JP5821722B2 - Positive electrode material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery - Google Patents

Positive electrode material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery Download PDF

Info

Publication number
JP5821722B2
JP5821722B2 JP2012058746A JP2012058746A JP5821722B2 JP 5821722 B2 JP5821722 B2 JP 5821722B2 JP 2012058746 A JP2012058746 A JP 2012058746A JP 2012058746 A JP2012058746 A JP 2012058746A JP 5821722 B2 JP5821722 B2 JP 5821722B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium ion
ion battery
aggregate
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012058746A
Other languages
Japanese (ja)
Other versions
JP2013191516A (en
Inventor
良貴 山本
良貴 山本
高郎 北川
高郎 北川
晃範 山崎
晃範 山崎
紘史 休石
紘史 休石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2012058746A priority Critical patent/JP5821722B2/en
Publication of JP2013191516A publication Critical patent/JP2013191516A/en
Application granted granted Critical
Publication of JP5821722B2 publication Critical patent/JP5821722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン電池用正極材料及びリチウムイオン電池用正極並びにリチウムイオン電池に関し、特に、高速充放電特性に優れた車載用バッテリー等に用いて好適なリチウムイオン電池用正極材料、及び、このリチウムイオン電池用正極材料を含有したリチウムイオン電池用正極、並びに、このリチウムイオン電池用正極を備えたリチウムイオン電池に関するものである。   The present invention relates to a positive electrode material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery, and in particular, a positive electrode material for a lithium ion battery suitable for use in an in-vehicle battery excellent in high-speed charge / discharge characteristics, and the like The present invention relates to a positive electrode for a lithium ion battery containing a positive electrode material for a lithium ion battery, and a lithium ion battery including the positive electrode for a lithium ion battery.

近年、小型化、軽量化、高容量化が期待される電池として、リチウムイオン電池等の非水電解液系の二次電池が提案され、実用に供されている。
中でも、リチウムイオン電池は、従来の鉛電池、ニッケルカドミウム電池、ニッケル水素電池等の二次電池と比べて、軽量かつ小型であるとともに、高エネルギーを有するという特徴があり、実用化が進められている。
このリチウムイオン電池の正極材料に使用される電極活物質としては、LiCoOをはじめとして、LiNiOやLiMnO、あるいはこれらの複合酸化物等のリチウム遷移金属酸化物が実用化され、これらを使用した大容量のリチウムイオン電池が携帯用情報端末等のモバイル機器を中心に搭載され、機器の小型化、軽量化に大きな貢献をしている。
一方、リチウムイオン電池の新たな用途として、電力備蓄用の大型電池やEV等の車載用電池の用途への検討が進められており、今後の展開が期待されている。
しかしながら、リチウム遷移金属酸化物等の電極活物質は、充電状態で加熱すると200〜300℃の温度にて酸素放出を開始するという特性がある。リチウムイオン電池では、電解液として可燃性の有機電解液を用いていることから、酸素放出が始まると、有機電解液が発火したり、あるいは爆発する等の危険があり、リチウム遷移金属酸化物を大型電池や車載用電池へ適用するのは、安全性確保の点から容易ではない。
In recent years, non-aqueous electrolyte secondary batteries such as lithium ion batteries have been proposed and put into practical use as batteries that are expected to be reduced in size, weight, and capacity.
Among them, lithium ion batteries are characterized by being lighter and smaller and having higher energy than secondary batteries such as conventional lead batteries, nickel cadmium batteries, and nickel metal hydride batteries. Yes.
Lithium transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , or composite oxides thereof have been put to practical use as electrode active materials used for the positive electrode material of this lithium ion battery, and these are used. The large-capacity lithium-ion battery, which is mounted mainly on mobile devices such as portable information terminals, contributes greatly to reducing the size and weight of the devices.
On the other hand, as new applications of lithium ion batteries, studies are being made on applications for large-scale batteries for power storage and in-vehicle batteries such as EVs, and future development is expected.
However, electrode active materials such as lithium transition metal oxides have a characteristic that oxygen release starts at a temperature of 200 to 300 ° C. when heated in a charged state. Lithium ion batteries use a flammable organic electrolyte as the electrolyte, so when oxygen release begins, there is a risk of the organic electrolyte igniting or exploding. It is not easy to apply to large batteries or in-vehicle batteries from the viewpoint of ensuring safety.

これに対して、350℃でも酸素の放出が生じない安全性に優れた電極活物質として、LiFePO、LiMnPOに代表されるオリビン構造を有する電極活物質が知られている。
これらのオリビン構造を有する電極活物質は、安全性の他、十分な理論容量や高速充放電性等の期待される特性を有するが、リチウム遷移金属酸化物と異なり、電子伝導性が悪く、また、リチウムイオンの挿入脱離速度が遅く、高い電池容量が得られ難いという問題点がある。
そこで、このような問題点を解決するために、電極活物質を有機物の加熱分解により生成する炭素質被膜で被覆し、電子伝導性を向上させる技術(特許文献1)が提案されている。また、電極活物質を微粒子化し、挿入脱離速度が遅くとも高い電池容量を得る技術が提案されている(特許文献2)。
On the other hand, electrode active materials having an olivine structure typified by LiFePO 4 and LiMnPO 4 are known as electrode active materials excellent in safety that do not release oxygen even at 350 ° C.
Electrode active materials having these olivine structures have expected properties such as sufficient theoretical capacity and high-speed charge / discharge characteristics in addition to safety, but unlike lithium transition metal oxides, they have poor electronic conductivity. The lithium ion insertion / desorption rate is slow, and it is difficult to obtain a high battery capacity.
Therefore, in order to solve such problems, a technique (Patent Document 1) has been proposed in which an electrode active material is covered with a carbonaceous film generated by thermal decomposition of an organic substance to improve electron conductivity. In addition, a technique has been proposed in which the electrode active material is made into fine particles and a high battery capacity is obtained even when the insertion / desorption rate is slow (Patent Document 2).

ところで、電極活物質を微粒子化した場合、この電極活物質微粒子の表面積が増大することから、この電極活物質微粒子を集電体上に接着して電極活物質層を形成する場合に多量の結着剤が必要となり、電極活物質層中の電極活物質量が減少したり、あるいは微粒子間に回りこんだ結着剤により電子伝導性が阻害されてしまうという問題点があり、その結果、電池容量が低下してしまうという問題点があった。また、これらの欠点を補うために結着剤量を減らした場合、成形された電極活物質層にクラックが生じたり、電極活物質層自体が剥離する等の問題点があった。
そこで、これらの問題を解決するために、微粒子化した電極活物質を凝集体とすることにより比表面積を減少させ、結着剤量の低減を図る技術が提案されている(特許文献3)。
By the way, when the electrode active material is made into fine particles, the surface area of the electrode active material fine particles increases. Therefore, when the electrode active material fine particles are bonded onto the current collector to form an electrode active material layer, a large amount of particles are formed. As a result, there is a problem that the amount of electrode active material in the electrode active material layer is reduced or the electron conductivity is hindered by the binder that wraps around between the fine particles. There was a problem that the capacity was reduced. In addition, when the amount of the binder is reduced in order to compensate for these drawbacks, there are problems such as cracking in the molded electrode active material layer and peeling off of the electrode active material layer itself.
In order to solve these problems, a technique has been proposed in which the specific surface area is reduced by using an electrode active material that has been atomized as an aggregate to reduce the amount of binder (Patent Document 3).

一般に、電極活物質の1次粒子を凝集させた凝集体の体積密度を向上させる方法としては、1次粒子の粒度分布を広くする方法があるが、この場合、低電子伝導性やリチウムイオンの低挿入脱離速度を解決する目的で1次粒子を微粒子化すると、粒度分布が狭くなり、結果として、凝集体の体積密度が低下するという問題点がある。
リチウムイオン電池の正極の高容量化や高速充放電特性の改善を考えた場合、電極活物質の1次粒子を数百nm以下にまで微細化・高比表面積化することで、電極活物質粒子内を移動する電子やリチウムイオンの移動距離を十分短くし、かつリチウムイオンの挿入脱離反応を生じさせる電極活物質の表面を増大させる必要がある。ところが、この様にした場合、凝集体の体積密度の低下が顕著になってしまい、その結果、電極活物質の1次粒子を覆っている炭素質被膜が不均一になり、電池容量の低下を招く。そこで、電極活物質の1次粒子を微細化しつつ、この1次粒子を凝集した凝集体の体積密度を向上させる更なる改良が求められていた。
In general, as a method for improving the volume density of the aggregate obtained by aggregating the primary particles of the electrode active material, there is a method of widening the particle size distribution of the primary particles. In this case, low electron conductivity or lithium ion If the primary particles are made fine for the purpose of solving the low insertion / release rate, the particle size distribution becomes narrow, resulting in a problem that the volume density of the aggregates decreases.
When considering increasing the capacity of the positive electrode of a lithium ion battery and improving the high-speed charge / discharge characteristics, the electrode active material particles can be reduced by reducing the primary particles of the electrode active material to several hundred nm or less and increasing the specific surface area. It is necessary to sufficiently shorten the distance of movement of electrons and lithium ions that move inside, and to increase the surface of the electrode active material that causes the insertion / extraction reaction of lithium ions. However, in this case, the volume density of the aggregate is significantly reduced, and as a result, the carbonaceous film covering the primary particles of the electrode active material becomes non-uniform, resulting in a decrease in battery capacity. Invite. Accordingly, there has been a demand for further improvement to increase the volume density of the aggregate obtained by agglomerating the primary particles while miniaturizing the primary particles of the electrode active material.

そこで、電極活物質の1次粒子の粒径に着目した凝集体からなる正極材料として、LiFePO粒子の凝集状態を変えて細孔の少ない正極材料とすることにより、電極中の電極活物質の密度を高くした技術が提案されている(特許文献4)。
この技術によれば、1次焼成で得られた塊状のLiFePOを5μm以下に粉砕することで、1次粒子により形成された空間のないLiFePO粒子を得、このLiFePO粒子に樹脂等の炭素前駆体を混合し、造粒して凝集体とし、この凝集体を2次焼成することにより、LiFePO粒子と炭素とを複合した凝集体からなる正極材料を得ており、この正極材料を用いることで、電極中への正極材料の高充填を果たしている。
Therefore, by changing the aggregation state of the LiFePO 4 particles as a positive electrode material having few pores as a positive electrode material made of an aggregate focusing on the particle size of the primary particles of the electrode active material, the electrode active material in the electrode A technique for increasing the density has been proposed (Patent Document 4).
According to this technique, by grinding the LiFePO 4 lumpy obtained in the primary firing 5μm or less, to obtain a LiFePO 4 particles with no space formed by the primary particles, such as a resin in this LiFePO 4 particles A carbon precursor is mixed, granulated to form an aggregate, and the aggregate is subjected to secondary firing to obtain a positive electrode material composed of an aggregate composed of LiFePO 4 particles and carbon. By using it, high filling of the positive electrode material into the electrode is achieved.

また、数百nmの大きさの微細な電極活物質の1次粒子を凝集させた正極材料としては、1次粒径が50nm以上かつ500nm以下のオリビン構造を有するリチウムリン酸化合物からなる凝集体の正極材料が提案されている(特許文献5)。
この凝集体は、予め表面に炭素質被膜が形成された電極活物質の1次粒子、あるいは電極活物質の1次粒子及び炭素原材料を、溶媒中に分散させ、得られたスラリーを高温雰囲気下に噴霧することにより得られる。
この技術によれば、凝集体を構成する電極活物質の1次粒子間の細孔径を、この1次粒子の平均粒子径の0.1倍以上かつ0.9倍以下に制御することにより、結着剤が1次粒子間へ侵入するのを防止して電子伝導性の低下を抑制し、よって、高電池容量と負荷特性の両立を実現している。
Further, as a positive electrode material in which primary particles of fine electrode active materials having a size of several hundred nm are aggregated, an aggregate composed of a lithium phosphate compound having an olivine structure with a primary particle size of 50 nm or more and 500 nm or less A positive electrode material has been proposed (Patent Document 5).
This agglomerate is obtained by dispersing primary particles of an electrode active material having a carbonaceous film formed on the surface in advance, or primary particles of an electrode active material and a carbon raw material in a solvent, and dispersing the resulting slurry in a high-temperature atmosphere. It is obtained by spraying.
According to this technique, by controlling the pore diameter between primary particles of the electrode active material constituting the aggregate to 0.1 times or more and 0.9 times or less the average particle diameter of the primary particles, The binder is prevented from penetrating between the primary particles to suppress a decrease in electronic conductivity, thereby realizing both high battery capacity and load characteristics.

さらに、炭素質被膜が形成され粒子径が100nm以上かつ500nm以下の多孔質リチウム酸化物ナノ粒子と導電性繊維からなる多孔質リチウム酸化物マイクロ粒子を正極材料とした技術が提案されている(特許文献6)。
この多孔質リチウム酸化物ナノ粒子は、電極活物質前駆体を造粒・焼成することにより、炭素を介した10〜100nmのナノ結晶の多孔質体とし、さらに、このナノ結晶の多孔質体と炭素材等の導電剤とを造粒することにより、大きな比表面積と高導電性を実現した多孔質リチウム酸化物マイクロ粒子を得ている。この多孔質リチウム酸化物マイクロ粒子は高出力用途に適応している。
この技術によれば、微細化された電極活物質の1次粒子の比表面積を保ちつつ凝集体化することが可能である。
Furthermore, a technology has been proposed in which a porous lithium oxide microparticle comprising a porous lithium oxide nanoparticle having a carbonaceous film formed and a particle diameter of 100 nm to 500 nm and conductive fibers is used as a positive electrode material (patent) Reference 6).
The porous lithium oxide nanoparticles are formed into a 10-100 nm nanocrystalline porous body via carbon by granulating and firing an electrode active material precursor. By granulating a conductive agent such as a carbon material, porous lithium oxide microparticles having a large specific surface area and high conductivity are obtained. This porous lithium oxide microparticle is suitable for high power applications.
According to this technique, it is possible to aggregate while maintaining the specific surface area of the primary particles of the refined electrode active material.

特開2001−15111号公報JP 2001-15111 A 特許第4190912号公報Japanese Patent No. 4190912 特許第3047827号公報Japanese Patent No. 3047827 特開2006−32241号公報JP 2006-32241 A 特開2009−152188号公報JP 2009-152188 A 特開2009−158489号公報JP 2009-158489 A

ところで、特許文献4記載の技術では、1次焼成における焼成温度を700〜900℃としているので、電極活物質粒子の粒子成長を抑制することができず、1次焼成後の電極活物質にはμmの大きさの電極活物質の1次粒子が含まれることとなる。このμmの大きさの1次粒子は、単に大きいだけではなく中実な粒子であることが多く、したがって、凝集体に占める電極活物質の1次粒子の体積割合が大きくなり、見かけ上凝集体の体積密度が高くなる。このようなμmの大きさの電極活物質の1次粒子をリチウムイオン電池の正極材料に用いた場合、容量が低く、高速充放電特性に劣ったものとなり、電極活物質の1次粒子を微細化しつつ炭素質被膜を均一化することができないという問題点があった。   By the way, in the technique of patent document 4, since the calcination temperature in primary baking is 700-900 degreeC, the particle growth of an electrode active material particle cannot be suppressed, but the electrode active material after primary baking is used. Primary particles of the electrode active material having a size of μm are included. The primary particles having a size of μm are not only large, but are often solid particles. Therefore, the volume ratio of the primary particles of the electrode active material in the aggregate is increased, and the aggregate is apparently formed. The volume density of becomes higher. When such primary particles of the electrode active material having a size of μm are used as the positive electrode material of the lithium ion battery, the capacity is low and the high-speed charge / discharge characteristics are inferior, and the primary particles of the electrode active material are fine. However, there was a problem that the carbonaceous film could not be made uniform.

特許文献5記載の技術では、電極活物質の1次粒子を被覆する炭素質被膜が不均一になることから、電極活物質の電子伝導性が劣る虞があり、さらに、予め表面に炭素質被膜が形成されているので、1次粒子間の結合が弱くなるという問題点があった。また、各粒子の接触が点接触になり易いので、電子伝導性に劣る虞があるという問題点があった。
このように、電極活物質の1次粒子間が頸部状に結合されず、点接触になり易いことから、結着剤が電極活物質の1次粒子間に浸透し易くなり、したがって、電子伝導性の改善が不十分なものになっている。
In the technique described in Patent Document 5, since the carbonaceous film covering the primary particles of the electrode active material becomes non-uniform, there is a possibility that the electron conductivity of the electrode active material is inferior. Therefore, there is a problem that the bond between the primary particles becomes weak. Moreover, since the contact of each particle is likely to be a point contact, there is a problem that the electron conductivity may be inferior.
In this way, the primary particles of the electrode active material are not bonded in a cervical shape and are likely to be in point contact, so that the binder easily permeates between the primary particles of the electrode active material, and thus the electrons The conductivity improvement is insufficient.

特許文献6記載の技術では、体積密度の低い多孔質リチウム酸化物ナノ粒子を用いているので、多孔質リチウム酸化物マイクロ粒子の体積密度が低くなることは避けられず、さらに、表面を覆っている炭素質被膜の膜厚が不均一になってしまう虞があるという問題点があった。
また、多孔質リチウム酸化物マイクロ粒子は、単に炭素材料が加えられているのみであるから、結果として、多孔質リチウム酸化物ナノ粒子の表面に炭素粒子が単に吸着しているのみとなる。したがって、電極活物質の1次粒子の表面に形成された炭素質被膜の膜厚が均一にならないという問題点があった。この炭素質被膜の膜厚の不均一は、電子伝導性及びリチウムイオンの挿入脱離反応を十分に得ることができず、電池容量が低下する一因となる。
このように、特許文献6記載の技術は、微細化された電極活物質の1次粒子を高比表面積に保ちつつ2次粒子化する技術としては有効であるが、炭素質被膜の膜厚を均一化することができず、電子伝導性が不十分なものとなり、電池容量が低下する一因となる。
In the technique described in Patent Document 6, since the porous lithium oxide nanoparticles having a low volume density are used, it is inevitable that the volume density of the porous lithium oxide microparticles is reduced. There is a problem that the carbonaceous film that is present may be non-uniform in thickness.
Moreover, since the carbon material is only added to the porous lithium oxide microparticles, the carbon particles are simply adsorbed on the surface of the porous lithium oxide nanoparticles. Therefore, there has been a problem that the film thickness of the carbonaceous film formed on the surface of the primary particles of the electrode active material is not uniform. This non-uniform film thickness of the carbonaceous film cannot sufficiently obtain the electron conductivity and the lithium ion insertion / extraction reaction, which causes a decrease in battery capacity.
As described above, the technique described in Patent Document 6 is effective as a technique for forming secondary particles while keeping the primary particles of the refined electrode active material at a high specific surface area. It cannot be made uniform, the electron conductivity becomes insufficient, and this contributes to a decrease in battery capacity.

本発明は、上記の課題を解決するためになされたものであって、電極活物質の電子伝導性を向上させることにより、電池容量を向上させることができ、しかも、高速充放電特性に優れたリチウムイオン電池用正極材料及びリチウムイオン電池用正極並びにリチウムイオン電池を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and by improving the electron conductivity of the electrode active material, the battery capacity can be improved and the high-speed charge / discharge characteristics are excellent. It aims at providing the positive electrode material for lithium ion batteries, the positive electrode for lithium ion batteries, and a lithium ion battery.

本発明者等は、上記課題を解決するために鋭意研究を行なった結果、炭素質被膜にて被覆されている電極活物質の1次粒子と、この電極活物質の1次粒子を凝集した2次粒子を炭素質被膜にて被覆した炭素質被覆2次粒子とを混合して混合物とし、この混合物をさらに凝集させて凝集体とし、さらに、この凝集体が、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下の体積密度を有する多孔性の凝集体を含有することにより、炭素質被膜中における電子伝導性及びリチウムイオンの挿入脱離反応を十分に得ることができ、このリチウムイオン電池用正極材料をリチウムイオン電池の正極に用いたときの正極の内部抵抗が低下し、その結果、電池容量が向上することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have aggregated primary particles of the electrode active material covered with the carbonaceous film and primary particles of the electrode active material 2 The carbonaceous coated secondary particles in which the secondary particles are coated with a carbonaceous coating are mixed to form a mixture. The mixture is further aggregated to form an aggregate. The aggregate further solidifies the aggregate. By containing a porous aggregate having a volume density of 50% by volume or more and 80% by volume or less of the volume density of the case, sufficient electron conductivity and insertion / extraction reaction of lithium ions in the carbonaceous film can be obtained. When the positive electrode material for a lithium ion battery is used for the positive electrode of a lithium ion battery, the internal resistance of the positive electrode is lowered, and as a result, the battery capacity is improved and the present invention has been completed. .

すなわち、本発明のリチウムイオン電池用正極材料は、電極活物質の1次粒子と前記電極活物質の1次粒子が凝集した2次粒子との混合物がさらに凝集した凝集体であり、前記1次粒子及び前記2次粒子は膜厚が均一な炭素質被膜にて被覆されており、前記凝集体は、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下の体積密度を有する多孔性の凝集体を含有してなり、前記電極活物質は、オリビン構造を有するリン酸塩であり、前記多孔性の凝集体において、前記1次粒子の間、前記2次粒子の間、前記1次粒子と前記2次粒子との間は、それぞれ前記炭素質被膜の一部が頸部状化した頸部状結合部により結合されるとともに、これらの間の隙間はリチウムイオンの拡散浸透が可能な細孔が形成されており、前記1次粒子の平均粒子径は0.03μm以上かつ0.5μm以下であることを特徴とする。 That is, the positive electrode material for a lithium ion battery of the present invention is an aggregate obtained by further aggregating a mixture of primary particles of an electrode active material and secondary particles obtained by agglomerating the primary particles of the electrode active material. The particles and the secondary particles are coated with a carbonaceous film having a uniform film thickness , and the aggregate is 50% by volume or more and 80% by volume or less of the volume density when the aggregate is solid. and also contains a porous agglomerates having a volume density, the electrode active material, Ri phosphate der having an olivine structure, in the porous agglomerate during the primary particles, the secondary Between the particles, the primary particles and the secondary particles are bonded to each other by a cervical joint portion in which a part of the carbonaceous coating is cervical, and a gap between them is lithium. A pore that allows diffusion and penetration of ions is formed. The average particle diameter of primary particles is characterized by at and 0.5μm or less than 0.03 .mu.m.

記凝集体は、表面が炭素質被膜にて被覆された前記1次粒子が凝集してなる中実の2次粒子を含有してなることが好ましい。
水銀圧入法により測定した累積細孔径分布の50%における数平均細孔径(D50)は10nm以上かつ300nm以下であることが好ましい。
前記凝集体の外周部における前記炭素質被膜の平均膜厚A及び該凝集体の中心部における前記炭素質被膜の平均膜厚Bは、下記式(1)
0.7≦B/A≦1.3 ……(1)
を満たすことが好ましい。
Before SL aggregates surface is preferably comprising the secondary particles of solid in which formed by agglomerating said primary particles coated by carbonaceous coating.
The number average pore diameter (D50) at 50% of the cumulative pore diameter distribution measured by the mercury intrusion method is preferably 10 nm or more and 300 nm or less.
The average film thickness A of the carbonaceous film at the outer periphery of the aggregate and the average film thickness B of the carbonaceous film at the center of the aggregate are expressed by the following formula (1).
0.7 ≦ B / A ≦ 1.3 (1)
It is preferable to satisfy.

本発明のリチウムイオン電池用正極は、本発明のリチウムイオン電池用正極材料を正極層に含有してなることを特徴とする。   The positive electrode for a lithium ion battery of the present invention is characterized in that the positive electrode material for a lithium ion battery of the present invention is contained in a positive electrode layer.

本発明のリチウムイオン電池は、本発明のリチウムイオン電池用正極を備えてなることを特徴とする。   The lithium ion battery of the present invention comprises the positive electrode for a lithium ion battery of the present invention.

本発明のリチウムイオン電池用正極材料によれば、電極活物質の1次粒子と、この電極活物質の1次粒子が凝集した2次粒子との混合物を、さらに凝集して凝集体とし、これら1次粒子及び2次粒子を炭素質被膜にて被覆したので、表面積を大きくすることでリチウムイオンの挿入脱離反応を十分に得ることができ、かつ電極活物質の1次粒子の内部を拡散するリチウムイオンの移動距離、及びこの1次粒子の内部を移動する電子の移動距離を短縮することができる。   According to the positive electrode material for a lithium ion battery of the present invention, a mixture of primary particles of the electrode active material and secondary particles obtained by aggregating the primary particles of the electrode active material is further aggregated to form aggregates. Since the primary particles and the secondary particles are coated with a carbonaceous film, the insertion / release reaction of lithium ions can be sufficiently obtained by increasing the surface area, and the inside of the primary particles of the electrode active material can be diffused. The movement distance of lithium ions and the movement distance of electrons moving inside the primary particles can be shortened.

また、この凝集体を、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下の体積密度を有する多孔性の凝集体を含有することとしたので、炭素質被膜を形成する際の有機物の加熱分解時に発生する有機物分解ガスが凝集体内から逃げ難くなり、電極活物質の1次粒子の表面近傍における有機物分解ガスの濃度を高めることができ、その結果、電極活物質の1次粒子の表面を覆う炭素質被膜の膜厚を均一にすることができる。   Further, since the aggregate contains a porous aggregate having a volume density of 50 volume% or more and 80 volume% or less of the volume density when the aggregate is solid, the carbonaceous coating film The organic substance decomposition gas generated during the thermal decomposition of the organic substance during the formation of the particles becomes difficult to escape from the aggregate, and the concentration of the organic substance decomposition gas in the vicinity of the surface of the primary particles of the electrode active material can be increased. The film thickness of the carbonaceous film covering the surface of the primary particles of the substance can be made uniform.

本発明のリチウムイオン電池用正極によれば、本発明のリチウムイオン電池用正極材料を正極層に含有したので、正極の内部抵抗を低下させることができ、電池容量を向上させることができる。   According to the positive electrode for a lithium ion battery of the present invention, since the positive electrode material for a lithium ion battery of the present invention is contained in the positive electrode layer, the internal resistance of the positive electrode can be reduced and the battery capacity can be improved.

本発明のリチウムイオン電池によれば、本発明のリチウムイオン電池用正極を備えたので、正極の内部抵抗を低下させることができ、電池容量を向上させることができ、しかも、高速充放電特性に優れたものとなる。   According to the lithium ion battery of the present invention, since the positive electrode for the lithium ion battery of the present invention is provided, the internal resistance of the positive electrode can be reduced, the battery capacity can be improved, and high-speed charge / discharge characteristics can be achieved. It will be excellent.

本発明の一実施形態のリチウムイオン電池用正極材料に含まれる多孔性の凝集体を示す模式図である。It is a schematic diagram which shows the porous aggregate contained in the positive electrode material for lithium ion batteries of one Embodiment of this invention. 本発明の実施例1の凝集体を示す透過型電子顕微鏡(TEM)像である。It is a transmission electron microscope (TEM) image which shows the aggregate of Example 1 of this invention. 本発明の実施例1、3、5、8及び比較例1それぞれの充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic of Example 1, 3, 5, 8 and Comparative Example 1 of this invention. 本発明の実施例5、6、7及び比較例1、3それぞれの充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic of Example 5, 6, 7 of this invention, and Comparative Examples 1 and 3, respectively.

本発明のリチウムイオン電池用正極材料及びリチウムイオン電池用正極並びにリチウムイオン電池を実施するための形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
A positive electrode material for a lithium ion battery, a positive electrode for a lithium ion battery, and a form for carrying out the lithium ion battery of the present invention will be described.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

[リチウムイオン電池用正極材料]
本実施形態のリチウムイオン電池用正極材料は、電極活物質の1次粒子と前記電極活物質の1次粒子が凝集した2次粒子との混合物がさらに凝集した凝集体であり、前記1次粒子及び前記2次粒子は炭素質被膜にて被覆されており、前記凝集体は、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下の体積密度を有する多孔性の凝集体を含有した正極材料である。
[Positive electrode material for lithium ion batteries]
The positive electrode material for a lithium ion battery according to this embodiment is an aggregate obtained by further aggregating a mixture of primary particles of an electrode active material and secondary particles obtained by agglomerating the primary particles of the electrode active material. And the secondary particles are coated with a carbonaceous coating, and the aggregate has a porosity of 50% by volume or more and 80% by volume or less of the volume density when the aggregate is solid. It is a positive electrode material containing the aggregate.

図1は、本実施形態のリチウムイオン電池用正極材料に含まれる多孔性の凝集体を示す模式図であり、このリチウムイオン電池用正極材料1は、電極活物質の1次粒子2と、この電極活物質の1次粒子2が凝集した2次粒子3との混合物が、さらに凝集した凝集体であり、1次粒子2及び2次粒子3は膜厚が均一な炭素質被膜4にて被覆されている。
これら1次粒子2の間、2次粒子3の間、1次粒子2と2次粒子3との間は、それぞれ炭素質被膜の一部が頸部状化した頸部状結合部5により結合されるとともに、これらの間の隙間は細孔6となっている。
FIG. 1 is a schematic view showing a porous aggregate contained in a positive electrode material for a lithium ion battery of the present embodiment. The positive electrode material 1 for a lithium ion battery includes primary particles 2 of an electrode active material, and The mixture with the secondary particles 3 in which the primary particles 2 of the electrode active material are agglomerated is a further agglomerated aggregate, and the primary particles 2 and the secondary particles 3 are covered with a carbonaceous film 4 having a uniform film thickness. Has been.
Between these primary particles 2, between the secondary particles 3, and between the primary particles 2 and the secondary particles 3 are bonded by a cervical connecting portion 5 in which a part of the carbonaceous coating is cervical. At the same time, the gaps between these are pores 6.

そして、これら1次粒子2の間、2次粒子3の間、1次粒子2と2次粒子3との間を頸部状結合部5により結合することで、これらの粒子同士の接触部分が断面積の小さい頸部状となって強固に接続された状態の多孔性の凝集体となっている。
これにより、これらの粒子間にリチウムイオンの拡散浸透が可能な細孔6が形成され、かつ炭素質被膜4が電子伝導を阻害しない程度の密度を有するので、頸部状結合部5があっても、リチウムイオンは電極活物質の表面に到達することができ、リチウムイオンの挿入脱離反応を効率的に行うことができる。また、各粒子間が頸部状結合部5により結合されているので、電子伝導が容易である。よって、電池容量を向上させることができる。また、各粒子間を頸部状結合部5により結合することにより、結着剤浸入による粒子間への影響を防止し、電子電導性を保つことができる。
And, between these primary particles 2, between secondary particles 3, and between primary particles 2 and secondary particles 3 are joined by cervical joint portion 5, so that the contact portion between these particles is It is a porous agglomerate in a cervical shape with a small cross-sectional area and firmly connected.
As a result, pores 6 capable of diffusing and penetrating lithium ions are formed between these particles, and the carbonaceous coating 4 has a density that does not hinder electronic conduction. In addition, lithium ions can reach the surface of the electrode active material, and lithium ion insertion / release reaction can be efficiently performed. Moreover, since each particle | grain is couple | bonded by the neck-shaped coupling | bond part 5, electronic conduction is easy. Therefore, battery capacity can be improved. Further, by connecting the respective particles by the neck-like connecting portion 5, it is possible to prevent the influence between the particles due to the penetration of the binder and to maintain the electronic conductivity.

この多孔性の凝集体の体積密度は、水銀ポロシメーターを用いて測定することができ、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下が好ましく、より好ましくは55体積%以上かつ75体積%以下である。ここで、中実な凝集体とは、空隙が全く存在しない凝集体のことであり、この中実な凝集体の密度は電極活物質の理論密度に等しいものとする。
この多孔性の凝集体の体積密度を、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下とした理由は、この範囲が炭素質被膜を形成する際の有機物の加熱分解時に発生する有機物分解ガスが凝集体内から逃げ難くなる範囲であり、この多孔性の凝集体の体積密度を、中実の体積密度の50体積%以上かつ80体積%以下としたことにより、電極活物質の1次粒子2の表面近傍における有機物分解ガスの濃度を高めることができ、電極活物質の1次粒子の表面を覆う炭素質被膜の膜厚を均一にすることができる。
The volume density of the porous aggregate can be measured using a mercury porosimeter, and is preferably 50% by volume or more and 80% by volume or less of the volume density when the aggregate is solid, more preferably It is 55 volume% or more and 75 volume% or less. Here, the solid aggregate is an aggregate having no voids at all, and the density of the solid aggregate is equal to the theoretical density of the electrode active material.
The reason why the volume density of the porous aggregate is 50% by volume or more and 80% by volume or less of the volume density when the aggregate is solid is that this range is an organic substance when forming a carbonaceous film. The organic substance decomposition gas generated during the thermal decomposition of is difficult to escape from the aggregate, and the volume density of the porous aggregate is set to 50% by volume or more and 80% by volume or less of the solid volume density. The concentration of the organic substance decomposition gas in the vicinity of the surface of the primary particle 2 of the electrode active material can be increased, and the film thickness of the carbonaceous film covering the surface of the primary particle of the electrode active material can be made uniform.

本実施形態の凝集体は、上記の多孔性の凝集体の他、表面が炭素質被膜にて被覆された1次粒子が凝集してなる中実の2次粒子を含有してもよい。
このように、中実の2次粒子を含有することにより、凝集体全体の体積密度を向上させることができ、炭素質被膜を均一化することができる。
中実の2次粒子を構成する1次粒子間には空隙が存在するが、この空隙とは、粒子間の空気以外のものが含まれない空間のことであり、電極活物質の1次粒子間の炭素質被膜の細孔6は含めないものとする。
The aggregate of this embodiment may contain solid secondary particles formed by agglomerating primary particles whose surfaces are coated with a carbonaceous film, in addition to the porous aggregate described above.
Thus, by containing solid secondary particles, the volume density of the whole aggregate can be improved, and the carbonaceous film can be made uniform.
There are voids between the primary particles constituting the solid secondary particles, and these voids are spaces that do not contain anything other than air between the particles, and are the primary particles of the electrode active material. The pores 6 of the carbonaceous film in between are not included.

本実施形態の凝集体、すなわち上記の多孔性の凝集体及び中実の2次粒子を含む凝集体全体の平均粒子径は、0.5μm以上かつ100μm以下が好ましく、より好ましくは1μm以上かつ20μm以下である。
ここで、凝集体の平均粒子径を上記の範囲とした理由は、平均粒子径が0.5μm未満では、凝集体が細かすぎるために舞い易くなり、電極塗工用ペーストを作製する際に取り扱いが困難になるからであり、一方、平均粒子径が100μmを超えると、電池用電極を作製した際に、乾燥後の電極の膜厚を超える大きさの凝集体が存在する可能性が高くなり、したがって、電極の膜厚の均一性を保持することができなくなるからである。
The average particle diameter of the aggregate of the present embodiment, that is, the aggregate including the porous aggregate and the solid secondary particles is preferably 0.5 μm or more and 100 μm or less, more preferably 1 μm or more and 20 μm. It is as follows.
Here, the reason why the average particle diameter of the aggregate is in the above range is that when the average particle diameter is less than 0.5 μm, the aggregate is too fine to be easily handled, and is handled when preparing an electrode coating paste. On the other hand, if the average particle diameter exceeds 100 μm, there is a high possibility that an aggregate having a size exceeding the thickness of the electrode after drying is present when a battery electrode is produced. Therefore, the uniformity of the electrode film thickness cannot be maintained.

本実施形態の凝集体は、水銀圧入法により測定した累積細孔径分布の50%における数平均細孔径(D50)(以下、単に「平均細孔径」と称する場合もある)が10nm以上かつ300nm以下であることが好ましい。
ここで、数平均細孔径(D50)が10nm未満では、電解液の浸透が阻害される虞があるので好ましくなく、また、300nmを超えると、凝集体の体積密度が低下するので好ましくない。
The aggregate of the present embodiment has a number average pore diameter (D50) (hereinafter sometimes referred to simply as “average pore diameter”) at 50% of the cumulative pore diameter distribution measured by the mercury intrusion method of 10 nm or more and 300 nm or less. It is preferable that
Here, if the number average pore diameter (D50) is less than 10 nm, it is not preferable because penetration of the electrolyte solution may be hindered, and if it exceeds 300 nm, the volume density of the aggregate is decreased, which is not preferable.

上記の凝集体は、正極形成時に溶媒、結着剤、導電助剤等と混合され、集電体上に塗布、乾燥後、プレスにより圧縮されるが、この圧縮の際に凝集体も圧力を受けて凝縮したり、歪みが生じたりする。ここで、凝集体の数平均細孔径(D50)が10nm以上かつ300nm以下であれば、凝集体の細孔内部に結着剤の浸入をある程度防止することができ、結着剤を集電体と電極材料との接着に効果的に用いることができ、電極の電極活物質層が剥離したり、クラックが入ったり等の不具合を防止することができる。また、凝集体の細孔内部に浸入した結着剤が細孔内壁を覆うことにより、凝縮や歪みによって電極活物質の1次粒子、または2次粒子同士の炭素による結合に亀裂が生じた場合であっても、粒子同士を強固に接着し、電極活物質間の電子電導性が損なわれるのを防止することができる。
なお、数平均細孔径(D50)が10nm未満では、電解液の浸透が阻害される虞があるので好ましくなく、また、300nmを超えると、凝集体の体積密度が低下するので好ましくない。
The agglomerates are mixed with a solvent, a binder, a conductive auxiliary agent, etc. at the time of forming the positive electrode, applied onto the current collector, dried, and then compressed by a press. Condensed or distorted. Here, if the number average pore diameter (D50) of the aggregate is 10 nm or more and 300 nm or less, the binder can be prevented from entering the pores of the aggregate to some extent, and the binder is used as the current collector. Can be effectively used for bonding between the electrode material and the electrode material, and problems such as peeling of the electrode active material layer of the electrode and cracks can be prevented. In addition, when the binder that has penetrated into the pores of the aggregates covers the inner walls of the pores, the primary particles of the electrode active material or the bonds between the secondary particles due to carbon are cracked due to condensation or distortion. Even so, the particles can be firmly bonded to each other, and the electronic conductivity between the electrode active materials can be prevented from being impaired.
If the number average pore diameter (D50) is less than 10 nm, penetration of the electrolyte solution may be hindered, and if it exceeds 300 nm, the volume density of the aggregate decreases, which is not preferable.

この凝集体の比表面積は、BET法で測定した値が5m/g以上かつ50m/g以下の範囲であれば、この凝集体中の電極活物質の表面積が増大するので好ましい。
ここで、比表面積が5m/g未満では、凝集体中の電極活物質の表面積が少なすぎるうえに、この電極活物質の粒径も大きすぎてしまい、リチウムイオンの拡散距離が長くなりすぎるので好ましくなく、一方、凝集体の比表面積が50m/gを超えると、電極活物質の1次粒子の粒径が小さくなりすぎてしまい、上述した分散液の凝集度合いを制御することが難しくなるので好ましくない。
The specific surface area of the aggregate is preferably in the range of 5 m 2 / g or more and 50 m 2 / g or less as measured by the BET method because the surface area of the electrode active material in the aggregate increases.
Here, if the specific surface area is less than 5 m 2 / g, the surface area of the electrode active material in the aggregate is too small, the particle size of the electrode active material is too large, and the diffusion distance of lithium ions becomes too long. On the other hand, if the specific surface area of the aggregate exceeds 50 m 2 / g, the particle size of the primary particles of the electrode active material becomes too small, and it is difficult to control the degree of aggregation of the dispersion liquid described above. This is not preferable.

本実施形態の凝集体の主成分である電極活物質としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、チタン酸リチウム及びLiPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択される1種または2種以上、DはMg、Ca、S、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素の群から選択される1種または2種以上、0<x<2、0<y<1.5、0≦z<1.5)の群から選択される1種を主成分とすることが好ましい。 Examples of the electrode active material that is the main component of the aggregate of the present embodiment include lithium cobaltate, lithium nickelate, lithium manganate, lithium titanate, and Li x A y D z PO 4 (where A is Co, Mn, One or more selected from the group of Ni, Fe, Cu, Cr, D is Mg, Ca, S, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, one or more selected from the group of rare earth elements, one selected from the group of 0 <x <2, 0 <y <1.5, 0 ≦ z <1.5) as a main component It is preferable that

ここで、Aについては、Co、Mn、Ni、Feが、Dについては、Mg、Ca、Sr、Ba、Ti、Zn、Alが、高い放電電位、豊富な資源量、安全性などの点から好ましい。
ここで、希土類元素とは、ランタン系列であるLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの15元素のことである。
Here, for A, Co, Mn, Ni, and Fe are for D, and for D, Mg, Ca, Sr, Ba, Ti, Zn, and Al are in terms of high discharge potential, abundant resources, safety, etc. preferable.
Here, the rare earth elements are 15 elements of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu which are lanthanum series.

この電極活物質の1次粒子の平均粒子径は0.03μm以上かつ0.5μm以下が好ましい。
ここで、1次粒子の平均粒子径の範囲を上記の範囲とした理由は、この範囲が、電極活物質を分散媒中に分散させた分散液における凝集度合いを制御しやすく、かつ、リチウムイオンの挿入脱離反応が行われる電極活物質の表面積及び粒子内部へリチウムイオンが拡散する拡散距離を制御することが容易だからである。
平均粒子径が0.03μm未満では、分散液の凝集度合いを制御することが難しく、得られた凝集体の粒度分布の幅が狭くなってしまい、凝集体の体積密度を向上させることが難しくなるので好ましくなく、また、0.5μmを超えると、電極活物質の表面積が減少する上、リチウムイオンの拡散距離が長くなりすぎてしまい、特に高速で充放電させたときの電池容量が低下してしまうので好ましくない。
The average particle diameter of primary particles of this electrode active material is preferably 0.03 μm or more and 0.5 μm or less.
Here, the reason why the range of the average particle diameter of the primary particles is the above range is that this range makes it easy to control the degree of aggregation in the dispersion in which the electrode active material is dispersed in the dispersion medium, and lithium ions This is because it is easy to control the surface area of the electrode active material in which the insertion / desorption reaction is performed and the diffusion distance at which lithium ions diffuse into the particles.
If the average particle size is less than 0.03 μm, it is difficult to control the degree of aggregation of the dispersion, the width of the particle size distribution of the obtained aggregate becomes narrow, and it becomes difficult to improve the volume density of the aggregate. Therefore, if it exceeds 0.5 μm, the surface area of the electrode active material is reduced, the diffusion distance of lithium ions becomes too long, and the battery capacity when charging / discharging at high speed is reduced. This is not preferable.

この電極活物質の2次粒子の平均粒子径は0.05μm以上かつ0.7μm以下が、分散液の粒度分布の幅や、2次粒子間に生じる凝集体の細孔径を適度に保つことができるので好ましい。
ここで、平均粒子径が0.05μm未満では、分散液の粒度分布の幅が狭くなってしまうので好ましくなく、また、0.7μmを超えると、凝集体の細孔径が300nmを超えてしまう虞があるので好ましくない。
The average particle size of the secondary particles of this electrode active material is 0.05 μm or more and 0.7 μm or less, so that the width of the particle size distribution of the dispersion and the pore size of the aggregates formed between the secondary particles can be kept moderate. It is preferable because it is possible.
Here, when the average particle diameter is less than 0.05 μm, the width of the particle size distribution of the dispersion is not preferable because it is narrow, and when it exceeds 0.7 μm, the pore diameter of the aggregate may exceed 300 nm. This is not preferable.

この電極活物質では、リチウムイオン電池の電極材料として用いる際にリチウムイオンの脱挿入に関わる反応を電極活物質表面全体で均一に行うために、電極活物質の表面の80%以上、好ましくは90%以上を炭素質被膜にて被覆されていることが好ましい。
炭素質被膜の被覆率は、透過電子顕微鏡(TEM)、エネルギー分散型X線分光器(EDX)を用いて測定することができる。ここで、炭素質被膜の被覆率が80%未満では、炭素質被膜の被覆効果が不十分となり、リチウムイオンの脱挿入反応が電極活物質表面にて行なわれる際に、炭素質被膜が形成されていない箇所においてリチウムイオンの脱挿入に関わる反応抵抗が高くなり、放電末期の電圧降下が顕著になるので、好ましくない。
In this electrode active material, when used as an electrode material of a lithium ion battery, in order to uniformly carry out a reaction related to lithium ion desorption / insertion over the entire surface of the electrode active material, 80% or more of the surface of the electrode active material, preferably 90 % Or more is preferably coated with a carbonaceous film.
The coverage of a carbonaceous film can be measured using a transmission electron microscope (TEM) and an energy dispersive X-ray spectrometer (EDX). Here, when the coverage of the carbonaceous film is less than 80%, the coating effect of the carbonaceous film is insufficient, and the carbonaceous film is formed when the lithium ion deinsertion reaction is performed on the surface of the electrode active material. This is not preferable because the reaction resistance related to lithium ion desorption / insertion is increased at a portion where the discharge is not performed, and the voltage drop at the end of discharge becomes remarkable.

この炭素質被膜中の炭素量は、電極活物質100質量部に対して0.6質量部以上かつ10質量部以下であることが好ましく、より好ましくは0.8質量部以上かつ2.5質量部以下である。
ここで、炭素質被膜中の炭素量を上記の範囲に限定した理由は、炭素量が0.6質量部未満では、炭素質被膜の被覆率が80%を下回ってしまい、電池を形成した場合に高速充放電レートにおける放電容量が低くなり、充分な充放電レート性能を実現することが困難となるからである。一方、炭素量が10質量部を超えると、電極活物質に対して炭素質被膜の量が多くなり、よって、炭素を必要な導電性を得る量以上に含むこととなり、凝集体としたときの炭素の質量及び体積密度が低下し、その結果、電極密度が低くなり、単位体積あたりのリチウムイオン電池の電池容量が低下するからである。
The amount of carbon in the carbonaceous film is preferably 0.6 parts by mass or more and 10 parts by mass or less, more preferably 0.8 parts by mass or more and 2.5 parts by mass with respect to 100 parts by mass of the electrode active material. Or less.
Here, the reason why the carbon content in the carbonaceous film is limited to the above range is that when the carbon content is less than 0.6 parts by mass, the coverage of the carbonaceous film is less than 80%, and a battery is formed. This is because the discharge capacity at the high-speed charge / discharge rate is low, and it is difficult to realize sufficient charge / discharge rate performance. On the other hand, when the amount of carbon exceeds 10 parts by mass, the amount of the carbonaceous film increases with respect to the electrode active material, and therefore, carbon is included in an amount more than necessary to obtain the necessary conductivity, and when the aggregate is formed. This is because the mass and volume density of carbon are lowered, and as a result, the electrode density is lowered and the battery capacity of the lithium ion battery per unit volume is lowered.

前記凝集体の外周部における前記炭素質被膜の平均膜厚A及び該凝集体の中心部における前記炭素質被膜の平均膜厚Bは、下記式(1)
0.7≦B/A≦1.3 ……(1)
を満たすことが好ましい。
この凝集体では、その外周部における炭素質被膜の平均膜厚Aと、中心部における炭素質被膜の平均膜厚Bの関係が、上記式(1)を満たすことにより、炭素質被膜の厚みムラを減らし、リチウムイオンの挿入脱離反応の生じ易さや、炭素被膜の電子伝導性のムラを減らすことができる。よって、正極の内部抵抗を減少させることができ、その結果、電池容量を向上させることができる。
The average film thickness A of the carbonaceous film at the outer periphery of the aggregate and the average film thickness B of the carbonaceous film at the center of the aggregate are expressed by the following formula (1).
0.7 ≦ B / A ≦ 1.3 (1)
It is preferable to satisfy.
In this aggregate, the relationship between the average film thickness A of the carbonaceous film in the outer peripheral portion and the average film thickness B of the carbonaceous film in the central portion satisfies the above formula (1). This can reduce the ease of the lithium ion insertion / release reaction and the unevenness of the carbon film electronic conductivity. Therefore, the internal resistance of the positive electrode can be reduced, and as a result, the battery capacity can be improved.

この正極材料のタップ密度は、1.0g/cm以上が好ましい。ここで、タップ密度が1.0g/cm未満では、凝集体を分散媒中に分散させて電極スラリーを作製する際に、凝集体内部の空隙及び凝集体の間隙に保持される溶媒量が多くなりすぎてしまうために、電極スラリー中の固形分の濃度が低下し、したがって、電極スラリーを塗布して得られた塗膜の乾燥に要する時間が長くなるので好ましくない。 The tap density of the positive electrode material is preferably 1.0 g / cm 3 or more. Here, when the tap density is less than 1.0 g / cm 3 , when the aggregate is dispersed in the dispersion medium to prepare the electrode slurry, the amount of the solvent retained in the gap inside the aggregate and the gap between the aggregates is small. Since it will increase too much, the density | concentration of the solid content in an electrode slurry will fall, therefore, since the time required for drying of the coating film obtained by apply | coating an electrode slurry becomes long, it is unpreferable.

[正極材料の製造方法]
本実施形態の正極材料の製造方法は、電極活物質粒子を分散媒中に分散させて電極活物質分散液とし、この電極活物質分散液に炭素前駆体となる有機化合物を添加し、得られたスラリー中の電極活物質の粒度分布における累積体積百分率が90%のときの粒子径(D90)と累積体積百分率が10%のときの粒子径(D10)との比(D90/D10)が5以上かつ30以下となるように調整し、このスラリーを造粒・乾燥することにより、本実施形態のリチウムイオン電池用正極材料、すなわち電極活物質の1次粒子と該電極活物質の1次粒子が凝集した2次粒子との混合物がさらに凝集した凝集体であり、1次粒子及び2次粒子が炭素質被膜にて被覆され、この凝集体の体積密度は、それを中実とした場合の体積密度の50体積%以上かつ80体積%以下である正極材料を得る方法である。
[Method for producing positive electrode material]
The method for producing a positive electrode material of the present embodiment is obtained by dispersing electrode active material particles in a dispersion medium to obtain an electrode active material dispersion, and adding an organic compound that becomes a carbon precursor to the electrode active material dispersion. The ratio (D90 / D10) of the particle diameter (D90) when the cumulative volume percentage is 90% and the particle diameter (D10) when the cumulative volume percentage is 10% in the particle size distribution of the electrode active material in the slurry is 5 By adjusting the slurry so as to be 30 or less and granulating and drying the slurry, the positive electrode material for a lithium ion battery of the present embodiment, that is, primary particles of the electrode active material and primary particles of the electrode active material The mixture with the secondary particles aggregated is a further aggregated aggregate, and the primary particles and the secondary particles are coated with a carbonaceous film, and the volume density of the aggregate is as follows: Is it 50% by volume or more of the volume density? A method of obtaining a positive electrode material is 80 vol% or less.

電極活物質としては、上記の正極材料にて記載したのと同様、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、チタン酸リチウム及びLiPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択される1種または2種以上、DはMg、Ca、S、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素の群から選択される1種または2種以上、0<x<2、0<y<1.5、0≦z<1.5)の群から選択される1種を主成分とすることが好ましい。 As the electrode active material, as described in the above positive electrode material, lithium cobaltate, lithium nickelate, lithium manganate, lithium titanate and Li x A y D z PO 4 (where A is Co, Mn , Ni, Fe, Cu, Cr selected from the group of one or more, D is Mg, Ca, S, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc Y, Y, one or more selected from the group of rare earth elements, mainly one selected from the group of 0 <x <2, 0 <y <1.5, 0 ≦ z <1.5) It is preferable to use as a component.

ここで、Aについては、Co、Mn、Ni、Feが、Dについては、Mg、Ca、Sr、Ba、Ti、Zn、Alが、高い放電電位、豊富な資源量、安全性などの点から好ましい。
ここで、希土類元素とは、ランタン系列であるLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの15元素のことである。
Here, for A, Co, Mn, Ni, and Fe are for D, and for D, Mg, Ca, Sr, Ba, Ti, Zn, and Al are in terms of high discharge potential, abundant resources, safety, etc. preferable.
Here, the rare earth elements are 15 elements of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu which are lanthanum series.

LiPOにて表される化合物としては、固相法、液相法、気相法等の従来の方法により製造したものを用いることができる。
この化合物としては、例えば、酢酸リチウム(LiCHCOO)、塩化リチウム(LiCl)等のリチウム塩、あるいは水酸化リチウム(LiOH)からなる群から選択されたLi源と、塩化鉄(II)(FeCl)、酢酸鉄(II)(Fe(CHCOO))、硫酸鉄(II)(FeSO)等の2価の鉄塩と、リン酸(HPO)、リン酸二水素アンモニウム(NHPO)、リン酸水素二アンモニウム((NHHPO)等のリン酸化合物と、水とを混合して得られるスラリー状の混合物を、耐圧密閉容器を用いて水熱合成し、得られた沈殿物を水洗してケーキ状の前駆体物質を生成し、このケーキ状の前駆体物質を焼成して得られた化合物を好適に用いることができる。
Examples of the compound represented by Li x A y D z PO 4 , may be used a solid phase method, liquid phase method, those produced by a conventional method such as vapor-phase process.
Examples of the compound include a Li source selected from the group consisting of lithium salts such as lithium acetate (LiCH 3 COO) and lithium chloride (LiCl), or lithium hydroxide (LiOH), and iron (II) chloride (FeCl 2 ), divalent iron salts such as iron (II) acetate (Fe (CH 3 COO) 2 ), iron (II) sulfate (FeSO 4 ), phosphoric acid (H 3 PO 4 ), ammonium dihydrogen phosphate A slurry-like mixture obtained by mixing a phosphoric acid compound such as (NH 4 H 2 PO 4 ) or diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) with water is used with a pressure-resistant sealed container. A compound obtained by hydrothermal synthesis and washing the resulting precipitate with water to produce a cake-like precursor material and calcining this cake-like precursor material can be suitably used.

また、有機化合物としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、セルロース、デンプン、ゼラチン、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ポリアクリル酸、ポリスチレンスルホン酸、ポリアクリルアミド、ポリ酢酸ビニル、グルコース、フルクトース、ガラクトース、マンノース、マルトース、スクロース、ラクトース、グリコーゲン、ペクチン、アルギン酸、グルコマンナン、キチン、ヒアルロン酸、コンドロイチン、アガロース、ポリエーテル、多価アルコール類が挙げられる。   Examples of the organic compound include polyvinyl alcohol, polyvinyl pyrrolidone, cellulose, starch, gelatin, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, polyacrylic acid, polystyrene sulfonic acid, polyacrylamide, polyvinyl acetate, glucose, and fructose. Galactose, mannose, maltose, sucrose, lactose, glycogen, pectin, alginic acid, glucomannan, chitin, hyaluronic acid, chondroitin, agarose, polyether, polyhydric alcohols.

電極活物質と有機化合物との配合比は、有機化合物の全量を炭素量に換算したとき、電極活物質100質量部に対して0.6質量部以上かつ10質量部以下であることが好ましく、より好ましくは0.8質量部以上かつ2.5質量部以下である。
ここで、有機化合物の炭素量換算の配合比が0.6質量部未満では、炭素質被膜の被覆率が80%を下回ることとなり、電池を形成した場合に高速充放電レートにおける放電容量が低くなり、充分な充放電レート性能を実現することが困難となる。一方、有機化合物の炭素量換算の配合比が10質量部を超えると、相対的に電極活物質の配合比が低くなり、電池を形成した場合に電池の容量が低くなるとともに、炭素質被膜の過剰な担持により電極活物質が嵩高くなり、したがって、電極密度が低くなり、単位体積あたりのリチウムイオン電池の電池容量の低下が無視できなくなる。
The compounding ratio of the electrode active material and the organic compound is preferably 0.6 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the electrode active material, when the total amount of the organic compound is converted into the amount of carbon. More preferably, they are 0.8 mass part or more and 2.5 mass parts or less.
Here, when the compounding ratio in terms of carbon amount of the organic compound is less than 0.6 parts by mass, the coverage of the carbonaceous film is less than 80%, and the discharge capacity at the high-speed charge / discharge rate is low when a battery is formed. Therefore, it is difficult to realize sufficient charge / discharge rate performance. On the other hand, when the compounding ratio in terms of carbon amount of the organic compound exceeds 10 parts by mass, the compounding ratio of the electrode active material is relatively low, and when the battery is formed, the capacity of the battery is reduced and the carbonaceous film Due to the excessive loading, the electrode active material becomes bulky. Therefore, the electrode density is lowered, and the decrease in the battery capacity of the lithium ion battery per unit volume cannot be ignored.

これら電極活物質と有機化合物とを、水に溶解あるいは分散させて、均一なスラリーを調製する。この溶解あるいは分散の際には、分散剤を加えてもよく、炭素源である有機化合物に分散剤としての機能を持たせてもよい。
電極活物質と有機化合物とを水に溶解あるいは分散させる方法としては、電極活物質が分散し、有機化合物が溶解または分散する方法であれば、特に限定しないが、例えば、ボールミル、サンドミル等の分散装置を用いる方法が好ましい。
These electrode active materials and organic compounds are dissolved or dispersed in water to prepare a uniform slurry. In the dissolution or dispersion, a dispersant may be added, and the organic compound that is a carbon source may have a function as a dispersant.
The method for dissolving or dispersing the electrode active material and the organic compound in water is not particularly limited as long as the electrode active material is dispersed and the organic compound is dissolved or dispersed. For example, dispersion such as ball mill and sand mill A method using an apparatus is preferred.

この分散の際に、スラリーの分散条件、例えば、分散装置に用いられるジルコニアビーズ等の分散媒体、スラリー中の電極活物質及び有機化合物の濃度、分散時間等を調整することにより、電極活物質の比(D90/D10)を5以上かつ30以下となるように調整することができる。   In this dispersion, the dispersion conditions of the slurry, for example, the dispersion medium such as zirconia beads used in the dispersion apparatus, the concentration of the electrode active material and the organic compound in the slurry, the dispersion time, etc. are adjusted. The ratio (D90 / D10) can be adjusted to be 5 or more and 30 or less.

次いで、このスラリーを高温雰囲気中、例えば70℃以上かつ250℃以下の大気中に噴霧し、乾燥させる。
この噴霧の際の液滴の平均粒径は、0.05μm以上かつ100μm以下であることが好ましく、より好ましくは1μm以上かつ20μm以下である。
噴霧の際の液滴の平均粒径を上記の範囲とすることで、平均粒子径が0.5μm以上かつ100μm以下、好ましくは1μm以上かつ20μm以下の乾燥物が得られる。
Next, this slurry is sprayed in a high-temperature atmosphere, for example, air of 70 ° C. or higher and 250 ° C. or lower and dried.
The average particle size of the droplets at the time of spraying is preferably 0.05 μm or more and 100 μm or less, more preferably 1 μm or more and 20 μm or less.
By setting the average particle size of the droplets during spraying within the above range, a dried product having an average particle size of 0.5 μm or more and 100 μm or less, preferably 1 μm or more and 20 μm or less is obtained.

次いで、この乾燥物を、非酸化性雰囲気下、500℃以上かつ1000℃以下、好ましくは600℃以上かつ900℃以下の範囲内の温度にて0.1時間以上かつ40時間以下焼成する。
この非酸化性雰囲気としては、窒素(N)、アルゴン(Ar)等の不活性雰囲気が好ましく、より酸化を抑えたい場合には水素(H)等の還元性ガスを含む還元性雰囲気が好ましい。また、焼成時に非酸化性雰囲気中に蒸発した有機分を除去する目的で、酸素(O)等の支燃性及び可燃性ガスを不活性雰囲気中に導入することとしてもよい。
Next, the dried product is fired in a non-oxidizing atmosphere at a temperature in the range of 500 ° C. to 1000 ° C., preferably 600 ° C. to 900 ° C. for 0.1 hours to 40 hours.
As this non-oxidizing atmosphere, an inert atmosphere such as nitrogen (N 2 ) or argon (Ar) is preferable, and when it is desired to suppress oxidation more, a reducing atmosphere containing a reducing gas such as hydrogen (H 2 ) is used. preferable. Further, in order to remove organic components evaporated in the non-oxidizing atmosphere at the time of firing, it is possible to introduce a flammable gas such as oxygen (O 2 ) and a combustible gas into the inert atmosphere.

また、焼成温度を500℃以上かつ1000℃以下とした理由は、焼成温度が500℃未満では、乾燥物に含まれる有機化合物の分解・反応が不十分で、この有機化合物の炭化が不充分なものとなり、その結果、得られた凝集体中に高抵抗の有機物分解物が生成することとなるからであり、一方、焼成温度が1000℃を超えると、電極活物質中のLiが蒸発して電極活物質に組成のズレが生じるだけでなく、電極活物質の粒成長が促進し、その結果、高速充放電レートにおける放電容量が低くなり、充分な充放電レート性能を実現することが困難となるからである。   Moreover, the reason for setting the firing temperature to 500 ° C. or more and 1000 ° C. or less is that when the firing temperature is less than 500 ° C., decomposition and reaction of the organic compound contained in the dried product is insufficient, and carbonization of this organic compound is insufficient. As a result, a high-resistance organic matter decomposition product is generated in the obtained aggregate. On the other hand, when the firing temperature exceeds 1000 ° C., Li in the electrode active material evaporates. Not only does the composition of the electrode active material shift, but also the grain growth of the electrode active material is promoted. As a result, the discharge capacity at a high speed charge / discharge rate is lowered, and it is difficult to realize sufficient charge / discharge rate performance. Because it becomes.

ここで、乾燥物を焼成する際の条件、例えば、昇温速度、最高保持温度、保持時間等を適宜調整することにより、得られる凝集体の粒度分布を制御することが可能である。
以上により、本実施形態の正極材料、すなわち電極活物質の1次粒子と該電極活物質の1次粒子が凝集した2次粒子との混合物がさらに凝集した凝集体であり、1次粒子及び2次粒子が炭素質被膜にて被覆され、この凝集体の体積密度は、それを中実とした場合の体積密度の50体積%以上かつ80体積%以下である正極材料が得られる。
Here, the particle size distribution of the obtained aggregate can be controlled by appropriately adjusting the conditions for firing the dried product, for example, the rate of temperature rise, the maximum holding temperature, the holding time, and the like.
As described above, the positive electrode material of the present embodiment, that is, a mixture of the primary particles of the electrode active material and the secondary particles obtained by agglomerating the primary particles of the electrode active material is an aggregate obtained by further aggregating the primary particles and 2 The secondary particles are coated with a carbonaceous film, and a positive electrode material having a volume density of 50% by volume or more and 80% by volume or less of the volume density of the aggregate is obtained.

[リチウムイオン電池用正極]
本実施形態のリチウムイオン電池用正極は、本実施形態のリチウムイオン電池用正極材料を正極層に含有している。
この正極層は、本実施形態のリチウムイオン電池用正極材料と結着剤との混合物をアルミニウム等の金属箔上に塗布し、乾燥してシート状としたもので、本実施形態のリチウムイオン電池用正極材料を含有したことにより、正極の内部抵抗が低下し、電池容量も向上している。
[Positive electrode for lithium ion batteries]
The positive electrode for lithium ion batteries of this embodiment contains the positive electrode material for lithium ion batteries of this embodiment in the positive electrode layer.
This positive electrode layer is obtained by applying a mixture of the positive electrode material for a lithium ion battery of this embodiment and a binder onto a metal foil such as aluminum and drying it to form a sheet. The lithium ion battery of this embodiment By including the positive electrode material, the internal resistance of the positive electrode is lowered and the battery capacity is also improved.

[リチウムイオン電池]
本実施形態のリチウムイオン電池は、本実施形態のリチウムイオン電池用正極を備えている。
このリチウムイオン電池は、本実施形態のリチウムイオン電池用正極と、黒鉛系炭素材料を用いた負極と、これら正極及び負極を仕切る多孔質ポリプロピレン等からなるセパレータと、リチウムイオン伝導性を有する電解液とにより構成されており、本実施形態のリチウムイオン電池用正極を用いることにより、正極の内部抵抗が低下し、電池容量も向上し、しかも、高速充放電特性に優れたものとなっている。
[Lithium ion battery]
The lithium ion battery of this embodiment includes the positive electrode for a lithium ion battery of this embodiment.
This lithium ion battery includes a positive electrode for a lithium ion battery of the present embodiment, a negative electrode using a graphite-based carbon material, a separator made of porous polypropylene or the like that partitions the positive electrode and the negative electrode, and an electrolytic solution having lithium ion conductivity. By using the positive electrode for a lithium ion battery according to this embodiment, the internal resistance of the positive electrode is reduced, the battery capacity is improved, and the high-speed charge / discharge characteristics are excellent.

以上説明したように、本実施形態のリチウムイオン電池用正極材料によれば、電極活物質の1次粒子と、この電極活物質の1次粒子が凝集した2次粒子との混合物を、さらに凝集して凝集体とし、これら1次粒子及び2次粒子を炭素質被膜にて被覆したので、凝集体の表面積を大きくとることができ、リチウムイオンの挿入脱離反応を十分に得ることができる。その結果、電極活物質の1次粒子の内部を拡散するリチウムイオンの移動距離、及びこの1次粒子の内部を移動する電子の移動距離を短縮することができる。   As described above, according to the positive electrode material for a lithium ion battery of this embodiment, the mixture of the primary particles of the electrode active material and the secondary particles in which the primary particles of the electrode active material are aggregated is further aggregated. Thus, the aggregate and the primary particles and the secondary particles are coated with the carbonaceous film, so that the surface area of the aggregate can be increased, and the insertion / release reaction of lithium ions can be sufficiently obtained. As a result, the moving distance of lithium ions diffusing inside the primary particles of the electrode active material and the moving distance of electrons moving inside the primary particles can be shortened.

また、この凝集体を、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下の体積密度を有する多孔性の凝集体を含有することとしたので、炭素質被膜を形成する際の有機物の加熱分解時に発生する有機物分解ガスが凝集体内から逃げ難くなり、したがって、電極活物質の1次粒子の表面近傍における有機物分解ガスの濃度を高めることができ、その結果、電極活物質の1次粒子の表面を覆う炭素質被膜の膜厚を均一にすることができる。   Further, since the aggregate contains a porous aggregate having a volume density of 50 volume% or more and 80 volume% or less of the volume density when the aggregate is solid, the carbonaceous coating film The organic substance decomposition gas generated during the thermal decomposition of the organic substance when forming the organic substance is difficult to escape from the aggregate, and therefore the concentration of the organic substance decomposition gas in the vicinity of the surface of the primary particles of the electrode active material can be increased. The film thickness of the carbonaceous film covering the surface of the primary particles of the electrode active material can be made uniform.

本実施形態のリチウムイオン電池用正極によれば、本実施形態のリチウムイオン電池用正極材料を正極層に含有したので、正極の内部抵抗を低下させることができ、電池容量を向上させることができる。   According to the positive electrode for a lithium ion battery of the present embodiment, since the positive electrode material for the lithium ion battery of the present embodiment is contained in the positive electrode layer, the internal resistance of the positive electrode can be reduced and the battery capacity can be improved. .

本実施形態のリチウムイオン電池によれば、本実施形態のリチウムイオン電池用正極を備えたので、正極の内部抵抗を低下させることができ、電池容量を向上させることができ、しかも、高速充放電特性に優れている。   According to the lithium ion battery of the present embodiment, since the positive electrode for the lithium ion battery of the present embodiment is provided, the internal resistance of the positive electrode can be reduced, the battery capacity can be improved, and high-speed charge / discharge can be achieved. Excellent characteristics.

以下、実施例1〜12及び比較例1,3,4により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
例えば、本実施例では、電極材料自体の挙動をデータに反映させるため、負極に金属Liを用いたが、炭素材料、Li合金、LiTi12等の負極材料を用いてもかまわない。また電解液とセパレータの代わりに固体電解質を用いても良い。
Hereinafter, a detailed explanation of the present invention by Examples 1 12 and Comparative Examples 1, 3, 4, the present invention is not intended to be limited to these examples.
For example, in this embodiment, metal Li is used for the negative electrode in order to reflect the behavior of the electrode material itself in the data. However, a negative electrode material such as a carbon material, a Li alloy, or Li 4 Ti 5 O 12 may be used. . A solid electrolyte may be used instead of the electrolytic solution and the separator.

「実施例1」
(正極材料の作製)
水2L(リットル)に、4molの酢酸リチウム(LiCHCOO)、2molの硫酸鉄(II)(FeSO)、2molのリン酸(HPO)を混合し、原料スラリーを調製した。
次いで、この原料スラリーにエチレングリコールを、水以外の原料100質量部に対して3質量部となるように添加し、さらに全体量が4L(リットル)になるように水を添加し、スラリー状の混合物を調整した。
次いで、この混合物を容量8Lの耐圧密閉容器に収容し、120℃にて1時間、水熱合成を行った。次いで、得られた沈殿物を水洗し、ケーキ状の電極活物質を得た。
"Example 1"
(Production of positive electrode material)
4 mol of lithium acetate (LiCH 3 COO), 2 mol of iron (II) sulfate (FeSO 4 ), and 2 mol of phosphoric acid (H 3 PO 4 ) were mixed in 2 L (liter) of water to prepare a raw material slurry.
Next, ethylene glycol is added to this raw material slurry so that it becomes 3 parts by mass with respect to 100 parts by mass of raw materials other than water, and water is further added so that the total amount is 4 L (liter). The mixture was adjusted.
Subsequently, this mixture was accommodated in a pressure-resistant sealed container having a capacity of 8 L, and hydrothermal synthesis was performed at 120 ° C. for 1 hour. Next, the obtained precipitate was washed with water to obtain a cake-like electrode active material.

このケーキ状の電極活物質から若干量の試料を採取し、この試料を70℃にて2時間真空乾燥させた粉体をX線回折装置を用いて同定したところ、単相のLiFePOが生成していることが確認された。また、透過型電子顕微鏡(TEM)を用いて試料を観察したところ、1次粒子の平均粒子径が70nmの微細な板状粒子が生成していることが確認された。ここで、1次粒子の平均粒子径とは、透過型電子顕微鏡(TEM)像の視野内から無作為に選んだ10個の1次粒子の長軸方向の長さを測定し、これらの長さを平均した平均値のことである。 A small amount of sample was taken from the cake-like electrode active material, and the powder was vacuum-dried at 70 ° C. for 2 hours and identified using an X-ray diffractometer. As a result, single-phase LiFePO 4 was produced. It was confirmed that Further, when the sample was observed using a transmission electron microscope (TEM), it was confirmed that fine plate-like particles having an average primary particle diameter of 70 nm were generated. Here, the average particle diameter of the primary particles is the length of 10 primary particles randomly selected from the field of view of a transmission electron microscope (TEM) image and measured in the major axis direction. It is an average value obtained by averaging.

次いで、この電極活物質150g(固形分換算)と、有機化合物としてポリビニルアルコール20gを水200gに溶解したポリビニルアルコール水溶液と、媒体粒子として直径5mmのジルコニアボール500gをボールミルに投入し、スラリー中の電極活物質粒子の粒度分布のD90/D10が7となるように、ボールミルの撹拌時間を調整し、分散処理を行った。
次いで、得られたスラリーを180℃の大気雰囲気中に噴霧し乾燥して、乾燥物を得た。次いで、得られた乾燥物を窒素(N)ガスからなる不活性雰囲気下、700℃にて1時間焼成し、実施例1のリチウムイオン電池用正極材料(A1)を得た。
Next, 150 g of this electrode active material (in terms of solid content), a polyvinyl alcohol aqueous solution obtained by dissolving 20 g of polyvinyl alcohol as an organic compound in 200 g of water, and 500 g of zirconia balls having a diameter of 5 mm as medium particles are put into a ball mill, and the electrode in the slurry The ball mill stirring time was adjusted so that D90 / D10 of the particle size distribution of the active material particles was 7, and the dispersion treatment was performed.
Next, the obtained slurry was sprayed into an air atmosphere at 180 ° C. and dried to obtain a dried product. Next, the obtained dried product was baked at 700 ° C. for 1 hour under an inert atmosphere made of nitrogen (N 2 ) gas to obtain a positive electrode material (A1) for a lithium ion battery of Example 1.

得られた正極材料(A1)を構成する凝集体を、走査型電子顕微鏡(SEM)を用いて観察したところ、凝集体は、平均粒子径6μmの球状の多孔性の凝集体であった。
また、この凝集体を、透過型電子顕微鏡(TEM)を用いて観察したところ、平均粒子径100nmの1次粒子同士が炭素質被膜による頸部状結合部を介して結合して平均粒子径200nmの2次粒子となり、この2次粒子同士が凝集して凝集体を構成していることが確認された。この凝集体の透過型電子顕微鏡(TEM)像を図2に示す。
ここで2次粒子の平均粒子径とは、走査型電子顕微鏡(SEM)像の視野内で無作為に選んだ10個の2次粒子の長軸方向の長さを測定し、この操作を5視野にて行った場合の、50個の2次粒子の長軸方向の長さの平均値のことである。
When the aggregate constituting the obtained positive electrode material (A1) was observed using a scanning electron microscope (SEM), the aggregate was a spherical porous aggregate having an average particle diameter of 6 μm.
Further, when this aggregate was observed using a transmission electron microscope (TEM), primary particles having an average particle diameter of 100 nm were bonded to each other through a cervical bonding portion formed of a carbonaceous film, and the average particle diameter was 200 nm. It was confirmed that the secondary particles aggregated to form an aggregate. A transmission electron microscope (TEM) image of the aggregate is shown in FIG.
Here, the average particle diameter of the secondary particles is the measurement of the length in the major axis direction of 10 secondary particles randomly selected within the field of view of the scanning electron microscope (SEM) image. It is the average value of the lengths in the major axis direction of 50 secondary particles when performed in the field of view.

(正極材料の評価)
この正極材料の体積密度、凝集体内部の数平均細孔径(平均細孔径)D50、炭素質被膜の平均膜厚の比(中心部炭素質被膜の厚み/外周部炭素質被膜の厚み)、比表面積それぞれの評価を行った。
評価方法は下記のとおりである。
(Evaluation of positive electrode material)
Volume density of this positive electrode material, number average pore diameter (average pore diameter) D50 inside the aggregate, ratio of average film thickness of carbonaceous coating (thickness of central carbonaceous coating / thickness of outer peripheral carbonaceous coating), ratio Each surface area was evaluated.
The evaluation method is as follows.

(1)正極材料の体積密度
水銀ポロシメーターを用いて測定した。
(2)凝集体内部の平均細孔径(D50)
水銀ポロシメーターを用いて測定した。
(3)炭素質被膜の平均膜厚の比
凝集体の炭素質被膜を透過型電子顕微鏡(TEM)を用いて観察し、凝集体の中心部における炭素質被膜の厚みと、外周部における炭素質被膜の厚みを、それぞれ5点測定して、それぞれの平均値を算出し、これらの平均値を基に炭素質被膜の平均膜厚の比(中心部炭素質被膜の厚み/外周部炭素質被膜の厚み)を算出した。
(1) Volume density of positive electrode material It measured using the mercury porosimeter.
(2) Average pore diameter inside the aggregate (D50)
Measurement was performed using a mercury porosimeter.
(3) Ratio of average film thickness of carbonaceous film The carbonaceous film of the aggregate is observed using a transmission electron microscope (TEM), and the thickness of the carbonaceous film in the central part of the aggregate and the carbonaceous material in the outer peripheral part. Measure the thickness of each coating at five points, calculate the average value of each, and based on these average values, the ratio of the average thickness of the carbonaceous coating (the thickness of the central carbonaceous coating / the carbonaceous coating of the outer periphery) Thickness) was calculated.

(4)比表面積
比表面積計 BelsorpII(日本ベル社製)を用いて正極材料の比表面積(m/ g)を測定した。
これらの評価結果を表1に示す。
(4) Specific surface area Specific surface area meter The specific surface area (m 2 / g) of the positive electrode material was measured using Belsorb II (manufactured by Nippon Bell Co., Ltd.).
These evaluation results are shown in Table 1.

(リチウムイオン電池の作製)
上記の正極材料(A1)と、バインダーとしてポリフッ化ビニリデン(PVdF)と、導電助剤としてアセチレンブラック(AB)とを、質量比が90:5:5となるように混合し、さらに溶媒としてN−メチル−2−ピロリジノン(NMP)を加えて流動性を付与し、スラリーを作製した。
次いで、このスラリーを厚み15μmのアルミニウム(Al)箔上に塗布し、乾燥した。その後、600kgf/cmの圧力にて加圧し、実施例1のリチウムイオン電池の正極を作製した。
(Production of lithium ion battery)
The positive electrode material (A1), polyvinylidene fluoride (PVdF) as a binder, and acetylene black (AB) as a conductive additive are mixed so that the mass ratio is 90: 5: 5, and further N as a solvent. -Methyl-2-pyrrolidinone (NMP) was added to impart fluidity to produce a slurry.
Next, this slurry was applied onto an aluminum (Al) foil having a thickness of 15 μm and dried. Then, it pressurized by the pressure of 600 kgf / cm < 2 >, and the positive electrode of the lithium ion battery of Example 1 was produced.

このリチウムイオン電池の正極に対し、負極としてリチウム金属を配置し、これら正極と負極の間に多孔質ポリプロピレンからなるセパレーターを配置し、電池用部材とした。
一方、炭酸エチレンと炭酸ジエチルとを1:1(質量比)にて混合し、さらに1MのLiPF溶液を加えて、リチウムイオン伝導性を有する電解質溶液を作製した。
次いで、上記の電池用部材を上記の電解質溶液に浸漬し、実施例1のリチウムイオン電池を作製した。
Lithium metal was disposed as a negative electrode with respect to the positive electrode of the lithium ion battery, and a separator made of porous polypropylene was disposed between the positive electrode and the negative electrode to obtain a battery member.
On the other hand, ethylene carbonate and diethyl carbonate were mixed at 1: 1 (mass ratio), and a 1M LiPF 6 solution was added to prepare an electrolyte solution having lithium ion conductivity.
Next, the battery member was immersed in the electrolyte solution, and a lithium ion battery of Example 1 was produced.

(リチウムイオン電池の評価)
このリチウムイオン電池の放電容量、充放電特性及び内部抵抗それぞれの評価を行った。
評価方法は下記のとおりである。
(1)放電容量
上記のリチウムイオン電池の充放電試験を、室温(25℃)にて、カットオフ電圧2−4.5V、充放電レート0,1C、1Cの定電流にて実施した。それぞれの充放電レートでの初期放電容量を表2に示す。
(2)充放電特性
室温(25℃)にて、カットオフ電圧2−4.2V、充放電レート1Cの定電流(1時間充電の後、1時間放電)下にて実施した。充放電特性を図3に示す。
(Evaluation of lithium-ion battery)
The lithium ion battery was evaluated for discharge capacity, charge / discharge characteristics, and internal resistance.
The evaluation method is as follows.
(1) Discharge capacity The above lithium ion battery charge / discharge test was performed at room temperature (25 ° C.) with a constant voltage of a cut-off voltage of 2-4.5 V, a charge / discharge rate of 0, 1 C, and 1 C. Table 2 shows the initial discharge capacity at each charge / discharge rate.
(2) Charging / discharging characteristics It was carried out at room temperature (25 ° C.) under a constant current (cutting for 1 hour and discharging for 1 hour) with a cut-off voltage of 2-4.2 V and a charge / discharge rate of 1C. The charge / discharge characteristics are shown in FIG.

(3)内部抵抗
上記の充放電特性においては、放電末期に認められる電圧降下が、正極材料の表面の炭素質被膜のムラの大きさ、すなわち内部抵抗の高低を示している。そこで、電圧降下が顕著に認められる試料を、内部抵抗が高い試料と判断した。
ここでは、電圧降下が認められないか、電圧降下が小さい試料を「○」、電圧降下が顕著に認められる試料を「×」と評価した。
これらの評価結果を表2に示す。
(3) Internal resistance In the charge / discharge characteristics described above, the voltage drop observed at the end of discharge indicates the magnitude of unevenness of the carbonaceous film on the surface of the positive electrode material, that is, the internal resistance. Therefore, a sample in which a voltage drop was recognized remarkably was judged as a sample having a high internal resistance.
Here, a sample with no voltage drop or a small voltage drop was evaluated as “◯”, and a sample with a noticeable voltage drop was evaluated as “x”.
These evaluation results are shown in Table 2.

「実施例2」
スラリー中の電極活物質粒子の粒度分布のD90/D10が15となるように、ボールミルの撹拌時間を調整した外は、実施例1に準じて、実施例2の正極材料(A2)を得た。得られた正極材料(A2)は、平均粒子径6μmの球状の凝集体であり、平均粒子径120nmの2次粒子同士が炭素を介して結合していることが確認された。
この正極材料(A2)の評価を実施例1に準じて行った。評価結果を表1に示す。
"Example 2"
A positive electrode material (A2) of Example 2 was obtained according to Example 1, except that the stirring time of the ball mill was adjusted so that D90 / D10 of the particle size distribution of the electrode active material particles in the slurry was 15. . The obtained positive electrode material (A2) was a spherical aggregate having an average particle diameter of 6 μm, and it was confirmed that secondary particles having an average particle diameter of 120 nm were bonded to each other through carbon.
Evaluation of this positive electrode material (A2) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(A2)を用い、実施例1に準じて実施例2のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。評価結果を表2に示す。
A lithium ion battery of Example 2 was produced according to Example 1 using the positive electrode material (A2).
This lithium ion battery was evaluated according to Example 1. The evaluation results are shown in Table 2.

「実施例3」
エチレングリコールの添加量を、水以外の原料100質量部に対して1質量部とした他は、実施例1に準じて、1次粒子の平均粒子径が130nmの電極活物質粒子を得た。
次いで、この電極活物質粒子を用い、スラリー中の電極活物質粒子の粒度分布のD90/D10が8となるように、ボールミルの撹拌時間を調整した他は、実施例1に準じて実施例3の正極材料(A3)を得た。得られた正極材料(A3)は、平均粒子径6μmの球状の凝集体であり、平均粒子径150nmの2次粒子同士が炭素を介して結合していることが確認された。
この正極材料(A3)の評価を実施例1に準じて行った。評価結果を表1に示す。
"Example 3"
Electrode active material particles having an average primary particle size of 130 nm were obtained in the same manner as in Example 1 except that the addition amount of ethylene glycol was 1 part by mass with respect to 100 parts by mass of raw materials other than water.
Next, Example 3 according to Example 1 except that this electrode active material particle was used and the stirring time of the ball mill was adjusted so that D90 / D10 of the particle size distribution of the electrode active material particle in the slurry was 8. A positive electrode material (A3) was obtained. The obtained positive electrode material (A3) was a spherical aggregate having an average particle diameter of 6 μm, and it was confirmed that secondary particles having an average particle diameter of 150 nm were bonded to each other through carbon.
Evaluation of this positive electrode material (A3) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(A3)を用い、実施例1に準じて実施例3のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。充放電特性を図3に、評価結果を表2に、それぞれ示す。
A lithium ion battery of Example 3 was produced according to Example 1 using the positive electrode material (A3).
This lithium ion battery was evaluated according to Example 1. The charge / discharge characteristics are shown in FIG. 3, and the evaluation results are shown in Table 2.

「実施例4」
スラリー中の電極活物質粒子の粒度分布のD90/D10が16となるように、ボールミルの撹拌時間を調整した他は、実施例1に準じて実施例4の正極材料(A4)を得た。得られた正極材料(A4)は、平均粒子径6μmの球状の凝集体であり、平均粒子径180nmの2次粒子同士が炭素を介して結合していることが確認された。
この正極材料(A4)の評価を実施例1に準じて行った。評価結果を表1に示す。
Example 4
A positive electrode material (A4) of Example 4 was obtained according to Example 1 except that the stirring time of the ball mill was adjusted so that D90 / D10 of the particle size distribution of the electrode active material particles in the slurry was 16. The obtained positive electrode material (A4) was a spherical aggregate having an average particle diameter of 6 μm, and it was confirmed that secondary particles having an average particle diameter of 180 nm were bonded to each other through carbon.
Evaluation of this positive electrode material (A4) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(A4)を用い、実施例1に準じて実施例4のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。評価結果を表2に示す。
A lithium ion battery of Example 4 was produced according to Example 1 using the above positive electrode material (A4).
This lithium ion battery was evaluated according to Example 1. The evaluation results are shown in Table 2.

「実施例5」
エチレングリコールを無添加とした他は、実施例1に準じて、1次粒子の平均粒子径が210nmの電極活物質粒子を得た。
次いで、この電極活物質粒子を用い、スラリー中の電極活物質粒子の粒度分布のD90/D10が7となるように、ボールミルの撹拌時間を調整した他は、実施例1に準じて実施例5の正極材料(A5)を得た。得られた正極材料(A5)は、平均粒子径6μmの球状の凝集体であり、平均粒子径230nmの2次粒子同士が炭素を介して結合していることが確認された。
この正極材料(A5)の評価を実施例1に準じて行った。評価結果を表1に示す。
"Example 5"
Electrode active material particles having an average primary particle size of 210 nm were obtained in the same manner as in Example 1 except that ethylene glycol was not added.
Next, Example 5 was applied in accordance with Example 1, except that the electrode active material particles were used and the stirring time of the ball mill was adjusted so that D90 / D10 of the particle size distribution of the electrode active material particles in the slurry was 7. A positive electrode material (A5) was obtained. The obtained positive electrode material (A5) was a spherical aggregate having an average particle diameter of 6 μm, and it was confirmed that secondary particles having an average particle diameter of 230 nm were bonded to each other through carbon.
Evaluation of this positive electrode material (A5) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(A5)を用い、実施例1に準じて実施例5のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。充放電特性を図3及び図4に、評価結果を表2に、それぞれ示す。
A lithium ion battery of Example 5 was produced according to Example 1 using the positive electrode material (A5).
This lithium ion battery was evaluated according to Example 1. The charge / discharge characteristics are shown in FIGS. 3 and 4, and the evaluation results are shown in Table 2.

「実施例6」
エチレングリコールを無添加とし、スラリー中の電極活物質粒子の粒度分布のD90/D10が15となるように、ボールミルの撹拌時間を調整した他は、実施例1に準じて実施例6の正極材料(A6)を得た。得られた正極材料(A6)は、平均粒子径6μmの球状の凝集体であり、平均粒子径260nmの2次粒子同士が炭素を介して結合していることが確認された。
この正極材料(A5)の評価を実施例1に準じて行った。評価結果を表1に示す。
"Example 6"
The positive electrode material of Example 6 according to Example 1 except that ethylene glycol was not added and the stirring time of the ball mill was adjusted so that D90 / D10 of the particle size distribution of the electrode active material particles in the slurry was 15. (A6) was obtained. The obtained positive electrode material (A6) was a spherical aggregate having an average particle diameter of 6 μm, and it was confirmed that secondary particles having an average particle diameter of 260 nm were bonded to each other through carbon.
Evaluation of this positive electrode material (A5) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(A6)を用い、実施例1に準じて実施例6のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。充放電特性を図4に、評価結果を表2に、それぞれ示す。
A lithium ion battery of Example 6 was produced according to Example 1 using the above positive electrode material (A6).
This lithium ion battery was evaluated according to Example 1. The charge / discharge characteristics are shown in FIG. 4, and the evaluation results are shown in Table 2.

「実施例7」
エチレングリコールを無添加とし、スラリー中の電極活物質粒子の粒度分布のD90/D10が25となるように、ボールミルの撹拌時間を調整した他は、実施例1に準じて実施例7の正極材料(A7)を得た。得られた正極材料(A7)は、平均粒子径6μmの球状の凝集体であり、平均粒子径390nmの2次粒子同士が炭素を介して結合していることが確認された。
この正極材料(A7)の評価を実施例1に準じて行った。評価結果を表1に示す。
"Example 7"
The positive electrode material of Example 7 according to Example 1, except that ethylene glycol was not added and the stirring time of the ball mill was adjusted so that D90 / D10 of the particle size distribution of the electrode active material particles in the slurry was 25 (A7) was obtained. The obtained positive electrode material (A7) was a spherical aggregate having an average particle diameter of 6 μm, and it was confirmed that secondary particles having an average particle diameter of 390 nm were bonded together via carbon.
Evaluation of this positive electrode material (A7) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(A7)を用い、実施例1に準じて実施例7のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。充放電特性を図4に、評価結果を表2に、それぞれ示す。
A lithium ion battery of Example 7 was produced according to Example 1 using the positive electrode material (A7).
This lithium ion battery was evaluated according to Example 1. The charge / discharge characteristics are shown in FIG. 4, and the evaluation results are shown in Table 2.

「実施例8」
水熱合成の条件を170℃にて1時間とし、エチレングリコールを無添加とした他は、実施例1に準じて実施例8の正極材料(A8)を得た。得られた正極材料(A8)は、平均粒子径6μmの球状の凝集体であり、平均粒子径340nmの2次粒子同士が炭素を介して結合していることが確認された。
この正極材料(A8)の評価を実施例1に準じて行った。評価結果を表1に示す。
"Example 8"
The positive electrode material (A8) of Example 8 was obtained in the same manner as in Example 1 except that the hydrothermal synthesis was performed at 170 ° C. for 1 hour and ethylene glycol was not added. The obtained positive electrode material (A8) was a spherical aggregate having an average particle diameter of 6 μm, and it was confirmed that secondary particles having an average particle diameter of 340 nm were bonded to each other through carbon.
Evaluation of this positive electrode material (A8) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(A8)を用い、実施例1に準じて実施例8のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。充放電特性を図3に、評価結果を表2に、それぞれ示す。
A lithium ion battery of Example 8 was produced according to Example 1 using the positive electrode material (A8).
This lithium ion battery was evaluated according to Example 1. The charge / discharge characteristics are shown in FIG. 3, and the evaluation results are shown in Table 2.

「実施例9」
水熱合成の条件を170℃にて1時間とし、エチレングリコールを無添加とし、さらに、スラリー中の電極活物質粒子の粒度分布のD90/D10が14となるように、ボールミルの撹拌時間を調整した他は、実施例1に準じて実施例9の正極材料(A9)を得た。得られた正極材料(A9)は、平均粒子径6μmの球状の凝集体であり、平均粒子径540nmの2次粒子同士が炭素を介して結合していることが確認された。
この正極材料(A9)の評価を実施例1に準じて行った。評価結果を表1に示す。
"Example 9"
The conditions for hydrothermal synthesis are set to 170 ° C. for 1 hour, ethylene glycol is not added, and the ball mill stirring time is adjusted so that the D90 / D10 of the particle size distribution of the electrode active material particles in the slurry is 14. The positive electrode material (A9) of Example 9 was obtained according to Example 1. The obtained positive electrode material (A9) was a spherical aggregate having an average particle diameter of 6 μm, and it was confirmed that secondary particles having an average particle diameter of 540 nm were bonded together via carbon.
Evaluation of this positive electrode material (A9) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(A9)を用い、実施例1に準じて実施例9のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。評価結果を表2に示す。
A lithium ion battery of Example 9 was produced according to Example 1 using the above positive electrode material (A9).
This lithium ion battery was evaluated according to Example 1. The evaluation results are shown in Table 2.

「実施例10」
鉄源となる硫酸鉄(II)(FeSO)の代わりに、マンガン源として硫酸マンガン(II)(MnSO)を用い、実施例1に準じて平均粒子径が50nmの単相のLiMnPOからなるケーキ状の電極活物質を得た。
次いで、この電極活物質142.5g(固形分換算)と、炭化剤としてポリビニルアルコール50gを水500gに溶解したポリビニルアルコール水溶液と、炭化触媒として酢酸リチウム、クエン酸鉄およびリン酸を、リン酸鉄リチウム換算で7.5gと、媒体粒子として直径5mmのジルコニアボール500gをボールミルに投入し、スラリー中の電極活物質粒子の粒度分布のD90/D10が7となるように、ボールミルの撹拌時間を調整し、分散処理を行った。
"Example 10"
Instead of iron sulfate (II) (FeSO 4 ) serving as an iron source, manganese sulfate (II) (MnSO 4 ) was used as a manganese source, and from a single-phase LiMnPO 4 having an average particle diameter of 50 nm according to Example 1. A cake-like electrode active material was obtained.
Next, 142.5 g of this electrode active material (in terms of solid content), an aqueous polyvinyl alcohol solution obtained by dissolving 50 g of polyvinyl alcohol as a carbonizing agent in 500 g of water, lithium acetate, iron citrate and phosphoric acid as a carbonization catalyst, iron phosphate 7.5 g in terms of lithium and 500 g of zirconia balls having a diameter of 5 mm as medium particles are put into a ball mill, and the ball mill agitation time is adjusted so that D90 / D10 of the particle size distribution of the electrode active material particles in the slurry is 7. And distributed processing.

次いで、得られたスラリーを実施例1に準じて処理し、実施例10のリチウムイオン電池用正極材料(A10)を得た。得られた正極材料(A10)は、平均粒子径6μmの球状の凝集体であり、平均粒子径65nmの2次粒子同士が炭素を介して結合していることが確認された。
この正極材料(A10)の評価を実施例1に準じて行った。評価結果を表1に示す。
Subsequently, the obtained slurry was processed according to Example 1, and the positive electrode material (A10) for lithium ion batteries of Example 10 was obtained. The obtained positive electrode material (A10) was a spherical aggregate having an average particle diameter of 6 μm, and it was confirmed that secondary particles having an average particle diameter of 65 nm were bonded together via carbon.
Evaluation of this positive electrode material (A10) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(A10)を用い、実施例1に準じて実施例10のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。評価結果を表2に示す。
A lithium ion battery of Example 10 was produced according to Example 1 using the positive electrode material (A10).
This lithium ion battery was evaluated according to Example 1. The evaluation results are shown in Table 2.

「実施例11」
鉄源となる硫酸鉄(II)(FeSO)の代わりに、マンガン源として硫酸マンガン(II)(MnSO)を用い、実施例1に準じて平均粒子径が50nmの単相のLiMnPOからなるケーキ状の電極活物質を得た。
次いで、この電極活物質142.5g(固形分換算)と、炭化剤としてポリビニルアルコール50gを水500gに溶解したポリビニルアルコール水溶液と、炭化触媒として酢酸リチウム、クエン酸鉄およびリン酸を、リン酸鉄リチウム換算で7.5gと、媒体粒子として直径5mmのジルコニアボール500gをボールミルに投入し、スラリー中の電極活物質粒子の粒度分布のD90/D10が27となるように、ボールミルの撹拌時間を調整し、分散処理を行った。
"Example 11"
Instead of iron sulfate (II) (FeSO 4 ) serving as an iron source, manganese sulfate (II) (MnSO 4 ) was used as a manganese source, and from a single-phase LiMnPO 4 having an average particle diameter of 50 nm according to Example 1. A cake-like electrode active material was obtained.
Next, 142.5 g of this electrode active material (in terms of solid content), an aqueous polyvinyl alcohol solution obtained by dissolving 50 g of polyvinyl alcohol as a carbonizing agent in 500 g of water, lithium acetate, iron citrate and phosphoric acid as a carbonization catalyst, iron phosphate 7.5 g in terms of lithium and 500 g of zirconia balls having a diameter of 5 mm as medium particles are charged into a ball mill, and the ball mill agitation time is adjusted so that D90 / D10 of the particle size distribution of the electrode active material particles in the slurry is 27. And distributed processing.

次いで、得られたスラリーを実施例1に準じて処理し、実施例11のリチウムイオン電池用正極材料(A11)を得た。得られた正極材料(A11)は、平均粒子径6μmの球状の凝集体であり、平均粒子径100nmの2次粒子同士が炭素を介して結合していることが確認された。
この正極材料(A11)の評価を実施例1に準じて行った。評価結果を表1に示す。
Subsequently, the obtained slurry was processed according to Example 1, and the positive electrode material (A11) for lithium ion batteries of Example 11 was obtained. The obtained positive electrode material (A11) was a spherical aggregate having an average particle diameter of 6 μm, and it was confirmed that secondary particles having an average particle diameter of 100 nm were bonded to each other through carbon.
Evaluation of this positive electrode material (A11) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(A11)を用い、実施例1に準じて実施例11のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。評価結果を表2に示す。
A lithium ion battery of Example 11 was produced according to Example 1 using the positive electrode material (A11).
This lithium ion battery was evaluated according to Example 1. The evaluation results are shown in Table 2.

「比較例1」
エチレングリコールを無添加とし、スラリー中の電極活物質粒子の粒度分布のD90/D10が3となるように、ボールミルの撹拌時間を調整した他は、実施例1に準じて比較例1の正極材料(B1)を得た。得られた正極材料(B1)は、平均粒子径6μmの凝集体であり、平均粒子径230nmの1次粒子同士が炭素を介して結合しており、炭素によって結合された2次粒子はほぼ存在していないことが確認された。
この正極材料(B1)の評価を実施例1に準じて行った。評価結果を表1に示す。
"Comparative Example 1"
The positive electrode material of Comparative Example 1 according to Example 1, except that ethylene glycol was not added and the stirring time of the ball mill was adjusted so that D90 / D10 of the particle size distribution of the electrode active material particles in the slurry was 3. (B1) was obtained. The obtained positive electrode material (B1) is an aggregate having an average particle diameter of 6 μm, primary particles having an average particle diameter of 230 nm are bonded to each other through carbon, and secondary particles bonded by carbon are almost present. It was confirmed that they did not.
Evaluation of this positive electrode material (B1) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(B1)を用い、実施例1に準じて比較例1のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。充放電特性を図3及び図4に、評価結果を表2に、それぞれ示す。
A lithium ion battery of Comparative Example 1 was produced according to Example 1 using the positive electrode material (B1).
This lithium ion battery was evaluated according to Example 1. The charge / discharge characteristics are shown in FIGS. 3 and 4, and the evaluation results are shown in Table 2.

実施例12
水熱合成の条件を230℃にて1時間とし、エチレングリコールを無添加とした他は、実施例1に準じて実施例12の正極材料(A12)を得た。得られた正極材料(A12)は、平均粒子径6μmの球状の凝集体であり、平均粒子径920nmの2次粒子同士が炭素を介して結合していることが確認された。
この正極材料(A12)の評価を実施例1に準じて行った。評価結果を表1に示す。
" Example 12 "
The positive electrode material ( A12 ) of Example 12 was obtained in the same manner as in Example 1 except that hydrothermal synthesis was performed at 230 ° C. for 1 hour and ethylene glycol was not added. The obtained positive electrode material ( A12 ) was a spherical aggregate having an average particle diameter of 6 μm, and it was confirmed that secondary particles having an average particle diameter of 920 nm were bonded to each other through carbon.
Evaluation of this positive electrode material ( A12 ) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(A12)を用い、実施例1に準じて実施例12のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。評価結果を表2に示す。
A lithium ion battery of Example 12 was produced according to Example 1 using the positive electrode material ( A12 ).
This lithium ion battery was evaluated according to Example 1. The evaluation results are shown in Table 2.

「比較例3」
実施例1に準じて作製された正極材料(A1)150g(固形分換算)と、水200gと、媒体粒子として直径5mmのジルコニアボール500gをボールミルに投入し、スラリー中の電極活物質粒子の粒度分布のD90/D10が3以下になるまで粉砕し、炭素質被覆された電極活物質粒子からなるスラリーを得た。
“Comparative Example 3”
150 g of the positive electrode material (A1) prepared according to Example 1 (in terms of solid content), 200 g of water, and 500 g of zirconia balls having a diameter of 5 mm as medium particles are put into a ball mill, and the particle size of the electrode active material particles in the slurry Grinding was performed until D90 / D10 of the distribution became 3 or less, and a slurry composed of carbon-coated electrode active material particles was obtained.

このスラリーから若干量の試料を採取し、この試料を透過型電子顕微鏡(TEM)を用いて観察したところ、炭素質被膜により表面を被覆された平均粒子径が230nmの微細な板状粒子が主成分であり、炭素により結合された2次粒子は、ほぼ存在していないことが確認された。
次いで、このスラリーを180℃の大気雰囲気中に噴霧し乾燥して、乾燥物を得た。次いで、得られた乾燥物を窒素(N)ガスからなる不活性雰囲気下、700℃にて30分間焼成し、比較例3のリチウムイオン電池用正極材料(B3)を得た。
A small amount of sample was collected from this slurry and observed with a transmission electron microscope (TEM). As a result, fine plate-like particles having an average particle size of 230 nm whose surface was covered with a carbonaceous film were mainly used. It was confirmed that secondary particles, which are components and bonded by carbon, were almost absent.
Next, the slurry was sprayed into an air atmosphere at 180 ° C. and dried to obtain a dried product. Next, the obtained dried product was baked at 700 ° C. for 30 minutes under an inert atmosphere made of nitrogen (N 2 ) gas to obtain a positive electrode material (B3) for lithium ion battery of Comparative Example 3.

得られた正極材料(B3)は、平均粒子径6μmの凝集体であり、炭素質被膜により表面を被覆された平均粒子径が230nmの1次粒子が凝集しており、1次粒子間には炭素による結合は認められなかった。
この正極材料(B3)の評価を実施例1に準じて行った。評価結果を表1に示す。
The obtained positive electrode material (B3) is an aggregate having an average particle diameter of 6 μm, and primary particles having an average particle diameter of 230 nm coated on the surface with a carbonaceous film are aggregated. Bonding by carbon was not recognized.
Evaluation of this positive electrode material (B3) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(B3)を用い、実施例1に準じて比較例3のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。充放電特性を図4に、評価結果を表2に、それぞれ示す。
A lithium ion battery of Comparative Example 3 was produced according to Example 1 using the positive electrode material (B3).
This lithium ion battery was evaluated according to Example 1. The charge / discharge characteristics are shown in FIG. 4, and the evaluation results are shown in Table 2.

「比較例4」
鉄源となる硫酸鉄(II)(FeSO)の代わりに、マンガン源として硫酸マンガン(II)(MnSO)を用い、実施例1に準じて平均粒子径が50nmの単相のLiMnPOからなるケーキ状の電極活物質を得た。
次いで、この電極活物質142.5g(固形分換算)と、炭化剤としてポリビニルアルコール50gを水500gに溶解したポリビニルアルコール水溶液と、炭化触媒として酢酸リチウム、クエン酸鉄およびリン酸を、リン酸鉄リチウム換算で7.5gと、媒体粒子として直径5mmのジルコニアボール500gをボールミルに投入し、スラリー中の電極活物質粒子の粒度分布のD90/D10が3となるように、ボールミルの撹拌時間を調整し、分散処理を行った。
“Comparative Example 4”
Instead of iron sulfate (II) (FeSO 4 ) serving as an iron source, manganese sulfate (II) (MnSO 4 ) was used as a manganese source, and from a single-phase LiMnPO 4 having an average particle diameter of 50 nm according to Example 1. A cake-like electrode active material was obtained.
Next, 142.5 g of this electrode active material (in terms of solid content), an aqueous polyvinyl alcohol solution obtained by dissolving 50 g of polyvinyl alcohol as a carbonizing agent in 500 g of water, lithium acetate, iron citrate and phosphoric acid as a carbonization catalyst, iron phosphate 7.5 g in terms of lithium and 500 g of zirconia balls having a diameter of 5 mm as media particles are put into a ball mill, and the stirring time of the ball mill is adjusted so that the D90 / D10 of the particle size distribution of the electrode active material particles in the slurry is 3. And distributed processing.

次いで、得られたスラリーを実施例1に準じて処理し、比較例4のリチウムイオン電池用正極材料(B4)を得た。得られた正極材料(B4)は、平均粒子径6μmの球状の凝集体であり、平均粒子径52nmの1次粒子同士が炭素を介して結合しており、炭素によって結合された2次粒子はほぼ存在していないことが確認された。
この正極材料(B4)の評価を実施例1に準じて行った。評価結果を表1に示す。
Subsequently, the obtained slurry was processed according to Example 1, and the positive electrode material (B4) for lithium ion batteries of Comparative Example 4 was obtained. The obtained positive electrode material (B4) is a spherical aggregate having an average particle diameter of 6 μm, primary particles having an average particle diameter of 52 nm are bonded to each other through carbon, and secondary particles bonded by carbon are It was confirmed that there was almost no existence.
Evaluation of this positive electrode material (B4) was performed according to Example 1. The evaluation results are shown in Table 1.

上記の正極材料(B4)を用い、実施例1に準じて比較例4のリチウムイオン電池を作製した。
このリチウムイオン電池の評価を実施例1に準じて行った。評価結果を表2に示す。
A lithium ion battery of Comparative Example 4 was produced according to Example 1 using the positive electrode material (B4).
This lithium ion battery was evaluated according to Example 1. The evaluation results are shown in Table 2.

以上の評価結果によれば、実施例1〜12は、比較例1,3,4と比べて、正極の内部抵抗が低下しており、電池容量も向上しており、しかも、高速充放電特性に優れていることが分かった。 According to the above evaluation results, in Examples 1 to 12 , the internal resistance of the positive electrode is reduced, the battery capacity is improved, and the high-speed charge / discharge characteristics are compared with Comparative Examples 1 , 3 and 4. It turned out to be excellent.

本発明の正極材料は、電極活物質の1次粒子と電極活物質の1次粒子が凝集した2次粒子との混合物がさらに凝集した凝集体であり、1次粒子及び2次粒子は炭素質被膜にて被覆されており、この凝集体は、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下の体積密度を有する多孔性の凝集体を含有したことにより、表面積を大きくすることでリチウムイオンの挿入脱離反応を十分に得ることができ、かつ電極活物質の1次粒子の内部を拡散するリチウムイオンの移動距離、及びこの1次粒子の内部を移動する電子の移動距離を短縮することができるものであるから、リチウムイオン電池のさらなる放電特性の向上が可能なのはもちろんのこと、より小型化、軽量化、高容量化が期待される次世代の二次電池に対しても適用することが可能であり、次世代の二次電池の場合、その効果は非常に大きなものである。   The positive electrode material of the present invention is an aggregate obtained by further agglomerating a mixture of primary particles of the electrode active material and secondary particles obtained by aggregating the primary particles of the electrode active material. The primary particles and the secondary particles are carbonaceous. The aggregate is covered with a film, and the aggregate contains a porous aggregate having a volume density of 50 volume% or more and 80 volume% or less of the volume density when the aggregate is solid. By increasing the surface area, lithium ion insertion / desorption reaction can be sufficiently obtained, and the movement distance of lithium ions diffusing inside the primary particles of the electrode active material, and the movement inside the primary particles Therefore, it is possible to improve the discharge characteristics of lithium-ion batteries as well as the next generation, which is expected to be smaller, lighter, and higher in capacity. Next battery And it is also possible to apply, for a next-generation secondary battery, the effect is very large.

1 リチウムイオン電池用正極材料
2 電極活物質の1次粒子
3 2次粒子
4 炭素質被膜
5 頸部状結合部
6 細孔
DESCRIPTION OF SYMBOLS 1 Positive electrode material for lithium ion batteries 2 Primary particle of electrode active material 3 Secondary particle 4 Carbonaceous film 5 Neck-like joint 6 Pore

Claims (6)

電極活物質の1次粒子と前記電極活物質の1次粒子が凝集した2次粒子との混合物がさらに凝集した凝集体であり、
前記1次粒子及び前記2次粒子は膜厚が均一な炭素質被膜にて被覆されており、
前記凝集体は、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下の体積密度を有する多孔性の凝集体を含有してなり、
前記電極活物質は、オリビン構造を有するリン酸塩であり、
前記多孔性の凝集体において、前記1次粒子の間、前記2次粒子の間、前記1次粒子と前記2次粒子との間は、それぞれ前記炭素質被膜の一部が頸部状化した頸部状結合部により結合されるとともに、これらの間の隙間はリチウムイオンの拡散浸透が可能な細孔が形成されており、
前記1次粒子の平均粒子径は0.03μm以上かつ0.5μm以下であることを特徴とするリチウムイオン電池用正極材料。
A mixture of primary particles of the electrode active material and secondary particles obtained by agglomerating the primary particles of the electrode active material is an aggregate obtained by further agglomeration;
The primary particles and the secondary particles are coated with a carbonaceous film having a uniform film thickness ,
The aggregate contains a porous aggregate having a volume density of 50% by volume or more and 80% by volume or less of a volume density when the aggregate is solid,
The electrode active material, Ri phosphate der having an olivine structure,
In the porous aggregate, a part of the carbonaceous film is necked between the primary particles, between the secondary particles, and between the primary particles and the secondary particles. While being joined by the neck-like joint, pores capable of diffusing and penetrating lithium ions are formed in the gap between them,
The positive electrode material for a lithium ion battery, wherein the primary particles have an average particle size of 0.03 μm or more and 0.5 μm or less .
前記凝集体は、表面が炭素質被膜にて被覆された前記1次粒子が凝集してなる中実の2次粒子を含有してなることを特徴とする請求項1記載のリチウムイオン電池用正極材料。 2. The lithium ion battery according to claim 1 , wherein the aggregate includes solid secondary particles obtained by agglomerating the primary particles whose surfaces are coated with a carbonaceous film. Positive electrode material. 水銀圧入法により測定した累積細孔径分布の50%における数平均細孔径(D50)は10nm以上かつ300nm以下であることを特徴とする請求項1または2に記載のリチウムイオン電池用正極材料。 The positive electrode material for a lithium ion battery according to claim 1 or 2 carbon average pore size at 50% of the cumulative pore size distribution (D50) is characterized by at 10nm or more and 300nm or less as measured by mercury porosimetry. 前記凝集体の外周部における前記炭素質被膜の平均膜厚A及び該凝集体の中心部における前記炭素質被膜の平均膜厚Bは、下記式(1)
0.7≦B/A≦1.3 ……(1)
を満たすことを特徴とする請求項1ないしのいずれか1項記載のリチウムイオン電池用正極材料。
The average film thickness A of the carbonaceous film at the outer periphery of the aggregate and the average film thickness B of the carbonaceous film at the center of the aggregate are expressed by the following formula (1).
0.7 ≦ B / A ≦ 1.3 (1)
It claims 1 and satisfies a to the positive electrode material for a lithium ion battery according to any one of 3.
請求項1ないしのいずれか1項記載のリチウムイオン電池用正極材料を正極層に含有してなることを特徴とするリチウムイオン電池用正極。 A positive electrode for a lithium ion battery comprising the positive electrode material for a lithium ion battery according to any one of claims 1 to 4 in a positive electrode layer. 請求項記載のリチウムイオン電池用正極を備えてなることを特徴とするリチウムイオン電池。 A lithium ion battery comprising the positive electrode for a lithium ion battery according to claim 5 .
JP2012058746A 2012-03-15 2012-03-15 Positive electrode material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery Active JP5821722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058746A JP5821722B2 (en) 2012-03-15 2012-03-15 Positive electrode material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058746A JP5821722B2 (en) 2012-03-15 2012-03-15 Positive electrode material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery

Publications (2)

Publication Number Publication Date
JP2013191516A JP2013191516A (en) 2013-09-26
JP5821722B2 true JP5821722B2 (en) 2015-11-24

Family

ID=49391539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058746A Active JP5821722B2 (en) 2012-03-15 2012-03-15 Positive electrode material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery

Country Status (1)

Country Link
JP (1) JP5821722B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101607013B1 (en) 2013-09-30 2016-03-28 주식회사 엘지화학 Coating solution for positive electrode material of secondary battery and method for manufacturing the same
KR101636148B1 (en) * 2013-09-30 2016-07-04 주식회사 엘지화학 Positive electrode material for secondary battery, manufactuing method of the same and positive electrode for lithiium secondary battery comprising the same
KR101665766B1 (en) * 2013-09-30 2016-10-12 주식회사 엘지화학 Positive electrode material for secondary battery and manufacturing method of the same
JP6407515B2 (en) * 2013-10-04 2018-10-17 株式会社東芝 Positive electrode active material, non-aqueous electrolyte secondary battery, battery pack and vehicle
JP6332540B1 (en) * 2017-09-29 2018-05-30 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP7010402B1 (en) * 2021-03-31 2022-01-26 住友大阪セメント株式会社 Positive Material for Lithium Ion Secondary Battery, Positive Positive for Lithium Ion Secondary Battery, Lithium Ion Secondary Battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4043852B2 (en) * 2002-06-07 2008-02-06 住友大阪セメント株式会社 Method for producing electrode material
EP2065887A1 (en) * 2007-11-30 2009-06-03 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing magnetic disk unit
TWI369019B (en) * 2007-12-27 2012-07-21 Ind Tech Res Inst Cathodal materials for lithium cells, methods for fabricating the same, and lithium secondary cells using the same
JP5760871B2 (en) * 2011-09-05 2015-08-12 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2013191516A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5621740B2 (en) Electrode material, electrode, and method for producing electrode material
WO2012081383A1 (en) Electrode material and method for producing same
JP5861661B2 (en) Electrode material, electrode and lithium ion battery
TW201335067A (en) Electrode material, electrode board and lithium ion battery, and method of manufacturing electrode material and electrode board
JP5821722B2 (en) Positive electrode material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
WO2013146168A1 (en) Electrode material
JP2015060799A (en) Electrode material for lithium ion battery and method for producing the same, electrode for lithium ion battery, and lithium ion battery
JP2012133888A (en) Electrode material and method of manufacturing the same
JP2014216240A (en) Electrode active material and electrode material, electrode, lithium ion battery, and method for producing electrode material
JP6077205B2 (en) Electrode material and manufacturing method thereof
WO2014030691A1 (en) Electrode material, electrode paste for lithium ion cell, electrode for lithium ion cell, and lithium ion cell
JP6841362B1 (en) Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries and lithium ion secondary batteries
JP6617312B2 (en) Electrode for lithium ion secondary battery, lithium ion secondary battery
JP5790745B2 (en) ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
JP6501014B1 (en) Positive electrode material for lithium ion secondary battery, method for producing the same, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6332539B1 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP2014179292A (en) Electrode material, method for manufacturing the same, and electrode, and lithium ion battery
JP5861650B2 (en) Electrode material, electrode and lithium ion battery
JP2011216233A (en) Electrode material and film
JP6725022B1 (en) Positive electrode material for lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP5783295B2 (en) Electrode material, paste, electrode plate and lithium ion battery
JP2015069822A (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6197202B2 (en) Electrode material and membrane
JP6648848B1 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP6497461B1 (en) Electrode material for lithium ion secondary battery, electrode material granule for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140716

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140730

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R150 Certificate of patent or registration of utility model

Ref document number: 5821722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350