘキセンの共重合体を製造するための触媒は、特表平7−508545号公報に記載された方法で調製した。即ち、錯体ジメチルシリレンビス(4,5,6,7−テトラヒドロインデニル)ハフニウムジメチル2.0mモルに、トリペンタフルオロフェニルホウ素を上記錯体に対して等モル加え、トルエンで10リットルに希釈して触媒溶液を調製した。
(ii)重合
内容積1.5リットルの撹拌式オートクレーブ型連続反応器を用い、反応器内の圧力を130MPaに保ち、エチレンと1−ヘキセンとの混合物を1−ヘキセンの組成が72重量%となるように40kg/時の割合で原料ガスを連続的に供給した。また、上記触媒溶液を連続的に供給し、重合温度が114℃を維持するようにその供給量を調整した。1時間あたりのポリマー生産量は約1.5kgであった。反応終了後、1−ヘキセン含有量が24重量%、MFRが1.0g/10分、密度が0.880g/cm、Mz/Mnが3.7であるエチレン・1−ヘキセン共重合体(PE−1)を得た。
また、PE−1を160℃−0kg/cmで3分予熱した後、160℃−100kg/cmで5分加圧し、その後、30℃に設定された冷却プレスに100kg/cmの条件で、10分間冷却することで、厚み0.7mmのプレスシートを得た。その引張弾性率を、ISO1184−1983に準拠し、測定を行った結果、17MPaであった。
このエチレン・1−ヘキセン共重合体(PE−1)の特性を表1に示す。
<Production Example 1>
(I) Preparation of catalyst A catalyst for producing a copolymer of ethylene and 1-hexene was prepared by the method described in JP-T-7-508545. That is, to the complex dimethylsilylene bis (4,5,6,7-tetrahydroindenyl) hafnium dimethyl 2.0 mmol, tripentafluorophenyl boron is added in an equimolar amount to the complex, and diluted to 10 liters with toluene. A catalyst solution was prepared.
(Ii) Polymerization Using a stirred autoclave-type continuous reactor having an internal volume of 1.5 liters, maintaining the pressure in the reactor at 130 MPa, a mixture of ethylene and 1-hexene has a composition of 1-hexene of 72% by weight. The raw material gas was continuously supplied at a rate of 40 kg / hour. The catalyst solution was continuously supplied, and the supply amount was adjusted so that the polymerization temperature was maintained at 114 ° C. The amount of polymer produced per hour was about 1.5 kg. After completion of the reaction, an ethylene / 1-hexene copolymer having a 1-hexene content of 24% by weight, an MFR of 1.0 g / 10 min, a density of 0.880 g / cm 3 , and Mz / Mn of 3.7 ( PE-1) was obtained.
Further, after 3 minutes preheat the PE-1 at 160 ℃ -0kg / cm 3, 160 5 minutes pressurized with 100 kg / cm 3, then the conditions of 100 kg / cm 3 to a cooling press set to 30 ° C. Then, a press sheet having a thickness of 0.7 mm was obtained by cooling for 10 minutes. The tensile elastic modulus was measured according to ISO 1184-1983, and as a result, it was 17 MPa.
The characteristics of this ethylene / 1-hexene copolymer (PE-1) are shown in Table 1.

<製造例2>
表1に示す組成、密度、および溶融粘度となるように、製造例1における重合時のモノマー組成、重合温度を変更して重合を行った。反応終了後、1−ブテン含有量=35重量%、MFR=1.0g/10分、密度=0.870g/cm、Mz/Mn=3.5であるエチレン・1−ブテン共重合体(PE−2)を得た。製造例1と同様に引張弾性率測定を行った結果、8MPaであった。このエチレン・1−ブテン共重合体(PE−2)の特性を表1に示す。
<Production Example 2>
Polymerization was carried out by changing the monomer composition and polymerization temperature during polymerization in Production Example 1 so that the composition, density, and melt viscosity shown in Table 1 were obtained. After completion of the reaction, an ethylene / 1-butene copolymer having 1-butene content = 35 wt%, MFR = 1.0 g / 10 min, density = 0.870 g / cm 3 , and Mz / Mn = 3.5 ( PE-2) was obtained. As a result of measuring the tensile modulus in the same manner as in Production Example 1, it was 8 MPa. The characteristics of this ethylene / 1-butene copolymer (PE-2) are shown in Table 1.

