JP5822200B2 - Structure for reducing liquefaction damage of structures - Google Patents

Structure for reducing liquefaction damage of structures Download PDF

Info

Publication number
JP5822200B2
JP5822200B2 JP2012018489A JP2012018489A JP5822200B2 JP 5822200 B2 JP5822200 B2 JP 5822200B2 JP 2012018489 A JP2012018489 A JP 2012018489A JP 2012018489 A JP2012018489 A JP 2012018489A JP 5822200 B2 JP5822200 B2 JP 5822200B2
Authority
JP
Japan
Prior art keywords
ground
liquefaction
drain
drainage
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012018489A
Other languages
Japanese (ja)
Other versions
JP2013155557A (en
Inventor
石川 明
明 石川
社本 康広
康広 社本
英之 眞野
英之 眞野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2012018489A priority Critical patent/JP5822200B2/en
Publication of JP2013155557A publication Critical patent/JP2013155557A/en
Application granted granted Critical
Publication of JP5822200B2 publication Critical patent/JP5822200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)

Description

本発明は液状化地盤に構築される構造物を対象とする液状化被害低減構造に関する。   The present invention relates to a liquefaction damage reducing structure intended for a structure constructed on a liquefied ground.

東日本大震災では地盤液状化により戸建て住宅や付帯設備等の小規模構造物が大きな被害を受けたことが問題となった。大規模構造物や重要構造物を液状化地盤に構築する際には液状化防止対策が施されることが一般化しつつあるが、小規模構造物はコスト的な制約から十分な対策を実施できない場合が多く、そのことが大きな液状化被害の一因となったと考えられる。   In the Great East Japan Earthquake, small-scale structures such as detached houses and incidental facilities were seriously damaged due to ground liquefaction. When constructing large-scale structures and important structures on liquefied ground, measures to prevent liquefaction are becoming common, but small-scale structures cannot implement sufficient measures due to cost constraints. In many cases, it was thought that this was one of the causes of the major liquefaction damage.

現時点までに提案されている液状化防止対策としては、たとえば特許文献1や特許文献2に示される工法が知られている。   As a liquefaction prevention measure proposed so far, for example, the construction methods disclosed in Patent Document 1 and Patent Document 2 are known.

特開平9−95954号公報Japanese Patent Laid-Open No. 9-95954 特開2007−191984号公報Japanese Unexamined Patent Publication No. 2007-191984

特許文献1や特許文献2に示されるような従来の液状化防止工法はいずれも液状化の発生自体を防止することを目的としており、したがってその実施に当たっては構造物の下方地盤全体に対する大掛かりな工事と多大なコストを要するものであるから、今般の大震災で被害を受けたような小規模構造物を対象として実施することは現実的ではない。   The conventional liquefaction prevention methods as shown in Patent Document 1 and Patent Document 2 are all aimed at preventing the occurrence of liquefaction itself, and therefore in the implementation, large-scale construction for the entire lower ground of the structure Therefore, it is not realistic to implement it for small-scale structures that have been damaged by the recent earthquake.

そのため、特に液状化地盤に構築される小規模構造物を対象としてその液状化被害を有効に低減し得る有効適切な構造の開発が望まれているのが実状である。   Therefore, the actual situation is that it is desired to develop an effective and appropriate structure that can effectively reduce the liquefaction damage particularly for small-scale structures constructed on the liquefied ground.

上記事情に鑑み、本発明は液状化地盤に構築される構造物を対象として前記液状化地盤が液状化した際における前記構造物の被害を低減するための構造物の液状化被害低減構造であって、前記構造物の下方の液状化地盤中に該構造物の下方を水平方向に横断する水平ドレーンを設けるとともに、前記構造物の周囲の液状化地盤中に上端部が地表部に通じる鉛直ドレーンを設けて、該鉛直ドレーンに対して前記水平ドレーンの両端部を接続することにより、前記構造物の下方の液状化地盤が液状化した際に該液状化地盤において生じる過剰間隙水を前記水平ドレーンおよび前記鉛直ドレーンを通して地表部に排水可能な排水ゾーンを前記構造物の下方の液状化地盤中に形成してなり、水平ドレーンの透水係数k 、水平ドレーン打設ピッチの幅B、水平ドレーン打設ピッチの深さD、水平ドレーンの断面積A wH の値は、排水ゾーンからの必要排水量q w1 、水平ドレーンによる可能排水量q w2 とすると、下記式を満たすように決定され、

Figure 0005822200
Figure 0005822200
鉛直ドレーンの透水係数k (=水平ドレーンの透水係数)、鉛直ドレーンの断面積A wV (設置本数の総和)の値は、液状化後の地盤沈下量D による必要排水量ΔV 、排水ゾーンからの必要排水量q w1 、沈下時間Δtとすると、下記式を満たすように決定される
Figure 0005822200
Figure 0005822200
Figure 0005822200
ことを特徴とする。 In view of the above circumstances, the present invention is a structure for reducing liquefaction damage of a structure for reducing damage to the structure when the liquefied ground is liquefied for a structure constructed on the liquefied ground. A horizontal drain that horizontally crosses the lower part of the structure in the liquefied ground below the structure, and a vertical drain whose upper end communicates with the ground surface in the liquefied ground around the structure. By connecting both ends of the horizontal drain to the vertical drain, excess horizontal water generated in the liquefied ground when the liquefied ground below the structure is liquefied is removed from the horizontal drain. and wherein Ri a drainable drainage zones to the surface portion through the vertical drain greens formed in liquefaction of soil beneath the structure, the horizontal drain permeability k 2, the horizontal drain hitting set pitch B, the depth D of the horizontal drain strokes set pitch value of the cross-sectional area A wH horizontal drains, requires wastewater q w1 from the drainage zone and to allow wastewater q w2 by the horizontal drain, is determined so as to satisfy the following equation ,
Figure 0005822200
Figure 0005822200
Permeability coefficient of vertical drain k 2 (= permeability coefficient of horizontal drain) and vertical drain cross-sectional area A wV (total number of installations) are required drainage amount ΔV w due to ground subsidence amount D s after liquefaction , drainage zone When the required amount of drainage qw1 from the water and the settlement time Δt are determined, the following equation is satisfied.
Figure 0005822200
Figure 0005822200
Figure 0005822200
It is characterized by that.

