JP5823587B2 - Electrolytic device, refrigerator, operating method of electrolytic device, and operating method of refrigerator - Google Patents
Electrolytic device, refrigerator, operating method of electrolytic device, and operating method of refrigerator Download PDFInfo
- Publication number
- JP5823587B2 JP5823587B2 JP2014165935A JP2014165935A JP5823587B2 JP 5823587 B2 JP5823587 B2 JP 5823587B2 JP 2014165935 A JP2014165935 A JP 2014165935A JP 2014165935 A JP2014165935 A JP 2014165935A JP 5823587 B2 JP5823587 B2 JP 5823587B2
- Authority
- JP
- Japan
- Prior art keywords
- potential
- cathode
- electrolyte
- oxygen
- control unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Description
電解装置および電解装置、冷蔵庫、電解装置の運転方法及び冷蔵庫の運転方法に関する。 The present invention relates to an electrolyzer, an electrolyzer, a refrigerator, an electrolyzer operation method, and a refrigerator operation method.
従来、除湿装置、酸素濃縮装置、脱酸素装置、食塩電解装置、ガスセンサーや湿度センサーなどに電気分解による酸素還元反応を利用した装置の開発が進められている。この電気分解を行う電解セルの陽極には白金、鉛、酸化物、イリジウム複合酸化物やルテニウム複合酸化物の触媒が用いられ、陰極には白金系触媒が用いられている。 2. Description of the Related Art Conventionally, development of devices using an oxygen reduction reaction by electrolysis for a dehumidifying device, an oxygen concentrating device, a deoxygenating device, a salt electrolysis device, a gas sensor, a humidity sensor, and the like has been advanced. A catalyst of platinum, lead, oxide, iridium composite oxide or ruthenium composite oxide is used for the anode of the electrolysis cell that performs this electrolysis, and a platinum-based catalyst is used for the cathode.
しかし、酸素還元反応において、陰極の印加電圧が理論水素発生電位を超えると、陰極側で水素が発生してしまう。例えば、脱酸素装置を冷蔵庫に用いた場合、水素化反応が進み電力効率が悪くなる。これはPtが非常に高い触媒能を有するために、水素化反応も起きやすく、酸素還元反応と並行するためである。また、電気分解の電圧を低くすると、大きな電流を取り出すことができないため、脱酸素効率が良くないといった問題がある。 However, in the oxygen reduction reaction, when the voltage applied to the cathode exceeds the theoretical hydrogen generation potential, hydrogen is generated on the cathode side. For example, when the deoxygenation device is used in a refrigerator, the hydrogenation reaction proceeds and the power efficiency is deteriorated. This is because Pt has a very high catalytic ability, so that a hydrogenation reaction easily occurs and is parallel to the oxygen reduction reaction. Further, when the electrolysis voltage is lowered, a large current cannot be taken out, so that there is a problem that deoxidation efficiency is not good.
水素化反応が抑制され、効率が高い電解装置および冷蔵庫を提供することを目的とする。 An object of the present invention is to provide an electrolytic device and a refrigerator in which hydrogenation reaction is suppressed and efficiency is high.
実施形態にかかる電解装置は、陽極と、窒素が導入されたカーボンアロイ触媒を有する陰極と、陽極と陰極間に配置された電解質とで構成される膜電極接合体を有する電解セルと、陽極側の空間又は陰極側の空間を密閉する容器と、陽極と陰極に電圧を印加する電源と、電源を制御する制御部を備える電解装置であって、カーボンアロイ触媒は、ピリジン型の窒素置換、ピロール・ピリドン型の窒素置換と、Nオキサイド型の窒素置換のうちの少なくともいずれかを有し、電解質は酸性、中性又はアルカリ性のいずれかであり、電解質が酸性の場合は、水素の発生電位は−0.2〜−0.7V vs. RHEであって、制御部は、電解装置の運転において、陰極の電位が水素の発生電位より高くなるように電源を制御し、又は、電解質が中性又はアルカリ性の場合は、水素の発生電位は−0.2〜−0.9V vs. RHEであって、制御部は、電解装置の運転において、陰極の電位が水素の発生電位より高くなるように電源を制御することを特徴とする。 An electrolysis device according to an embodiment includes an electrolysis cell having a membrane electrode assembly including an anode, a cathode having a carbon alloy catalyst into which nitrogen is introduced, an electrolyte disposed between the anode and the cathode, and an anode side. An electrolysis apparatus comprising a container for sealing the space of the cathode or the cathode side, a power source for applying a voltage to the anode and the cathode, and a control unit for controlling the power source , wherein the carbon alloy catalyst is a pyridine type nitrogen substitution, pyrrole -It has at least one of pyridone type nitrogen substitution and N oxide type nitrogen substitution , and the electrolyte is either acidic, neutral or alkaline, and when the electrolyte is acidic, the hydrogen generation potential is -0.2 to -0.7 V vs. In the RHE , the control unit controls the power supply so that the cathode potential is higher than the hydrogen generation potential in the operation of the electrolysis apparatus, or when the electrolyte is neutral or alkaline, the hydrogen generation potential is -0.2 to -0.9V vs. In the RHE , the control unit controls the power supply so that the potential of the cathode is higher than the generation potential of hydrogen in the operation of the electrolysis apparatus .
実施形態にかかる電解装置は、陽極と、窒素が導入されたカーボンアロイ触媒を有する陰極と、前記陽極と前記陰極間に配置された電解質とで構成される膜電極接合体とを有する電解セルを少なくとも備え、前記陽極と前記陰極に電圧が印加される。 An electrolysis apparatus according to an embodiment includes an electrolytic cell having an anode, a cathode having a carbon alloy catalyst into which nitrogen is introduced, and a membrane electrode assembly including the anode and an electrolyte disposed between the cathodes. At least, a voltage is applied to the anode and the cathode.
上記電解装置セルは陽極と陰極に電圧が印加される電源を、陽極側で水の電気分解を行い、発生したプロトンを用いて、陰極側で酸素還元反応を行う。一般に電解用の酸素還元触媒にはPtが用いられているが、実施形態の電解セルの陰極には酸素還元開始電位の高いPtは含まれない。陰極にPtが含まれると、酸素還元開始電位が高いため、酸素還元反応は起こりやすい。具体的には、標準水素電極電位(NHE)基準で酸素還元標準電極電位の1.23V vs. NHEに対して、0.95〜1.0V vs.NHE程になる。しかし、優秀な水素発生触媒でもあるPtが含まれる陰極は水素発生電位も高いため、酸素還元開始電位と水素発生電位との差が小さいので陰極での水素化反応も生じやすい。具体的には、酸性中での水素発生標準電位は0V vs.NHEであり、陰極が0V vs. NHE以下になると直ちに水素を発生する。燃料電池用ではない実施形態の電解セルの用途を考慮すると、高い水素発生能力は利点にならない。 The electrolyzer cell performs electrolysis of water on the anode side with a power source to which a voltage is applied to the anode and the cathode, and performs oxygen reduction reaction on the cathode side using the generated protons. Generally, Pt is used for the oxygen reduction catalyst for electrolysis, but the cathode of the electrolysis cell of the embodiment does not include Pt having a high oxygen reduction starting potential. When Pt is contained in the cathode, the oxygen reduction starting potential is high, and thus an oxygen reduction reaction is likely to occur. Specifically, the oxygen reduction standard electrode potential of 1.23 V vs. standard hydrogen electrode potential (NHE) standard. 0.95 to 1.0 V vs. NHE. It becomes about NHE. However, since the cathode containing Pt, which is also an excellent hydrogen generation catalyst, has a high hydrogen generation potential, the difference between the oxygen reduction start potential and the hydrogen generation potential is small, so that a hydrogenation reaction at the cathode is likely to occur. Specifically, the hydrogen generation standard potential in acidity is 0 V vs. NHE, the cathode is 0 V vs. As soon as NHE is reached, hydrogen is generated. Considering the application of the electrolysis cell of the embodiment that is not for fuel cells, high hydrogen generation capacity is not an advantage.
除湿装置や脱酸素装置等の場合は外部から電圧を印加するため、ある程度の消費電力の増加であれば、電解条件下で、Pt並の酸素還元性能よりも水素が発生しにくい触媒の方が利点を有する。特に、陽極及び陰極の各極の電位をモニターしない場合、各極の過電圧比率は陽極と陰極での触媒性能や物質の拡散速度で決まってくるため容易に知ることができず、印加される電圧(印加電圧)だけで水素が発生しているのかの判断ができない。その場合は、水素が発生しにくい触媒の方が、限界印加電圧を大きく設定することができるため、酸素還元反応が効率的に進行する。 In the case of a dehumidifier, deoxygenator, etc., a voltage is applied from the outside. Therefore, if the power consumption is increased to some extent, a catalyst that generates less hydrogen under electrolysis conditions than the oxygen reduction performance comparable to Pt is better. Have advantages. In particular, when the potential of each electrode of the anode and cathode is not monitored, the overvoltage ratio of each electrode is determined by the catalyst performance at the anode and the cathode and the diffusion rate of the substance, so it is not easy to know the applied voltage. It cannot be judged whether hydrogen is generated only by (applied voltage). In that case, a catalyst that is less likely to generate hydrogen can set a higher limit applied voltage, and thus the oxygen reduction reaction proceeds efficiently.
窒素無置換の炭素(例えば、KetjenBlack(登録商標)やVulcan(登録商標)XC72R)の酸素還元開始電位は、可逆水素電極電位(RHE)基準で0.7〜0.6Vvs.RHE程度であるため、酸素還元能が高くない。そして、水素発生電位は約−0.1〜−0.2Vvs.RHEであり、水素発生能も低くない。従って、運転電位窓([酸素還元開始電位]−[水素発生電位])は約0.8〜0.9Vであり、酸素還元能も水素発生能も実施形態の陰極用触媒として好適ではない。 The oxygen reduction initiation potential of nitrogen-free carbon (for example, KetjenBlack (registered trademark) or Vulcan (registered trademark) XC72R) is 0.7 to 0.6 V vs. reversible hydrogen electrode potential (RHE). Since it is about RHE, oxygen reduction ability is not high. The hydrogen generation potential is about −0.1 to −0.2 Vvs. RHE and hydrogen generation ability is not low. Therefore, the operating potential window ([oxygen reduction start potential] − [hydrogen generation potential]) is about 0.8 to 0.9 V, and neither the oxygen reduction ability nor the hydrogen generation ability is suitable as the cathode catalyst of the embodiment.
実施形態の電解セルの陰極に用いる触媒は、比較的早い反応速度で酸素還元反応を行い、高い水素発生抑制効果を有するものを用いる。 The catalyst used for the cathode of the electrolytic cell of the embodiment is one that performs an oxygen reduction reaction at a relatively fast reaction rate and has a high hydrogen generation suppression effect.
実施形態にかかるカーボンアロイ触媒は、炭素原子の集合体を主体とした化合物であり、炭素原子の一部が窒素原子で置換されたものである。触媒全体としては導電性や高比表面積を有するためにアモルファスやsp3炭素が含まれるが、窒素はsp2炭素の骨格中に図1の構造式の様に、ピリジン型(A)、ピロール・ピリドン型(B)、Nオキサイド型(C)、3配位型(D)のうち少なくともいずれかの形態で炭素原子が窒素原子で置換されたものが含まれる。図1の(A)〜(D)は、窒素置換の形態の例を示すものであり、図1の構造式のものが実施形態のカーボンアロイ触媒そのものを示しているのではない。 The carbon alloy catalyst according to the embodiment is a compound mainly composed of an aggregate of carbon atoms, and a part of the carbon atoms is substituted with a nitrogen atom. The catalyst as a whole has conductivity and high specific surface area, so amorphous and sp3 carbon are included. However, nitrogen is pyridine type (A), pyrrole / pyridone type in the skeleton of sp2 carbon as shown in the structural formula of FIG. (B), N oxide type (C), and the three-coordinate type (D) include those in which a carbon atom is substituted with a nitrogen atom in at least one form. 1A to 1D show examples of forms of nitrogen substitution, and the structural formula of FIG. 1 does not show the carbon alloy catalyst of the embodiment itself.
実施形態のカーボンアロイ触媒の窒素置換量は、カーボンアロイ触媒の表面元素量に対して0.1atom%以上30atom%以下である。この下限値より窒素置換量が少ないと、窒素置換による効果が十分でなく好ましくない。また、この上限値より窒素置換量が多いと、構造が乱れ導電性が低下することが好ましくない。なお、窒素置換量は0.1atm%以上10atom%以下が導電性の観点からさらに好ましい。カーボンアロイ触媒を陰極の触媒に用いると、窒素の置換量に依存して水素発生電位が下がり、運転電位窓が1Vを超えるため好ましい。具体的には、カーボンアロイ触媒として、酸素還元開始電位0.84V vs. RHE、水素酸化電圧−0.46V、電位窓として約1.3Vを観測しており、Ptよりも電位窓が広い。 The nitrogen substitution amount of the carbon alloy catalyst of the embodiment is 0.1 atom% or more and 30 atom% or less with respect to the surface element amount of the carbon alloy catalyst. If the amount of nitrogen substitution is less than this lower limit, the effect of nitrogen substitution is not sufficient, which is not preferable. Moreover, when there is more nitrogen substitution amount than this upper limit, it is unpreferable that a structure will be disturb | confused and electroconductivity will fall. The nitrogen substitution amount is more preferably 0.1 atm% or more and 10 atom% or less from the viewpoint of conductivity. Use of a carbon alloy catalyst as the cathode catalyst is preferred because the hydrogen generation potential decreases depending on the amount of nitrogen substitution, and the operating potential window exceeds 1V. Specifically, as a carbon alloy catalyst, an oxygen reduction starting potential of 0.84 V vs. RHE, hydrogen oxidation voltage −0.46V, and potential window of about 1.3V are observed, and the potential window is wider than Pt.
なお本文中でのカーボンアロイ触媒の定義としては、炭素同士がsp2混成軌道を形成した炭素の一部が窒素に置換されたものを表している。 In addition, the definition of the carbon alloy catalyst in the text represents a carbon in which a part of carbon in which sp 2 hybridized orbits are substituted with nitrogen.
実施形態のカーボンアロイ触媒は、窒素が導入された炭素の量に比例して、触媒の活性点が増加する。また、実施形態の炭素触媒は、表面積が大きいほど酸素還元電流に寄与する活性点が多くなることから、炭素触媒の比表面積は大きいことが好ましい。 In the carbon alloy catalyst of the embodiment, the active point of the catalyst increases in proportion to the amount of carbon into which nitrogen is introduced. In addition, the carbon catalyst of the embodiment preferably has a large specific surface area because the active site contributing to the oxygen reduction current increases as the surface area increases.
また、カーボンアロイ触媒の比表面積が大きくなりすぎると、カーボンアロイ触媒の表面に10nm径以下の微細孔の割合が増加する。この微細孔は、酸素還元反応に必要な酸素ガスの拡散速度が極端に遅くなるため好ましくない。従って、この微細孔の割合が少なく、カーボンアロイ触媒の孔の大部分(60%以上)が20nm以上の径となることが好ましい。以上のことから、カーボンアロイ触媒の比表面積は100m2/g以上1200m2/g以下となるものが好ましい。 Moreover, when the specific surface area of a carbon alloy catalyst becomes large too much, the ratio of the micropore of a 10 nm diameter or less will increase on the surface of a carbon alloy catalyst. This micropore is not preferable because the diffusion rate of oxygen gas necessary for the oxygen reduction reaction becomes extremely slow. Therefore, it is preferable that the ratio of the fine pores is small, and most of the pores (60% or more) of the carbon alloy catalyst have a diameter of 20 nm or more. From the above, it is preferable that the specific surface area of the carbon alloy catalyst is 100 m 2 / g or more and 1200 m 2 / g or less.
窒素原子の置換量はX線光電子スペクトル(X−ray Photoelectron Spectroscopy:XPS)により測定可能な炭素(C)に対する窒素(N)置換の割合(C/N比)である。C/N比は、炭素原子C1sの290eV近傍のシグナル、窒素原子N1sの400eV近傍のシグナル強度比から計算することができる。C/N比の算出には、C3N4などの組成比が明らかな化合物を標準物質として用い、これを基準に算出することができる。 The amount of nitrogen atom substitution is the ratio (C / N ratio) of nitrogen (N) substitution to carbon (C) that can be measured by X-ray photoelectron spectroscopy (XPS). The C / N ratio can be calculated from the signal in the vicinity of 290 eV of the carbon atom C1s and the signal intensity ratio in the vicinity of 400 eV of the nitrogen atom N1s. For the calculation of the C / N ratio, a compound having a clear composition ratio such as C 3 N 4 can be used as a standard substance and can be calculated based on this.
測定試料は、電解セルの陰極から削ることにより作製することができる。
ただし、XPSによる測定ではsp2炭素に置換された窒素の他に、アミンなどの非置換窒素も検出されてしまう。そこで、これら非置換窒素の影響を除外するために、作製試料をアルゴン雰囲気下で1時間800度にて焼成し、非置換窒素を分解、その後にXPS測定をすることで、非置換窒素の影響を無くしている。
ここで、さらに置換の形態を分離することも可能である。窒素原子N1sの400eV近傍のシグナルをピーク分離することにより398.5eV−ピリジン型、400.5eV−ピロール・ピリドン型、401.2eV−3配位型、402.9eV−Nオキサイド型に分離することができ、窒素の置換形態とその量が明確化できる。
窒素置換量を特定するためには、試料の加熱や混合時のムラを考慮して、1バッチの調製試料を質量で4等分し、それぞれをXPSにて表面状態を測定することが有効であり、これが品質の点検に有効である。
The measurement sample can be prepared by scraping from the cathode of the electrolytic cell.
However, in XPS measurement, non-substituted nitrogen such as amine is detected in addition to nitrogen substituted with sp2 carbon. Therefore, in order to exclude the influence of these non-substituted nitrogen, the produced sample was baked at 800 ° C. for 1 hour in an argon atmosphere, the non-substituted nitrogen was decomposed, and then the XPS measurement was performed. Is lost.
Here, it is also possible to further separate the substitution forms. Separating the signal near 400 eV of nitrogen atom N1s into 398.5 eV-pyridine type, 400.5 eV-pyrrole / pyridone type, 401.2 eV-3 coordination type, 402.9 eV-N oxide type The substitution form and amount of nitrogen can be clarified.
In order to specify the amount of nitrogen substitution, it is effective to divide a batch of prepared sample into four equal parts by mass and measure the surface condition with XPS in consideration of unevenness in heating and mixing of the sample. Yes, this is effective for quality inspection.
[カーボンアロイ触媒の製造方法]
実施形態のカーボンアロイ触媒の製造方法を下記に例示するがこれらに限定されるものではない。カーボンアロイ触媒は下記に例示するものを含む公知の製造方法によって製造することができる。
[Method for producing carbon alloy catalyst]
Although the manufacturing method of the carbon alloy catalyst of embodiment is illustrated below, it is not limited to these. The carbon alloy catalyst can be produced by known production methods including those exemplified below.
窒素を含む樹脂と、金属を含む化合物を不活性ガス雰囲気下(窒素、アルゴン等)で熱処理して炭素化し、炭素化したものを酸処理して、実施形態のカーボンアロイ触媒を製造する。 The carbon alloy catalyst of the embodiment is manufactured by heat treating and carbonizing a resin containing nitrogen and a compound containing metal under an inert gas atmosphere (nitrogen, argon, etc.), and treating the carbonized acid.
樹脂と金属を含む化合物を窒素存在雰囲気下で熱処理して炭素化し、炭素化したものを酸処理して、実施形態のカーボンアロイ触媒を製造する。樹脂と金属を含む化合物の代わりに、金属を含有する樹脂を用いても良い。 A compound containing a resin and a metal is heat-treated in a nitrogen-existing atmosphere for carbonization, and the carbonized product is acid-treated to produce the carbon alloy catalyst of the embodiment. Instead of the compound containing a resin and a metal, a resin containing a metal may be used.
炭素に窒素プラズマ処理をして、実施形態のカーボンアロイ触媒を製造する。 Nitrogen plasma treatment is performed on carbon to produce the carbon alloy catalyst of the embodiment.
炭素源と窒素源を含む物質から、化学蒸着することによって、実施形態のカーボンアロイ触媒を製造する。 The carbon alloy catalyst of the embodiment is manufactured by chemical vapor deposition from a material containing a carbon source and a nitrogen source.
窒素を含む樹脂としては、窒素含有フェノール樹脂、イミド樹脂、メラミン樹脂、ベンゾグアナミン樹脂、エポキシアクリレート、尿素樹脂、ビスマレイミドアニリン、ベンゾオキサジン等の樹脂が挙げられる。 Examples of the nitrogen-containing resin include resins such as nitrogen-containing phenol resin, imide resin, melamine resin, benzoguanamine resin, epoxy acrylate, urea resin, bismaleimide aniline, and benzoxazine.
金属としては、鉄やコバルト等が挙げられる。 Examples of the metal include iron and cobalt.
金属を含む化合物としては、鉄フタロシアニン、コバルトフタロシアニン、硫酸鉄、硫酸コバルト、塩化鉄、塩化コバルト、硫酸コバルト、硝酸鉄、ヘキサシアノ鉄カリウム、硝酸コバルト、酢酸コバルト等の化合物が挙げられる。 Examples of the metal-containing compound include compounds such as iron phthalocyanine, cobalt phthalocyanine, iron sulfate, cobalt sulfate, iron chloride, cobalt chloride, cobalt sulfate, iron nitrate, potassium hexacyanoiron, cobalt nitrate, and cobalt acetate.
炭素源を含む物質としては、メタン、エタン、アセチレン、エチレン、エタノール、メタノール等が挙げられる。 Examples of the substance containing a carbon source include methane, ethane, acetylene, ethylene, ethanol, methanol and the like.
窒素源を含むターゲットとしては、アンモニア、3フッ化窒素、ヒドラジン等が挙げられる。 Examples of the target containing a nitrogen source include ammonia, nitrogen trifluoride, hydrazine, and the like.
また、これらカーボンアロイ触媒の表面積や導電性が低い場合は、触媒を担体に担持させたり混合させたりすることも可能である。
担体としては、KetjenBlack(登録商標)、Vulcan XC72R(商標登録)、VGCF(商標登録)等の市販炭素や、フェノールなどの炭素を含む有機物を炭素化したもの、RuO2、IrO2などの導電性酸化物を用いることができる。
Moreover, when the surface area and conductivity of these carbon alloy catalysts are low, the catalyst can be supported on a carrier or mixed.
As a carrier, carbonized organic materials containing carbon such as KetjenBlack (registered trademark), Vulcan XC72R (registered trademark), VGCF (registered trademark), and carbon such as phenol, conductive properties such as RuO 2 and IrO 2 An oxide can be used.
窒素を含む樹脂又は金属及び窒素を含む樹脂と金属または金属を含む化合物等を混合する方法は、ボールミルや攪拌機による湿式および乾式混合が挙げられる。 Examples of a method of mixing a resin containing nitrogen or a metal and a resin containing nitrogen and a compound containing a metal or a metal include wet and dry mixing using a ball mill or a stirrer.
炭素化によって、炭素に窒素を導入する場合は、窒素含有ガス雰囲気下で樹脂などの材料の焼成を行う。炭素化によって、炭素に窒素を導入する必要がない場合は、不活性ガス雰囲気下で樹脂などの材料を焼成すれば良い。炭素化の温度は例えば、600℃以上1200℃以下で数分から数時間行う。 When nitrogen is introduced into carbon by carbonization, a material such as a resin is fired in a nitrogen-containing gas atmosphere. When it is not necessary to introduce nitrogen into carbon due to carbonization, a material such as a resin may be fired in an inert gas atmosphere. The carbonization temperature is, for example, 600 ° C. or more and 1200 ° C. or less for several minutes to several hours.
また、炭素に窒素プラズマ処理をすることによっても、窒素を炭素に導入することができる。カーボンアロイ触媒に窒素プラズマ処理を行って、炭素をさらに導入してもよい。 Nitrogen can also be introduced into carbon by performing nitrogen plasma treatment on carbon. Carbon may be further introduced by performing a nitrogen plasma treatment on the carbon alloy catalyst.
なお、上記方法での作製後、金属化合物が含まれる場合は、酸で処理することによって取り除く。酸処理に用いる酸の種類は、用いる金属にもよるが例えば、塩酸、硫酸、硝酸等が挙げられる。
酸処理は、純水で希釈した溶液(0.1〜10M)に30〜20時間浸し、その後純水でろ過・洗浄、これを3回以上繰り返すことが処理例として挙げられる。
In addition, after preparation by the above method, when a metal compound is contained, it is removed by treatment with an acid. Examples of the acid used for the acid treatment include hydrochloric acid, sulfuric acid, and nitric acid, although depending on the metal used.
In the acid treatment, an example of treatment is to immerse in a solution (0.1 to 10 M) diluted with pure water for 30 to 20 hours, then filter and wash with pure water, and repeat this three or more times.
[陰極]
実施形態の陰極は、例えば、図2の概念図のように、電極支持材料3と、電極支持材料3上に、イオン導電性バインダー2で固定されたカーボンアロイ触媒1で構成される。陰極は、電極支持材料にカーボンアロイ触媒が固定されていればその構成は特に限定されない。
[cathode]
The cathode of the embodiment is composed of, for example, an electrode support material 3 and a carbon alloy catalyst 1 fixed on the electrode support material 3 with an ion conductive binder 2 as shown in the conceptual diagram of FIG. The structure of the cathode is not particularly limited as long as the carbon alloy catalyst is fixed to the electrode support material.
実施形態のカーボンアロイ触媒は、溶媒に分散させることによりそのスラリーを作製し、作製したスラリーを電極支持材料に塗布し、乾燥または焼成等の行程によって陰極電極を作製することができる。乾燥と焼成を両方行うなどしてもよい。焼成または乾燥させる前または後にイオン導電性バインダーを滴下または塗布することが好ましい。イオン導電性バインダーはスラリーに混合してもよい。塗布、乾燥と焼成の行程は複数回行ってもよい。
なお、酸性電解質の場合はNafion(商標登録)などのプロトン伝導性バインダーを、中性・アルカリ性電解質ではアルカリ伝導性バインダーを用いることが好ましい。
The carbon alloy catalyst of the embodiment can be prepared by dispersing the slurry in a solvent, applying the prepared slurry to an electrode support material, and preparing a cathode electrode by a process such as drying or firing. You may perform both drying and baking. It is preferable to drop or apply the ion conductive binder before or after baking or drying. The ion conductive binder may be mixed in the slurry. The steps of coating, drying and baking may be performed a plurality of times.
In the case of an acidic electrolyte, a proton conductive binder such as Nafion (registered trademark) is preferably used, and in the case of a neutral / alkaline electrolyte, an alkali conductive binder is preferably used.
電極支持材料としては各種電解質膜、燃料電池などで持いられているガス拡散層(例えばカーボンペーパーなどの多孔質材)と同様の多孔質材、チタンメッシュ、SUSメッシュ、ニッケルメッシュ等が挙げられる。
スラリーの作製に用いる溶媒としては、燃料電池の電極触媒などを作製する際に用いられているものが挙げられる。具体的には、水、エタノール、イソプロピルアルコール、ブタノール、トルエン、キシレン、メチルエチルケトン、アセトン等が挙げられる。
イオン伝導性バインダーとしては、プロトン伝導体としてフッ素系もしくは炭化水素系のアイオノマー、水酸化物イオン伝導体としてアンモニウム塩基を有したアイオノマーを一例として挙げることができ、エタノール等の溶媒に溶かして用いることが好ましい。
Examples of the electrode support material include porous materials similar to gas diffusion layers (for example, porous materials such as carbon paper) held in various electrolyte membranes, fuel cells, etc., titanium mesh, SUS mesh, nickel mesh, and the like. .
Examples of the solvent used for the preparation of the slurry include those used when preparing an electrode catalyst for a fuel cell. Specific examples include water, ethanol, isopropyl alcohol, butanol, toluene, xylene, methyl ethyl ketone, and acetone.
Examples of the ion conductive binder include a fluorine-based or hydrocarbon-based ionomer as a proton conductor, and an ionomer having an ammonium base as a hydroxide ion conductor. The ion conductive binder should be dissolved in a solvent such as ethanol. Is preferred.
[陽極]
実施形態の陽極は、触媒に陽極用のものを用いて陰極と同様の材料および方法によって作製することができる。陽極に用いる触媒は、白金、鉛酸化物、イリジウム複合酸化物、ルテニウム複合酸化物等が挙げられる。これらの触媒の作製方法としては、熱分解法、ゾルゲル法、錯体重合法等が挙げられる。
[anode]
The anode of the embodiment can be produced by the same material and method as the cathode using an anode for the catalyst. Examples of the catalyst used for the anode include platinum, lead oxide, iridium composite oxide, and ruthenium composite oxide. Examples of methods for producing these catalysts include a thermal decomposition method, a sol-gel method, and a complex polymerization method.
また、酸化物の複合金属としては、Ti,Nb,V,Cr,Mn,Co,Zn,Zr,Mo,Ta,W,Tl,RuとIrのうち少なくともいずれか一種の金属が挙げられる。これらの触媒の電極支持元素としては、Ta、Ti等のバルブメタルが挙げられる。 The oxide composite metal includes at least one of Ti, Nb, V, Cr, Mn, Co, Zn, Zr, Mo, Ta, W, Tl, Ru, and Ir. Examples of the electrode supporting element of these catalysts include valve metals such as Ta and Ti.
[電解質]
実施形態の電解質は、液体電解質、カチオン交換性の膜やアニオン交換性の膜等を用いることができる。液体電解質としては、硫酸、硝酸、塩酸、水酸化ナトリウム水溶液、水酸化カリウム水溶液、塩化カリウム水溶液等が挙げられる。カチオン交換性の膜としては、Nafion(登録商標)112,115,117,フレミオン(登録商標)、アシプレックス(登録商標)、ゴアセレクト(登録商標)が挙げられる。アニオン交換性の膜としては、(株)トクヤマ製のA201等が挙げられる。また、炭化水素膜系も電解質として用いることができる。
[Electrolytes]
As the electrolyte of the embodiment, a liquid electrolyte, a cation exchange membrane, an anion exchange membrane, or the like can be used. Examples of the liquid electrolyte include sulfuric acid, nitric acid, hydrochloric acid, aqueous sodium hydroxide, aqueous potassium hydroxide, aqueous potassium chloride, and the like. Examples of the cation exchange membrane include Nafion (registered trademark) 112, 115, 117, Flemion (registered trademark), Aciplex (registered trademark), and Gore Select (registered trademark). Examples of the anion exchange membrane include A201 manufactured by Tokuyama Corporation. A hydrocarbon membrane system can also be used as the electrolyte.
[電解反応]
電解質に酸性のものを用いた場合は、電極に電圧を印加すると陽極、陰極で次の反応(反応式1−2)が生じる。
[Electrolytic reaction]
When an acidic electrolyte is used, the following reaction (reaction formula 1-2) occurs at the anode and cathode when a voltage is applied to the electrode.
陽極
2H2O→O2+4H++4e− (反応式1)
陰極
O2+4H++4e−→2H2O (反応式2)
Anode 2H 2 O → O 2 + 4H + + 4e − (Reaction Formula 1)
Cathode O 2 + 4H + + 4e − → 2H 2 O (Reaction Formula 2)
また、陰極の表面が水で覆われるなどして酸素の供給が足りなくなり、印加電圧が一定値(水素発生電位)を超えてくると、陰極では次の反応(反応式3)が並行して起こる。 Also, if the supply of oxygen becomes insufficient because the surface of the cathode is covered with water and the applied voltage exceeds a certain value (hydrogen generation potential), the following reaction (reaction formula 3) is performed in parallel at the cathode. Occur.
2H++2e−→H2 (反応式3) 2H + + 2e − → H 2 (Scheme 3)
電解質(電解液)に中性またはアルカリ性のものを用いた場合は、電極に電圧を印加すると陽極、陰極で次の反応(反応式4−5)が生じる。 When a neutral or alkaline electrolyte is used as the electrolyte (electrolytic solution), the following reaction (reaction formula 4-5) occurs at the anode and cathode when a voltage is applied to the electrode.
陰極
O2+2H2O+4e−→4OH− (反応式4)
陽極
4OH−→O2+2H2O+4e− (反応式5)
Cathode O 2 + 2H 2 O + 4e − → 4OH − (Reaction Formula 4)
Anode 4OH − → O 2 + 2H 2 O + 4e − (Reaction Formula 5)
また、陰極の表面が水で覆われるなどして酸素の供給が足りなくなり、印加電圧が一定値(水素発生電位)を超えてくると、陰極では次の反応(反応式6)が並行して起こる。 In addition, when the supply of oxygen becomes insufficient because the surface of the cathode is covered with water and the applied voltage exceeds a certain value (hydrogen generation potential), the following reaction (reaction formula 6) is performed in parallel at the cathode. Occur.
2OH−→O2+H2+2e− (反応式6) 2OH − → O 2 + H 2 + 2e − (Scheme 6)
[膜電極接合体]
実施形態の膜電極接合体19は、図3の電解セルの概念図の一部に示すように、陽極12と陰極14の間に固体高分子電解質13が形成されている。膜電極接合体19は固体高分子電解質2の両面ホットプレスもしくは直接塗布により、両電極を密着させることができる。
[Membrane electrode assembly]
In the membrane electrode assembly 19 of the embodiment, a solid polymer electrolyte 13 is formed between an anode 12 and a cathode 14 as shown in a part of the conceptual diagram of the electrolytic cell of FIG. The membrane electrode assembly 19 can be brought into close contact with the solid polymer electrolyte 2 by double-side hot pressing or direct application.
[電解セル、電解装置]
実施形態の電解装置10−1は、図3の概念図に示すように、上記に説明した膜電極接合体19、水供給管15、水排出管16、供給空気導入管17と空気排出管18で構成された電解セルと膜電極接合体19の両極に電圧を印加する電源(直流電源)11を備えている。水供給管15、水排出管16、供給空気導入管17と空気排出管18は上記の反応に必要な気体や水(水溶液)を供給するための部材であるため、電解質の種類や電解セルの目的および用途に応じて任意の構成を作用することができる。電解セルに電圧を印加して反応を進行させる。
[Electrolysis cell, electrolysis equipment]
As shown in the conceptual diagram of FIG. 3, the electrolytic device 10-1 of the embodiment includes the membrane electrode assembly 19, the water supply pipe 15, the water discharge pipe 16, the supply air introduction pipe 17 and the air discharge pipe 18 described above. A power source (DC power source) 11 for applying a voltage to both electrodes of the electrolytic cell and the membrane electrode assembly 19 is provided. The water supply pipe 15, the water discharge pipe 16, the supply air introduction pipe 17 and the air discharge pipe 18 are members for supplying the gas and water (aqueous solution) necessary for the above reaction. Any configuration can be used depending on the purpose and application. A voltage is applied to the electrolysis cell to advance the reaction.
実施形態のカーボンアロイ触媒は水素発生抑制効果を持った酸素還元触媒として用いることができ、その用途は脱酸素素子や加湿、除湿素子に止まらない。例えばソーダ電解用の陰極として用いることができる。
実施形態の電解装置の他の例として、図4の概念図に示すようなソーダ電解装置10−2や塩素発生用の装置が挙げられる。カーボンアロイ触媒とバインダー(PTFE)とをエタノール中にて混合したスラリーをチタンメッシュに塗布し、これをAr中300度で焼成したガス拡散電極を陰極14とする。このとき陽極12はカーボン電極等を用い、電解液はNaCl水溶液で、陰極14と陽極12をイオン交換膜13にて分離する。図4の装置の陰極側は、ガス供給管17Cで酸素もしくは空気を、水供給管15Cで水を供給し、液体排出管16Cで苛性ソーダを、ガス排出管18Cで排出ガスを排出する構成となっている。図4の装置の陽極側は、液体供給管15Aで塩化ナトリウム水溶液を供給し、ガス排出管18Aで塩素ガスを排出する構成となっている。このような装置を用いて、外部電源11で電極間に電圧を印加すると陽極で塩素ガスが、陰極で水酸化ナトリウムが生成する。このとき窒素置換炭素により他の触媒に比べて高電圧印加時に水素の生成を抑制することができる。このことは発生した水素の処理や安全装置の導入が不要もしくは軽減させたり、極電位モニターをしない場合でも効率的に電流を取り出すことができ、有効である。
The carbon alloy catalyst of the embodiment can be used as an oxygen reduction catalyst having an effect of suppressing hydrogen generation, and its use is not limited to a deoxidizing element, a humidifying element, and a dehumidifying element. For example, it can be used as a cathode for soda electrolysis.
Other examples of the electrolysis apparatus of the embodiment include a soda electrolysis apparatus 10-2 and an apparatus for generating chlorine as shown in the conceptual diagram of FIG. A slurry obtained by mixing a carbon alloy catalyst and a binder (PTFE) in ethanol is applied to a titanium mesh, and a gas diffusion electrode obtained by firing the slurry at 300 degrees in Ar is used as a cathode 14. At this time, the anode 12 uses a carbon electrode or the like, the electrolytic solution is a NaCl aqueous solution, and the cathode 14 and the anode 12 are separated by the ion exchange membrane 13. The cathode side of the apparatus of FIG. 4 is configured to supply oxygen or air through the gas supply pipe 17C, water through the water supply pipe 15C, discharge caustic soda through the liquid discharge pipe 16C, and discharge exhaust gas through the gas discharge pipe 18C. ing. The anode side of the apparatus of FIG. 4 is configured to supply a sodium chloride aqueous solution through a liquid supply pipe 15A and discharge chlorine gas through a gas discharge pipe 18A. When a voltage is applied between the electrodes with the external power source 11 using such an apparatus, chlorine gas is generated at the anode and sodium hydroxide is generated at the cathode. At this time, generation of hydrogen can be suppressed by applying nitrogen-substituted carbon when a high voltage is applied as compared with other catalysts. This is effective because the treatment of the generated hydrogen and the introduction of a safety device are unnecessary or reduced, and even when the extreme potential is not monitored, the current can be taken out efficiently.
[膜電極接合体を備えた電解装置]
実施形態の電源が接続された膜電極接合体を容器に備えることで、減酸素装置、酸素濃縮装置、加湿装置や除湿装置とすることができる。
図5の装置20−1の概念図のように、容器22の空間が膜電極接合体19の陽極側と陰極側に分かれるように膜電極接合体19を固定する。膜電極接合体19には電源11が接続され、膜電極接合体の両極に電圧を印加することができる構成である。膜電極接合体の固定はそれぞれの電極側の反応系の空間が分離可能なように封止剤21を用いて封止されている。また、図6の装置20−2の概念図の様に、容器22は膜電極接合体の陽極側又は陰極側のどちらか一方に取り付けられていてもよい。装置20−1,20−2において、容器22と膜電極接合体19は脱着可能なように半固定されていてもよい。
[Electrolysis apparatus equipped with membrane electrode assembly]
By providing the container with the membrane electrode assembly to which the power source of the embodiment is connected, an oxygen reduction device, an oxygen concentration device, a humidification device, and a dehumidification device can be obtained.
As shown in the conceptual diagram of the apparatus 20-1 in FIG. 5, the membrane electrode assembly 19 is fixed so that the space of the container 22 is divided into the anode side and the cathode side of the membrane electrode assembly 19. A power supply 11 is connected to the membrane electrode assembly 19 so that a voltage can be applied to both electrodes of the membrane electrode assembly. The membrane electrode assembly is fixed with a sealant 21 so that the reaction system space on each electrode side can be separated. Moreover, the container 22 may be attached to either the anode side or the cathode side of the membrane electrode assembly as in the conceptual diagram of the device 20-2 of FIG. In the devices 20-1 and 20-2, the container 22 and the membrane electrode assembly 19 may be semi-fixed so as to be detachable.
電解質に酸性のものを用いた膜電極接合体の陽極側の空間では、水を酸素とプロトンに分解する反応が生じるので、酸素濃縮又は除湿の装置として機能する。一方、電解質に酸性のものを用いた電解セルの陰極側の空間は、酸素と陽極で発生したプロトンから水が生成する反応が生じるので、減酸素又は加湿の装置として機能する。電解質に中性またはアルカリ性のものを用いた場合は、陰極で水が消費され、陽極で水が生成する反応であり、電解質に酸性のものを用いた場合とは逆の機能になる。加湿や除湿を目的とする装置の場合は、容器22を給水容器又は貯水容器として用いる等してもよい。 In the space on the anode side of the membrane electrode assembly using an acidic electrolyte, a reaction for decomposing water into oxygen and protons occurs, and thus functions as an oxygen concentration or dehumidification device. On the other hand, the space on the cathode side of the electrolytic cell using an acidic electrolyte functions as a device for reducing or humidifying because water is generated from oxygen and protons generated at the anode. When a neutral or alkaline electrolyte is used, water is consumed at the cathode and water is generated at the anode, and the reverse function is obtained when an acidic electrolyte is used. In the case of an apparatus intended for humidification or dehumidification, the container 22 may be used as a water supply container or a water storage container.
図7に膜電極接合体を用いた減酸素装置20−3の一例の概念図を示す。減酸素装置20−3の電解質は酸性である。減酸素装置20−3には膜電極接合体19の陰極側に容器22が、陽極側に水タンク24が封止剤21で固定されている。容器22には減酸素下に置きたい物を出し入れできる扉23が備えられている。水タンク24側には水供給管25と酸素の排出管26が備えられている。 FIG. 7 shows a conceptual diagram of an example of an oxygen reduction device 20-3 using a membrane electrode assembly. The electrolyte of the oxygen reduction device 20-3 is acidic. In the oxygen reduction device 20-3, a container 22 is fixed to the cathode side of the membrane electrode assembly 19 and a water tank 24 is fixed to the anode side by a sealant 21. The container 22 is provided with a door 23 through which an object to be placed under reduced oxygen can be taken in and out. On the water tank 24 side, a water supply pipe 25 and an oxygen discharge pipe 26 are provided.
容器22には物の出し入れが可能な扉や、吸気管、排気管、給水管、排水管等の気体、液体または物質を供給し排出するための部材を備えてもよい。これらの扉や管は、装置の目的および用途に応じて任意の形状および機能のものを採用することができる。 The container 22 may be provided with a member for supplying and discharging a gas, a liquid, or a substance such as a door through which an object can be taken in and out, an intake pipe, an exhaust pipe, a water supply pipe, a drain pipe, and the like. These doors and tubes can be of any shape and function depending on the purpose and application of the apparatus.
また、膜電極接合体を備えた装置は、図示しない制御部によって、吸排気、給排水、密閉領域等を切り替えて、減酸素、酸素濃縮、除湿と加湿のいずれかの動作になるように制御してもよい。酸素濃度計や湿度計を設けて、装置の動作による効果を容易に確認できるようにしてもよい。また、任意の酸素濃度または湿度になるように制御してもよい。これらの制御は、マイコンやFPGA(Field−Programmable Gate Array)などのプログラム可能なICを用いて電子的に制御してもよいし、手動で制御してもよい。 In addition, a device equipped with a membrane electrode assembly is controlled by a control unit (not shown) to switch between intake / exhaust, water supply / drainage, sealed area, etc., and perform any operation of oxygen reduction, oxygen concentration, dehumidification and humidification. May be. An oxygen concentration meter or a hygrometer may be provided so that the effect of the operation of the apparatus can be easily confirmed. Moreover, you may control so that it may become arbitrary oxygen concentration or humidity. These controls may be controlled electronically using a programmable IC such as a microcomputer or FPGA (Field-Programmable Gate Array), or may be controlled manually.
[減酸素装置を備えた冷蔵庫]
図8は、膜電極接合体を有する装置20’を備えた冷蔵庫30の概念図である。減酸素を行う場合、膜電極接合体を有する装置20’は、例えば図8の減酸素装置20−3の扉23を冷蔵庫の扉とする態様が挙げられる。減酸素を行う場合、図8の冷蔵庫30では、冷蔵庫の1室が減酸素装置になっているが、1室のうちの一部に減酸素装置を配置した構成でもよいし、冷蔵庫内のどの位置に配置してもよい。生鮮食品を保存する庫内で減酸素動作を行うと、食品の酸化を抑えることができる。冷蔵庫30において、膜電極接合体を有する装置20’の換わりに膜電極接合体を備えた加湿装置、除湿装置を用いてもよい。
[Refrigerator with oxygen reduction device]
FIG. 8 is a conceptual diagram of a refrigerator 30 provided with a device 20 ′ having a membrane electrode assembly. When performing oxygen reduction, apparatus 20 'which has a membrane electrode assembly has the aspect which uses the door 23 of the oxygen reduction apparatus 20-3 of FIG. 8, for example as the door of a refrigerator. In the case of performing oxygen reduction, in the refrigerator 30 of FIG. 8, one room of the refrigerator is an oxygen reduction device, but a configuration in which the oxygen reduction device is arranged in a part of the one room may be used, You may arrange in a position. When the oxygen-reducing operation is performed in the storage room for storing fresh food, the oxidation of the food can be suppressed. In the refrigerator 30, a humidifier or a dehumidifier provided with a membrane electrode assembly may be used instead of the device 20 ′ having a membrane electrode assembly.