<製造例3>
製造例1において、重合時の1−ヘキセンの組成を72重量%にし、重合温度を122℃に代えた以外は製造例1と同様の製法で重合を行った。1時間あたりのポリマー生産量は約2.1kgであった。反応終了後、1−ヘキセン含有量=24重量%、MFR=2.2g/10分、密度=0.880g/cm、Mz/Mn=3.7であるエチレン・1−ヘキセン共重合体(PE−3)を得た。製造例1と同様に引張弾性率測定を行った結果、17MPaであった。このエチレン・1−ヘキセン共重合体(PE−3)の特性を表1に示す。
<Production Example 3>
In Production Example 1, polymerization was carried out by the same production method as in Production Example 1 except that the composition of 1-hexene at the time of polymerization was changed to 72% by weight and the polymerization temperature was changed to 122 ° C. The polymer production per hour was about 2.1 kg. After completion of the reaction, an ethylene / 1-hexene copolymer having a 1-hexene content = 24% by weight, MFR = 2.2 g / 10 minutes, density = 0.880 g / cm 3 , and Mz / Mn = 3.7 ( PE-3) was obtained. As a result of measuring the tensile modulus in the same manner as in Production Example 1, it was 17 MPa. The characteristics of this ethylene / 1-hexene copolymer (PE-3) are shown in Table 1.

<製造例4>
製造例1において、重合時の1−ヘキセンの組成を75重量%にし、重合温度を150℃に代えた以外は製造例1と同様の製法で重合を行った。1時間あたりのポリマー生産量は約4.3kgであった。反応終了後、1−ヘキセン含有量=24重量%、MFR=35g/10分、密度=0.880g/cm、Mz/Mn=3.7であるエチレン・1−ヘキセン共重合体(PE−4)を得た。製造例1と同様に引張弾性率測定を行った結果、34MPaであった。このエチレン・1−ヘキセン共重合体(PE−4)の特性を表1に示す。
<Production Example 4>
In Production Example 1, polymerization was carried out by the same production method as in Production Example 1 except that the composition of 1-hexene at the time of polymerization was changed to 75% by weight and the polymerization temperature was changed to 150 ° C. The polymer production per hour was about 4.3 kg. After completion of the reaction, an ethylene / 1-hexene copolymer (PE-) having 1-hexene content = 24% by weight, MFR = 35 g / 10 minutes, density = 0.880 g / cm 3 , and Mz / Mn = 3.7 4) was obtained. As a result of measuring the tensile modulus in the same manner as in Production Example 1, it was 34 MPa. The characteristics of this ethylene / 1-hexene copolymer (PE-4) are shown in Table 1.

<製造例5>
表1に示す組成、密度、および溶融粘度となるように、製造例1における重合時のモノマー組成、重合温度を変更して重合を行った。反応終了後、プロピレン含有量=14.4重量%、1−ヘキセン含有量=11.9重量%、MFR=1.0g/10分、密度=0.870g/cm、Mz/Mn=3.5であるエチレン・プロピレン・1−ヘキセン共重合体(PE−9)を得た。製造例1と同様に引張弾性率測定を行った結果、8MPaであった。このエチレン・プロピレン・1−ヘキセン共重合体(PE−9)の特性を表1に示す。
<Production Example 5>
Polymerization was carried out by changing the monomer composition and polymerization temperature during polymerization in Production Example 1 so that the composition, density, and melt viscosity shown in Table 1 were obtained. After completion of the reaction, propylene content = 14.4 wt%, 1-hexene content = 11.9 wt%, MFR = 1.0 g / 10 min, density = 0.870 g / cm 3 , Mz / Mn = 3. 5, an ethylene / propylene / 1-hexene copolymer (PE-9) was obtained. As a result of measuring the tensile modulus in the same manner as in Production Example 1, it was 8 MPa. The characteristics of this ethylene / propylene / 1-hexene copolymer (PE-9) are shown in Table 1.

Figure 0005824902
Figure 0005824902

(実施例1)
エチレンと1−ヘキセンの共重合体(PE−1)100重量部に対して、シランカップリング剤としてγ−メタクリロキシプロピルトリメトキシシラン(信越化学工業社製、KBM503)を0.3重量部と、有機過酸化物として、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン(アルケマ吉富社製、ルペロックス101)を1.5重量部と、ヒンダードアミン系光安定化剤として、コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(BASF社製、TINUVIN 622LD)0.05重量部配合した。バンバリーミキサーで樹脂組成物を溶融混練後、カレンダー成形機に供給し、カレンダーロールで、シート状に押出成形した。カレンダーロールの温度は100℃とし、回転速度は10m/分とした。
得られたシートを、160℃−0kg/cmの条件で、3分予熱した後、160℃−100kg/cmの条件で27分加圧(160℃で30分間プレス成形)し、その後、30℃に設定された冷却プレスに100kg/cmの加圧の条件で、10分間冷却することで、厚み0.7mmのシートを作製した。カレンダー成形性、シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価した。
また、別に耐熱性評価用に、150℃−0kg/cmの条件で、3分予熱した後、150℃−100kg/cmの条件で27分加圧(150℃で30分間プレス成形)し、その後、30℃に設定された冷却プレスに100kg/cmの加圧の条件で、10分間冷却することで、厚み0.7mmのシートを準備した。評価結果を表2に示す。
Example 1
0.3 parts by weight of γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM503) as a silane coupling agent with respect to 100 parts by weight of a copolymer of ethylene and 1-hexene (PE-1) As an organic peroxide, 1.5 parts by weight of 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (manufactured by Arkema Yoshitomi Co., Ltd., Luperox 101) as a hindered amine light stabilizer In addition, 0.05 part by weight of a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (TINSFIN 622LD, manufactured by BASF) was blended. After melt-kneading the resin composition with a Banbury mixer, the resin composition was supplied to a calender molding machine and extruded into a sheet with a calender roll. The temperature of the calendar roll was 100 ° C., and the rotation speed was 10 m / min.
The resulting sheets, at the 160 ℃ -0kg / cm 2 conditions, after 3 minutes preheat, 160 ℃ -100kg / cm (30 minutes press molding at 160 ° C.) 27 minutes pressurization at 2 conditions, and then, A sheet having a thickness of 0.7 mm was produced by cooling for 10 minutes in a cooling press set to 30 ° C. under a pressure of 100 kg / cm 2 . Calender moldability, sheet HAZE, light transmittance, tensile modulus, and heat resistance were measured and evaluated.
Separately for evaluation of heat resistance, under the condition of 150 ℃ -0kg / cm 2, after 3 minutes preheat, 150 ℃ -100kg / cm (30 minutes press molding at 0.99 ° C.) in 27 min pressurized second condition and Then, a sheet having a thickness of 0.7 mm was prepared by cooling for 10 minutes on a cooling press set to 30 ° C. under a pressure of 100 kg / cm 2 . The evaluation results are shown in Table 2.

(実施例2)
実施例1において、PE−1に替えて、PE−2を用いた以外は同様にシートを作製した。カレンダー成形性、シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価した。評価結果を表2に示す。
(Example 2)
In Example 1, a sheet was prepared in the same manner except that PE-2 was used instead of PE-1. Calender moldability, sheet HAZE, light transmittance, tensile modulus, and heat resistance were measured and evaluated. The evaluation results are shown in Table 2.

(実施例3)
実施例1において、PE−1に替えて、PE−3を用いた以外は同様にシートを作製した。カレンダー成形性、シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価した。評価結果を表2に示す。
(Example 3)
In Example 1, a sheet was prepared in the same manner except that PE-3 was used instead of PE-1. Calender moldability, sheet HAZE, light transmittance, tensile modulus, and heat resistance were measured and evaluated. The evaluation results are shown in Table 2.

(実施例4)
実施例3において、さらに、紫外線吸収剤として、2−ヒドロキシ−4−n−オクトキシベンゾフェノン(サンケミカル社製 CYTEC UV531)0.3部を添加した以外は、実施例1と同様にシートを作製した。カレンダー成形性、シートのHAZE、引張弾性率、耐熱性、接着性を測定、評価を行った。評価結果を表2に示す。
Example 4
In Example 3, a sheet was produced in the same manner as in Example 1 except that 0.3 part of 2-hydroxy-4-n-octoxybenzophenone (CYTEC UV531 manufactured by Sun Chemical Co., Ltd.) was further added as an ultraviolet absorber. did. Calender moldability, sheet HAZE, tensile elastic modulus, heat resistance, and adhesiveness were measured and evaluated. The evaluation results are shown in Table 2.

(実施例5)
実施例1において、PE−1に替えて、PE−9を用いた以外は同様にシートを作製した。カレンダー成形性、シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価した。評価結果を表2に示す。
(Example 5)
In Example 1, a sheet was prepared in the same manner except that PE-9 was used instead of PE-1. Calender moldability, sheet HAZE, light transmittance, tensile modulus, and heat resistance were measured and evaluated. The evaluation results are shown in Table 2.

(比較例1)
シランカップリング剤を用いなかった以外は、実施例1と同様にシートを作製した。カレンダー成形性、シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価した。評価結果を表2に示す。
(Comparative Example 1)
A sheet was produced in the same manner as in Example 1 except that the silane coupling agent was not used. Calender moldability, sheet HAZE, light transmittance, tensile modulus, and heat resistance were measured and evaluated. The evaluation results are shown in Table 2.

(比較例2)
実施例1において、PE−1に替えて、比較用のPE−4(エチレン・1−ヘキセン共重合体)を用いた以外は、実施例6と同様のカレンダー成形を試みた。ところが、溶融張力が足りず、カレンダー成形できなかった。
(Comparative Example 2)
In Example 1, calender molding similar to that in Example 6 was attempted except that PE-4 (ethylene / 1-hexene copolymer) for comparison was used instead of PE-1. However, the melt tension was insufficient and calendar molding could not be performed.

(比較例3)
PE−1の代わりに、PE−5(エチレン・1−ブテン共重合体、三井化学社製 タクマーA4085S)を用いた以外は、実施例1と同様のカレンダー成形を試みた。ところが、溶融張力が足りず、カレンダー成形できなかった。
(Comparative Example 3)
A calender molding similar to that in Example 1 was attempted except that PE-5 (ethylene / 1-butene copolymer, Takumer A4085S manufactured by Mitsui Chemicals, Inc.) was used instead of PE-1. However, the melt tension was insufficient and calendar molding could not be performed.

(比較例4)
PE−1の代わりに、PE−6(エチレン・1−オクテン共重合体、ダウ・ケミカル社製 エンゲージ8100)を用いた以外は、実施例1と同様にシートを作製した。カレンダー成形性、シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価した。評価結果を表3に示す。架橋効率が悪く耐熱性が劣る結果となった。
(Comparative Example 4)
A sheet was prepared in the same manner as in Example 1 except that PE-6 (ethylene / 1-octene copolymer, Dow Chemical Engage 8100) was used instead of PE-1. Calender moldability, sheet HAZE, light transmittance, tensile modulus, and heat resistance were measured and evaluated. The evaluation results are shown in Table 3. As a result, the crosslinking efficiency was poor and the heat resistance was poor.

(比較例5,6)
PE−1の代わりに、PE−7(エチレン・1−オクテン共重合体、ダウ・ケミカル社製 エンゲージ8200)、又はPE−8(エチレン・1−オクテン共重合体、ダウ・ケミカル社製 エンゲージ8400)を用いた以外は、実施例1と同様のカレンダー成形を試みた。ところが、溶融張力が足りず、カレンダー成形できなかった。
(Comparative Examples 5 and 6)
Instead of PE-1, PE-7 (ethylene / 1-octene copolymer, Dow Chemical Co. Engage 8200) or PE-8 (ethylene / 1-octene copolymer, Dow Chemical Co. Engage 8400) ) Was used, and the same calendar molding as in Example 1 was attempted. However, the melt tension was insufficient and calendar molding could not be performed.

Figure 0005824902
Figure 0005824902

「評価」
この結果、表2から明らかなように、実施例1〜5では、本発明の特定の樹脂組成物を用いているために、これを押出成形(カレンダー成形)することが可能で、得られたシートは、HAZEが小さく、光線透過率が大きく、耐熱性、剛性と架橋効率のバランスも優れている。
これに対して、比較例1では、本発明とは異なり、シランカップリング剤を用いなかったために、十分な接着性が得られなかった。また、比較例2、3、5、6では、溶融粘度が本発明から外れるエチレン・α−オレフィン共重合体を含む樹脂組成物を用いたために、カレンダー成形できなかった。比較例4では、式(a)及びFRが本発明から外れるエチレン・1−オクテン共重合体を含む樹脂組成物を用いたために、得られたシートは、架橋効率が悪く耐熱性が劣る結果となった。
"Evaluation"
As a result, as is apparent from Table 2, in Examples 1 to 5, since the specific resin composition of the present invention was used, it was possible to perform extrusion molding (calendar molding), and it was obtained. The sheet has a small HAZE, a large light transmittance, and an excellent balance between heat resistance, rigidity and crosslinking efficiency.
On the other hand, in Comparative Example 1, unlike the present invention, a silane coupling agent was not used, so that sufficient adhesiveness was not obtained. Further, in Comparative Examples 2, 3, 5, and 6, since the resin composition containing an ethylene / α-olefin copolymer whose melt viscosity deviated from the present invention was used, calendar molding could not be performed. In Comparative Example 4, since the resin composition containing the ethylene / 1-octene copolymer in which the formula (a) and FR deviate from the present invention was used, the obtained sheet had poor crosslinking efficiency and poor heat resistance. became.

本発明は、透明性、柔軟性、剛性と架橋効率のバランス、耐候性等が要求される太陽電池封止材、及び発電効率が高く耐久性が改良された太陽電池モジュールの製造に利用できる。樹脂組成物にシランカップリング剤を配合しているため、ガラス基板に対して接着性がよく、特に薄膜太陽電池或いは基板としてガラス板を用いた太陽電池の封止材として有用である。   INDUSTRIAL APPLICABILITY The present invention can be used for the production of a solar cell encapsulant that requires transparency, flexibility, rigidity and balance of crosslinking efficiency, weather resistance, and the like, and a solar cell module with high power generation efficiency and improved durability. Since a silane coupling agent is blended in the resin composition, it has good adhesion to a glass substrate, and is particularly useful as a sealing material for a thin film solar cell or a solar cell using a glass plate as a substrate.

Claims (13)

下記の成分(A)及び成分(B)を含有することを特徴とする太陽電池封止材用樹脂組成物。
成分(A):下記(a1)〜(a5)の特性を有するエチレン・α−オレフィン共重合体(ただし、190℃、2.16kg荷重で測定したMFRが15g/10分以上のものを除く)
(a1)密度が0.860〜0.920g/cm
(a2)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
(a3)100℃で測定した、せん断速度が2.43×10s−1での溶融粘度(η )が1.2×10poise以上
(a4)100℃で測定した、せん断速度が2.43×102s−1での溶融粘度(η )が2.0×10poise以上
(a5)エチレン・α−オレフィン共重合体中のコモノマーによる分岐数(N)が下記式(a)を満たす。
式(a): N ≧ −0.67×E+53
( ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの分岐数であり、Eは、ISO1184−1983に準拠して測定した、シートの引張弾性率である。)
成分(B):シランカップリング剤
The resin composition for solar cell sealing materials characterized by containing the following component (A) and a component (B).
Component (A): an ethylene / α-olefin copolymer having the following properties (a1) to (a5) (excluding those having an MFR measured at 190 ° C. under a load of 2.16 kg of 15 g / 10 min or more)
(A1) Density is 0.860-0.920 g / cm 3
(A2) The ratio (Mz / Mn) of Z average molecular weight (Mz) and number average molecular weight (Mn) determined by gel permeation chromatography (GPC) was 8.0 or less (a3) Shear measured at 100 ° C. Melt viscosity (η * 1 ) at a speed of 2.43 × 10 s −1 is 1.2 × 10 5 poise or more (a4) Melt viscosity at a shear rate of 2.43 × 102 s −1 measured at 100 ° C. (Η * 2 ) is 2.0 × 10 4 poise or more (a5) The number of branches (N) due to the comonomer in the ethylene / α-olefin copolymer satisfies the following formula (a).
Formula (a): N ≧ −0.67 × E + 53
(Where N is the number of branches per 1000 carbon atoms in total of the main chain and side chain measured by NMR, and E is the tensile modulus of the sheet measured in accordance with ISO 1184-1983.) )
Component (B): Silane coupling agent
(a5)エチレン・α−オレフィン共重合体中のコモノマーによる分岐数(N)が、下記式(a’)を満たすことを特徴とする請求項1に記載の太陽電池封止材用樹脂組成物。
式(a’): −0.67×E+100 ≧ N ≧ −0.67×E+53
( ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの分岐数であり、Eは、ISO1184−1983に準拠して測定した、シートの引張弾性率である。)
(A5) The number of branches (N) due to the comonomer in the ethylene / α-olefin copolymer satisfies the following formula (a ′): The resin composition for a solar cell encapsulant according to claim 1, .
Formula (a ′): −0.67 × E + 100 ≧ N ≧ −0.67 × E + 53
(Where N is the number of branches per 1000 carbon atoms in total of the main chain and side chain measured by NMR, and E is the tensile modulus of the sheet measured in accordance with ISO 1184-1983.) )
(a5)エチレン・α−オレフィン共重合体中のコモノマーによる分岐数(N)が、下記式(a’’)を満たすことを特徴とする請求項1又は2に記載の太陽電池封止材用樹脂組成物。
式(a’’): −0.67×E+80 ≧ N ≧ −0.67×E+53
( ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの分岐数であり、Eは、ISO1184−1983に準拠して測定した、シートの引張弾性率である。)
(A5) The number of branches (N) due to the comonomer in the ethylene / α-olefin copolymer satisfies the following formula (a ″): Resin composition.
Formula (a ″): −0.67 × E + 80 ≧ N ≧ −0.67 × E + 53
(Where N is the number of branches per 1000 carbon atoms in total of the main chain and side chain measured by NMR, and E is the tensile modulus of the sheet measured in accordance with ISO 1184-1983.) )
下記の成分(A)及び成分(B)を含有することを特徴とする太陽電池封止材用樹脂組成物。
成分(A):下記(a1)〜(a4)及び(a6)の特性を有するエチレン・α−オレフィン共重合体(ただし、190℃、2.16kg荷重で測定したMFRが15g/10分以上のものを除く)
(a1)密度が0.860〜0.920g/cm
(a2)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
(a3)100℃で測定した、せん断速度が2.43×10s−1での溶融粘度(η )が1.2×10poise以上
(a4)100℃で測定した、せん断速度が2.43×10−1での溶融粘度(η )が2.0×10poise以上
(a6)フローレシオ(FR):190℃における10kg荷重でのMFR測定値であるI10と、190℃における2.16kg荷重でのMFR測定値であるI2.16との比(I10/I2.16)が7.0未満
成分(B):シランカップリング剤
The resin composition for solar cell sealing materials characterized by containing the following component (A) and a component (B).
Component (A): ethylene / α-olefin copolymer having the following properties (a1) to (a4) and (a6) (however, the MFR measured at 190 ° C. under a load of 2.16 kg is 15 g / 10 min or more) Excluding things)
(A1) Density is 0.860-0.920 g / cm 3
(A2) The ratio (Mz / Mn) of Z average molecular weight (Mz) and number average molecular weight (Mn) determined by gel permeation chromatography (GPC) was 8.0 or less (a3) Shear measured at 100 ° C. rate melt viscosity at 2.43 × 10s -1 (η * 1 ) was measured at 1.2 × 10 5 poise or (a4) 100 ℃, shear rate at 2.43 × 10 2 s -1 Melt viscosity (η * 2 ) is 2.0 × 10 4 poise or more (a6) Flow ratio (FR): I10 which is MFR measured value at 10 ° C. load at 190 ° C. and 2.16 kg load at 190 ° C. Component (B) having a ratio (I 10 / I 2.16 ) of less than 7.0 with I 2.16 which is an MFR measurement value: Silane coupling agent
特性(a6)のフローレシオ(FR)が、5.0〜6.2であることを特徴とする請求項4に記載の太陽電池封止材用樹脂組成物。   The flow ratio (FR) of the characteristic (a6) is 5.0 to 6.2. The resin composition for a solar cell encapsulant according to claim 4. 成分(B)の含有量が、成分(A)100重量部に対して、0.01〜5重量部であることを特徴とする請求項1〜5のいずれかに記載の太陽電池封止材用樹脂組成物。   Content of a component (B) is 0.01-5 weight part with respect to 100 weight part of components (A), The solar cell sealing material in any one of Claims 1-5 characterized by the above-mentioned. Resin composition. 下記の成分(C)を成分(A)100重量部に対して、0.2〜5重量部含有することを特徴とする請求項1〜6のいずれかに記載の太陽電池封止材用樹脂組成物。
成分(C):有機過酸化物
The resin for solar cell encapsulant according to any one of claims 1 to 6, comprising 0.2 to 5 parts by weight of the following component (C) with respect to 100 parts by weight of component (A). Composition.
Component (C): Organic peroxide
さらに、下記の成分(D)を含有することを特徴とする請求項1〜7のいずれかに記載の太陽電池封止材用樹脂組成物。
成分(D):ヒンダードアミン系光安定化剤
Furthermore, the following component (D) is contained, The resin composition for solar cell sealing materials in any one of Claims 1-7 characterized by the above-mentioned.
Component (D): Hindered amine light stabilizer
成分(D)の含有量が、成分(A)100重量部に対して、0.01〜2.5重量部であることを特徴とする請求項8に記載の太陽電池封止材用樹脂組成物。   Content of a component (D) is 0.01-2.5 weight part with respect to 100 weight part of components (A), The resin composition for solar cell sealing materials of Claim 8 characterized by the above-mentioned. object. 成分(A)が、エチレン・プロピレン共重合体、エチレン・1−ブテン共重合体又はエチレン・1−ヘキセン共重合体であることを特徴とする請求項1〜9のいずれかに記載の太陽電池封止材用樹脂組成物。   The solar cell according to any one of claims 1 to 9, wherein the component (A) is an ethylene / propylene copolymer, an ethylene / 1-butene copolymer, or an ethylene / 1-hexene copolymer. Resin composition for sealing materials. 成分(A)が、エチレン・プロピレン・1−ヘキセン三元共重合体であることを特徴とする請求項1〜9のいずれかに記載の太陽電池封止材用樹脂組成物。   The resin composition for a solar cell encapsulant according to any one of claims 1 to 9, wherein the component (A) is an ethylene / propylene / 1-hexene terpolymer. 請求項1〜11のいずれかに記載の太陽電池封止材用樹脂組成物をペレット化し、あるいはシート化してなる太陽電池封止材。   The solar cell sealing material formed by pelletizing the resin composition for solar cell sealing materials in any one of Claims 1-11, or making into a sheet. 請求項12に記載の太陽電池封止材を用いた太陽電池モジュール。   The solar cell module using the solar cell sealing material of Claim 12.
JP2011139102A 2010-06-25 2011-06-23 Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same Active JP5824902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139102A JP5824902B2 (en) 2010-06-25 2011-06-23 Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010145265 2010-06-25
JP2010145265 2010-06-25
JP2011139102A JP5824902B2 (en) 2010-06-25 2011-06-23 Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same

Publications (2)

Publication Number Publication Date
JP2012025946A JP2012025946A (en) 2012-02-09
JP5824902B2 true JP5824902B2 (en) 2015-12-02

Family

ID=45779244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139102A Active JP5824902B2 (en) 2010-06-25 2011-06-23 Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same

Country Status (1)

Country Link
JP (1) JP5824902B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101624572B1 (en) 2014-09-05 2016-05-26 에스케이씨 주식회사 Encapsulant sheet for solar cells and solar cell module comprising same
KR101678984B1 (en) * 2016-06-15 2016-11-23 에스케이씨 주식회사 Encapsulant sheet for solar cells and solar cell module comprising same
BR112020015165A2 (en) * 2018-02-15 2021-01-19 Borealis Ag POLYMER COMPOSITION FOR APPLICATIONS COMPRISING A LAYER ELEMENT

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226973B2 (en) * 2007-06-15 2013-07-03 三井化学株式会社 Ethylene-based copolymer, composition containing the copolymer, and use thereof
JP5444039B2 (en) * 2009-06-01 2014-03-19 三井化学東セロ株式会社 Resin composition, solar cell sealing material, and solar cell module using the same

Also Published As

Publication number Publication date
JP2012025946A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5688441B2 (en) Resin composition for solar cell encapsulant
WO2011162324A1 (en) Resin composition for solar cell sealing material, and solar cell sealing material and solar cell module using same
US8697984B2 (en) Resin composition for solar cell encapsulant, solar cell encapsulant and solar cell module using the same
JP5539063B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5636221B2 (en) Resin composition for solar cell encapsulant
JP6269329B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5417534B2 (en) Solar cell encapsulant and solar cell module using the same
JP5800053B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5555554B2 (en) Resin composition for solar cell encapsulant
JP5821341B2 (en) Resin composition for solar cell encapsulant and solar cell encapsulant using the same
JP2013139558A (en) Resin composition for sealing solar cell, and solar cell sealant and solar cell module using the same
JP5764819B2 (en) Extruded resin composition, solar cell module sealing material and solar cell module, water shielding sheet, or tarpaulin using the same
JP5542503B2 (en) Resin composition for solar cell encapsulant
JP5542502B2 (en) Extrusion molding resin composition, solar cell module sealing material, water shielding sheet, or tarpaulin using the same
JP2017110221A (en) Polyethylene resin, polyethylene resin composition and solar cell encapsulation material and solar cell module using the same
JP5560099B2 (en) Resin composition for solar cell encapsulant
JP5861508B2 (en) Olefin resin pellet body, sheet or film, solar cell sealing material using the same, and solar cell module
JP5539064B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5530828B2 (en) Method for producing resin composition for solar cell encapsulant
JP5824902B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5519428B2 (en) Resin composition for solar cell encapsulant
JP5800054B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150407

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R150 Certificate of patent or registration of utility model

Ref document number: 5824902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250