本発明においては、前記鉛直ドレーンに代えて、上部が地表部に通じる溝状の鉛直トレンチを設けて、該鉛直トレンチに対して前記水平ドレーンの両端部を接続することも考えられる。   In the present invention, instead of the vertical drain, it is also conceivable to provide a groove-shaped vertical trench whose upper part leads to the ground surface, and to connect both ends of the horizontal drain to the vertical trench.

本発明によれば、液状化地盤が液状化すること自体は完全には防止できないものの、液状化が生じた場合には排水ゾーンから過剰間隙水が地表に排水されて少なくともその排水ゾーンにおいては地盤の崩壊や過度の変形が防止ないし抑制され、したがってそこに設置されている構造物の沈下や傾斜を有効に抑制して液状化被害を十分に低減させることが可能である。   According to the present invention, the liquefaction of the liquefied ground itself cannot be completely prevented, but when liquefaction occurs, excess pore water is drained from the drainage zone to the ground surface, and at least in the drainage zone. Therefore, it is possible to prevent or suppress the collapse and excessive deformation of the structure, and to effectively suppress the settlement and inclination of the structure installed there, thereby sufficiently reducing the liquefaction damage.

しかも、本発明は構造物の直下に水平ドレーンを設置するとともに構造物の周囲に鉛直ドレーンあるいは鉛直トレンチを設置して排水ゾーンを形成するだけで良いから、従来一般の液状化防止対策工法のように液状化の発生自体を防止するために構造物の下方地盤全体に対する大掛かりな工事を必要とせず、したがって簡易にローコストで実施すること可能であるから、特に従来においては十分な液状化防止対策が困難であった既存あるいは新築予定の戸建て住宅や付帯設備等の小規模構造物に適用するものとして最適である。   In addition, the present invention only requires a horizontal drain directly under the structure and a vertical drain or vertical trench around the structure to form a drainage zone. In order to prevent the occurrence of liquefaction itself, no large-scale construction is required for the entire lower ground of the structure, and therefore it can be easily carried out at low cost. It is most suitable for application to small-scale structures such as existing or newly built detached houses and incidental facilities that were difficult.

本発明の実施形態を示す立断面図である。It is an elevation sectional view showing an embodiment of the present invention. 同、平面図である。FIG. 同、立断面図および要部拡大図である。It is an elevation sectional view and a principal part enlarged view. 本発明の他の実施形態を示す立断面図である。It is an elevation sectional view showing other embodiments of the present invention. 同、平面図である。FIG. 本発明の原理を説明するための図である。It is a figure for demonstrating the principle of this invention. 本発明の有効性を実証するための解析実験とその結果(間隙水圧の上昇の状況)を示す図である。It is a figure which shows the analysis experiment for demonstrating the effectiveness of this invention, and its result (the situation of the raise of pore water pressure). 同、解析結果(構造物の傾斜の状況)を示す図である。It is a figure which shows an analysis result (situation of the inclination of a structure). 同、設計のためのシステム設計ブロック図である。It is a system design block diagram for a design same as the above.

地盤の液状化とは地震により地盤(特に砂地盤)中の過剰間隙水圧が急激に上昇することを意味し、したがって従来一般の液状化防止対策はそのような過剰間隙水圧の急激な上昇を防止し抑制することを主眼とするが、本発明の液状化被害低減構造はそのような地盤の液状化(つまりは過剰間隙水圧の急激な上昇)を直接的に防止したり抑制するものではなくそれを敢えて許容し、そのうえで液状化が生じている状態および液状化が終息した後において過剰間隙水を効率的に排水することで地盤の挙動を制御することを主眼とする。
すなわち、本発明では液状化が生じた際には構造物の下方地盤から排水ゾーンを通して過剰間隙水を排水することでそこでの地盤崩壊や過度の変形を抑制して安定な「ポスト液状化状態(これについては後段で詳述する)」を継続することにより、その地盤上の構造物の沈下や傾斜を抑制して液状化被害を低減するものであり、その点で本発明は液状化の発生自体を防止し抑制することを主眼としている従来一般の各種の液状化対策工法や液状化防止構造とは原理的に異なるものである。
Liquefaction of the ground means that the excess pore water pressure in the ground (especially sand ground) suddenly increases due to an earthquake, so conventional countermeasures to prevent liquefaction prevent the sudden increase in excess pore water pressure. However, the structure for reducing liquefaction damage according to the present invention does not directly prevent or suppress such liquefaction of the ground (that is, rapid increase in excess pore water pressure). The main purpose is to control the behavior of the ground by draining excess pore water efficiently after the liquefaction has occurred and after the liquefaction has ended.
That is, in the present invention, when liquefaction occurs, excess pore water is drained from the lower ground of the structure through the drainage zone, thereby suppressing the ground collapse and excessive deformation there, and stable “post-liquefaction state ( This will be described in detail later)), and the liquefaction damage is reduced by suppressing the subsidence and inclination of the structure on the ground. This is in principle different from various conventional liquefaction countermeasure methods and liquefaction prevention structures, which are mainly aimed at preventing and suppressing the liquefaction.

図1〜図3に本発明の具体的な一実施形態を示す。これは、既存の小規模かつ軽量な構造物1が設置されている液状化地盤2を対象として、地震時にこの液状化地盤2が液状化した際には少なくとも構造物1の下方地盤の崩落や過度の変形を防止ないし抑制するようにその挙動を制御し、以て、構造物1の沈下や傾斜を抑制して液状化被害を低減するようにしたものである。   1 to 3 show a specific embodiment of the present invention. This is intended for the liquefied ground 2 where the existing small-scale and lightweight structure 1 is installed. When the liquefied ground 2 is liquefied at the time of an earthquake, at least the lower ground of the structure 1 collapses. The behavior is controlled so as to prevent or suppress excessive deformation, thereby suppressing the settlement and inclination of the structure 1 to reduce liquefaction damage.

具体的には、構造物1の下方の液状化地盤2中に、構造物1の下方を水平方向に横断する水平ドレーン3を設けるとともに、構造物1の周囲の液状化地盤2中に上端部が地表部に通じる鉛直ドレーン4を設けて、その鉛直ドレーン4に対して水平ドレーン3の両端部を接続することにより、構造物1の直下に排水ゾーン5を形成している。
図示例では、構造物1の両側に鉛直ドレーン4を間隔をおいて4本ずつ設置するとともに、構造物1を挟んでその両側に対向配置されている対の鉛直ドレーン4の間に水平ドレーン3を2本ずつ2段にわたって設けることにより、それら全8本の鉛直ドレーン4と全8本の水平ドレーン3の全体で排水ゾーン5を形成している。
Specifically, in the liquefied ground 2 below the structure 1, a horizontal drain 3 that horizontally traverses the lower part of the structure 1 is provided, and an upper end portion is provided in the liquefied ground 2 around the structure 1. A drainage zone 5 is formed immediately below the structure 1 by providing a vertical drain 4 that communicates with the ground surface and connecting both ends of the horizontal drain 3 to the vertical drain 4.
In the illustrated example, four vertical drains 4 are provided on both sides of the structure 1 at intervals, and the horizontal drain 3 is interposed between a pair of vertical drains 4 that are opposed to each other across the structure 1. Are provided in two stages, so that the drainage zone 5 is formed by all the eight vertical drains 4 and all the eight horizontal drains 3.

排水ゾーン5の平面的な大きさは構造物1の周囲に鉛直ドレーン4を設置できる範囲内で構造物1の平面形状よりもやや大きい程度で良く、排水ゾーン5の深度Hは地下水位以下2〜4m程度となるように設定すれば良い。
水平ドレーン3および鉛直ドレーン4の構造は適宜で良いが、液状化地盤2中にボーリングにより削孔を形成してその内部に砂利等の透水材を充填して砂等の細粒分による目詰まりを防止する構造とすることが現実的である。
なお、水平ドレーン3の施工に際しては、地表から削孔方向を制御可能な制御ボーリングを実施して構造物1の下方において実質的に水平な削孔を形成すれば良く、それにより水平ドレーン3を容易に施工することが可能であるし、既存の構造物1の下方地盤に対しても支障なく施工することが可能である。
また、上記のように複数本の鉛直ドレーン4を所定間隔で設置することにそれに代えて図4〜図5に示すように構造物1の両側に一連の溝状の鉛直トレンチ6をそれぞれ設置してそれに水平ドレーン3の先端を接続することでも良く、これによっても上記実施形態と同様に機能して同様の効果が得られる。
The planar size of the drainage zone 5 may be slightly larger than the planar shape of the structure 1 within a range in which the vertical drain 4 can be installed around the structure 1, and the depth H of the drainage zone 5 is 2 below the groundwater level. What is necessary is just to set so that it may be set to about ~ 4m.
The structure of the horizontal drain 3 and the vertical drain 4 may be appropriate, but a hole is formed in the liquefied ground 2 by boring and a water-permeable material such as gravel is filled therein, and clogging is caused by fine particles such as sand. It is realistic to have a structure that prevents this.
When constructing the horizontal drain 3, it is only necessary to form a substantially horizontal drilling hole below the structure 1 by performing control boring capable of controlling the drilling direction from the ground surface. It can be easily constructed and can also be constructed on the lower ground of the existing structure 1 without hindrance.
Further, instead of installing a plurality of vertical drains 4 at predetermined intervals as described above, a series of groove-like vertical trenches 6 are respectively installed on both sides of the structure 1 as shown in FIGS. It is also possible to connect the tip of the horizontal drain 3 to this, and this also functions in the same manner as in the above embodiment and the same effect is obtained.

このように構造物1の下方地盤に排水ゾーン5を形成することにより、構造物1の下方の液状化地盤2が液状化した際には、排水ゾーン5内において生じる過剰間隙水が図中に矢印で示すように水平ドレーン3および鉛直ドレーン4を通して地表部に速やかに排水されてしまい、したがって少なくとも排水ゾーン5の領域においては液状化地盤2の崩壊や顕著な変形が生じることを防止ないし抑制でき、以てそこに支持されている構造物1の沈下や傾斜を十分に抑制し得てその構造物に対する液状化被害を有効に低減させることが可能である。   By forming the drainage zone 5 in the lower ground of the structure 1 in this way, when the liquefied ground 2 below the structure 1 is liquefied, excess pore water generated in the drainage zone 5 is shown in the figure. As indicated by the arrows, the water is quickly drained to the surface through the horizontal drain 3 and the vertical drain 4, and therefore, at least in the drainage zone 5, it is possible to prevent or suppress the collapse or significant deformation of the liquefied ground 2. Therefore, the settlement and inclination of the structure 1 supported by the structure 1 can be sufficiently suppressed, and the liquefaction damage to the structure can be effectively reduced.

なお、従来一般の液状化対策工法として原地盤である液状化地盤の全体から地下水を排水して液状化の発生自体を防止するという工法が知られているが、その場合には原地盤全体から多量の地下水を永続的に排水する必要があり、そのためには原地盤全体に対する大規模な排水設備の構築が必要であるし、大型重機を使用しての大掛かりな施工が不可欠である。
それに対し、本発明は以下に詳述するように従来の液状化対策工法とは原理的に異なるものであって、原地盤全体からの積極的な排水を不要として液状化時に構造物1の基礎周りの限定された領域から排水を促進することで十分であり、そのために上記実施形態のように基礎周りに小規模の排水ゾーン5を設けるだけで十分な効果が得られるものである。そして、そのために設ける小規模な排水ゾーン5も単に水平ドレーン3と鉛直ドレーン4(あるいは鉛直トレンチ6)の施工のみで簡易にかつ安価に施工可能であるし、その施工に際しては大型重機も必要としないから、本発明は住宅等の小規模な構造物に対しても支障なく適用可能であって特にそのような小規模構造物を対象とする液状化防止対策として極めて有効である。
In addition, as a conventional general liquefaction countermeasure method, a method of draining groundwater from the entire liquefied ground that is the original ground to prevent the occurrence of liquefaction itself is known, but in that case, from the entire original ground It is necessary to drain a large amount of groundwater permanently. To that end, it is necessary to construct a large-scale drainage facility for the entire raw ground, and large-scale construction using large heavy machinery is indispensable.
On the other hand, the present invention is different in principle from the conventional liquefaction countermeasure construction method as will be described in detail below, and it eliminates the need for positive drainage from the entire raw ground, and the foundation of the structure 1 during liquefaction. It is sufficient to promote drainage from a limited area around it. For that purpose, a sufficient drainage zone 5 can be obtained just by providing a small drainage zone 5 around the foundation as in the above embodiment. The small drainage zone 5 provided for this purpose can be constructed simply and inexpensively by simply constructing the horizontal drain 3 and the vertical drain 4 (or the vertical trench 6), and large heavy machinery is also required for the construction. Therefore, the present invention can be applied to small structures such as houses without any problem, and is particularly effective as a liquefaction prevention measure for such small structures.

本発明の基本原理とその優位性および具体的な設計手法について図6〜9を参照して詳細に説明する。
通常の液状化に対する設計手法では、地盤の過剰間隙水圧比が1に達した状態を完全に液状化した状態(液体になった状態)として、これ以降の状態を考えることはないが、本発明では過剰間隙水圧比が1に達した後にせん断変形により剛性が回復する状態(以下、これを「ポスト液状化状態」という)を呈することに着目し、そのポスト液状化状態を安定に継続させることで構造物に対する支持力を維持し確保するという設計思想に基づくものである。
すなわち、図6に示すように、ポスト液状化状態に達した地盤に対して排水することなくさらにせん断力を作用し続けると、非可逆の塑性体積ひずみ(圧縮側)にダイレクタンシーによる可逆的な塑性体積ひずみ(膨張側)が追いつけず、地盤が完全な液体状態なる。この状態が噴砂や構造物の不同沈下が生じる地盤の破壊に達した状態である。
一方、適切に排水しながら上記のせん断力を作用させると、非可逆の塑性体積ひずみ圧縮側)と可逆的な塑性体積ひずみ(膨張側)が常に釣り合い、ポスト液状化状態が安定に継続するから、本発明はそのような安定なポスト液状化状態を保持することで構造物の支持力を確保して構造物の沈下や傾斜といった液状化被害を低減するものである。
The basic principle of the present invention, its superiority, and a specific design method will be described in detail with reference to FIGS.
In the design method for normal liquefaction, the state where the excess pore water pressure ratio of the ground has reached 1 is not considered as the state after this as a completely liquefied state (a state in which it has become liquid). Then, pay attention to the fact that the rigidity is restored by shear deformation after the excess pore water pressure ratio reaches 1 (hereinafter referred to as “post-liquefaction state”), and the post-liquefaction state is continued stably. Therefore, it is based on the design philosophy of maintaining and securing the supporting force for the structure.
That is, as shown in FIG. 6, if a shear force continues to act on the ground that has reached the post-liquefaction state without draining, the reversible due to the directivity is applied to the irreversible plastic volume strain (compression side). Plastic volume strain (expansion side) cannot catch up, and the ground becomes completely liquid. This state is the state that reached the destruction of the ground where the undesired subsidence of the sand and structures.
On the other hand, if the above shear force is applied while draining properly, the irreversible plastic volume strain compression side) and the reversible plastic volume strain (expansion side) are always balanced, and the post-liquefaction state continues stably. In the present invention, by maintaining such a stable post-liquefaction state, the supporting force of the structure is secured, and liquefaction damage such as settlement or inclination of the structure is reduced.

本発明の有効性を実証するための解析実験とその結果を図7〜図8に示す。
図7に示すように、相対密度35%の液状化層を対象としてその表層部に排水層a(上記実施形態における排水ゾーン5に相当)を形成し、その上に模擬基礎b(同、構造物1に相当)を設置し、80秒間の加振を行って排水層aの直下の4点(PP1〜PP4)および側方の2点(PP5〜PP6)において間隙水圧を測定した。排水層aは礫材による礫層とし、層厚は0.3mおよび0.6mの2パターンとした。
その結果、深部の測定点PP1(深度-4.95m)およびPP2(深度-2.85m)においては周辺地盤と同等程度の間隙水圧の上昇が認められたが、浅部の測定点pp3(深度-1.35m)やPP4〜PP6(深度-0.6m)においては周辺地盤に比べて間隙水圧の上昇が十分に抑制され、そこでは実質的に液状化に至っていないことが確認された。
Analysis experiments and results thereof for demonstrating the effectiveness of the present invention are shown in FIGS.
As shown in FIG. 7, a drainage layer a (corresponding to the drainage zone 5 in the above embodiment) is formed on the surface layer of a liquefied layer having a relative density of 35%, and a simulation foundation b (same structure) is formed thereon. The water pressure was measured at 4 points (PP1 to PP4) just below the drainage layer a and 2 points (PP5 to PP6) on the side. The drainage layer a was a gravel layer made of gravel material, and the layer thickness was two patterns of 0.3 m and 0.6 m.
As a result, the increase in pore water pressure at the same level as the surrounding ground was observed at the deep measurement points PP1 (depth -4.95m) and PP2 (depth -2.85m), but at the shallow measurement point pp3 (depth -1.35). In m) and PP4 to PP6 (depth -0.6m), it was confirmed that the increase in pore water pressure was sufficiently suppressed compared with the surrounding ground, and there was substantially no liquefaction there.

図8は上記の解析実験の場合における模擬基礎bの傾斜の測定結果を示す。対策なし(排水層aなし)の場合には模擬基礎bに最大で0.2radにも達する大きな傾斜が生じるのに対し、排水層aを設けることで最大傾斜は0.02rad程度にまで大幅に抑制され、排水層a(上記実施形態における排水ゾーン5)を設けることの有効性が実証された。
しかも、そのような効果は排水層aの層厚にはあまり依存せず、(a)に示すように模擬基礎bの下方における排水層aの層厚を模擬基礎bの短辺方向の幅寸法Bの1/8〜1/2の範囲で変化させても、また(b)に示すように模擬基礎bの周囲への延出幅寸法を30cm〜1.2mの範囲で変化させた場合においてもほぼ同様の効果が得られることが確認された。このことから、上記実施形態における排水ゾーン5の層厚は少なくとも構造物1の基礎の短辺方向の幅寸法Bの1/8以上であれば十分であり、かつ構造物1周囲への延出幅寸法は少なくとも30cm以上あれば十分であるといえる。
FIG. 8 shows the measurement result of the inclination of the simulation foundation b in the case of the above analysis experiment. In the case of no measures (without drainage layer a), a large slope of up to 0.2 rad is generated in the simulated foundation b, but by providing the drainage layer a, the maximum slope is greatly suppressed to about 0.02 rad. The effectiveness of providing the drainage layer a (drainage zone 5 in the above embodiment) was demonstrated.
Moreover, such an effect does not depend much on the layer thickness of the drainage layer a, and as shown in FIG. Even if it is changed within the range of 1/8 to 1/2 of B, and the extension width dimension around the simulated foundation b is changed within the range of 30 cm to 1.2 m as shown in (b) It was confirmed that almost the same effect was obtained. Therefore, it is sufficient that the layer thickness of the drainage zone 5 in the above-described embodiment is at least 1/8 or more of the width dimension B in the short side direction of the foundation of the structure 1 and extends around the structure 1. A width dimension of at least 30 cm is sufficient.

ところで、上記の原理に基づく本発明においては、液状化発生時およびその後において排水ゾーン5から過剰間隙水を確実に排水可能であることが必要であり、そのためには排水ゾーン5内に水平ドレーン3および鉛直ドレーン4を適切に設置する必要があるから、以下、そのための具体的な設計手法について説明する。   By the way, in the present invention based on the above principle, it is necessary to reliably drain excess pore water from the drainage zone 5 at the time of occurrence of liquefaction and thereafter, and for this purpose, the horizontal drain 3 is disposed in the drainage zone 5. Since it is necessary to install the vertical drain 4 appropriately, a specific design method for that purpose will be described below.

「水平ドレーンの設計」
水平ドレーン3の設置間隔は以下により決定する。
図3(b)に示すように1本の水平ドレーン3の集水範囲をB×Dとした場合、排水ゾーン5からの必要排水量qw1、水平ドレーン3による可能排水量qw2とすると、
"Horizontal drain design"
The installation interval of the horizontal drain 3 is determined as follows.
As shown in FIG. 3 (b), when the water collection range of one horizontal drain 3 is B × D, the required drainage amount q w1 from the drainage zone 5 and the possible drainage amount q w2 from the horizontal drain 3 are

Figure 0005822200
Figure 0005822200

となるから、水平ドレーン3の集水条件は、 Therefore, the water collection condition of horizontal drain 3 is

Figure 0005822200
Figure 0005822200

となり、上式を満たすようにk2、B、D、AWHの値を決定する。 Thus, the values of k 2 , B, D, and A WH are determined so as to satisfy the above formula.

「鉛直ドレーンの設計」
鉛直ドレーン4は液状化による地盤沈下に伴って生じる間隙水を排水ゾーン5から地表に排水できる能力をもつように設計し、液状化後の地盤沈下量Dsによる必要排水量ΔVwと、排水ゾーン5からの必要排水量qw1を次式により算定する。
ここで、沈下時間Δtは1日程度とし、地盤沈下量Dsは周知の計算法により算定すれば良い(地盤沈下量Dsの算定手法について後述する)。
なお、ここでは排水ゾーン5の一方向の長さLを図2に示すように両側の鉛直ドレーン4間の距離とし、他方向の長さはそれと等しいとしている。
"Vertical drain design"
The vertical drain 4 is designed to have the ability to drain pore water generated by land subsidence due to liquefaction from the drainage zone 5 to the ground surface. The required drainage amount ΔV w by the ground subsidence amount D s after liquefaction and the drainage zone Calculate the required amount of drainage q w1 from 5 by the following formula.
Here, the subsidence time Δt is about one day, and the ground subsidence amount D s may be calculated by a well-known calculation method (a method for calculating the ground subsidence amount D s will be described later).
Here, the length L in one direction of the drainage zone 5 is the distance between the vertical drains 4 on both sides as shown in FIG. 2, and the length in the other direction is equal to that.

Figure 0005822200
Figure 0005822200

一方、鉛直ドレーン4による可能排水量qw2を次式により算定する。
ここで、排水ゾーン5の底面に作用する水圧は深度Hの面に作用する全応力に等しいと仮定して鉛直ドレーン4下端での水頭hw1を次式により算定し、鉛直ドレーン4上端での水頭hw2=0とする。また、鉛直ドレーン4の透水係数k2は水平ドレーン3の透水係数k2と等しいとする。
On the other hand, the possible drainage amount q w2 from the vertical drain 4 is calculated by the following equation.
Here, assuming that the water pressure acting on the bottom surface of the drainage zone 5 is equal to the total stress acting on the surface at the depth H, the head h w1 at the lower end of the vertical drain 4 is calculated by the following formula, and the water pressure at the upper end of the vertical drain 4 is calculated. Water head h w2 = 0. Furthermore, permeability coefficient k 2 of the vertical drain 4 is equal to the permeability coefficient k 2 of the horizontal drain 3.

Figure 0005822200
Figure 0005822200

以上で求めた鉛直ドレーン4による可能排水量qw2が、 The possible drainage amount q w2 from the vertical drain 4 determined above is

Figure 0005822200
Figure 0005822200

を満たすようにk2、Awvを決定し、同時に上記の(1)式や(2式)、(4)式の条件も満たすように各諸元を最終決定する。 K 2 and A wv are determined so as to satisfy the conditions, and at the same time, each specification is finally determined so as to satisfy the conditions of the above expressions (1), (2), and (4).

「地盤沈下量の算定」
上述の地盤沈下量Dsの算定は以下の手法によることが好ましい。
沈下量の予測にはたとえば特許第4640671号公報に示される手法や特開2007-9558号公報に示される手法が採用可能であるが、ここでは前者によるものとしてそのシステム構成ブロック図を図9に示す。
"Calculation of land subsidence"
Calculation of ground subsidence amount D s described above, it is preferred according to the following procedure.
For example, the method shown in Japanese Patent No. 4640671 and the method shown in Japanese Patent Application Laid-Open No. 2007-9558 can be adopted for predicting the amount of settlement, but here the system configuration block diagram is shown in FIG. Show.

すなわち、最初にデータ入力部より地震、構造物、地震動データを入力し、解析用モデルを構築する。次に、地盤及び構造物の自重を静的に作用させた解析により、地盤の初期応力状態を求める。この初期応力解析はたとえば有限要素法などの解析手法によって求めることができる。
次に、初期応力解析と同じモデルを用い、想定する地震動に対して、有効応力解析等、地盤の液状化を考慮した手法により地震応答解析を行う。
That is, first, earthquake, structure, and ground motion data are input from the data input unit, and an analysis model is constructed. Next, the initial stress state of the ground is obtained by an analysis in which the weight of the ground and the structure is statically applied. The initial stress analysis can be obtained by an analysis method such as a finite element method.
Next, using the same model as the initial stress analysis, the seismic response analysis is performed for the assumed ground motion by a method that considers liquefaction of the ground, such as effective stress analysis.

地震応答解析の結果得られた各地盤要素の最大せん断ひずみγmaxの値より、液状化後の残留体積ひずみεvpと残留せん断ひずみγpの値が次式により得られる。 From the value of the maximum shear strain γ max of each panel element obtained as a result of the seismic response analysis, the values of the residual volume strain ε vp and the residual shear strain γ p after liquefaction are obtained by the following equations.

Figure 0005822200
Figure 0005822200

ここで、e0は初期間隙比、e* minは真の最小間隙比で次式で表される。 Here, e 0 is an initial gap ratio, and e * min is a true minimum gap ratio, which is expressed by the following equation.

Figure 0005822200
Figure 0005822200

上式において、emax、emin はそれぞれ通常の最大・最小密度試験から得られる最大・最小間隙比である。また、R0 *、mは砂の種類や密度に依存しない固有の定数で、R0 *=2.0、m=0.76である。Mcs.0は有効拘束圧0付近の限界状態面の傾きである。Chは液状化時の地震応答によって生じた非可逆的な体積ひずみポテンシャルが残留体積ひずみと残留せん断ひずみに寄与する割合を示すパラメータで、地表面の傾斜がほとんどない地盤では約0.2である。 In the above equation, e max and e min are the maximum and minimum gap ratios obtained from the normal maximum and minimum density tests, respectively. R 0 * and m are inherent constants independent of the type and density of sand, and R 0 * = 2.0 and m = 0.76. M cs.0 is the inclination of the limit state surface near the effective confining pressure 0. C h is a parameter indicating the irreversible volumetric strain potential contributing percentage residual volumetric strain and residual shear strain caused by seismic response at liquefaction, it is hardly ground inclination of the ground surface is about 0.2.

地盤要素の液状化後の残留体積ひずみと残留せん断ひずみは地震時の最大せん断ひずみの値より、(9)式,(10)式を用いて地盤要素毎に独立に決定されるため、要素間の変位の適合条件を必ずしも満たしていない。そこで静的自重解析より得られた地盤要素の平均拘束圧σmと水平方向のせん断応力τxyより、弾性論に基づく以下の式を用いて液状化後の地盤の等価な弾性係数を求める。 The residual volume strain and residual shear strain after liquefaction of the ground elements are determined independently for each ground element using the formulas (9) and (10) from the value of the maximum shear strain during the earthquake. It does not necessarily meet the conforming condition of displacement. Therefore, the equivalent elastic modulus of the ground after liquefaction is obtained from the average restraint pressure σ m of the ground element obtained by static weight analysis and the horizontal shear stress τ xy using the following equation based on elasticity theory.

Figure 0005822200
Figure 0005822200

上式において Geq、Keq、νeq、Eeq はそれぞれ等価なせん断弾性係数、体積弾性係数、ポアソン比、ヤング係数である。 In the above equation, G eq , K eq , ν eq , and E eq are equivalent shear modulus, bulk modulus, Poisson's ratio, and Young's modulus, respectively.

これらの弾性定数を用いて再度自重解析を行い、地盤の変形を算定する。その結果、得られた体積ひずみ・せん断ひずみの値が(9),(10)式の値に収束するまで、地盤応力及び等価弾性定数の値を変化させて繰り返し自重解析を行い。収束計算の結果得られた最終の変形量が求める地盤の液状化後の残留変形すなわち地盤沈下量Dsとなる。 The self-weight analysis is performed again using these elastic constants, and the deformation of the ground is calculated. As a result, the self-weight analysis is repeatedly performed by changing the ground stress and the equivalent elastic constant value until the obtained volume strain and shear strain values converge to the values of equations (9) and (10). The final deformation amount obtained as a result of the convergence calculation is the residual deformation after liquefaction of the ground, that is, the ground subsidence amount D s .

本発明によれば、液状化地盤2が液状化すること自体は完全には防止できないものの、液状化が生じた場合には過剰間隙水が排水ゾーン5から排水されて少なくともその排水ゾーン5の領域においては地盤の崩壊や過度の変形が有効に防止ないし抑制され、したがってその上部に支持されている構造物1が沈下したり傾斜することが有効に抑制されて液状化被害を十分に低減させることが可能である。   According to the present invention, liquefaction of the liquefied ground 2 itself cannot be completely prevented, but when liquefaction occurs, excess pore water is drained from the drainage zone 5 and at least the area of the drainage zone 5 In this case, the collapse or excessive deformation of the ground is effectively prevented or suppressed, and therefore the structure 1 supported on the upper part is effectively suppressed from sinking or tilting to sufficiently reduce liquefaction damage. Is possible.

すなわち、液状化による構造物1の沈下や傾斜は地震中に急激に生じるのではなく地震後に時間をかけて緩慢に進行することが通常であり、したがって原地盤に液状化が生じても構造物1の基礎周りの液状化を早期に終息させて早期に安定させてしまえば、換言すれば上記のように「ポスト液状化状態」が安定に継続する状態を維持することにより、液状化後における構造物1の沈下や傾斜の進行を自ずと抑制することが可能である。
そして、そのためには液状化が生じた際に構造物1の基礎周りに過剰間隙水の排水を促進して基礎周りから速やかに適切な排水を行うための排水ゾーン5を設置すれば良いから、本発明はそのような簡易な排水ゾーン5を基礎周りに形成しておくことのみで構造物1の液状化被害を十分に低減させることが可能である。
また、地震終息後には構造物1の直下も含めて原地盤全体に液状化層は残り、したがってそれ以降において原地盤全体が緩慢に沈下していくことにはなるが、その際には構造物1も周辺地盤とともに沈下していくから構造物1とその周辺地盤との間に大きな不陸が生じてしまうこともなく、地震後の供用に支障を来すこともない。
That is, the subsidence or inclination of the structure 1 due to liquefaction does not occur suddenly during an earthquake, but usually progresses slowly over time after the earthquake. Therefore, even if liquefaction occurs in the original ground, the structure If the liquefaction around the foundation of 1 is terminated early and stabilized early, in other words, by maintaining the state in which the “post-liquefaction state” continues stably as described above, It is possible to naturally suppress the settlement of the structure 1 and the progress of the inclination.
And, for that purpose, when liquefaction occurs, it is only necessary to install drainage zone 5 for promoting drainage of excess pore water around the foundation of structure 1 and quickly draining appropriately from around the foundation. In the present invention, it is possible to sufficiently reduce the liquefaction damage of the structure 1 only by forming such a simple drainage zone 5 around the foundation.
In addition, after the end of the earthquake, the liquefied layer remains on the entire original ground, including directly under the structure 1. Therefore, the entire original ground slowly sinks after that. Since 1 also sinks with the surrounding ground, there will be no large unevenness between the structure 1 and the surrounding ground, and there will be no hindrance to service after the earthquake.

しかも、本発明においては排水ゾーン5を形成するためには構造物1の直下を横断するように水平ドレーン3を設置するとともに構造物1の周囲に鉛直ドレーン4あるいは鉛直トレンチ6を設置するだけで良いから、既に述べたように従来一般の液状化防止対策工法のように液状化の発生自体を防止するために大掛かりな工事を必要とせず、したがって簡易にローコストで実施すること可能であり、特に従来においては十分な液状化防止対策が困難であった既存あるいは新築予定の戸建て住宅や付帯設備等の小規模構造物に対して適用するものとして最適である。   In addition, in the present invention, in order to form the drainage zone 5, the horizontal drain 3 is installed so as to cross right under the structure 1 and the vertical drain 4 or the vertical trench 6 is installed around the structure 1. Since it is good, as described above, it does not require large-scale construction to prevent the occurrence of liquefaction itself, unlike the conventional general liquefaction prevention method, and therefore it can be easily carried out at low cost. It is optimal for application to small-scale structures such as existing or newly built detached houses and incidental facilities that have been difficult to sufficiently prevent liquefaction in the past.

なお、特許文献1や特許文献2に示される液状化対策工法においても過剰間隙水の排水は可能であるとは思われるが、これらは上述したように液状化の発生自体を防止するものであるから、その点でポスト液状化状態を維持することを主眼とする本発明とは基本的に異なるばかりでなく、特許文献1では過剰間隙水を構造物の周囲に設けた貯水槽に集水するものであり、特許文献2においては水平ドレーンから直接的に地表に排水するものでしかないから、これらはいずれも本発明における鉛直ドレーン4や鉛直トレンチ6に相当する要素はなく、当然に鉛直ドレーン4や鉛直トレンチ6により排水ゾーン5からの排水を促進するという本発明の技術思想とは無縁である。したがって、これら特許文献1や特許文献2に示される液状化対策工法と本発明の液状化被害低減構造とは全く異なる技術であることはいうまでもない。   In addition, although it seems that drainage of excess pore water is also possible in the liquefaction countermeasure construction methods shown in Patent Document 1 and Patent Document 2, these prevent the occurrence of liquefaction itself as described above. Therefore, not only is this basically different from the present invention, which is mainly intended to maintain the post-liquefaction state, but in Patent Document 1, excess pore water is collected in a water storage tank provided around the structure. In Japanese Patent Application Laid-Open No. 2004-228620, since the water is only drained directly from the horizontal drain to the ground surface, none of these elements corresponds to the vertical drain 4 or the vertical trench 6 in the present invention. 4 and the vertical trench 6 are unrelated to the technical idea of the present invention in which drainage from the drainage zone 5 is promoted. Therefore, it goes without saying that the liquefaction countermeasure method shown in Patent Document 1 and Patent Document 2 and the liquefaction damage reducing structure of the present invention are completely different technologies.

以上で本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものでは勿論なく、本発明の要旨を逸脱しない範囲で適宜の設計的変更や応用が可能であることは当然である。
たとえば、ポスト液状化状態を維持するために必要となる排水ゾーン5の具体的な構成、すなわち上記実施形態における水平ドレーン3や鉛直ドレーン4、鉛直トレンチ6の設置本数や設置間隔等の設置パターン、それらの素材や透水係数等の諸元、施工方法、排水ゾーン5の形成範囲の設定その他については、対象とする液状化地盤2の状況やそこに構築される構造物1の構造や自重や形態等の諸条件も考慮して、所望の排水性能を有するものとなるように最適設計すれば良い。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and appropriate design changes and applications can be made without departing from the gist of the present invention. Of course.
For example, a specific configuration of the drainage zone 5 required to maintain the post-liquefaction state, that is, an installation pattern such as the number of installed horizontal drains 3, the vertical drains 4, and the vertical trenches 6 and the installation interval in the above embodiment, About the specifications such as those materials and hydraulic conductivity, construction method, setting range of drainage zone 5, etc., the situation of the target liquefied ground 2 and the structure, its own weight and form of the structure 1 constructed there In consideration of various conditions such as the above, an optimum design may be made so as to have a desired drainage performance.

1 構造物
2 液状化地盤
3 水平ドレーン
4 鉛直ドレーン
5 排水ゾーン
6 鉛直トレンチ
1 Structure 2 Liquefaction Ground 3 Horizontal Drain 4 Vertical Drain 5 Drain Zone 6 Vertical Trench

Claims (2)

液状化地盤に構築される構造物を対象として前記液状化地盤が液状化した際における前記構造物の被害を低減するための構造物の液状化被害低減構造であって、
前記構造物の下方の液状化地盤中に該構造物の下方を水平方向に横断する水平ドレーンを設けるとともに、前記構造物の周囲の液状化地盤中に上端部が地表部に通じる鉛直ドレーンを設けて、該鉛直ドレーンに対して前記水平ドレーンの両端部を接続することにより、前記構造物の下方の液状化地盤が液状化した際に該液状化地盤において生じる過剰間隙水を前記水平ドレーンおよび前記鉛直ドレーンを通して地表部に排水可能な排水ゾーンを前記構造物の下方の液状化地盤中に形成してなり、
水平ドレーンの透水係数k 、水平ドレーン打設ピッチの幅B、水平ドレーン打設ピッチの深さD、水平ドレーンの断面積A wH の値は、排水ゾーンからの必要排水量q w1 、水平ドレーンによる可能排水量q w2 とすると、下記式を満たすように決定され、
Figure 0005822200
Figure 0005822200
鉛直ドレーンの透水係数k (=水平ドレーンの透水係数)、鉛直ドレーンの断面積A wV (設置本数の総和)の値は、液状化後の地盤沈下量D による必要排水量ΔV 、排水ゾーンからの必要排水量q w1 、沈下時間Δtとすると、下記式を満たすように決定される
Figure 0005822200
Figure 0005822200
Figure 0005822200
ことを特徴とする構造物の液状化被害低減構造。
A structure liquefaction damage reducing structure for reducing damage to the structure when the liquefied ground is liquefied for a structure constructed on the liquefied ground,
In the liquefied ground below the structure, a horizontal drain that horizontally traverses the lower part of the structure is provided, and in the liquefied ground around the structure, a vertical drain whose upper end communicates with the ground surface is provided. By connecting both ends of the horizontal drain to the vertical drain, excess pore water generated in the liquefied ground when the liquefied ground below the structure is liquefied is removed from the horizontal drain and the horizontal drain. Ri Na a drainable drainage zones to the surface portion formed in liquefaction of soil beneath the structure through the vertical drain,
The horizontal drain permeability coefficient k 2 , horizontal drain placement pitch width B, horizontal drain placement pitch depth D, and horizontal drain cross-sectional area A wH depend on the required drainage volume q w1 from the drainage zone and the horizontal drain. Assuming that the possible amount of drainage qw2 , it is determined to satisfy the following formula,
Figure 0005822200
Figure 0005822200
Permeability coefficient of vertical drain k 2 (= permeability coefficient of horizontal drain) and vertical drain cross-sectional area A wV (total number of installations) are required drainage amount ΔV w due to ground subsidence amount D s after liquefaction , drainage zone When the required amount of drainage qw1 from the water and the settlement time Δt are determined, the following equation is satisfied.
Figure 0005822200
Figure 0005822200
Figure 0005822200
Structure for reducing liquefaction damage of structures.
請求項1記載の構造物の液状化被害低減構造において、
前記鉛直ドレーンに代えて、上部が地表部に通じる溝状の鉛直トレンチを設けて、該鉛直トレンチに対して前記水平ドレーンの両端部を接続してなることを特徴とする構造物の液状化被害低減構造。
In the structure for reducing liquefaction damage of the structure according to claim 1,
In place of the vertical drain, a groove-like vertical trench whose upper part leads to the ground surface is provided, and both ends of the horizontal drain are connected to the vertical trench, and the liquefaction damage of the structure Reduction structure.
JP2012018489A 2012-01-31 2012-01-31 Structure for reducing liquefaction damage of structures Active JP5822200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012018489A JP5822200B2 (en) 2012-01-31 2012-01-31 Structure for reducing liquefaction damage of structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012018489A JP5822200B2 (en) 2012-01-31 2012-01-31 Structure for reducing liquefaction damage of structures

Publications (2)

Publication Number Publication Date
JP2013155557A JP2013155557A (en) 2013-08-15
JP5822200B2 true JP5822200B2 (en) 2015-11-24

Family

ID=49051025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012018489A Active JP5822200B2 (en) 2012-01-31 2012-01-31 Structure for reducing liquefaction damage of structures

Country Status (1)

Country Link
JP (1) JP5822200B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471183B2 (en) 2020-09-11 2024-04-19 株式会社竹中工務店 Water collection structure and construction method of water collection structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107916662B (en) * 2017-11-28 2019-09-10 武汉大学 Soft foundation discharge fixing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776448B2 (en) * 1990-01-19 1995-08-16 裕滋 内田 Vertical drain method
JP2003119768A (en) * 2001-10-09 2003-04-23 Taisei Corp Liquefaction prevention construction and liquefaction prevention method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471183B2 (en) 2020-09-11 2024-04-19 株式会社竹中工務店 Water collection structure and construction method of water collection structure

Also Published As

Publication number Publication date
JP2013155557A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
CN103510528A (en) Blind trench water discharging structure used for underground structure up-floating prevention
US9869070B2 (en) Soil reinforcement system including angled soil reinforcement elements to resist seismic shear forces and methods of making same
JP5822200B2 (en) Structure for reducing liquefaction damage of structures
CN113107022A (en) Construction method for reducing pile group soil squeezing effect
JP5382900B2 (en) How to prevent underground structures from floating due to liquefaction
JP6357323B2 (en) Liquefaction countermeasure structure and its construction method
JP2014012981A (en) Liquefaction countermeasure structure
JP5962580B2 (en) Steel sheet pile closing structure and its construction method
JP5822201B2 (en) Basic structure of the structure
JP6132144B2 (en) Structure liquefaction damage reducing structure and liquefaction damage reducing method
JP2013019248A (en) Piled raft method
JP5877482B2 (en) Structure for reducing liquefaction damage of structures
JP4958064B2 (en) Seismic reinforcement structure of quay
JP6086214B2 (en) Structure for reducing liquefaction damage of structures
JP2013155559A (en) Liquefaction damage reducing structure for construction
CN115809496A (en) Pile plate roadbed design method and device adjacent to existing railway bridge well digging foundation
JP6206528B2 (en) Steel sheet pile closing structure and its construction method
Jeong et al. Numerical analysis of passive pile groups in offshore soft deposits
KR101744378B1 (en) Method for Constructing Retaining Wall
JP2015010367A (en) Liquefaction countermeasure structure of construction, and construction method of liquefaction countermeasure structure of construction
CN204626633U (en) A kind of basement shrinkage joint joint structure and apply the basement of this structure
JP6681115B2 (en) Method for designing the structure for countermeasures against liquefaction of ground
JP4183137B2 (en) Seismic structure
Tan et al. Methodology for design of piled raft for 5-story buildings on very soft clay
CN107313432B (en) Upper soft and lower hard stratum foundation pit supporting structure and construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R150 Certificate of patent or registration of utility model

Ref document number: 5822200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150