また、図示しない制御部によって、吸排気、給排水、密閉領域等を切り替えて、減酸素、除湿と加湿のいずれかの動作になるように制御可能な装置を減酸素装置20’の換わりに備えてもよい。酸素濃度計や湿度計を設けて、装置の動作による効果を容易に確認できるようにしてもよい。また、任意の酸素濃度または湿度になるように制御してもよい。これらの制御は、マイコンやFPGAなどのプログラム可能なICを用いて電子的に制御してもよいし、手動で制御してもよい。 In addition to the oxygen reduction device 20 ′, a device that can be controlled to perform any one of the operations of oxygen reduction, dehumidification and humidification by switching the intake / exhaust, water supply / drainage, sealed area, etc. by a control unit (not shown). Also good. An oxygen concentration meter or a hygrometer may be provided so that the effect of the operation of the apparatus can be easily confirmed. Moreover, you may control so that it may become arbitrary oxygen concentration or humidity. These controls may be controlled electronically using a programmable IC such as a microcomputer or FPGA, or may be controlled manually.
[酸素還元と水素発生に関する電極活性試験]
触媒単体の酸素還元特性と水素発生特性とを評価する手法として、電極の電位走査が簡便な方法として挙げられる。酸素還元と水素発生に関する電極活性を図9の概念図に示す3極式回転リングディスク電極セルを用いて電位を走査して測定する。具体的には図9の中央部の作用電極41、図面左側に参照電極(Ag/AgCl)42と図面右側に対極(カーボンフェルト)43が備えられている。この作用電極41は、中央部にガラス状繊維でできたディスク電極、ディスク電極の外周には上記触媒インクを塗布、焼成、乾燥させた触媒が形成されている。そして、触媒は高分子絶縁体で覆われ、その周囲をAuのリング電極が覆っている。さらに、リング電極の周囲を高分子絶縁体で覆っている。電解液44としては窒素又は酸素をバブリングした酸性水溶液(0.5M H2SO4 aq.)又は、アルカリ性水溶液(0.1M KOH aq.)を用いた。
図9の模式図に記載した形態の装置でポテンシオスタットを用いて10mV/sで電位走査をする。なお、回転数は2000rpmに固定し、電位範囲は1.2〜−0.7V vs. RHEとした。
[Electrode activity test for oxygen reduction and hydrogen generation]
As a method for evaluating the oxygen reduction characteristics and hydrogen generation characteristics of a single catalyst, electrode potential scanning can be mentioned as a simple method. Electrode activity related to oxygen reduction and hydrogen generation is measured by scanning the potential using a tripolar rotating ring disk electrode cell shown in the conceptual diagram of FIG. Specifically, a working electrode 41 in the center of FIG. 9, a reference electrode (Ag / AgCl) 42 on the left side of the drawing, and a counter electrode (carbon felt) 43 on the right side of the drawing are provided. The working electrode 41 has a disk electrode made of glass fiber at the center, and a catalyst formed by applying, baking and drying the catalyst ink on the outer periphery of the disk electrode. The catalyst is covered with a polymer insulator, and an Au ring electrode covers the periphery of the catalyst. Furthermore, the periphery of the ring electrode is covered with a polymer insulator. As the electrolytic solution 44, an acidic aqueous solution (0.5 MH 2 SO 4 aq.) Bubbling nitrogen or oxygen or an alkaline aqueous solution (0.1 M KOH aq.) Was used.
A potential scan is performed at 10 mV / s using a potentiostat in the apparatus of the form described in the schematic diagram of FIG. The rotation speed was fixed at 2000 rpm, and the potential range was 1.2 to -0.7 V vs.. RHE.
(1)酸化還元開始電位
電極活性試験で、窒素及び酸素をパージした電解質を用いて電位走査をして得られたボルタモグラムから差分をとり、負電流が流れ始めた電位を酸素還元開始電位とする。
(1) Oxidation reduction starting potential In the electrode activity test, a difference is taken from the voltammogram obtained by performing potential scanning using an electrolyte purged with nitrogen and oxygen, and the potential at which a negative current begins to flow is defined as the oxygen reduction starting potential. .
(2)水素発生開始電位
窒素をパージした電解質でも水素を発生すること、水素の吸着電流が流れること等の理由により、正確な水素発生開始電位を見積もることができない。そこで、標準電極電位以下で、−5mA/cm2以上の電流が流れた電位を水素発生開始電位とする。
(2) Hydrogen generation start potential An accurate hydrogen generation start potential cannot be estimated due to the fact that hydrogen is generated even in an electrolyte purged with nitrogen, and the hydrogen adsorption current flows. Therefore, a potential at which a current of −5 mA / cm 2 or more flows below the standard electrode potential is defined as a hydrogen generation start potential.
(3)過酸化水素生成率
酸性電解液の場合、反応式2の反応が途中で止まり、反応式7の反応により水ではなく過酸化水素が生成する場合もある。そこで、作用電極21の金電極27に電圧をかけて、反応式8の反応を起こさせて、その際の反応電流から過酸化水素生成率を求める。
同様に中性・アルカリ性電解液の場合、反応式5の反応が途中で止まり、反応式9の反応により水ではなく過酸化水素が生成する場合もある。そのため、反応式10の反応を起こさせて、同様に過酸化水素生成率を求める。
(3) Hydrogen peroxide production rate In the case of an acidic electrolytic solution, the reaction of Reaction Formula 2 may stop halfway, and the reaction of Reaction Formula 7 may produce hydrogen peroxide instead of water. Therefore, a voltage is applied to the gold electrode 27 of the working electrode 21 to cause the reaction of reaction formula 8, and the hydrogen peroxide production rate is obtained from the reaction current at that time.
Similarly, in the case of a neutral / alkaline electrolyte, the reaction of Reaction Formula 5 may stop halfway, and the reaction of Reaction Formula 9 may generate hydrogen peroxide instead of water. Therefore, the reaction of reaction formula 10 is caused to similarly determine the hydrogen peroxide production rate.
O2+2H++2e−→H2O2 (反応式7)
H2O2→O2+2H++2e− (反応式8)
1.5O2+H2O+2e−→2HO2 − (反応式9)
2HO2 −→1.5O2+H2O+2e− (反応式10)
具体的には、金のリング電極に1.2VvsRHEを印加し、電位走査中の電流値から過酸化水素生成率を求める。
過酸化水素生成率xの導出式(式1)は次の通り。
O 2 + 2H + + 2e − → H 2 O 2 (Scheme 7)
H 2 O 2 → O 2 + 2H + + 2e − (Reaction Formula 8)
1.5O 2 + H 2 O + 2e − → 2HO 2 − (Scheme 9)
2HO 2 - → 1.5O 2 + H 2 O + 2e - ( Scheme 10)
Specifically, 1.2 V vs. RHE is applied to the gold ring electrode, and the hydrogen peroxide production rate is obtained from the current value during potential scanning.
The derivation formula (formula 1) of the hydrogen peroxide production rate x is as follows.
x:過酸化水素生成率(%)
IR:リング電流(A)
ID:ディスク電流(A)
N:補足率(−)
x: Hydrogen peroxide production rate (%)
I R: ring current (A)
ID : Disc current (A)
N: Supplementary rate (-)
なお捕捉率(N)はリング電流とディスク電流の絶対値の比として定義し、今回、N=0.4であった。
捕捉率(Collection Efficiency)Nは下記の式(式2)にて算出した
N=|ID|/|IR| …式2
The capture rate (N) is defined as the ratio of the absolute value of the ring current and the disk current, and this time, N = 0.4.
The collection efficiency N is calculated by the following formula (formula 2): N = | I D | / | I R |
以下、実施例により実施形態にかかる電解セル、装置、冷蔵庫について具体的に説明する。
なおMEAでの水素発生検出には、水素ガス検知器を用い、ポンプによる排出ガスおよび密閉容器内の水素濃度から算出した。
また、酸素消費理論量(NO2)は次の式(式3)から求めた。
Hereinafter, the electrolytic cell, the apparatus, and the refrigerator according to the embodiment will be specifically described by way of examples.
Note that the hydrogen generation detection in the MEA was calculated from the exhaust gas from the pump and the hydrogen concentration in the sealed container using a hydrogen gas detector.
The theoretical oxygen consumption (N O2 ) was obtained from the following equation (Equation 3).
NO2:理論酸素消費量(CCM)
I:印加電流(A)
n:反応電子数
F:ファラデー定数
T:温度(K)
N O2 : Theoretical oxygen consumption (CCM)
I: Applied current (A)
n: number of reaction electrons F: Faraday constant T: temperature (K)
(実施例1)
窒素を含有するベンズグアナミン樹脂8gと塩化第2鉄1gと担体であるKetjenBlack(登録商標)EC300J 5gをTHF(テトラヒドロフラン)150mlと混合する。混合後、スターラー300rpmで攪拌しながら80℃で2時間還流を行う。還流した溶液を45℃の湯浴を用いたエバポレータによって乾燥させて、乾固した材料を800℃のアルゴン雰囲気下で1時間焼成する。焼成後、2M塩酸で焼成物を洗ってカーボンアロイ触媒を製造した。作製した試料をステンレスパン(直径1mm、深さ30μm)に詰め、XPS(PHI社製 Quantum−200 X線源/出力/分析領域:単結晶分光AlKα線/40W/φ200μm)により触媒表面の元素分析の結果を行い4点測定の結果、窒素置換量は1.3〜1.8%含まれていることを確認した。このときのN1sスペクトル(測定4サンプル中の1サンプル)を図10に示す。図10のスペクトルには少なくとも、ピリジン型(A)、ピロール・ピリドン型(B)、Nオキサイド型(C)、3配位型(D)が含まれているため、図11にこれらのピークを分離したものを示す。このピーク分離をするとピリジン型(A)の強度が最も強いことがわかる(図11)。
Example 1
8 g of benzguanamine resin containing nitrogen, 1 g of ferric chloride and 5 g of KetjenBlack® EC300J as a carrier are mixed with 150 ml of THF (tetrahydrofuran). After mixing, the mixture is refluxed at 80 ° C. for 2 hours while stirring at a stirrer of 300 rpm. The refluxed solution is dried by an evaporator using a 45 ° C. hot water bath, and the dried material is fired in an argon atmosphere at 800 ° C. for 1 hour. After calcination, the calcined product was washed with 2M hydrochloric acid to produce a carbon alloy catalyst. The prepared sample is packed in a stainless steel pan (diameter: 1 mm, depth: 30 μm), and XPS (Quantum-200 X-ray source / output / analysis region manufactured by PHI): Elemental analysis of catalyst surface by single crystal spectroscopy AlKα ray / 40 W / φ200 μm As a result of 4-point measurement, it was confirmed that the nitrogen substitution amount was 1.3 to 1.8%. FIG. 10 shows the N1s spectrum (1 sample among 4 measured samples) at this time. Since the spectrum of FIG. 10 includes at least a pyridine type (A), a pyrrole / pyridone type (B), an N oxide type (C), and a tricoordinate type (D), these peaks are shown in FIG. Shown separated. It can be seen that the intensity of the pyridine type (A) is the strongest when this peak is separated (FIG. 11).
水とエタノールを質量比で1:1となるように調整した分散媒1mlに、製造したカーボンアロイ触媒10mgを加えた。カーボンアロイ触媒を加えた分散媒を、超音波によって30分間分散させて、触媒インクを製造した。マイクロピペッターで1μl分取し、Φ3mmのグラッシーカーボン(登録商標)に滴下し、60℃の恒温室で30分間乾燥させた。乾燥後、0.05wt%Nafion(登録商標)アイオノマーを3μl滴下して、再度乾燥させで作用電極を製造した。 10 mg of the produced carbon alloy catalyst was added to 1 ml of a dispersion medium in which water and ethanol were adjusted to have a mass ratio of 1: 1. The dispersion medium to which the carbon alloy catalyst was added was dispersed by ultrasonic waves for 30 minutes to produce a catalyst ink. 1 μl was taken with a micropipettor, dropped onto glassy carbon (registered trademark) with a diameter of 3 mm, and dried in a thermostatic chamber at 60 ° C. for 30 minutes. After drying, 3 μl of 0.05 wt% Nafion (registered trademark) ionomer was dropped and dried again to produce a working electrode.
製造した作用電極を用いて、上記の酸素還元と水素発生に関する電極活性試験を行った。なお、特に記載が無い限り、上記に記載した条件で電極活性試験を行った。
実施例1の電極活性試験において、電解液は0.5Mの硫酸水溶液を用い、走査速度を10mV/sとした。
Using the manufactured working electrode, the above electrode activity tests on oxygen reduction and hydrogen generation were performed. Unless otherwise specified, the electrode activity test was performed under the conditions described above.
In the electrode activity test of Example 1, 0.5 M sulfuric acid aqueous solution was used as the electrolytic solution, and the scanning speed was set to 10 mV / s.
測定結果から、実施例1の酸素の還元開始電位は約0.84V vs. RHEである。水素の発生電位は−0.46Vvs.RHEである。酸素還元から水素発生までの運転電位窓は1.3Vである。この時の過酸化水素生成率は2〜50%である。 From the measurement results, the reduction initiation potential of oxygen in Example 1 was about 0.84 V vs. RHE. The generation potential of hydrogen - 0.46Vvs. RHE. The operating potential window from oxygen reduction to hydrogen generation is 1.3V. The hydrogen peroxide production rate at this time is 2 to 50%.
(比較例1)
触媒としてPt/C(田中貴金属製 TEK10E70TPM)をカーボンアロイ触媒の代わりに用いた電極で電極活性試験を行ったこと以外は実施例1と同様である。
(Comparative Example 1)
The same as Example 1 except that an electrode activity test was performed using an electrode using Pt / C (TEK10E70TPM manufactured by Tanaka Kikinzoku) as the catalyst instead of the carbon alloy catalyst.
測定結果から、比較例1の酸素の還元開始電位は約0.98V vs. RHEである。水素の発生開始電位は−0.012V vs. RHEである。酸素還元から水素発生までの運転電位窓は0.992Vである。この時の過酸化水素生成率は2〜15%である。 From the measurement results, the reduction initiation potential of oxygen in Comparative Example 1 was about 0.98 V vs. RHE. The hydrogen generation start potential is -0.012 V vs. RHE. The operating potential window from oxygen reduction to hydrogen generation is 0.992V. The hydrogen peroxide production rate at this time is 2 to 15%.
比較例1のPtに比べて実施例1のカーボンアロイ触媒を用いた場合は、酸素還元開始電位は低いが、水素発生開始電位はもっと低く、水素の発生が抑制されていることがわかる。また、酸素還元開始電位から水素発生開始電位までの間、すなわち酸素還元反応のみが起こる電位範囲が比較例1のPtを触媒として用いた場合よりも拡大した。このため、実施例1のカーボンアロイ触媒を陰極電極の触媒として用いた膜電極接合体は、Ptを触媒として用いた膜電極接合体よりも高電圧をかけることができ、水素発生を抑制しつつ高電流を流せる潜在能力を持っていることになる。 When the carbon alloy catalyst of Example 1 was used as compared with Pt of Comparative Example 1, the oxygen reduction starting potential was lower, but the hydrogen generation starting potential was lower, indicating that the generation of hydrogen was suppressed. Further, the potential range from the oxygen reduction start potential to the hydrogen generation start potential, that is, the potential range where only the oxygen reduction reaction occurs, was expanded as compared with the case where Pt of Comparative Example 1 was used as a catalyst. For this reason, the membrane electrode assembly using the carbon alloy catalyst of Example 1 as a cathode electrode catalyst can apply a higher voltage than the membrane electrode assembly using Pt as a catalyst, while suppressing hydrogen generation. It has the potential to pass a high current.
(比較例2)
触媒として窒素を含有していない炭素(KetjenBlack(登録商標) EC300J)をカーボンアロイ触媒の代わりに用いた電極で電極活性試験を行ったこと以外は実施例1と同様である。
(Comparative Example 2)
Example 1 is the same as Example 1 except that an electrode activity test was performed with an electrode using carbon (KetjenBlack (registered trademark) EC300J) containing no nitrogen as a catalyst instead of a carbon alloy catalyst.
比較例2の酸素の還元開始電位は約0.7V vs. RHEである。水素の発生開始電位は−0.07V vs. RHEである。酸素還元から水素発生までの運転電位窓は0.77Vである。この時の過酸化水素生成率は50〜100%である。酸素から水への還元反応には陰極にカーボンアロイ触媒が欠かせないことがわかる。 The reduction start potential of oxygen in Comparative Example 2 was about 0.7 V vs. RHE. The hydrogen generation start potential was -0.07 V vs. RHE. The operating potential window from oxygen reduction to hydrogen generation is 0.77V. The hydrogen peroxide production rate at this time is 50 to 100%. It can be seen that a carbon alloy catalyst is indispensable for the cathode in the reduction reaction from oxygen to water.
(実施例2)
実施例2では電解液にアルカリ性の溶液を用いて電極活性評価試験を行った。作用電極の作製時にアイオノマーを用いずに電極を作成し、電解液に0.1M KOH水溶液を用いたこと以外は実施例1と同様である。アイオノマーを用いずに作製した電極であるため、触媒が剥がれないように慎重に作用電極を浸漬した。電極活性評価試験の前後でサイクリックボルタモグラムの大きさが変化しなかったことから、触媒の電解液中への脱離は無かったと考えられる。
(Example 2)
In Example 2, an electrode activity evaluation test was performed using an alkaline solution as the electrolytic solution. Example 1 was the same as Example 1 except that the electrode was prepared without using an ionomer when the working electrode was prepared, and a 0.1 M KOH aqueous solution was used as the electrolytic solution. Since the electrode was prepared without using an ionomer, the working electrode was carefully immersed so that the catalyst was not peeled off. Since the size of the cyclic voltammogram did not change before and after the electrode activity evaluation test, it is considered that there was no desorption of the catalyst into the electrolyte solution.
実施例2の酸素の還元開始電位は約0.95V vs. RHEである。水素の発生開始電位は−0.61V vs. RHEである。酸素還元から水素発生までの運転電位窓は1.56Vである。この時の過酸化水素生成率は2〜50%である。 The reduction initiation potential of oxygen in Example 2 was about 0.95 V vs. RHE. The generation start potential of hydrogen is −0.61 V vs. RHE. The operating potential window from oxygen reduction to hydrogen generation is 1.56V. The hydrogen peroxide production rate at this time is 2 to 50%.
(比較例3)
触媒としてPt/C(田中貴金属製 TEK10E70TPM)をカーボンアロイ触媒の代わりに用いた電極で電極活性試験を行ったこと以外は実施例2と同様である。
(Comparative Example 3)
Example 2 is the same as Example 2 except that an electrode activity test was performed with an electrode using Pt / C (TEK10E70TPM manufactured by Tanaka Kikinzoku) as a catalyst instead of the carbon alloy catalyst.
比較例3の酸素の還元開始電位は約0.99V vs. RHEである。水素の発生開始電位は−0.096V vs. RHEである。酸素還元から水素発生までの運転電位窓は1.08Vである。この時の過酸化水素生成率は2〜15%である。 The reduction initiation potential of oxygen in Comparative Example 3 was about 0.99 V vs. RHE. The generation start potential of hydrogen is −0.096 V vs. RHE. The operating potential window from oxygen reduction to hydrogen generation is 1.08V. The hydrogen peroxide production rate at this time is 2 to 15%.
(比較例4)
触媒として窒素を含有していない炭素(KetjenBlack(登録商標) EC300J)をカーボンアロイ触媒の代わりに用いた電極で電極活性試験を行ったこと以外は実施例2と同様である。
(Comparative Example 4)
This example is the same as Example 2 except that an electrode activity test was performed using an electrode using carbon (KetjenBlack (registered trademark) EC300J) containing no nitrogen as a catalyst instead of the carbon alloy catalyst.
比較例4の酸素の還元開始電位は約0.93V vs. RHEである。水素の発生開始電位は−0.58V vs. RHEである。酸素還元から水素発生までの運転電位窓は1.41Vである。この時の過酸化水素生成率は50〜100%である。運転電位窓は実施例2と同程度であるが、過酸化水素生成率は非常に高い。従って、酸素から水までの還元性能を十分に有するのは窒素が含まれる実施形態のカーボンアロイ触媒であることがわかる。 The reduction start potential of oxygen in Comparative Example 4 was about 0.93 V vs. RHE. The hydrogen generation start potential is -0.58 V vs. RHE. The operating potential window from oxygen reduction to hydrogen generation is 1.41V. The hydrogen peroxide production rate at this time is 50 to 100%. The operating potential window is similar to that in Example 2, but the hydrogen peroxide production rate is very high. Therefore, it is understood that the carbon alloy catalyst of the embodiment containing nitrogen has sufficient reduction performance from oxygen to water.
なお、実施形態において、酸素還元触媒として用いるカーボンアロイ触媒は、実施例1、2に示した原材料に限定されるものではない。例えば、窒素を含む炭素前駆体として窒素含有フェノール樹脂、イミド樹脂、メラミン樹脂、ベンゾグアナミン樹脂などをあげることができ、金属の化合物として鉄フタロシアニン、コバルトフタロシアニン、硫酸鉄、硫酸コバルト、塩化鉄、塩化コバルト、硫酸コバルト、硝酸鉄、ヘキサシアノ鉄カリウム、硝酸コバルト、酢酸コバルトをあげることができる。これらの原料を各樹脂8gと金属前駆体1gと担体であるKetjenBlack(登録商標)EC300J 5gをTHF(テトラヒドロフラン)150mlと混合。混合後、スターラー300rpmで攪拌しながら80℃で2時間還流を行う。還流した溶液を45℃の湯浴を用いたエバポレータによって乾燥させて、乾固した材料を800℃のアルゴン雰囲気下で1時間焼成する。焼成後、2M塩酸で焼成物を洗って種々のカーボンアロイ触媒を製造した。これら製造した触媒はXPSにより表面の窒素置換率が〜10%である。 In the embodiment, the carbon alloy catalyst used as the oxygen reduction catalyst is not limited to the raw materials shown in Examples 1 and 2. For example, nitrogen-containing carbon precursors include nitrogen-containing phenol resins, imide resins, melamine resins, benzoguanamine resins, etc., and metal compounds such as iron phthalocyanine, cobalt phthalocyanine, iron sulfate, cobalt sulfate, iron chloride, cobalt chloride , Cobalt sulfate, iron nitrate, potassium hexacyanoiron, cobalt nitrate, and cobalt acetate. These materials were mixed with 8 g of each resin, 1 g of a metal precursor, and 5 g of KetjenBlack (registered trademark) EC300J as a carrier with 150 ml of THF (tetrahydrofuran). After mixing, the mixture is refluxed at 80 ° C. for 2 hours while stirring at a stirrer of 300 rpm. The refluxed solution is dried by an evaporator using a 45 ° C. hot water bath, and the dried material is fired in an argon atmosphere at 800 ° C. for 1 hour. After calcination, the calcined product was washed with 2M hydrochloric acid to produce various carbon alloy catalysts. These produced catalysts have a surface nitrogen substitution rate of 10% by XPS.
この触媒を第1の実施形態同様に電極化し。酸素還元特性を評価すると、
酸性電解質中では酸素の還元開始電位は約0.88〜0.75V vs. RHEであり、水素の発生電位は−0.2〜−0.7V vs. RHE、アルカリ性・中性電解質中では酸素の還元開始電位は約0.94〜0.87V vs. RHEであり、水素の発生電位は−0.2〜−0.9V vs. RHEである。このときの過酸化水素生成率は1〜50%である。
This catalyst is converted into an electrode as in the first embodiment. When evaluating oxygen reduction properties,
In the acidic electrolyte, the reduction initiation potential of oxygen is about 0.88 to 0.75 V vs. RHE, and the hydrogen generation potential is -0.2 to -0.7 V vs.. In RHE and alkaline / neutral electrolytes, the reduction initiation potential of oxygen is about 0.94 to 0.87 V vs. RHE, the generation potential of hydrogen is −0.2 to −0.9 V vs. RHE. The hydrogen peroxide production rate at this time is 1 to 50%.
(実施例3)
図3の概念図に示す電解装置10−1を作成し、電解試験を行った。
実施例3の陽極は、塩化イリジウム(IrCl3・nH2O)に1−ブタノールを0.25M(Ir)になるように加えて調整した溶液を、あらかじめ、10wt%シュウ酸水溶液中1時間80度でエッチングしたチタンメッシュ(0.1t×LW0.2×SW0.1)に塗布する。その後、乾燥(10分、80℃)、焼成(10分、450℃)した。塗布−乾燥−焼成を5回繰り返して陽極を作製した。
(Example 3)
The electrolysis apparatus 10-1 shown in the conceptual diagram of FIG. 3 was created and the electrolysis test was conducted.
The anode of Example 3 was prepared by adding a solution prepared by adding 1-butanol to 0.25 M (Ir) to iridium chloride (IrCl 3 · nH 2 O) in advance in an aqueous 10 wt% oxalic acid solution for 80 hours. It is applied to a titanium mesh (0.1 t × LW0.2 × SW0.1) etched at a degree. Then, it was dried (10 minutes, 80 ° C.) and fired (10 minutes, 450 ° C.). Coating, drying and firing were repeated 5 times to produce an anode.
実施例3の陰極は、実施例1で得られた触媒60mgを水50cc中へ分散する。この液を沸騰させながら攪拌して懸濁させる。その懸濁液を撥水処理(20wt%)されたカーボンペーパー(東レ製 TPG−H−090、厚み0.28mm、面積12cm2)上に流し込み、0.09MPaで濾液が透明になるまで吸引濾過を繰り返し、その後、乾燥させる。乾燥させた物にエタノールで溶かした2wt%Nafion(登録商標)溶液を減圧滴下法で滴下(0.09MPa)し、その後、エタノールで溶かした4wt%Nafion(登録商標)溶液に含浸させる。含浸させた物を一時間純水中で煮沸し、陰極とする。 In the cathode of Example 3, 60 mg of the catalyst obtained in Example 1 is dispersed in 50 cc of water. The liquid is stirred and suspended while boiling. The suspension was poured onto water-repellent-treated (20 wt%) carbon paper (TPG-H-090 manufactured by Toray, thickness 0.28 mm, area 12 cm 2 ), and suction filtered until the filtrate became transparent at 0.09 MPa. Repeat and then dry. A 2 wt% Nafion (registered trademark) solution dissolved in ethanol is dropped into the dried product by a reduced pressure dropping method (0.09 MPa), and then impregnated in a 4 wt% Nafion (registered trademark) solution dissolved in ethanol. The impregnated product is boiled in pure water for 1 hour to form a cathode.
実施例3の膜電極接合体は作製した陽極と陰極をポリマーの電解質であるNafion(登録商標)112(50μm)の両側に挟み、125℃、5分、0.36MPaでホットプレスし、膜電極接合体とする。 The membrane / electrode assembly of Example 3 was obtained by sandwiching the prepared anode and cathode on both sides of a polymer electrolyte Nafion (registered trademark) 112 (50 μm) and hot pressing at 125 ° C. for 5 minutes at 0.36 MPa. Assume a joined body.
膜電極接合体に水供給管15、水排出管16、供給空気導入管17と空気排出管18を取り付けて、作製した電解セルに外部直流電圧を印加して、流れる電流(A)と、供給空気導入管17と空気排出管18の流量(1CCM=1.667×10−8m3/s)と酸素濃度(vol%)を測定した。 A water supply pipe 15, a water discharge pipe 16, a supply air introduction pipe 17 and an air discharge pipe 18 are attached to the membrane electrode assembly, an external DC voltage is applied to the produced electrolytic cell, and a flowing current (A) and supply The flow rate (1 CCM = 1.667 × 10 −8 m 3 / s) and the oxygen concentration (vol%) of the air introduction pipe 17 and the air discharge pipe 18 were measured.
供給空気導入管17の空気量を100CCM(酸素21%)としたとき、1Aの印加電流で、空気排出管18の空気は、96.5CCMで酸素濃度は18.1%であった。印加電流を2Aとしたときは、空気排出管18の空気は、93CCMで酸素濃度は15.1%であった。いずれの結果も、ほぼ理論通りの結果が得られ、水素の生成は認められなかった。また、電圧印加中に陰極表面に水が生成しているのを確認した。 When the amount of air in the supply air introduction pipe 17 was 100 CCM (21% oxygen), the air in the air discharge pipe 18 was 96.5 CCM and the oxygen concentration was 18.1% with an applied current of 1A. When the applied current was 2 A, the air in the air exhaust pipe 18 was 93 CCM and the oxygen concentration was 15.1%. In all results, almost theoretical results were obtained, and no hydrogen production was observed. It was also confirmed that water was generated on the cathode surface during voltage application.
(比較例5)
陰極の触媒にPt/Cを用いたこと以外は実施例3と同様である。
(Comparative Example 5)
Example 3 is the same as Example 3 except that Pt / C was used as the cathode catalyst.
供給空気導入管17の空気量を100CCM(酸素21%)としたとき、1Aの印加電流で、空気排出管18の空気は、96.5CCMで酸素濃度は18.1%であった。印加電流を2Aとしたときは、空気排出管18の空気は、93CCMで酸素濃度は15.1%であった。比較例5の触媒にはPt/Cを用いているため、印加電圧が1.7Vにおける水素の発生率は1〜50%と見積もられた。比較例5では水素発生反応の分だけ、酸素還元反応が起きないだけでなく、無駄な電力を消費することになる。 When the amount of air in the supply air introduction pipe 17 was 100 CCM (21% oxygen), the air in the air discharge pipe 18 was 96.5 CCM and the oxygen concentration was 18.1% with an applied current of 1A. When the applied current was 2 A, the air in the air exhaust pipe 18 was 93 CCM and the oxygen concentration was 15.1%. Since Pt / C was used for the catalyst of Comparative Example 5, the hydrogen generation rate at an applied voltage of 1.7 V was estimated to be 1 to 50%. In Comparative Example 5, not only the oxygen reduction reaction does not occur, but also wasteful power is consumed for the hydrogen generation reaction.
(実施例4)
実施例3において作製した膜電極接合体を図7の減酸素装置20−3のように開閉可能な密閉容器に取り付けた減酸素装置を作成した。膜電極接合体に取り付けた電源11から電流を流すと、電流に対して酸素濃度が理論通りに減少し、約20%から約5%まで濃度が低下したことを確認した。また、膜電極接合体への印加電圧を1.7Vにしても、水素の発生が認められなかった。
Example 4
A hypoxic device in which the membrane / electrode assembly produced in Example 3 was attached to an openable / closable sealed container like the hypoxic device 20-3 in FIG. 7 was prepared. When a current was supplied from the power source 11 attached to the membrane electrode assembly, it was confirmed that the oxygen concentration decreased theoretically with respect to the current, and the concentration decreased from about 20% to about 5%. Further, even when the voltage applied to the membrane electrode assembly was 1.7 V, no generation of hydrogen was observed.
(比較例6)
陰極の触媒にPt/Cを用いたこと以外は実施例4と同様である。膜電極接合体に取り付けた電源11から電流を流すと、酸素濃度は減少したが、膜電極接合体への印加電圧を1.7Vとすると、陰極での反応のうち1〜20%が水素を発生させる反応であった。
(Comparative Example 6)
Example 4 is the same as Example 4 except that Pt / C was used as the cathode catalyst. When a current was supplied from the power supply 11 attached to the membrane electrode assembly, the oxygen concentration decreased. However, when the applied voltage to the membrane electrode assembly was 1.7 V, 1 to 20% of the reaction at the cathode was hydrogen. It was a reaction to be generated.
実施例4と比較例6を比較すると、実際の装置として、水素の発生を抑制する点で違いが見られた。比較例6では水素発生反応の分だけ減酸素反応が起きず、無駄な電力を消費することになる。 When Example 4 and Comparative Example 6 were compared, there was a difference in suppressing hydrogen generation as an actual device. In Comparative Example 6, the oxygen reduction reaction does not occur by the amount of the hydrogen generation reaction, and wasteful power is consumed.
(実施例5)
例えば、実施例4の減酸素装置を冷蔵庫取り付けることで、冷蔵庫内に減酸素された空間を備えることができる。減酸素装置を動作させると、電流に対して酸素濃度が理論通りに減少し、約21%から約10%まで濃度が低下したことを確認した。冷蔵庫の閉時に庫内の酸素濃度を減らすことができるため、酸化による腐食を抑え、食品の保存期間を伸ばすことができる。
(Example 5)
For example, the oxygen-reduced device of Example 4 is attached to the refrigerator, so that the oxygen-reduced space can be provided in the refrigerator. It was confirmed that when the oxygen reduction device was operated, the oxygen concentration decreased theoretically with respect to the current, and the concentration decreased from about 21% to about 10%. Since the oxygen concentration in the refrigerator can be reduced when the refrigerator is closed, corrosion due to oxidation can be suppressed and the shelf life of the food can be extended.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、明細書および図中の元素の一部は元素記号で記載したものもある。 Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof. Some of the elements in the specification and the drawings are described with element symbols.
1…カーボンアロイ触媒
2…イオン導電性バインダー
3…電極支持材料
10…電解装置、ソーダ電解装置
11…電源
12…陽極
13…電解質、イオン交換膜
14…陰極
15…液体(水)供給管
16…液体(水)排出管
17…ガス(空気)供給管
18…ガス(空気)排出管
19…膜電極接合体
20…電解装置(減酸素装置、酸素濃縮装置、加湿装置、除湿装置)
21…封止剤
22…容器
23…扉
24…水タンク
25…水供給管
26…空気排出管
30…冷蔵庫
41…作用電極
42…参照電極
43…対極
44…電解質
DESCRIPTION OF SYMBOLS 1 ... Carbon alloy catalyst 2 ... Ion electroconductive binder 3 ... Electrode support material 10 ... Electrolyzer, soda electrolyzer 11 ... Power source 12 ... Anode 13 ... Electrolyte, ion-exchange membrane 14 ... Cathode 15 ... Liquid (water) supply pipe 16 ... Liquid (water) discharge pipe 17 ... Gas (air) supply pipe 18 ... Gas (air) discharge pipe 19 ... Membrane electrode assembly 20 ... Electrolyzer (oxygen reduction device, oxygen concentrator, humidifier, dehumidifier)
DESCRIPTION OF SYMBOLS 21 ... Sealant 22 ... Container 23 ... Door 24 ... Water tank 25 ... Water supply pipe 26 ... Air discharge pipe 30 ... Refrigerator 41 ... Working electrode 42 ... Reference electrode 43 ... Counter electrode 44 ... Electrolyte
Claims (17)
前記陽極側の空間と前記陰極側の空間を分ける容器と、
前記陽極と前記陰極に電圧を印加する電源と、
前記電源を制御する制御部を備える電解装置であって、
前記カーボンアロイ触媒は、ピリジン型の窒素置換、ピロール・ピリドン型の窒素置換と、Nオキサイド型の窒素置換のうちの少なくともいずれかを有し、
前記電解質は酸性、中性又はアルカリ性のいずれかであり、
前記電解質が酸性の場合は、水素の発生電位は−0.2〜−0.7V vs. RHEであって、前記制御部は、前記電解装置の運転において、前記陰極の電位が前記水素の発生電位より高くなるように前記電源を制御し、又は、
前記電解質が中性又はアルカリ性の場合は、水素の発生電位は−0.2〜−0.9V vs. RHEであって、前記制御部は、前記電解装置の運転において、前記陰極の電位が前記水素の発生電位より高くなるように前記電源を制御することを特徴とする電解装置。 An electrolytic cell having a membrane electrode assembly composed of an anode, a cathode having a carbon alloy catalyst into which nitrogen is introduced, and an electrolyte disposed between the anode and the cathode ;
A container that separates the space on the anode side and the space on the cathode side;
A power source for applying a voltage to the anode and the cathode;
An electrolysis apparatus comprising a control unit for controlling the power source ,
The carbon alloy catalyst has at least one of pyridine type nitrogen substitution, pyrrole / pyridone type nitrogen substitution, and N oxide type nitrogen substitution,
The electrolyte is either acidic, neutral or alkaline,
When the electrolyte is acidic, the hydrogen generation potential is -0.2 to -0.7 V vs. RHE , wherein the control unit controls the power supply so that a potential of the cathode is higher than a generation potential of the hydrogen in the operation of the electrolyzer, or
When the electrolyte is neutral or alkaline, the hydrogen generation potential is -0.2 to -0.9 V vs. The electrolysis apparatus according to claim 1, wherein the control unit controls the power supply so that a potential of the cathode is higher than a generation potential of the hydrogen during operation of the electrolysis apparatus.
前記電解質が酸性の場合は、酸素の還元開始電位は0.88〜0.75Vvs.RHEであって、前記制御部は、前記電解装置の運転において、前記陰極の電位が前記酸素の還元開始電位より低くなるように前記電源を制御し、又は、
前記電解質が中性又はアルカリ性の場合は、酸素の還元開始電位は0.94〜0.87Vvs.RHEであって、前記制御部は、前記電解装置の運転において、前記陰極の電位が前記酸素の還元開始電位より低くなるように前記電源を制御することを特徴とする請求項1に記載の電解装置。 In the electrolyte,
When the electrolyte is acidic, the reduction initiation potential of oxygen is 0.88 to 0.75 Vvs. RHE , wherein the control unit controls the power supply so that the potential of the cathode is lower than the reduction start potential of the oxygen in the operation of the electrolysis apparatus, or
When the electrolyte is neutral or alkaline, the reduction initiation potential of oxygen is 0.94 to 0.87 Vvs. 2. The electrolysis according to claim 1 , wherein the control unit controls the power supply so that a potential of the cathode is lower than a reduction start potential of the oxygen during operation of the electrolysis apparatus. apparatus.
前記電解質が中性又はアルカリ性の場合は、前記制御部は、電解装置の運転において、前記陰極の電位が−0.096V vs. RHE以下の電位になるように前記電源を制御することを特徴とする請求項1乃至8のいずれか1項に記載の電解装置。 When the electrolyte is acidic, the control unit controls the power supply so that the potential of the cathode becomes −0.012 V vs. RHE or less during operation of the electrolysis apparatus, or
When the electrolyte is neutral or alkaline, the control unit controls the power supply so that the potential of the cathode becomes −0.096 V vs. RHE or less in the operation of the electrolysis apparatus. The electrolyzer according to any one of claims 1 to 8.
前記電解質が中性又はアルカリ性の場合は、水素の発生電位は−0.2〜−0.9V vs. RHEであって、前記制御部は、前記陰極の電位が前記水素の発生電位より高くなるように前記電源を動作させることを特徴とする請求項1乃至11のいずれか1項に記載の電解装置の運転方法。 When the electrolyte is acidic, the hydrogen generation potential is -0.2 to -0.7 V vs. RHE , wherein the control unit operates the power supply so that a potential of the cathode is higher than a generation potential of the hydrogen, or
When the electrolyte is neutral or alkaline, the hydrogen generation potential is -0.2 to -0.9 V vs. 12. The electrolysis apparatus according to claim 1, wherein the control unit operates the power supply so that a potential of the cathode is higher than a generation potential of the hydrogen. Driving method .
前記電解質が酸性の場合は、酸素の還元開始電位は0.88〜0.75Vvs.RHEであって、前記制御部は、前記陰極の電位が前記酸素の還元開始電位より低くなるように前記電源を動作させ、
前記電解質が中性又はアルカリ性の場合は、酸素の還元開始電位は0.94〜0.87Vvs.RHEであって、前記制御部は、前記陰極の電位が前記酸素の還元開始電位より低くなるように前記電源を動作させることを特徴とする請求項13に記載の運転方法。 In the electrolyte,
When the electrolyte is acidic, the reduction initiation potential of oxygen is 0.88 to 0.75 Vvs. RHE , the control unit operates the power supply so that the potential of the cathode is lower than the reduction start potential of the oxygen ,
When the electrolyte is neutral or alkaline, the reduction initiation potential of oxygen is 0.94 to 0.87 Vvs. 14. The operating method according to claim 13 , wherein the control unit operates the power supply so that the potential of the cathode is lower than the reduction start potential of the oxygen .
前記電解質が中性又はアルカリ性の場合は、前記制御部は、前記陰極の電位が−0.096V vs. RHE以下の電位になるように前記電源を動作させることを特徴とする請求項13乃至15のいずれか1項に記載の電解装置の運転方法。 16. When the electrolyte is neutral or alkaline, the control unit operates the power supply so that the potential of the cathode becomes −0.096 V vs. RHE or less. The operating method of the electrolyzer of any one of these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014165935A JP5823587B2 (en) | 2014-08-18 | 2014-08-18 | Electrolytic device, refrigerator, operating method of electrolytic device, and operating method of refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014165935A JP5823587B2 (en) | 2014-08-18 | 2014-08-18 | Electrolytic device, refrigerator, operating method of electrolytic device, and operating method of refrigerator |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011065541A Division JP5638433B2 (en) | 2011-03-24 | 2011-03-24 | Electrolyzer and refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015007291A JP2015007291A (en) | 2015-01-15 |
JP5823587B2 true JP5823587B2 (en) | 2015-11-25 |
Family
ID=52337738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014165935A Active JP5823587B2 (en) | 2014-08-18 | 2014-08-18 | Electrolytic device, refrigerator, operating method of electrolytic device, and operating method of refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5823587B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7422258B1 (en) | 2023-04-12 | 2024-01-25 | ミサワホーム株式会社 | hanging bar |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6829002B2 (en) * | 2016-03-18 | 2021-02-10 | 株式会社東芝 | Storage and storage method |
US20200173045A1 (en) * | 2017-08-23 | 2020-06-04 | The Board Of Trustees Of The Leland Stanford Junior University | N- and O-Doped Carbon with High Selectivity for Electrochemical H2O2 Production in Neutral Condition |
WO2020247422A1 (en) * | 2019-06-03 | 2020-12-10 | Garwood Medical Devices, Llc | Autonomous hydrogen evolution reaction threshold detection method and device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2955938B2 (en) * | 1989-04-20 | 1999-10-04 | 東洋紡績株式会社 | Carbon-based electrode materials for electrolytic cells |
US6179986B1 (en) * | 1998-11-05 | 2001-01-30 | Giner Electrochemical Systems Llc | Solid polymer electrolyte electrochemical oxygen control system with integral reactor feedback sensing |
JP2009208061A (en) * | 2008-02-06 | 2009-09-17 | Gunma Univ | Carbon catalyst, slurry containing the carbon catalyst, manufacturing method of carbon catalyst, fuel cell using carbon catalyst, electric storage device and environmental catalyst |
-
2014
- 2014-08-18 JP JP2014165935A patent/JP5823587B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7422258B1 (en) | 2023-04-12 | 2024-01-25 | ミサワホーム株式会社 | hanging bar |
Also Published As
Publication number | Publication date |
---|---|
JP2015007291A (en) | 2015-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5638433B2 (en) | Electrolyzer and refrigerator | |
Yang et al. | Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts | |
Li et al. | New insights into evaluating catalyst activity and stability for oxygen evolution reactions in alkaline media | |
Karimi et al. | Metal carbide and oxide supports for iridium-based oxygen evolution reaction electrocatalysts for polymer-electrolyte-membrane water electrolysis | |
Siracusano et al. | Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst | |
JP2022169613A (en) | Electrocatalyst composition comprising noble metal oxide supported on tin oxide | |
Di Blasi et al. | Preparation and evaluation of RuO 2–IrO 2, IrO 2–Pt and IrO 2–Ta 2 O 5 catalysts for the oxygen evolution reaction in an SPE electrolyzer | |
KR102332043B1 (en) | Metal-Doped Tin Oxide for Electrocatalytic Applications | |
JP2002100373A (en) | Manufacturing method of catalyzed porous carbon electrode for fuel cell | |
CN104769759A (en) | Method for producing a catalyst for fuel cells | |
Antoni et al. | Oxidative deposition of manganese oxide nanosheets on nitrogen-functionalized carbon nanotubes applied in the alkaline oxygen evolution reaction | |
JP5823587B2 (en) | Electrolytic device, refrigerator, operating method of electrolytic device, and operating method of refrigerator | |
JP5679639B2 (en) | Gas diffusion electrode and manufacturing method thereof | |
WO2020032256A1 (en) | Method and apparatus for water electrolysis, and method for determining drive potential of water electrolysis | |
Natarajan et al. | Effect of treatment temperature on the performance of RuO2 anode electrocatalyst for high temperature proton exchange membrane water electrolysers | |
Marini et al. | Oxygen evolution in alkali with gas diffusion electrodes | |
Ding et al. | Improving the water splitting performance of nickel electrodes by optimizing their pore structure using a phase inversion method | |
JP5072652B2 (en) | Water electrolysis equipment | |
Hameed et al. | Electrocatalytic water oxidation on CuO–Cu 2 O modulated cobalt-manganese layered double hydroxide | |
Luke et al. | High performance acidic water electrooxidation catalysed by manganese–antimony oxides promoted by secondary metals | |
Udachyan et al. | Nickel carbonate (Ni 2 (CO 3) 3) as an electrocatalyst and photo-electrocatalyst for methanol electro-oxidation | |
Huynh et al. | A cracked carbon matrix decorated with amorphous IrO x for boosting the oxygen evolution reaction in electrochemical water splitting | |
US11965256B2 (en) | Anode for alkaline water electrolysis and method for producing same | |
WO2022080466A1 (en) | Anode for alkaline water electrolysis and method for producing same | |
JP5123565B2 (en) | Gas diffusion electrode and manufacturing method thereof, and fuel cell and salt electrolysis cell using the gas diffusion electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151007 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5823587 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |