JP5822930B2 - Analysis apparatus and analysis system - Google Patents

Analysis apparatus and analysis system Download PDF

Info

Publication number
JP5822930B2
JP5822930B2 JP2013524679A JP2013524679A JP5822930B2 JP 5822930 B2 JP5822930 B2 JP 5822930B2 JP 2013524679 A JP2013524679 A JP 2013524679A JP 2013524679 A JP2013524679 A JP 2013524679A JP 5822930 B2 JP5822930 B2 JP 5822930B2
Authority
JP
Japan
Prior art keywords
functional group
electrodes
analysis system
electrode
biomolecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013524679A
Other languages
Japanese (ja)
Other versions
JPWO2013011879A1 (en
Inventor
孝信 芳賀
孝信 芳賀
理 小澤
理 小澤
穴沢 隆
隆 穴沢
至 柳
至 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013524679A priority Critical patent/JP5822930B2/en
Publication of JPWO2013011879A1 publication Critical patent/JPWO2013011879A1/en
Application granted granted Critical
Publication of JP5822930B2 publication Critical patent/JP5822930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は,例えば,DNA,RNA,又はタンパク質,細胞等の生体関連物質がナノ電極間を通過する際のトンネル電流変化を計測・分析する装置に関するものである。   The present invention relates to an apparatus for measuring and analyzing a change in tunnel current when a biological substance such as DNA, RNA, protein, cell, or the like passes between nanoelectrodes.

低価格かつ長塩基長解読を実現するDNAシーケンス技術として,DNAを1塩基毎にトンネル電流計測する方法が提案されている(非特許文献1)。両脇に電極を備えたナノポア(直径ナノメートルサイズの孔)をssDNAが通過する際に流れるトンネル電流の変化を1塩基毎に測定する。塩基種に固有の電流変化により塩基種を同定する。ナノポアのサイズはDNAと同程度の大きさなので,一度に通過するssDNAは1本である。ssDNAのナノポア中での移動は,ナノポアを有する基板で隔てられた2つの溶液槽に電圧を印加することで生じるイオンの流れを利用する。したがって,トンネル電流測定は水溶液中で行われる。非特許文献7は印加電圧を下げることで,DNAの通過速度を低下させる効果を報告しているが,1塩基毎の電流変化を計測するには至っていない。上記方法の利点は,従来のDNAシーケンサ(非特許文献2)のような酵素による伸長反応を必要としないために,試薬コストを低減することができる点と,酵素の失活やシグナルのクロスオーバーによる解読率の低下がないために,長塩基長解読が可能である点である。   As a DNA sequencing technology that realizes low-cost and long base length decoding, a method of measuring a tunnel current for each base of DNA has been proposed (Non-patent Document 1). The change in tunneling current that flows when ssDNA passes through a nanopore (a nanometer-sized hole) with electrodes on both sides is measured for each base. The base species is identified by the current change specific to the base species. Since the size of the nanopore is about the same size as DNA, only one ssDNA passes through at a time. The movement of ssDNA in the nanopores uses the flow of ions generated by applying a voltage to two solution chambers separated by a substrate having nanopores. Therefore, tunnel current measurement is performed in an aqueous solution. Non-Patent Document 7 reports the effect of reducing the passing speed of DNA by lowering the applied voltage, but it has not been able to measure the current change for each base. The advantage of the above method is that it does not require an extension reaction by an enzyme as in the conventional DNA sequencer (Non-patent Document 2), so that the reagent cost can be reduced, the enzyme is deactivated, and the signal is crossed over. Because there is no decrease in the decoding rate due to, long base length decoding is possible.

特許文献1および非特許文献2は,核酸塩基を認識する分子で電極表面を修飾することで,トンネル電流変化による塩基識別の精度を向上させる方法を開示している。塩基認識分子は,核酸塩基と水素結合を形成することで核酸塩基を認識する。ナノポア構造のほかに,Scanning Tunneling Microscopy(STM)でトンネル電流を測定している。STMにおけるトンネル電流測定用の電極は,探針と導電性の基板である。非特許文献2では,表面を4-mercaptobenzamide(MBA)で修飾した探針と導電性の基板(金蒸着マイカ基板)表面を約2nm離し,両者をリン酸塩緩衝溶液で満たす。溶液中を浮遊する核酸塩基(dAMP,dCMPまたはdGMP)と2つの電極上のMBAが水素結合を形成したときにスパイク状のトンネル電流値の上昇が観察される。スパイク状の電流変化は,単一の核酸塩基が両MBAと水素結合を形成している間,マイクロ秒の間隔で複数回観察される(電流値の振動)。スパイク状の電流値変化の違いにより上記3種の塩基を識別している。dTMPを溶液中に浮遊させたときのトンネル電流変化は観測されていない。従って,4種塩基の識別には至っていない。また,dAMP,dCMP,dGMPの3種類についても,得られる電流値のばらつきが大きいため,電流値の頻度分布のピーク間隔よりも幅の方が大きく,すなわち電流値の頻度分布のオーバーラップが大きいため,良好に3種塩基を識別できる状況ではない。   Patent Document 1 and Non-Patent Document 2 disclose a method for improving the accuracy of base identification by a tunnel current change by modifying the electrode surface with a molecule that recognizes a nucleic acid base. Base recognition molecules recognize nucleobases by forming hydrogen bonds with nucleobases. In addition to the nanopore structure, the tunneling current is measured by Scanning Tunneling Microscopy (STM). The electrodes for tunnel current measurement in STM are a probe and a conductive substrate. In Non-Patent Document 2, a probe whose surface is modified with 4-mercaptobenzamide (MBA) and the surface of a conductive substrate (gold-deposited mica substrate) are separated by about 2 nm, and both are filled with a phosphate buffer solution. When a nucleobase (dAMP, dCMP or dGMP) floating in the solution and MBA on the two electrodes form a hydrogen bond, a spike-like increase in tunnel current value is observed. Spike-like current changes are observed multiple times at microsecond intervals (current value oscillation) while a single nucleobase forms hydrogen bonds with both MBAs. The above three types of bases are identified by the difference in spike-like current values. No change in tunnel current was observed when dTMP was suspended in the solution. Therefore, the four bases have not been identified. In addition, the three current types dAMP, dCMP, and dGMP have large variations in current values, so the width is larger than the peak interval of the current frequency distribution, that is, there is a large overlap in the current frequency distribution. Therefore, it is not the situation that can distinguish 3 kinds of bases well.

上記の電流値の振動の原因として,非特許文献3では水素結合の脱着を,非特許文献4では,水素結合状態での分子の配向揺らぎを指摘している。   Non-patent document 3 points out the desorption of hydrogen bonds, and non-patent document 4 points out the molecular orientation fluctuation in the hydrogen bond state as the cause of the oscillation of the current value.

一方,非特許文献5は,水溶液中でアデニン誘導体(9-ethyladenine)を水素結合により認識する分子を報告している。認識分子はアデニン誘導体と2つの水素結合を形成する親水性官能基の他に,疎水性の芳香環を有している。芳香環を構成するベンゼン環の数を増やすことで,アデニン誘導体との結合定数が増加することから,アデニン誘導体中のプリン環と芳香環のスタッキング相互作用が分子認識に重要であることを示している。非特許文献5同様,水溶液中で水素結合とスタッキング相互作用を組み合わせた分子認識の例として,非特許文献6では,DNAのAP siteを利用して,プテリン分子を認識する報告をしている。プテリン分子は,AP site内でグアニン残基と水素結合を形成するたけでなく,DNAを構成するプリンまたはピリミジン環と上下方向にスタッキング相互作用をする。非特許文献6は,スタッキング相互作用をプテリン分子の上下で行うことで,非特許文献5で報告された結合定数(70M-1)よりも高い結合定数(104M-1)を報告している。水素結合とスタッキング相互作用を利用した分子認識によるトンネル電流変化を計測し,4塩基を識別した例はない。On the other hand, Non-Patent Document 5 reports a molecule that recognizes an adenine derivative (9-ethyladenine) by hydrogen bonding in an aqueous solution. The recognition molecule has a hydrophobic aromatic ring in addition to the hydrophilic functional group that forms two hydrogen bonds with the adenine derivative. By increasing the number of benzene rings that make up the aromatic ring, the binding constant with the adenine derivative increases, indicating that the stacking interaction between the purine ring and the aromatic ring in the adenine derivative is important for molecular recognition. Yes. As in Non-Patent Document 5, as an example of molecular recognition combining hydrogen bonding and stacking interaction in an aqueous solution, Non-Patent Document 6 reports that a pterin molecule is recognized using the DNA AP site. The pterin molecule not only forms hydrogen bonds with guanine residues within the AP site, but also has a stacking interaction with the purine or pyrimidine ring that constitutes DNA in the vertical direction. Non-Patent Document 6, by performing a stacking interaction with the upper and lower pterin molecules, report the non-patent document 5 in the reported binding constants (70M -1) higher than the binding constant (10 4 M -1) Yes. There are no examples of identifying four bases by measuring changes in tunneling current due to molecular recognition using hydrogen bonding and stacking interactions.

WO2008/124706WO2008 / 124706

Johan Lagerqvist, et al., NANO LETTERS (2006) Vol.6, No.4 779-782Johan Lagerqvist, et al., NANO LETTERS (2006) Vol.6, No.4 779-782 Shuo Huang, et al., Nat. Nanotech. (2010) Vol.5, 868-873.Shuo Huang, et al., Nat.Nanotech. (2010) Vol.5, 868-873. Shuai Chang, et al., Nanotechnology (2010) Vol.20, 185102.Shuai Chang, et al., Nanotechnology (2010) Vol.20, 185102. Stuart Lindsay, et al., Nanotechnology (2010) Vol.21, 262001.Stuart Lindsay, et al., Nanotechnology (2010) Vol. 21, 262001. Vincent M. Rotello, et al., J. Am. Chem. Soc. (1993), 115, 797-798.Vincent M. Rotello, et al., J. Am. Chem. Soc. (1993), 115, 797-798. Keitaro Yoshimoto, et al., Chem. Comm. (2003) 2960-2961.Keitaro Yoshimoto, et al., Chem. Comm. (2003) 2960-2961. Utkur Mirsaidov, et al., Nanotechnology (2010) Vol.21,395501.Utkur Mirsaidov, et al., Nanotechnology (2010) Vol. 21,395501.

トンネル電流値の違いから4種塩基を識別する方法として,塩基を認識する分子で修飾された電極を用いることが有効である。しかし,特許文献1や非特許文献2に示すように,水素結合のみを利用した塩基認識では,トンネル電流値のばらつきが大きいために,4種の塩基種を明確に識別するには至っていない。加えて,トンネル電流値の振動は,塩基配列の読み間違いを引き起こす。したがって,塩基配列の解読精度は低い。   As a method for discriminating the four types of bases from the difference in tunneling current values, it is effective to use electrodes modified with base-recognizing molecules. However, as shown in Patent Document 1 and Non-Patent Document 2, in base recognition using only hydrogen bonds, the variation in the tunnel current value is large, so that the four base types have not been clearly identified. In addition, the oscillation of the tunnel current value causes misreading of the base sequence. Therefore, the base sequence decoding accuracy is low.

上記の原因は,水溶液中では,水分子が認識分子と水和し,認識分子と塩基の水素結合形成が著しい妨害を受け,認識分子と塩基の結合状態が不安定になるためと考えられる。また,非特許文献4では,水素結合状態での各分子の配向ばらつきを電流が振動する要因として指摘している。   The reason for this is thought to be that in aqueous solution, water molecules hydrate with recognition molecules, hydrogen bond formation between recognition molecules and bases is significantly hindered, and the binding state between recognition molecules and bases becomes unstable. Non-Patent Document 4 points out the variation in the orientation of each molecule in the hydrogen bonding state as a factor that causes the current to oscillate.

特許文献1では,3量体のpeptide nucleic acid(PNA)を認識分子として,ssDNAとPNAをハイブリダイズさせることで,結合力を高めている。しかし,ssDNAのハイブリダイズはどちらか片方の電極上に修飾されたPNAに対してしか行うことができないため,もう一方の電極上のPNAとはハイブリダイズできない。したがって,認識分子-塩基-認識分子の構造を安定化するには不十分であり,電極位置に対するssDNAの配向揺らぎを抑制するためには不十分である。また,このような認識分子を用いるとssDNA中の3塩基を同時に認識することになり,3塩基のトンネル電流の合計が得られてしまう。このため,DNAシーケンスを目的とした1塩基毎のトンネル電流計測に不利である。   In Patent Document 1, ssDNA and PNA are hybridized using a trimeric peptide nucleic acid (PNA) as a recognition molecule to increase the binding force. However, since ssDNA can only be hybridized to the PNA modified on one of the electrodes, it cannot hybridize to the PNA on the other electrode. Therefore, it is insufficient to stabilize the structure of the recognition molecule-base-recognition molecule, and is insufficient to suppress the orientation fluctuation of the ssDNA with respect to the electrode position. In addition, when such a recognition molecule is used, three bases in ssDNA are recognized simultaneously, and the total of the tunnel currents of the three bases is obtained. For this reason, it is disadvantageous for tunnel current measurement for each base for DNA sequencing.

本発明では,核酸塩基と電極上に修飾した認識分子の結合力を高めるため,認識分子の構造として,水素結合を形成する官能基のほかに,スタッキング相互作用を生じさせる疎水性の芳香環を設けることで,上記課題を解決する。   In the present invention, in order to increase the binding force between the nucleobase and the recognition molecule modified on the electrode, the structure of the recognition molecule includes a hydrophobic aromatic ring that causes a stacking interaction in addition to a functional group that forms a hydrogen bond. By providing it, the above-mentioned problems are solved.

トンネル電流値のばらつきおよび振動を抑え,4種の塩基識別能を向上させ,DNAシーケンスの解読精度を向上させる効果がある。   It has the effect of suppressing variations in tunneling current values and vibration, improving the ability to discriminate four types, and improving the accuracy of DNA sequence decoding.

上記に加えて,ssDNAのナノポア通過速度を制御する効果がある。   In addition to the above, it has the effect of controlling the nanopore passage speed of ssDNA.

本発明第1の実施例の構成図。The block diagram of the 1st Example of this invention. トンネル電流値変化から,塩基情報を取得する方法のフローチャート。The flowchart of the method of acquiring base information from a tunnel current value change. 代表的な塩基認識分子の構造。The structure of a typical base recognition molecule. 水素結合を形成する官能基の例。Examples of functional groups that form hydrogen bonds. スタッキング相互作用をする芳香環官能基の例。An example of an aromatic ring functional group having a stacking interaction. (a)アデニンのピリミンジン環とナフタレン分子の単体の構造。(b)エネルギーの安定な配置を上と横から見た図。(a) A simple structure of a pyrimidine ring of adenine and a naphthalene molecule. (b) View of the stable arrangement of energy from the top and side. 芳香環の数とスタッキング相互作用の結合エネルギーの関係図。The relationship diagram of the number of aromatic rings and the binding energy of stacking interactions. 溶液保持部の構成Configuration of solution holder 図1の構成をアレイ化したときの電極基板100の構成。The structure of the electrode substrate 100 when the structure of FIG. 1 is arrayed. 実施例2におけるナノポア103内の構成。Configuration in the nanopore 103 in the second embodiment. 実施例2におけるナノポア103内の構成。Configuration in the nanopore 103 in the second embodiment. 実施例3におけるナノポア103内の構成。Configuration in the nanopore 103 in the third embodiment. 実施例3におけるナノポア103内の構成。Configuration in the nanopore 103 in the third embodiment. 実施例4における電極基板100の構成。The structure of the electrode substrate 100 in Example 4. FIG. 実施例5における電極110と電極基板100の構成。Configuration of the electrode 110 and the electrode substrate 100 in the fifth embodiment.

以下,図面に従って本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1はトンネル電流を計測して塩基配列を取得するための基本構成である。本発明の効果を説明するために特に重要なナノポア内の構成を拡大図で示した。装置全体の構成は,図1のほかに送液部,温調機構,溶液保持部310である。それらの構成を適宜後述する。   FIG. 1 shows a basic configuration for acquiring a base sequence by measuring a tunnel current. The structure inside the nanopore, which is particularly important for explaining the effect of the present invention, is shown in an enlarged view. In addition to the configuration shown in FIG. 1, the entire apparatus includes a liquid feeding unit, a temperature control mechanism, and a solution holding unit 310. Those configurations will be described later as appropriate.

図1を用いて,塩基配列の取得方法を説明する。電極基板100の上部と下部は1mM リン酸バッファ(pH 7.4)溶液で満たされている。上とは,z軸プラス方向である。電極基板100に隔てられた溶液槽のうち,上側を上側溶液槽311a,下側を下側溶液槽311bと呼ぶ。各槽の溶液は,溶液保持部310によって保持されている。送液保持部の構成を後述する。2つの溶液槽に浸された電極101には,制御部102を介して任意の電圧Vpが印加され,流れる電流値Ipが制御部102を通して,解析と出力機構を備えたパーソナルコンピュータ(PC)104に保存される。Vp=0.5V(下槽がプラス)を印加すると,負電荷を帯びたリン酸分子がナノポアを通過して下槽に流れ込む。すなわちナノポア103には,上槽から下槽に向けてマイナスイオンの流れが生じている。同様に,下槽から上槽に向けてプラスイオンの流れが生じている。流れは電流値Ipの変化により知り得る。送液部によって上側溶液槽311aに導入されたssDNAは,イオンの流れによって,ナノポア103を通過して下側溶液槽311bに流入する。ssDNAは負電荷を帯びていることに加えて、ssDNAがナノポア103を通過するとイオンの流れが封鎖されるために、電流値Ipは低下する。この電流値低下によって、ssDNAがナノポア103を通過していることを知ることができる。ナノポア103のサイズは2-3 nmなので,同時に2本のssDNAがナノポア103を通過する可能性は低い。2本のssDNAが通過した場合は,Ipの低下がより大きくなることから確認できる。2本以上のssDNAが通過した場合のデータは破棄される。電極110にはVt=0.5Vのバイアス電圧が印加されている。対向する電極110間の距離が2nm程度であれば,ssDNAが通過していないときのトンネル電流値Itは0.01nA程度である。ssDNAが電極間に存在し,電極表面を修飾する塩基認識分子120と水素結合形成および疎水性相互(スタッキング)作用をすると,トンネル電流値Itは階段状に上昇する。上昇度合いは,塩基種によって異なるので,ssDNA中の塩基配列を知ることができる。得られる電流値は,ssDNAのナノポア通過に伴い,認識分子と水素結合する塩基が順次変化するため,時間とともに階段状に変化する。電流値の頻度分布を作成すると,4つの分離したピークが見られる。しかし,ssDNAの通過が速すぎるために,トンネル電流測定の時間分解能が不足すると,4つのトンネル電流値の頻度分布は重なって、4つの分離したピークは見られない。上記の場合は,溶液槽の温度を下げることで,ssDNAの通過を適切な速度に下げることができる。今回は溶液槽の温度を15度にした。トンネル電流値の時間分解能は10マイクロ秒(0.1MHz)である。トンネル電流値ItはPC104で記録および解析される。   The base sequence acquisition method will be described with reference to FIG. The upper and lower portions of the electrode substrate 100 are filled with a 1 mM phosphate buffer (pH 7.4) solution. Above is the z-axis plus direction. Among the solution tanks separated by the electrode substrate 100, the upper side is referred to as an upper solution tank 311a, and the lower side is referred to as a lower solution tank 311b. The solution in each tank is held by a solution holding unit 310. The configuration of the liquid feeding holding unit will be described later. An arbitrary voltage Vp is applied to the electrode 101 immersed in the two solution tanks via the control unit 102, and a flowing current value Ip passes through the control unit 102 to a personal computer (PC) 104 equipped with an analysis and output mechanism. Saved in. When Vp = 0.5V is applied (the lower tank is positive), negatively charged phosphate molecules pass through the nanopore and flow into the lower tank. That is, in the nanopore 103, a flow of negative ions is generated from the upper tank toward the lower tank. Similarly, positive ion flows from the lower tank to the upper tank. The flow can be known by the change of the current value Ip. The ssDNA introduced into the upper solution tank 311a by the liquid feeding part passes through the nanopore 103 and flows into the lower solution tank 311b by the flow of ions. In addition to the negative charge of ssDNA, when the ssDNA passes through the nanopore 103, the flow of ions is blocked, so the current value Ip decreases. It can be known that the ssDNA passes through the nanopore 103 by this decrease in the current value. Since the size of the nanopore 103 is 2-3 nm, it is unlikely that two ssDNAs will pass through the nanopore 103 at the same time. When two ssDNAs pass, it can be confirmed from the larger decrease in Ip. Data when two or more ssDNAs pass is discarded. A bias voltage of Vt = 0.5V is applied to the electrode 110. When the distance between the opposing electrodes 110 is about 2 nm, the tunnel current value It when the ssDNA does not pass is about 0.01 nA. When ssDNA exists between the electrodes and forms a hydrogen bond and a hydrophobic interaction (stacking) with the base recognition molecule 120 that modifies the electrode surface, the tunnel current value It rises stepwise. Since the degree of increase varies depending on the base type, the base sequence in ssDNA can be known. As the ssDNA passes through the nanopore, the resulting current value changes stepwise with time because the bases that hydrogen bond with the recognition molecule change sequentially. When the frequency distribution of current values is created, four separate peaks can be seen. However, if the time resolution of the tunnel current measurement is insufficient because the passage of ssDNA is too fast, the frequency distributions of the four tunnel current values overlap and the four separated peaks are not seen. In the above case, the passage of ssDNA can be reduced to an appropriate speed by lowering the temperature of the solution bath. This time, the temperature of the solution tank was set to 15 degrees. The time resolution of the tunnel current value is 10 microseconds (0.1 MHz). The tunnel current value It is recorded and analyzed by the PC 104.

フローチャート図2にトンネル電流値変化から,塩基情報を取得する方法を説明した。Ip(i)とIt(i)はそれぞれ,測定開始からi番目に取得した電流値である。I1とI2はナノポア103を通過するssDNAが,それぞれ1本または2本であるときのIpの最低電流値である。すなわち,I2>Ip(i)> I1を満たすとき,ナノポア103には1本のssDNAが通過していると判断される。Ithは,ssDNAと電極110が相互作用をしたときに取得されるトンネル電流の最低値である。Ith_A, Ith_G, Ith_C, Ith_Tはそれぞれ,ssDNA中の塩基A,G,C,Tが電極110と相互作用したときに取得されるトンネル電流の最大値である。たとえば,Ith_G>It(i)> Ith_Aを満たすとき,m番目の塩基配列はAと識別される。I1,I2 ,Ith_A, Ith_G, Ith_C, Ith_T,Ithはあらかじめ既知配列のDNAサンプルを用いて,実サンプル同様の測定条件で測定された値を用いる。尚,電流IpとItはショットノイズの影響を抑えるため,3点の移動平均値である。図1のPC104には,上記の様にして得られた塩基配列情報と電流値の時間波形データの模式図を示している。The method of acquiring base information from the tunnel current value change in the flowchart of FIG. Ip (i) and It (i) are current values acquired i-th from the start of measurement. I 1 and I 2 are the minimum current values of Ip when one or two ssDNAs pass through the nanopore 103, respectively. That is, when I 2 > Ip (i)> I 1 is satisfied, it is determined that one ssDNA passes through the nanopore 103. I th is the minimum value of the tunnel current obtained when ssDNA and electrode 110 interact. I th_A , I th_G , I th_C , and I th_T are the maximum values of tunnel currents acquired when the bases A, G, C, and T in ssDNA interact with the electrode 110, respectively. For example, when I th_G > It (i)> I th_A is satisfied, the m th base sequence is identified as A. I 1, I 2, I th_A , I th_G, I th_C, I th_T, using DNA samples of I th is previously known sequences, determined by using values measured in real samples same measurement conditions. The currents Ip and It are moving average values at three points to suppress the influence of shot noise. 1 shows a schematic diagram of the base sequence information and current value time waveform data obtained as described above.

図1の拡大図を用いて電極付近の構成を説明する。ナノポア103内にはx軸方向に対向した電極100が約0.5nm突出している。電極100のZ方向の厚みは,0.3nm以下である。材質はAuである。電極間の距離は約2nmである。このような構造は,特許文献1記載の方法で作成される。電極先端には,塩基認識分子120が修飾されている。分子の構造は,芳香環の疎水性の官能基(図の芳香環官能基)と親水性の官能基(図の親水性官能基)が炭素鎖のリンカーを介してつながった形である。塩基認識分子は,炭素鎖につながったチオール基と、電極を構成する金属(Au)との間の金属-チオール結合により電極に固定されている。塩基認識分子の構造の詳細は、図3を用いて後述される。図1では簡単のため,単一の認識分子が各電極に固定されているが,実際には複数の認識分子が固定される場合が多い。ナノポア103をssDNAが通過すると,塩基認識分子120は,疎水性の芳香環官能基が塩基のプリン環はたはピリミジン環とスタッキング相互作用をし,親水性の官能基は塩基の水素結合部位と水素結合を形成して,塩基を認識する。上記認識様式は,従来の水素結合のみの認識(非特許文献2)に比べて,強固かつ安定であるため,結合状態での塩基の配向自由度を小さくすることができる。この結果,認識分子-塩基-認識分子を通じたトンネル電流値のばらつきや振動を抑制することができる。   The configuration near the electrodes will be described with reference to the enlarged view of FIG. In the nanopore 103, an electrode 100 facing in the x-axis direction protrudes by about 0.5 nm. The thickness of the electrode 100 in the Z direction is 0.3 nm or less. The material is Au. The distance between the electrodes is about 2 nm. Such a structure is created by the method described in Patent Document 1. A base recognition molecule 120 is modified at the electrode tip. The molecular structure is such that the hydrophobic functional group of the aromatic ring (the aromatic ring functional group in the figure) and the hydrophilic functional group (the hydrophilic functional group in the figure) are connected via a carbon chain linker. The base recognition molecule is fixed to the electrode by a metal-thiol bond between the thiol group connected to the carbon chain and the metal (Au) constituting the electrode. Details of the structure of the base recognition molecule will be described later with reference to FIG. In FIG. 1, for the sake of simplicity, a single recognition molecule is immobilized on each electrode, but in reality, a plurality of recognition molecules are often immobilized. When the ssDNA passes through the nanopore 103, the base recognition molecule 120 has a stacking interaction with the purine ring or pyrimidine ring whose hydrophobic aromatic ring functional group is the base, and the hydrophilic functional group is bonded to the hydrogen bonding site of the base. Recognize bases by forming hydrogen bonds. Since the above recognition mode is stronger and more stable than the conventional recognition of only hydrogen bonds (Non-patent Document 2), the degree of freedom of orientation of the base in the bonded state can be reduced. As a result, it is possible to suppress variations in the tunnel current value and vibrations through the recognition molecule-base-recognition molecule.

図1では,電極100の両方に塩基認識分子を修飾したが,一方だけが,親水性官能基と芳香環官能基を有した塩基認識分子で修飾しても良い。   In FIG. 1, base recognition molecules are modified on both electrodes 100, but only one of them may be modified with a base recognition molecule having a hydrophilic functional group and an aromatic ring functional group.

図3に代表的な塩基認識分子の構造を示す。化学構造は大きく分けて,2つの部位(水素結合を形成する親水性官能基,スタッキング相互作用をする疎水性の芳香環官能基)から成る。リンカーは2つの部位を電極表面に結合させるアルキル鎖である。アルキル鎖の長さは3原子以上が好ましい。アルキル鎖の構成元素は,炭化水素だけではなく,窒素や酸素が混在していてもかまわない。リンカー末端のチオール基(-SH)は電極を構成するAuやPtなどの金属と特異的に反応し,金属-チオール結合を形成する。もちろん,他の電極材料,他の結合法を用いても,本発明の効果を得ることができる。   FIG. 3 shows the structure of a typical base recognition molecule. The chemical structure is roughly divided into two parts: a hydrophilic functional group that forms a hydrogen bond and a hydrophobic aromatic ring functional group that has a stacking interaction. A linker is an alkyl chain that connects two sites to the electrode surface. The length of the alkyl chain is preferably 3 atoms or more. The constituent element of the alkyl chain may be not only hydrocarbon but also nitrogen and oxygen. The thiol group at the end of the linker (-SH) reacts specifically with metals such as Au and Pt that make up the electrode to form a metal-thiol bond. Of course, the effects of the present invention can also be obtained using other electrode materials and other bonding methods.

図4(a)には,水素結合を形成する親水性官能基,(b)にはスタッキング相互作用をする芳香環官能基の例を示した。これらのいずれの組み合わせも本発明の効果を示す塩基認識分子となり得る。スタッキング相互作用をする芳香環官能基は,図示した構造のほかに一般的なDNAのインターカレータでもかまわない。好ましくは,水素結合を形成する親水性官能基を有しないことである。スタッキング相互作用を担うべき芳香環官能基が塩基と水素結合を形成すると,水素結合を形成する親水性官能基と塩基との水素結合が阻害されて電流のばらつきを引き起こすため,本発明の効果が低減する。(b)の構造の構成元素としては,窒素や酸素が少ない方がよい。一方で(a)の構造の構成元素としては,窒素や酸素を含む必要がある。   FIG. 4 (a) shows an example of a hydrophilic functional group that forms a hydrogen bond, and FIG. 4 (b) shows an example of an aromatic ring functional group that has a stacking interaction. Any combination of these can be a base recognition molecule that exhibits the effects of the present invention. The aromatic ring functional group having the stacking interaction may be a general DNA intercalator in addition to the illustrated structure. Preferably, it does not have a hydrophilic functional group that forms a hydrogen bond. When the aromatic ring functional group that should be responsible for the stacking interaction forms a hydrogen bond with the base, the hydrogen bond between the hydrophilic functional group that forms the hydrogen bond and the base is inhibited, resulting in a variation in current. To reduce. As a constituent element of the structure of (b), it is better that there is less nitrogen or oxygen. On the other hand, the constituent element of the structure (a) needs to contain nitrogen and oxygen.

スタッキング相互作用が塩基認識分子と塩基との結合力を増加させることを,Hartree-Fock近似法を用いた分子軌道計算により確認した。空間上に任意に配置した芳香族分子とアデニン塩基が相互作用した時のエネルギーの安定な配置を、分子軌道計算ソフト(Gaussian社,アメリカ)を用いて、基底関数系をSTO-3Gとして計算した。計算後の配置が,スタッキング相互作用をする配置でありかつ,単体で存在するよりも安定なエネルギー状態となることを確認した。結果を図5と図6に示す。   It was confirmed by molecular orbital calculation using the Hartree-Fock approximation method that the stacking interaction increased the binding force between the base recognition molecule and the base. Using the molecular orbit calculation software (Gaussian, USA), we calculated the basis function system as STO-3G, using the molecular orbital calculation software (Gaussian, USA) when the aromatic molecule and the adenine base interacted arbitrarily in space. . It was confirmed that the calculated arrangement is an arrangement with stacking interaction and is in a more stable energy state than existing alone. The results are shown in FIGS.

図5(a)は,アデニンのピリミンジン環とナフタレン分子の単体の構造を示す。図5(b)は,計算後のエネルギーの安定な配置を上と横から見た図である。安定な配置のとき,2つの分子の芳香環が平行に重なり合い,スタッキングしていることがわかる。さらに,エネルギーを計算すると,各分子が単体で存在するよりもスタッキングしている配置の方が,2.8eV安定であることが分かった。すなわち,2.8eVの結合エネルギーが発生していることになる。したがって,スタッキング相互作用をする芳香環官能基があることで,塩基認識分子と塩基との結合エネルギーが増大することが分かる。上記に加え,スタッキングしているときの塩基は芳香環と平行になるように配置されるため,空間的自由度が制限され,各分子の配向ばらつきが抑制される。アデニン以外の塩基(チミン,シトシン,グアニン)に関しても,塩基と芳香環が平行となってスタッキング相互作用をする配置が安定なエネルギー状態であった。   FIG. 5 (a) shows the structure of a single unit of a pyrimidine ring of adenine and a naphthalene molecule. FIG. 5 (b) is a view of the stable arrangement of energy after calculation as seen from above and from the side. It can be seen that the aromatic rings of the two molecules overlap in parallel and stack in a stable arrangement. Furthermore, when calculating the energy, it was found that the stacking configuration is more stable at 2.8 eV than when each molecule is present alone. In other words, a binding energy of 2.8 eV is generated. Therefore, it can be seen that the presence of an aromatic ring functional group having a stacking interaction increases the binding energy between the base recognition molecule and the base. In addition to the above, the base when stacking is arranged so as to be parallel to the aromatic ring, so that the degree of spatial freedom is limited and variation in orientation of each molecule is suppressed. Regarding bases other than adenine (thymine, cytosine, guanine), the arrangement in which the base and the aromatic ring are parallel and stacking interaction was in a stable energy state.

一般に,水素結合1つあたりの結合エネルギーは0.3eVである。(非特許文献1)に示されている塩基認識分子がアデニン塩基と形成する水素結合は4つである。したがって,水素結合のみの場合は,結合エネルギーは1.2eVとなる。一方,上記塩基認識分子にナフタレンを付加された塩基認識分子の場合,スタッキング相互作用が一つ増えると,結合エネルギーは,1.2eV+2.8eV = 4.0eVとなるので,3倍以上エネルギー的に安定な状態となる。両端の電極に修飾されたナフタレン環によって,ピリミジン間を挟んでスタッキング相互作用を2つにすれば,4.0eVよりも大きな結合エネルギーを得ることができる。   In general, the bond energy per hydrogen bond is 0.3 eV. The base recognition molecule shown in (Non-Patent Document 1) forms four hydrogen bonds with an adenine base. Therefore, in the case of only hydrogen bonds, the bond energy is 1.2 eV. On the other hand, in the case of the base recognition molecule in which naphthalene is added to the above base recognition molecule, if the stacking interaction is increased by one, the binding energy becomes 1.2 eV + 2.8 eV = 4.0 eV. It becomes a state. A binding energy greater than 4.0 eV can be obtained if the naphthalene rings modified on the electrodes on both ends sandwich two pyrimidines and the stacking interaction is two.

図6は芳香環の大きさとスタッキング相互作用の結合エネルギーの関係を示す。結合エネルギーは前述の分子軌道計算によって求められた。環構造が大きい方が結合エネルギーは大きくなる。しかし,ナフタレンの方がアントラセンよりも結合エネルギーが大きいことから,環構造を大きくすることが必ずしも結合エネルギーを増大させない。一方で環構造の増大はssDNAとの立体障害を引き起こす。芳香環を構成する環(6または5員環)の数は,好ましくは2以上である。   FIG. 6 shows the relationship between the size of the aromatic ring and the binding energy of the stacking interaction. The binding energy was determined by the molecular orbital calculation described above. The larger the ring structure, the greater the binding energy. However, since naphthalene has a larger binding energy than anthracene, increasing the ring structure does not necessarily increase the binding energy. On the other hand, the increase in the ring structure causes steric hindrance with ssDNA. The number of rings (6- or 5-membered ring) constituting the aromatic ring is preferably 2 or more.

図7は,溶液保持部310の構成である。上側溶液槽311aと下側溶液槽311bは電極基板10によって隔てられている。両槽の溶液はナノポア103を通してのみ,両槽を行き来できる。両槽にはそれぞれ,送液部が備えられている。送液部には,両液槽の流入口303と流出口304が設けられている。上側溶液槽311aの流入口303にはバルブ305を介してサンプル容器,洗浄容器302aと修飾試薬容器302bが接続されてバルブ305によって切り替えが可能である。下側溶液槽311bには,同様の構成で洗浄容器302aと修飾試薬容器302bが接続されている。ポンプによって溶液が溶液槽に導入される。導入された溶液は流出口304から廃液容器302de,302eに入れられる。溶液槽には温調機構301が設けられている。温調にはペルチェ素子を用いた。温調はssDNAのナノポア103通過速度を制御するために用いられている。温度を下げることで,分子の振動が抑えられるため,トンネル電流のばらつきを抑える効果もある。   FIG. 7 shows the configuration of the solution holding unit 310. The upper solution tank 311a and the lower solution tank 311b are separated by the electrode substrate 10. The solution in both tanks can only move back and forth through the nanopore 103. Both tanks are each provided with a liquid feeding section. The liquid feeding section is provided with an inlet 303 and an outlet 304 of both liquid tanks. A sample container, a cleaning container 302a, and a modifying reagent container 302b are connected to the inlet 303 of the upper solution tank 311a via a valve 305 and can be switched by the valve 305. A washing container 302a and a modifying reagent container 302b are connected to the lower solution tank 311b with the same configuration. A solution is introduced into the solution tank by a pump. The introduced solution is put into the waste liquid containers 302de and 302e from the outlet 304. A temperature control mechanism 301 is provided in the solution tank. A Peltier device was used for temperature control. Temperature control is used to control the passage speed of ssDNA through nanopore 103. By lowering the temperature, molecular vibrations can be suppressed, which has the effect of suppressing variations in tunneling current.

上記送液部を用いた電極修飾方法を説明する。修飾試薬容器302bには塩基認識試薬が溶媒に溶けて入っている。本実施例では,図3に示す塩基認識分子を用いた。溶媒はメタノールである。上下溶液槽には予め溶媒が満たされている。送液部により,塩基認識試薬が上下溶液槽に導入され,溶液槽の溶媒が置換される。約20時間室温で静置される間に,塩基認識分子が金属−チオール結合により電極表面に結合する。その後、上下溶液槽に溶媒が導入されて,溶液中の浮遊塩基認識分子は流出口から廃液容器に洗い流される。洗い流す際の溶媒の量は,溶液槽の容量のおよそ10倍である。次に洗浄容器内の溶液をリン酸バッファに交換して,リン酸バッファで溶液槽を置換する。電極表面が塩基認識試薬で修飾されていることは,トンネル電流のパルス状のノイズが減少することで確認できる。上記確認方法は,塩基配列測定による電極の劣化を確認する方法として,サンプル測定中も随時行われる。電極が劣化した場合、Olson and Buhlmann, Anal. Chem. 2003, 75, 1089に記載と同様の方法を用いることにより、電極を即時再度修飾することが出来る。ここでは認識分子の電極表面への結合工程と,塩基配列決定の工程を同じシステムの中で実現する場合を示すが,これらの工程を異なるシステムで実現しても良い。これらの工程を同じシステムで実現する効果は,測定時間と伴に生じる認識分子の離脱等による電極性能の劣化の影響を回避するために,異なる測定間に認識分子の再結合させ,電極を再生できることである。   An electrode modification method using the liquid feeding part will be described. The modification reagent container 302b contains a base recognition reagent dissolved in a solvent. In this example, the base recognition molecule shown in FIG. 3 was used. The solvent is methanol. The upper and lower solution tanks are filled with a solvent in advance. A base recognition reagent is introduced into the upper and lower solution tanks by the liquid feeding unit, and the solvent in the solution tank is replaced. While being allowed to stand at room temperature for about 20 hours, base recognition molecules bind to the electrode surface through metal-thiol bonds. Thereafter, a solvent is introduced into the upper and lower solution tanks, and floating base recognition molecules in the solution are washed away from the outlet to the waste container. The amount of solvent used for washing is approximately 10 times the volume of the solution tank. Next, the solution in the washing container is replaced with a phosphate buffer, and the solution tank is replaced with the phosphate buffer. The modification of the electrode surface with a base recognition reagent can be confirmed by a decrease in the pulsed noise of the tunnel current. The above confirmation method is performed at any time during sample measurement as a method for confirming electrode deterioration due to base sequence measurement. If the electrode deteriorates, it can be immediately re-modified by using a method similar to that described in Olson and Buhlmann, Anal. Chem. 2003, 75, 1089. Here, a case where the binding step of the recognition molecule to the electrode surface and the base sequence determination step are realized in the same system, but these steps may be realized in different systems. The effect of realizing these processes with the same system is to regenerate the electrode by recombining the recognition molecule between different measurements in order to avoid the influence of electrode performance degradation due to separation of the recognition molecule that occurs with the measurement time. It can be done.

塩基配列測定の際は,サンプル容器302cに一本鎖化したssDNAを入れて,上側溶液槽311aに導入し,VpとVtに電圧を印加することで測定が開始する。測定が終わるとリン酸バッファで上下溶液槽に浮遊するssDNAを洗い流す。その後,サンプル容器内の溶液を別のssDNAに交換すれば,複数のDNAサンプルを連続して測定することができる。   When measuring the base sequence, the single-stranded ssDNA is put in the sample container 302c, introduced into the upper solution tank 311a, and the voltage is applied to Vp and Vt to start the measurement. When the measurement is completed, the ssDNA floating in the upper and lower solution tanks is washed away with a phosphate buffer. Then, if the solution in the sample container is replaced with another ssDNA, a plurality of DNA samples can be measured continuously.

図8は,図1の構成をアレイ化したときの電極基板100の構成である。複数のナノポア103で同時に塩基配列を解読することで,DNAサンプルあたりの測定時間を短縮することができる。   FIG. 8 shows the configuration of the electrode substrate 100 when the configuration of FIG. 1 is arrayed. By simultaneously decoding the base sequence with a plurality of nanopores 103, the measurement time per DNA sample can be shortened.

さらに,図7の溶液保持部310をアレイ化することで,複数のDNAサンプルを同時に測定することができる。溶液保持部310内の電極基板100に図8のアレイ化基板を用いることで,より高いスループットを達成できる。   Furthermore, a plurality of DNA samples can be measured simultaneously by arraying the solution holders 310 of FIG. By using the arrayed substrate of FIG. 8 as the electrode substrate 100 in the solution holding unit 310, higher throughput can be achieved.

図9(a)(b)は,実施例2におけるナノポア103内の構成である。他の構成は実施例1と同様である。実施例2の特徴は,対向する電極110を異なる塩基認識分子120aと120bで修飾することである。図9(a)では,120aにスタッキング相互作用をする芳香環官能基(図4(b))のみを,120bに水素結合をする親水性官能基とスタッキング相互作用をする芳香環官能基を用いている。図9(b)では,120bにスタッキング相互作用をする芳香環官能基(図4(b))複数個を,120aに水素結合をする親水性官能基のみを用いている。水素結合をする親水性官能基を電極110の片側だけに修飾することで,塩基認識しているときの塩基の向きを一方向に制限することができる(電極両側で同じ水素結合する親水性官能基がある場合,塩基の向きは2通りある)。これにより,トンネル電流値のばらつきを抑制する効果がある。   FIGS. 9A and 9B show the configuration inside the nanopore 103 in the second embodiment. Other configurations are the same as those of the first embodiment. The feature of Example 2 is that the opposing electrode 110 is modified with different base recognition molecules 120a and 120b. In FIG. 9 (a), only the aromatic ring functional group having a stacking interaction at 120a (FIG. 4 (b)) is used, and the hydrophilic functional group having a hydrogen bond with 120b is used as an aromatic ring functional group having a stacking interaction. ing. In FIG. 9 (b), a plurality of aromatic ring functional groups (FIG. 4 (b)) having a stacking interaction with 120b are used, and only hydrophilic functional groups having hydrogen bonds with 120a are used. By modifying the hydrophilic functional group that forms hydrogen bonds on only one side of the electrode 110, the base orientation during base recognition can be limited to one direction (the same hydrophilic bond on both sides of the electrode). If there is a group, there are two directions of base). This has the effect of suppressing variations in the tunnel current value.

上記電極の修飾方法は,まず実施例1記載の方法で,塩基認識分子120bを修飾し,電圧を印加して電極の片側のみ,塩基認識分子120bを脱着させて,非修飾状態とする。次に,実施例1記載の方法で,非修飾状態の電極110に塩基認識分子120aを修飾する。図9には簡単のため,1分子のみが固定された状態を示したが,実際には複数の塩基認識分子が自己組織化単分子膜(SAM)を形成している。したがって,塩基認識分子120aの修飾操作によって、塩基認識分子120aが塩基認識分子120b固定電極に固定化される確率は低い。電圧を印加して塩基認識分子を脱着させる方法は,Mary M. Walczak, et al., Langmuir 1991, 7 2687-2693に記載されている。   The method for modifying the electrode is the method described in Example 1, in which the base recognition molecule 120b is modified, and a voltage is applied so that the base recognition molecule 120b is desorbed only on one side of the electrode to make it unmodified. Next, the base recognition molecule 120a is modified on the unmodified electrode 110 by the method described in Example 1. For simplicity, FIG. 9 shows a state where only one molecule is fixed, but actually a plurality of base recognition molecules form a self-assembled monolayer (SAM). Therefore, the probability that the base recognition molecule 120a is fixed to the base recognition molecule 120b fixing electrode by the modification operation of the base recognition molecule 120a is low. A method for desorbing a base recognition molecule by applying a voltage is described in Mary M. Walczak, et al., Langmuir 1991, 7 2687-2693.

なお、予め片側の電極のみに非修飾状態をもたらす条件の電圧を印加した状態で、塩基認識分子120bを修飾した後に、電極に印加する電圧条件を切り替えて、塩基認識分子120aを非修飾状態の電極に修飾することによって、異なる塩基認識分子120aと120bで修飾する方法もある。   In addition, after modifying the base recognition molecule 120b in a state in which a voltage that brings about an unmodified state only on one electrode in advance is applied, the voltage condition applied to the electrode is switched to change the base recognition molecule 120a into an unmodified state. There is also a method of modification with different base recognition molecules 120a and 120b by modifying the electrode.

本実施例では2種の異なる塩基認識分子を2種の電極の表面に修飾し分ける場合を例に説明したが、同じ原理を適用することにより、3種、4種、あるいは5種以上の異なる塩基認識分子を認識分子種と同数の電極表面に修飾することも可能である。これにより、電極毎に異なる塩基を検出することができる。   In this example, the case where two different types of base recognition molecules are modified on the surface of two types of electrodes has been described as an example. However, by applying the same principle, three, four, or more than five different types can be obtained. It is also possible to modify the base recognition molecule on the same number of electrode surfaces as the recognition molecular species. Thereby, a different base for every electrode is detectable.

図10(a)(b)は,実施例3におけるナノポア103内の構成を示す。他の構成は実施例1と同様である。実施例3の特徴は,スタッキング相互作用をする芳香環官能基と水素結合をする親水性官能基を有する二種類の塩基認識分子120cで電極110を修飾することである。図10(a)では,両電極とも二種類の塩基認識分子で修飾した。電極110の修飾方法は,実施例1記載の方法を用いる。ただし,修飾試薬容器302bには,上記二種類の塩基認識分子が混在している。予め混合比を調整することで,電極上で適切な認識分子比率を実現できる。   10A and 10B show the configuration inside the nanopore 103 in the third embodiment. Other configurations are the same as those of the first embodiment. The feature of Example 3 is that the electrode 110 is modified with two kinds of base recognition molecules 120c having an aromatic ring functional group having a stacking interaction and a hydrophilic functional group having a hydrogen bond. In FIG. 10 (a), both electrodes were modified with two types of base recognition molecules. As a modification method of the electrode 110, the method described in Example 1 is used. However, the two types of base recognition molecules are mixed in the modifying reagent container 302b. By adjusting the mixing ratio in advance, an appropriate recognition molecule ratio can be realized on the electrode.

本実施例は,塩基認識分子の構造を小さく出来るので,それぞれの塩基認識分子の合成作業を軽減する効果がある。   Since the structure of the base recognition molecule can be made small in this embodiment, there is an effect of reducing the synthesis work of each base recognition molecule.

さらに,図10(b)に示すように,両電極を異なる塩基認識分子で修飾することで,実施例2同様に電極上で塩基認識されているときの塩基の向きを制御する効果が付加される。修飾方法は実施例2に記載されている。   Furthermore, as shown in FIG. 10 (b), by modifying both electrodes with different base recognition molecules, the effect of controlling the orientation of the base when base recognition is performed on the electrode is added as in Example 2. The The modification method is described in Example 2.

図11は,実施例4における電極基板100の構成である。本実施例では,ナノポア103の代わりに,ナノ流路601を使用する。ナノ流路601が図7の溶液保持部310に相当する。ナノ流路の両端に,流入口303と排出口304が設けられているが,図からは省略されている。ssDNAは,ナノ流路601の両端に印加された電圧によって発生する電気浸透流(Electroosmotic Flow)によって,ナノ流路内を一方向に移動する。ssDNAがナノ流路内に突出した電極間を移動するときに、ssDNAの塩基配列が同定される。電極の構成を以下に記す。   FIG. 11 shows the configuration of the electrode substrate 100 in the fourth embodiment. In this embodiment, a nano channel 601 is used instead of the nanopore 103. The nanochannel 601 corresponds to the solution holding unit 310 in FIG. Inflow ports 303 and discharge ports 304 are provided at both ends of the nanochannel, but are omitted from the figure. The ssDNA moves in one direction in the nanochannel by an electroosmotic flow generated by a voltage applied to both ends of the nanochannel 601. When ssDNA moves between electrodes protruding into the nanochannel, the base sequence of ssDNA is identified. The configuration of the electrode is described below.

電極110はナノ流路内(x方向)に約0.5nm突出している。電極の対向する距離は2nm程度である。したがって,電極が突出する付近のx方向とz方向の流路幅は,2-3nmである。電極110の突出部の幅は,y方向に約0.3nm,z方向に2−3nmである。電極付近以外の流路幅はxz方向に50−100nm程度である。流路及び電極構造の作成方法は,特許文献1に記載されている方法と,一般的な半導体プロセスを組み合わせた。上記以外の構成は実施例1と同等である。   The electrode 110 protrudes about 0.5 nm in the nanochannel (x direction). The distance between the electrodes is about 2 nm. Therefore, the channel width in the x-direction and z-direction near the electrode protrudes is 2-3 nm. The width of the protruding portion of the electrode 110 is about 0.3 nm in the y direction and 2-3 nm in the z direction. The channel width other than the vicinity of the electrodes is about 50-100 nm in the xz direction. The method of creating the flow path and the electrode structure is a combination of the method described in Patent Document 1 and a general semiconductor process. Other configurations are the same as those in the first embodiment.

本実施例は,溶液保持槽を1つにすることができるので,装置構成を簡便にする効果がある。   In this embodiment, since one solution holding tank can be provided, there is an effect of simplifying the apparatus configuration.

図12は,実施例5の電極110と電極基板100の構成である。他の構成は実施例1と同等である。ただし,本実施例では,STM機構700を備えることを特徴とする。STMは,Scanning Tunneling Microscopyのことである。STM機構として,市販のSTM装置,例えばAgilent 5100を使用することができる。電圧Vtを印加する電圧源と、電流Itを計測する電流計は制御部102を介してSTM機構部700に接続されている。電極110の片側はSTM探針であり,残りの片側は電極基板である。電極基板には,原子レベルの平坦性を有するAu(111)単結晶基板を用いたが,同等の平坦性を有する限りは,Auを蒸着したマイカ基板等でも構わない。   FIG. 12 shows the configuration of the electrode 110 and the electrode substrate 100 of the fifth embodiment. Other configurations are the same as those of the first embodiment. However, this embodiment is characterized in that an STM mechanism 700 is provided. STM stands for Scanning Tunneling Microscopy. As the STM mechanism, a commercially available STM apparatus such as Agilent 5100 can be used. A voltage source that applies the voltage Vt and an ammeter that measures the current It are connected to the STM mechanism unit 700 via the control unit 102. One side of the electrode 110 is an STM probe, and the other side is an electrode substrate. As the electrode substrate, an Au (111) single crystal substrate having an atomic level flatness is used. However, a mica substrate on which Au is vapor-deposited may be used as long as it has an equivalent flatness.

電極基板表面110には、溶液保持部310が設けられており(図示省略),ssDNAが浮遊している。トンネル電流測定の方法は,非特許文献1に記載されている。   A solution holding part 310 is provided on the electrode substrate surface 110 (not shown), and ssDNA is floating. A method for measuring a tunnel current is described in Non-Patent Document 1.

図12では,同一種の塩基認識分子120を修飾させたが,実施例2と3のように異なる塩基認識分子を修飾させてもよい。   In FIG. 12, the base recognition molecule 120 of the same type is modified, but different base recognition molecules may be modified as in Examples 2 and 3.

本実施例は,電極110を分離させて塩基認識分子の修飾作業ができるので,異なる種類の塩基認識分子を修飾する作業が簡便になる。例えば,実施例2記載のように電圧をかけて分子を脱着させる必要はない。   In this embodiment, the base recognition molecule can be modified by separating the electrode 110, so that the modification of different types of base recognition molecules is simplified. For example, it is not necessary to desorb molecules by applying a voltage as described in Example 2.

上記記載は実施例についてなされたが,本発明はそれに限らず,本発明の精神と添付の請求範囲の範囲内で種種の変更および修正をすることができることは当業者には明らかである。   While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.

以上の実施例では,ナノポアに設けられた対向電極,ナノ流路に設けられた対向電極, STMに於ける探針電極と電極基板の主に3種類の構成に於ける,塩基認識分子で修飾された電極による塩基識別方法を説明したが,本発明は必ずしもこの3種類の構成に限定されるものではなく,塩基またはDNAやRNA鎖中の塩基を計測対象として,認識分子を介してトンネル電流計測する全ての構成に適用可能である。さらに計測対象を蛋白質や糖鎖としても良い。   In the above examples, the counter electrode provided in the nanopore, the counter electrode provided in the nanochannel, the probe electrode in the STM and the electrode substrate are modified with base recognition molecules in three main configurations. However, the present invention is not necessarily limited to these three types of configurations, and the tunnel current can be detected via a recognition molecule using a base or a base in a DNA or RNA chain as a measurement target. Applicable to all configurations to be measured. Furthermore, the measurement target may be a protein or a sugar chain.

以上の実施例では,トンネル電流測定に限定したが,同様の構成でトンネル電流以外の電流測定についても同様の効果がある。   In the above embodiment, the measurement is limited to the tunnel current measurement, but the same effect can be obtained for the current measurement other than the tunnel current with the same configuration.

塩基認識分子120,電極110,電極基板100,STM機構部700,制御部102,ナノ流路601,ナノポア103,溶液保持部310,洗浄容器302a,修飾試薬容器302b,サンプル容器302c,廃液容器302de,302e,上側溶液槽311a,下側溶液槽311b,流入口303,バルブ305,流入口303,流出口304,PC104   Base recognition molecule 120, electrode 110, electrode substrate 100, STM mechanism unit 700, control unit 102, nanochannel 601, nanopore 103, solution holding unit 310, cleaning container 302a, modifying reagent container 302b, sample container 302c, waste liquid container 302de 302e, upper solution tank 311a, lower solution tank 311b, inlet 303, valve 305, inlet 303, outlet 304, PC104

Claims (10)

第1の溶液槽と、
第2の溶液槽と、
前記第1の溶液槽と前記第2の溶液槽とを隔てる絶縁性材料で覆われた基板と、
前記基板は、前記第1,2の溶液槽を連結するための貫通穴を有し、
前記穴内には、対向する2つの導電性の電極を備え、
前記電極表面は、生体分子を捕捉する認識分子で修飾されており、
前記認識分子は、スタッキング相互作用する疎水性官能基と、生体分子と水素結合を形成する親水性官能基を有し、
前記2つの電極間に電圧を印加して流れる電流を測定する制御部とを備え、
生体分子が前記2つの電極間を通過する際の電流値変化により、生体分子の構成要素を同定することを特徴とする分析システム。
A first solution tank;
A second solution tank;
A substrate covered with an insulating material separating the first solution tank and the second solution tank;
The substrate has a through hole for connecting the first and second solution vessels,
In the hole, two conductive electrodes facing each other are provided,
The electrode surface is modified with a recognition molecule that captures a biomolecule,
The recognition molecule has a hydrophobic functional group that interacts with stacking and a hydrophilic functional group that forms a hydrogen bond with a biomolecule,
A control unit for measuring a current flowing by applying a voltage between the two electrodes,
An analysis system, wherein a biomolecule component is identified by a change in current value when the biomolecule passes between the two electrodes.
請求項1の分析システムにおいて、
第1と第2の溶液槽間に電圧を印加して電流を測定する制御部を備え、
前記制御部は、前記穴を通して前記2つの溶液槽間をイオン物質が流れることによる電流値を測定することを特徴とする分析システム。
The analysis system of claim 1,
A controller for applying a voltage between the first and second solution tanks to measure the current;
The said control part measures the electric current value by an ionic substance flowing between said two solution tanks through the said hole, The analysis system characterized by the above-mentioned.
請求項2の分析システムにおいて、
前記2つの電極のうち、1つの電極表面には、疎水性官能基のみを有する認識分子のみが固定されていることを特徴とする分析システム。
The analysis system of claim 2,
Of the two electrodes, only one recognition molecule having only a hydrophobic functional group is immobilized on one electrode surface.
請求項2の分析システムにおいて、
前記電極表面には、疎水性官能基のみを有する第1の認識分子と、親水性官能基のみを有する第2の認識分子が固定されていることを特徴とする分析システム。
The analysis system of claim 2,
An analysis system, wherein a first recognition molecule having only a hydrophobic functional group and a second recognition molecule having only a hydrophilic functional group are immobilized on the electrode surface.
少なくとも一部分でナノメートルサイズのギャップを有する流路が表面に形成された絶縁性素材の基板と、
ギャップで隔てられた流路間に電圧を印加して流れる電流を測定するための制御部とを有し、
前記ギャップ内には、2つの導電性の電極が対向して配置され、
前記電極表面は、生体分子を捕捉する認識分子で修飾されており、
前記認識分子は、疎水性官能基と親水性官能基を有し、
生体分子が前記2つの電極間を通過する際の電流値変化により、生体分子の構成要素を同定することを特徴とする分析システム。
A substrate made of an insulating material having a channel having a nanometer-sized gap at least partially formed on a surface thereof;
A controller for measuring a flowing current by applying a voltage between the flow paths separated by a gap;
In the gap, two conductive electrodes are arranged opposite to each other,
The electrode surface is modified with a recognition molecule that captures a biomolecule,
The recognition molecule has a hydrophobic functional group and a hydrophilic functional group,
An analysis system, wherein a biomolecule component is identified by a change in current value when the biomolecule passes between the two electrodes.
2つの対向する電極と、
前記2つの電極の間を満たす生体分子を含む溶液と、
前記2つの電極間に電圧を印加して流れる電流を測定する制御部と
を備え、
前記電極の一つは、尖った先端形状を有する導電性の探針であり、
前記電極のもう一つは、導電性の基板であり、
前記2つの電極表面は、生体分子を捕捉する認識分子で修飾されており、
前記認識分子は、疎水性官能基と親水性官能基を有し、
生体分子が前記2つの電極間を通過する際の電流値変化により、生体分子の構成要素を同定することを特徴とする分析システム。
Two opposing electrodes;
A solution containing a biomolecule filling between the two electrodes;
A controller for applying a voltage between the two electrodes and measuring a flowing current;
One of the electrodes is a conductive probe having a pointed tip shape,
Another of the electrodes is a conductive substrate,
The two electrode surfaces are modified with recognition molecules that capture biomolecules,
The recognition molecule has a hydrophobic functional group and a hydrophilic functional group,
An analysis system, wherein a biomolecule component is identified by a change in current value when the biomolecule passes between the two electrodes.
請求項2又は3又は4又は5又は6の分析システムにおいて,疎水性官能基は、1つ以上の芳香環で構成されていることを特徴とする分析システム。   The analysis system according to claim 2, 3, 4, 5 or 6, wherein the hydrophobic functional group is composed of one or more aromatic rings. 請求項7の分析システムにおいて、電極は金であることを特徴とする分析システム 8. The analysis system according to claim 7, wherein the electrode is gold . 請求項8の分析システムにおいて、生体分子は一本鎖DNAであり、同定される構成要素は4種の塩基であることを特徴とする分析システム。   9. The analysis system according to claim 8, wherein the biomolecule is single-stranded DNA, and the components to be identified are four types of bases. 請求項9の分析システムにおいて、疎水性官能基はナフタレンであることを特徴とする分析システム。   10. The analysis system according to claim 9, wherein the hydrophobic functional group is naphthalene.
JP2013524679A 2011-07-19 2012-07-11 Analysis apparatus and analysis system Expired - Fee Related JP5822930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013524679A JP5822930B2 (en) 2011-07-19 2012-07-11 Analysis apparatus and analysis system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011157393 2011-07-19
JP2011157393 2011-07-19
JP2013524679A JP5822930B2 (en) 2011-07-19 2012-07-11 Analysis apparatus and analysis system
PCT/JP2012/067640 WO2013011879A1 (en) 2011-07-19 2012-07-11 Analytical device and analytical system

Publications (2)

Publication Number Publication Date
JPWO2013011879A1 JPWO2013011879A1 (en) 2015-02-23
JP5822930B2 true JP5822930B2 (en) 2015-11-25

Family

ID=47558057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013524679A Expired - Fee Related JP5822930B2 (en) 2011-07-19 2012-07-11 Analysis apparatus and analysis system

Country Status (2)

Country Link
JP (1) JP5822930B2 (en)
WO (1) WO2013011879A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678055B2 (en) 2010-02-08 2017-06-13 Genia Technologies, Inc. Methods for forming a nanopore in a lipid bilayer
US20120052188A1 (en) 2010-02-08 2012-03-01 Genia Technologies, Inc. Systems and methods for assembling a lipid bilayer on a substantially planar solid surface
US9605307B2 (en) 2010-02-08 2017-03-28 Genia Technologies, Inc. Systems and methods for forming a nanopore in a lipid bilayer
US9581563B2 (en) 2011-01-24 2017-02-28 Genia Technologies, Inc. System for communicating information from an array of sensors
US8986629B2 (en) 2012-02-27 2015-03-24 Genia Technologies, Inc. Sensor circuit for controlling, detecting, and measuring a molecular complex
US9759711B2 (en) 2013-02-05 2017-09-12 Genia Technologies, Inc. Nanopore arrays
JPWO2014132343A1 (en) * 2013-02-26 2017-02-02 株式会社日立製作所 FET array substrate, analysis system, and method
JP5951527B2 (en) * 2013-03-07 2016-07-13 株式会社東芝 Specimen detection apparatus and detection method
US10139390B2 (en) * 2013-06-28 2018-11-27 Hitachi High-Technologies Corporation Analysis device
US10041930B2 (en) 2013-06-28 2018-08-07 Globalfoundries Inc. Tunneling junction to distinguish targeted DNA segment
US9551697B2 (en) 2013-10-17 2017-01-24 Genia Technologies, Inc. Non-faradaic, capacitively coupled measurement in a nanopore cell array
WO2015068673A1 (en) * 2013-11-08 2015-05-14 株式会社日立ハイテクノロジーズ Dna transport control device and method for producing same, as well as dna sequencing device
US9921181B2 (en) * 2014-06-26 2018-03-20 International Business Machines Corporation Detection of translocation events using graphene-based nanopore assemblies
JP6472208B2 (en) * 2014-10-24 2019-02-20 株式会社日立ハイテクノロジーズ Nucleic acid transport control device, manufacturing method thereof, and nucleic acid sequencing apparatus
JP6283305B2 (en) * 2014-12-04 2018-02-21 株式会社日立ハイテクノロジーズ Biomolecule measuring apparatus and biomolecule measuring method
US10591440B2 (en) * 2016-08-01 2020-03-17 Roche Sequencing Solutions, Inc. Tunnel junctions in microfluidic arrays for molecular recognition
JP2018048950A (en) * 2016-09-23 2018-03-29 株式会社東芝 Analysis chip

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9395352B2 (en) * 2007-04-06 2016-07-19 Arizona Board Of Regents On Behalf Of Arizona State University Devices and methods for target molecule characterization
JP5764296B2 (en) * 2010-03-31 2015-08-19 株式会社日立ハイテクノロジーズ Characterization of biopolymers

Also Published As

Publication number Publication date
WO2013011879A1 (en) 2013-01-24
JPWO2013011879A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5822930B2 (en) Analysis apparatus and analysis system
US11054390B2 (en) Two-chamber dual-pore device
Chau et al. Macromolecular crowding enhances the detection of DNA and proteins by a solid-state nanopore
EP2988128B1 (en) Dual-pore device
US8592225B2 (en) Array-based bioactivated nanopore devices
Krishnakumar et al. Slowing DNA translocation through a nanopore using a functionalized electrode
US20140329225A1 (en) Target detection with nanopore
US20150010935A1 (en) Systems, apparatuses and methods for reading an amino acid sequence
WO2014027580A1 (en) Sample analysis method
WO2014059046A1 (en) Device for characterizing polymers
Cao et al. SERS detection of nucleobases in single silver plasmonic nanopores
Fang et al. Unambiguous discrimination of multiple protein biomarkers by nanopore sensing with double-stranded DNA-based probes
Hagan et al. Chemically tailoring nanopores for single-molecule sensing and glycomics
WO2018016117A1 (en) Electrolyte solution for analysis of biomolecule, device for analysis of biomolecule, and apparatus for analysis of biomolecule
Miranda-Castro et al. Characterization of aptamer-ligand complexes
Khatri et al. Nanoconfinement and Crowding Enhanced Single-Molecule Detection of Small Molecules with Nanopipettes
WO2023233345A1 (en) Nanopore-based scanning system and method
JP4833679B2 (en) Method and apparatus for producing molecular film with adjusted density
JP5740660B2 (en) Cell analyzer
CN109844135B (en) Method for processing and analyzing biomolecules
Xia et al. New-generation spacecraft water monitoring with flight-ready solid state nanopore
KR101941771B1 (en) Electrochemical Method for Detecting DNA using semiconductor 2-dimensional crystal
JP2022183608A (en) Nanopore formation method and nanopore measurement method
Liang et al. DNA sequencing by recognition and its potential application with nanopore sequencing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151006

R151 Written notification of patent or utility model registration

Ref document number: 5822930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees