JP5820177B2 - Measuring method of meshing vibration force - Google Patents

Measuring method of meshing vibration force Download PDF

Info

Publication number
JP5820177B2
JP5820177B2 JP2011159738A JP2011159738A JP5820177B2 JP 5820177 B2 JP5820177 B2 JP 5820177B2 JP 2011159738 A JP2011159738 A JP 2011159738A JP 2011159738 A JP2011159738 A JP 2011159738A JP 5820177 B2 JP5820177 B2 JP 5820177B2
Authority
JP
Japan
Prior art keywords
meshing
gear
load
vibration
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011159738A
Other languages
Japanese (ja)
Other versions
JP2013024723A (en
Inventor
俊樹 廣垣
俊樹 廣垣
栄一 青山
栄一 青山
裕太 森本
裕太 森本
康弘 上西
康弘 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Doshisha
Original Assignee
Daihatsu Motor Co Ltd
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Doshisha filed Critical Daihatsu Motor Co Ltd
Priority to JP2011159738A priority Critical patent/JP5820177B2/en
Publication of JP2013024723A publication Critical patent/JP2013024723A/en
Application granted granted Critical
Publication of JP5820177B2 publication Critical patent/JP5820177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ギヤユニットにおいて生じる噛み合い起振力の測定方法に関する。   The present invention relates to a method for measuring a meshing excitation force generated in a gear unit.

近年、自動車における車室内の静粛性の更なる向上を図るべく、動力伝達系に用いられる各種ギヤユニットのギヤノイズに対する低減要求が厳しくなっている。ギヤノイズの低減化対策を講じるためには、ギヤノイズが発生する原因の解明及び評価をこれまで以上に正確かつ詳細に行う必要がある。   In recent years, in order to further improve the quietness of the interior of a vehicle in an automobile, there is an increasing demand for reduction of gear noise of various gear units used in a power transmission system. In order to take measures to reduce gear noise, it is necessary to elucidate and evaluate the cause of the occurrence of gear noise more accurately and in detail than before.

ギヤノイズの評価手法に関連する技術としては、例えば下記特許文献1に示すギヤの噛み合わせ検査方法がある。これは、振動センサによって、駆動ギヤと従動ギヤとを噛み合わせて回転させることにより発生する振動を検出し、検出結果に対してFFT等の演算処理をさらに施すことでギヤの良否判定を行うものである。   As a technique related to the gear noise evaluation method, for example, there is a gear meshing inspection method disclosed in Patent Document 1 below. This is to detect the vibration generated by meshing and rotating the drive gear and the driven gear by the vibration sensor, and to perform the pass / fail judgment of the gear by further performing arithmetic processing such as FFT on the detection result. It is.

ところで、ギヤは、歯が一定の位置で断続的に噛み合うことで動力伝達等の役割を果たすものであるが、噛み合いを生じるギヤの歯面位置は、実際には、ギヤの寸法誤差や組付け誤差あるいはギヤ自身の弾性変形のために、本来あるべき位置とは異なる位置に存在することが少なくない。その結果、ギヤ間で等速運動が伝達されず、被駆動ギヤ(従動ギヤ)は駆動ギヤに対して何かしらの回転位相の進み又は遅れを生じる。この回転位相の進み又は遅れ(噛み合い伝達誤差とも呼ばれる。)が、ギヤユニットにおいてギヤを噛み合わせて回転駆動した際に生じる振動の原因とされている。従って、ギヤノイズを正確に評価するのであれば、振動量ではなく、その発生原因となるギヤの噛み合いにより生じる起振力(噛み合い力ともいう。)を正確に評価することが重要と考えられる。   By the way, the gear plays a role such as power transmission by intermittently engaging the teeth at a certain position. However, the tooth surface position of the gear that causes the engagement is actually a dimensional error of the gear or assembly. Due to errors or elastic deformation of the gear itself, it is often present at a position different from the position where it should be. As a result, constant speed motion is not transmitted between the gears, and the driven gear (driven gear) causes some advance or delay of the rotational phase with respect to the drive gear. This advance or delay of the rotational phase (also referred to as meshing transmission error) is a cause of vibration that occurs when the gear unit meshes and rotates. Therefore, if gear noise is accurately evaluated, it is considered important to accurately evaluate not the amount of vibration but the vibration force (also referred to as meshing force) generated by the meshing of the gear that causes the generation.

下記特許文献1に記載の検査方法は、あくまでもギヤの噛み合い時に発生する振動を検出するものであるから、その発生原因となる噛み合い起振力を適切に評価しているとは言い難い。また、この方法では、噛み合い挙動に起因する振動以外の振動も同時に検出することになるため、検出結果の信頼性、正確性に欠ける問題もある。   The inspection method described in Patent Document 1 below detects vibrations generated at the time of meshing of gears, and it is difficult to say that the meshing vibration force that is the cause of occurrence is properly evaluated. In addition, this method also detects vibrations other than vibrations caused by the meshing behavior at the same time, so there is a problem that the detection result is not reliable and accurate.

ここで、下記非特許文献1〜4には、ギヤの噛み合い起振力に関する理論式が提案されている。これは、互いに噛み合うギヤ対において、相対ねじり振動を噛み合い作用線上の直線運動に置き換えることで導出された振動方程式であり、この振動方程式を解くことで、ばね剛性変化による起振力と、歯面誤差による起振力の総和としての噛み合い起振力を導出することが理論上可能となる。   Here, the following non-patent documents 1 to 4 propose theoretical formulas related to gear meshing vibrations. This is the vibration equation derived by replacing the relative torsional vibration with the linear motion on the meshing action line in the gear pair meshing with each other. By solving this vibration equation, the vibration force due to the spring stiffness change and the tooth surface It is theoretically possible to derive the meshing excitation force as the sum of the excitation forces due to errors.

特開平9−61300号公報JP-A-9-61300

久保愛三、梅澤清彦、「誤差をもつ円筒歯車の荷重伝達特性に関する研究(第1報、基礎的考察)」、日本機械学会論文集(第3部)、1997年、43巻、371号、p.2771−2783Kuzo Aizo and Umezawa Kiyohiko, “Study on Load Transmission Characteristics of Cylindrical Gears with Errors (1st Report, Basic Considerations)”, Transactions of the Japan Society of Mechanical Engineers (Part 3), 1997, Vol. 43, 371, p. 2771-2783 小川侑一、松村茂樹、北條春夫、佐藤太一、梅澤清彦、「歯すじ方向誤差を考慮した平歯車の回転方向振動挙動の解析」、日本機械学会論文集(C編)、1999年、65巻、634号、p.2486−2493Junichi Ogawa, Shigeki Matsumura, Haruo Kitajo, Taichi Sato, Kiyohiko Umezawa, “Analysis of rotational vibration behavior of spur gears considering tooth direction error”, Transactions of the Japan Society of Mechanical Engineers (C), 1999, Volume 65 634, p. 2486-2493 梅澤清彦、佐藤太一、石川二郎、「平歯車の回転方向振動のシミュレーション」、日本機械学会論文集(C編)、1983年、49巻、411号、p.794−802Umezawa Kiyohiko, Sato Taichi, Ishikawa Jiro, “Simulation of Spur Gear Rotational Vibration”, Transactions of the Japan Society of Mechanical Engineers (C), 1983, 49, 411, p. 794-802 松村茂樹、梅澤清彦、北條春夫、「誤差を考慮したはすば歯車の軽負荷における回転方向振動解析(第3報、歯すじ方向誤差と振動性能曲線)」、日本機械学会論文集(C編)、1996年、62巻、603号、p.4315−4323Shigeki Matsumura, Kiyohiko Umezawa, Haruo Kitajo, “Rotational vibration analysis of helical gears under light load considering errors (3rd report, tooth trace direction error and vibration performance curve)”, Transactions of the Japan Society of Mechanical Engineers (C) ), 1996, 62, 603, p. 4315-4323

このように、上記非特許文献1〜4に記載の理論式を用いれば、噛み合い起振力をコンピュータ等を用いて計算により求めることもできるが、この方法で求めた値はあくまで理論値であり、環境因子やその他の因子を考慮に入れて算出したものではない。また、上述の因子もその時々で変動する不確定な要素であるから、仮にこれらの因子を考慮に入れて理論値を求めたとしても、不確定な要素を加味して算出した値となり信頼性に欠ける。   Thus, if the theoretical formulas described in Non-Patent Documents 1 to 4 are used, the meshing excitation force can be obtained by calculation using a computer or the like, but the values obtained by this method are theoretical values only. It is not calculated considering environmental factors and other factors. In addition, since the above factors are also uncertain factors that change from time to time, even if these factors are taken into account and the theoretical values are calculated, the values are calculated with the uncertain factors taken into account. Lack.

上述した理由から、噛み合い起振力を正確に評価するには、当該起振力を直接測定することが最も望ましいと考えられる。しかしながら、この種の起振力は、噛み合い回転を生じるギヤ対の間で生じることから、上記起振力を直接測定することは非常に困難である。例えば振動ピックアップやレーザドップラを用いることで回転方向の振動成分を測定することができ、またエンコーダを用いることで回転方向の変位量を測定することもできるが、これらは何れもギヤの噛み合い挙動を間接的に評価しているに過ぎない。   For the reasons described above, it is considered most desirable to directly measure the meshing vibration force in order to accurately evaluate the meshing vibration force. However, since this kind of vibration force is generated between gear pairs that cause meshing rotation, it is very difficult to directly measure the vibration force. For example, the vibration component in the rotation direction can be measured by using a vibration pickup or a laser Doppler, and the displacement amount in the rotation direction can also be measured by using an encoder. It is only indirectly evaluated.

以上の事情に鑑み、本明細書では、ギヤの噛み合い時に生じる噛み合い起振力を正確に評価することを、本発明により解決すべき技術的課題とする。   In view of the above circumstances, in this specification, it is a technical problem to be solved by the present invention to accurately evaluate the meshing excitation force generated when the gears are meshed.

前記課題の解決は、本発明に係る噛み合い起振力の測定方法により達成される。すなわち、この測定方法は、駆動ギヤと、駆動ギヤと噛み合うことで回転する従動ギヤと、従動ギヤと噛み合う固定ギヤとを有するギヤユニットにおいて生じる噛み合い起振力を測定する方法であって、固定ギヤの側に、固定ギヤに作用した荷重を測定する荷重測定手段が配設され、駆動ギヤと従動ギヤとの噛み合い回転により噛み合い起振力が生じた際に、従動ギヤを介して固定ギヤに作用する荷重を荷重測定手段で測定する荷重測定工程と、従動ギヤの噛み合い挙動を直進回転運動にモデル化して、噛み合い起振力を荷重の関数として規定する荷重関数規定工程と、荷重関数規定工程で規定した荷重の関数を用いて、荷重測定工程で測定した荷重から噛み合い起振力を算出する噛み合い起振力算出工程とを具備し、荷重関数規定工程において、荷重の関数は、噛み合い挙動のモデル化によって得られる従動ギヤの直進運動に係る運動方程式と、従動ギヤの回転運動に係る運動方程式、及び従動ギヤの加速度と角加速度との関係式の少なくとも一つに基づいて規定される点をもって特徴付けられる。 The solution to the above-described problem is achieved by the method for measuring the meshing excitation force according to the present invention. That is, this measurement method is a method for measuring a meshing excitation force generated in a gear unit having a drive gear, a driven gear that rotates by meshing with the drive gear, and a fixed gear that meshes with the driven gear. A load measuring means for measuring the load acting on the fixed gear is disposed on the side of the fixed gear, and when the meshing vibration is generated by the meshing rotation of the drive gear and the driven gear, it acts on the fixed gear via the driven gear. A load measuring process that measures the load to be measured by a load measuring means, a load function defining process that models the meshing behavior of the driven gear as a linearly rotating motion, and defining the meshing excitation force as a function of the load, and a load function defining process using a function defined by the load, provided with a mesh excitation force calculation step for calculating a vibratory force engagement from the load measured by the load measuring step, the weighting function defined step The function of the load is at least one of the equation of motion related to the linear motion of the driven gear obtained by modeling the meshing behavior, the equation of motion related to the rotational motion of the driven gear, and the relational equation between the acceleration and angular acceleration of the driven gear. Characterized with points defined based on one .

本発明者らは、ギヤの噛み合い回転により生じる噛み合い起振力を精度良く測定することが可能な新たな測定方法を確立するに至った。すなわち、本発明者らは、例えば遊星ギヤユニットに代表されるように、接地側の固定ギヤが存在するギヤユニットにおいては、噛み合い起振力の発生と同時にこの起振力の反力ともいうべき力が従動ギヤを介して減衰等することなく固定ギヤに伝達される点に着目し、この固定ギヤの側に荷重測定手段を配設すると共に、駆動ギヤと従動ギヤとの噛み合い時に従動ギヤを介して固定ギヤに作用する荷重を測定することで、噛み合い起振力のように可動部分に生じる荷重であっても安定して高精度に測定できることを知得するに至った。   The present inventors have established a new measurement method capable of accurately measuring the meshing vibration generated by the meshing rotation of the gear. That is, the present inventors, for example, represented by a planetary gear unit, in a gear unit in which a grounded fixed gear exists, should be referred to as a reaction force of the excitation force simultaneously with the generation of the meshing excitation force. Paying attention to the point that the force is transmitted to the fixed gear without being attenuated via the driven gear, a load measuring means is disposed on the fixed gear side, and the driven gear is engaged when the drive gear and the driven gear are engaged. By measuring the load acting on the fixed gear, it has come to be understood that even a load generated in the movable part such as the meshing vibration force can be measured stably and with high accuracy.

本発明は上記の知見に基づいて成されたものであり、駆動ギヤと従動ギヤとの噛み合い回転により噛み合い起振力が生じた際に、従動ギヤを介して固定ギヤに作用する荷重を固定ギヤの側に設けた荷重測定手段で測定し、予め取得しておいた噛み合い起振力と荷重との関係を用いて、測定した荷重から噛み合い起振力を算出することを特徴とする。このように噛み合い起振力の発生に伴い固定ギヤに作用する荷重を測定対象とすることで、実際に発生した噛み合い起振力の大きさを正確に反映した測定結果を得ることができる。また、他の物理的事象(変位、加速度など)を測定し、間接的に噛み合い起振力を評価する場合と比べて、信頼性の高い測定結果を得ることが可能となる。加えて、本発明では、上記荷重を、固定ギヤの側に設けた荷重測定手段で直接的に測定するようにしたので、減衰等による測定誤差の発生を回避して高精度な測定を安定的に行うことができる。   The present invention has been made based on the above knowledge, and when a meshing vibration is generated by meshing rotation of a drive gear and a driven gear, a load acting on the fixed gear via the driven gear is applied to the fixed gear. It is characterized in that the meshing vibration force is calculated from the measured load using the relationship between the meshing vibration force and the load, which is measured by a load measuring means provided on the side of the blade and acquired in advance. As described above, by measuring the load acting on the fixed gear as the meshing vibration force is generated, a measurement result that accurately reflects the magnitude of the meshing vibration force actually generated can be obtained. In addition, it is possible to obtain a measurement result with higher reliability as compared with the case where other physical events (displacement, acceleration, etc.) are measured and the meshing vibration force is indirectly evaluated. In addition, in the present invention, since the load is directly measured by the load measuring means provided on the fixed gear side, the occurrence of measurement error due to attenuation or the like is avoided, and highly accurate measurement is stably performed. Can be done.

また、本発明に係る噛み合い起振力の測定方法は、従動ギヤの噛み合い挙動を直進回転運動にモデル化して、噛み合い起振力を荷重の関数として規定する荷重関数規定工程をさらに具備するものであってもよく、この場合、噛み合い起振力算出工程において、荷重関数規定工程で規定した関数を用いて、荷重測定工程で測定した荷重から噛み合い起振力を算出するものであってもよい。   The method for measuring the meshing excitation force according to the present invention further includes a load function defining step of modeling the meshing behavior of the driven gear as a linearly rotating motion and defining the meshing excitation force as a function of the load. In this case, in the meshing excitation force calculation step, the meshing excitation force may be calculated from the load measured in the load measurement step using the function defined in the load function defining step.

ここで、上記運動モデルの一例を図面を参照して説明する。図4(b)は、噛み合い起振力の測定用運動モデルであって、図4(a)に示す遊星ギヤユニットにおける従動ギヤ22の噛み合い挙動を単純な直進回転運動モデルに置き換えたものである。ここで、従動ギヤ22の軸に作用する負荷をN、従動ギヤ22の質量をM、ピッチ円半径をr、駆動ギヤ21との噛み合い力、すなわち噛み合い起振力をF、噛み合い起振力Fが発生するのに伴い従動ギヤ22が固定ギヤ24(ここでは内歯ギヤ)から受ける抵抗力をfとした場合の運動方程式は、下記数式1及び数式2で表される。また、この種のギヤの直進回転運動の場合、数式3に示す関係が一般的に成立する。   Here, an example of the motion model will be described with reference to the drawings. FIG. 4B is a motion model for measuring the meshing excitation force, in which the meshing behavior of the driven gear 22 in the planetary gear unit shown in FIG. 4A is replaced with a simple linear rotational motion model. . Here, the load acting on the shaft of the driven gear 22 is N, the mass of the driven gear 22 is M, the pitch circle radius is r, the meshing force with the drive gear 21, that is, the meshing vibration force is F, the meshing vibration force F The equation of motion when f is the resistance force that the driven gear 22 receives from the fixed gear 24 (in this case, the internal gear) in accordance with the occurrence of the In addition, in the case of this type of linear movement of the gear, the relationship shown in Formula 3 is generally established.

Figure 0005820177
Figure 0005820177
Figure 0005820177
Figure 0005820177
Figure 0005820177
Figure 0005820177

ここで、数式3を数式2に代入すると、下記数式4が得られ、この数式4を数式1に代入すると、下記数式5が得られる。   Here, when Equation 3 is substituted into Equation 2, Equation 4 below is obtained, and when Equation 4 is substituted into Equation 1, Equation 5 below is obtained.

Figure 0005820177
Figure 0005820177
Figure 0005820177
Figure 0005820177

ここで、駆動ギヤ21の回転数を一定(各速度一定)とした場合、加速度は零となるため、数式5から数式6が導かれる。また、加速度が零の場合、数式2から数式7が導かれる。   Here, when the rotation speed of the drive gear 21 is constant (the speeds are constant), the acceleration is zero. Also, when the acceleration is zero, Expression 2 is derived from Expression 2.

Figure 0005820177
Figure 0005820177
Figure 0005820177
Figure 0005820177

よって、これら数式6と数式7から、噛み合い起振力Fを、従動ギヤが固定ギヤから受ける抵抗力fの関数(ここではF=f)で規定することができる。ここで、上記抵抗力fの反力が、固定ギヤ24に作用する力(荷重)であるとみなすことができるので、噛み合い起振力Fは、結果的に、噛み合い起振力Fの発生に伴い固定ギヤ24に作用する荷重f’(後述する図1を参照)の関数で規定することができる。   Therefore, from these formulas 6 and 7, the meshing excitation force F can be defined by a function (here, F = f) of the resistance force f received by the driven gear from the fixed gear. Here, since the reaction force of the resistance force f can be regarded as a force (load) acting on the fixed gear 24, the meshing vibration force F results in the generation of the meshing vibration force F. Accordingly, it can be defined by a function of a load f ′ (see FIG. 1 described later) acting on the fixed gear 24.

このように従動ギヤの噛み合い挙動を単純な運動モデルに置き換えて、噛み合い起振力を固定ギヤに作用する荷重の関数として規定することで、噛み合い起振力と上記荷重との関係を明確化及び単純化することができる。従って、上述のように測定した荷重を、簡便かつ信頼性の高い方法で噛み合い起振力に変換することができ、これにより噛み合い起振力をより精度良く測定することが可能となる。   By replacing the meshing behavior of the driven gear with a simple motion model and defining the meshing excitation force as a function of the load acting on the fixed gear, the relationship between the meshing excitation force and the load is clarified and It can be simplified. Therefore, the load measured as described above can be converted into a meshing vibration force by a simple and reliable method, and thereby the meshing vibration force can be measured with higher accuracy.

また、本発明に係る起振力測定方法は、駆動ギヤと従動ギヤには、駆動ギヤと従動ギヤの回転方向振動成分を測定する振動量測定手段がそれぞれ設けられ、振動量測定手段で測定された回転方向振動成分と、噛み合い起振力算出工程で得た噛み合い起振力とに基づき、駆動ギヤ、従動ギヤ、固定ギヤ相互間の各噛み合い起振力を評価するものであってもよい。   Further, in the method for measuring the excitation force according to the present invention, the driving gear and the driven gear are each provided with vibration amount measuring means for measuring the vibration component in the rotational direction of the driving gear and the driven gear, and measured by the vibration amount measuring means. The meshing vibration force between the drive gear, the driven gear, and the fixed gear may be evaluated based on the rotational direction vibration component and the meshing vibration force obtained in the meshing vibration force calculation step.

噛み合い起振力算出工程で得た噛み合い起振力の値は全てのギヤの噛み合いにより生じる噛み合い起振力の総和であるから、上述のように、各ギヤの回転方向振動成分の測定結果に基づいて、噛み合い起振力の算出値から各ギヤの噛み合い起振力を抽出、識別することにより、各々のギヤの噛み合い起振力を含めた個別の噛み合い挙動を適切に評価することが可能となる。   Since the value of the meshing vibration force obtained in the meshing vibration force calculation step is the sum of the meshing vibration forces generated by the meshing of all gears, as described above, based on the measurement result of the rotational vibration component of each gear. Thus, by extracting and identifying the meshing excitation force of each gear from the calculated value of the meshing excitation force, it becomes possible to appropriately evaluate the individual meshing behavior including the meshing excitation force of each gear. .

以上のように、本発明に係る噛み合い起振力の測定方法によれば、ギヤの噛み合い時に生じる噛み合い起振力を正確に評価することが可能となる。   As described above, according to the method for measuring the meshing vibration force according to the present invention, the meshing vibration force generated when the gears are meshed can be accurately evaluated.

本発明の一実施形態に係る噛み合い起振力の測定装置の正面図である。It is a front view of the measuring apparatus of the meshing excitation force which concerns on one Embodiment of this invention. 本発明に係る測定方法で得た噛み合い起振力の時間変動を示すグラフの一例である。It is an example of the graph which shows the time fluctuation of the meshing excitation force obtained with the measuring method which concerns on this invention. 本発明に係る測定方法で得た噛み合い起振力の時間変動を示すグラフの他の例である。It is another example of the graph which shows the time fluctuation of the meshing excitation force obtained with the measuring method which concerns on this invention. 噛み合い起振力を、固定ギヤに作用する荷重の関数として規定する過程の具体例を示すもので、(a)は測定対象となるギヤユニット、(b)は(a)に示すギヤユニットにおける従動ギヤの噛み合い挙動を直進回転運動に置き換えた場合の運動モデルを示す要部拡大正面図である。The specific example of the process which prescribes | engages meshing excitation force as a function of the load which acts on a fixed gear, (a) is the gear unit used as a measuring object, (b) is the driven in the gear unit shown to (a). It is a principal part enlarged front view which shows the movement model at the time of replacing the meshing | engagement behavior of a gear with a rectilinear rotational movement. 本発明に係る測定方法で噛み合い起振力を測定可能なギヤユニットの他の例を示す正面図である。It is a front view which shows the other example of the gear unit which can measure a meshing excitation force with the measuring method which concerns on this invention.

以下、本発明に係る噛み合い起振力の測定方法の一実施形態を図面に基づき説明する。この実施形態では、遊星ギヤユニットのサンギヤを駆動ギヤ、ピニオンギヤを従動ギヤ、内歯ギヤを固定ギヤとした場合に、駆動ギヤと従動ギヤとの噛み合いにより生じる噛み合い起振力を測定する場合を例にとって以下説明する。   Hereinafter, an embodiment of a method for measuring a meshing excitation force according to the present invention will be described with reference to the drawings. In this embodiment, when the sun gear of the planetary gear unit is a drive gear, the pinion gear is a driven gear, and the internal gear is a fixed gear, an example of measuring the meshing excitation force generated by the meshing of the drive gear and the driven gear is described. Will be described below.

図1は、本発明の一実施形態に係る噛み合い起振力の測定装置10の正面図を示している。この測定装置10は、測定対象となるギヤユニット20を組み込んでなるもので、後述する固定ギヤ24を接地側に固定するための接地側部材11に取付けられた荷重測定手段12と、この荷重測定手段12で測定した荷重f’から噛み合い起振力Fを算出するまでの一連の演算処理を行う演算装置13とを具備する。また、この実施形態で測定対象となるギヤユニット20は、いわゆるプラネタリ型の遊星ギヤユニットと呼ばれるもので、駆動ギヤ21と、駆動ギヤ21と噛み合い回転(自転ないし公転)する1又は2以上の従動ギヤ22と、従動ギヤ22を自転自在に支持し、かつ公転を案内するためのキャリヤ23と、従動ギヤ22と噛み合い、キャリヤ23と共に従動ギヤ22の公転を案内する固定ギヤ24とを有する。この図示例では、3個の従動ギヤ22が駆動ギヤ21及び固定ギヤ24と噛み合い回転可能に構成されている。   FIG. 1: has shown the front view of the measuring apparatus 10 of the meshing excitation force which concerns on one Embodiment of this invention. This measuring apparatus 10 is constructed by incorporating a gear unit 20 to be measured, and includes a load measuring means 12 attached to a ground side member 11 for fixing a fixed gear 24 to be described later to the ground side, and this load measurement. And a calculation device 13 that performs a series of calculation processes from the load f ′ measured by the means 12 to the calculation of the meshing vibration force F. The gear unit 20 to be measured in this embodiment is a so-called planetary planetary gear unit, and is a drive gear 21 and one or more driven gears that mesh with the drive gear 21 and rotate (rotate or revolve). It has a gear 22, a carrier 23 that supports the driven gear 22 so as to rotate freely and guides the revolution, and a fixed gear 24 that meshes with the driven gear 22 and guides the revolution of the driven gear 22 together with the carrier 23. In this illustrated example, three driven gears 22 are configured to mesh with the drive gear 21 and the fixed gear 24 so as to be rotatable.

荷重測定手段12は、図1に示すように、固定ギヤ24を接地側に固定するための接地側部材11に取り付けられ、あるいは固定ギヤ24に直接取り付けられる。荷重測定手段12としては種々のものが使用可能であり、例えばギヤの噛み合いに係る動荷重のように、高い振動レベル(例えば102〜104Hzオーダー)での検出に適した荷重測定手段(動荷重測定手段)が好適に使用される。ここで、好適な動荷重測定手段の一例として、圧電式ロードセル(特に水晶圧電式)を挙げることができる。なお、荷重測定手段12が、1軸方向の荷重を測定可能なタイプである場合、その荷重測定方向が環状をなす固定ギヤ24の周速方向に沿った向きとなるように荷重測定手段12を接地側部材11に取り付けるのがよい。なお、ここでいう「動荷重」とは、物体に働く力の大きさや向きが時間と共に変わる荷重のことをいい、衝撃荷重など、極めて短時間の間にその大きさが急激に変動する荷重を含む。 As shown in FIG. 1, the load measuring means 12 is attached to the ground side member 11 for fixing the fixed gear 24 to the ground side, or directly attached to the fixed gear 24. Various load measuring means 12 can be used. For example, a load measuring means suitable for detection at a high vibration level (for example, on the order of 10 2 to 10 4 Hz) such as a dynamic load related to meshing of gears. Dynamic load measuring means) is preferably used. Here, as an example of a suitable dynamic load measuring means, a piezoelectric load cell (particularly a quartz piezoelectric type) can be cited. When the load measuring means 12 is a type capable of measuring a load in one axis direction, the load measuring means 12 is set so that the load measuring direction is oriented along the circumferential speed direction of the fixed gear 24 having an annular shape. It is good to attach to the ground side member 11. The term “dynamic load” as used herein refers to a load whose magnitude and direction of force acting on an object change with time, such as an impact load, and a load whose magnitude rapidly changes in an extremely short time. Including.

演算装置13は、荷重測定手段12と電気的に接続され、荷重測定手段12で測定した荷重f’の値から噛み合い起振力Fを算出するまでの一連の演算処理を行うものである。すなわち、この演算装置13には、予め取得しておいた噛み合い起振力Fと、噛み合い起振力Fの発生に伴い固定ギヤ24に作用する荷重f’との関係が記憶されており、この関係を用いて荷重測定手段12で測定した荷重f’から噛み合い起振力Fを算出するプログラムを実行できるようになっている。ここで、記憶すべき噛み合い起振力Fとその発生時に固定ギヤ24に作用する荷重f’との関係として、例えば図4(b)に示す運動モデルを用いて噛み合い起振力Fを荷重f’の関数として規定する場合、演算装置13は、この関数を規定するためのプログラムを具備し、噛み合い時の駆動条件(回転数、キャリヤ23への負荷トルクなど)に応じて荷重f’の関数を規定できるようになっている。例えば駆動ギヤ21の回転数一定の場合、噛み合い起振力Fの大きさは、既述の通り、固定ギヤ24に作用する荷重f’の大きさに等しいものとして取り扱うことができる。これは、上述のように、実際の駆動条件下においては、非常に短い周期で噛み合い挙動が断続的に生じるために、このスパンにおいては加速度は実質的に零(回転数一定)とみなせることによる。   The arithmetic device 13 is electrically connected to the load measuring means 12 and performs a series of arithmetic processing until the meshing excitation force F is calculated from the value of the load f ′ measured by the load measuring means 12. That is, the arithmetic device 13 stores the relationship between the meshing vibration force F acquired in advance and the load f ′ acting on the fixed gear 24 when the meshing vibration force F is generated. A program for calculating the meshing vibration force F from the load f ′ measured by the load measuring means 12 using the relationship can be executed. Here, as the relationship between the meshing vibration force F to be memorized and the load f ′ acting on the fixed gear 24 when it is generated, the meshing vibration force F is applied to the load f using, for example, a motion model shown in FIG. In the case of defining as a function of ', the arithmetic unit 13 has a program for defining this function, and a function of the load f' according to the driving conditions (rotation speed, load torque to the carrier 23, etc.) at the time of meshing Can be defined. For example, when the rotational speed of the drive gear 21 is constant, the magnitude of the meshing excitation force F can be handled as being equal to the magnitude of the load f ′ acting on the fixed gear 24 as described above. This is because, as described above, since the meshing behavior occurs intermittently in a very short period under actual driving conditions, the acceleration can be regarded as substantially zero (constant rotational speed) in this span. by.

また、この実施形態では、駆動ギヤ21と各従動ギヤ22に、回転方向の振動成分を測定可能な振動量測定手段14が設けられている。振動量測定手段14で測定された各ギヤ21,22の回転方向振動成分は演算装置13に送られ、測定した荷重f’より算出した噛み合い起振力Fと照らし合わせることで、正確には、時間軸を一致させて、各ギヤ21,22の回転方向振動成分の時間変動成分と噛み合い起振力Fの時間変動成分とを重ね合わせることで、算出した噛み合い起振力Fの時間変動成分から、各ギヤ間(駆動ギヤ21と第1の従動ギヤ22、駆動ギヤ21と第2の従動ギヤ22、従動ギヤ22と固定ギヤ24など)の噛み合い起振力成分を個別に見出せるようになっている。なお、振動量測定手段14としては種々のもの(例えば、変位、速度、加速度の何れかを検出対象とするものや、測定対象と接触して使用するもの又は非接触で使用するもの)が使用でき、実使用条件下での測定優位性を考慮した場合、例えば加速度ピックアップが好適に使用される。   In this embodiment, the driving gear 21 and each driven gear 22 are provided with vibration amount measuring means 14 capable of measuring a vibration component in the rotational direction. The rotational direction vibration components of the gears 21 and 22 measured by the vibration amount measuring means 14 are sent to the arithmetic unit 13 and compared with the meshing excitation force F calculated from the measured load f ′. From the calculated time fluctuation component of the meshing vibration force F, the time fluctuation components of the gears 21 and 22 are overlapped with the time fluctuation component of the meshing vibration force F by making the time axes coincide. The meshing excitation force component between the gears (drive gear 21 and first driven gear 22, drive gear 21 and second driven gear 22, driven gear 22 and fixed gear 24, etc.) can be found individually. Yes. Various types of vibration amount measuring means 14 (for example, one that detects displacement, velocity, or acceleration, one that is used in contact with the object to be measured, or one that is used without contact) are used. In consideration of measurement superiority under actual use conditions, for example, an acceleration pickup is preferably used.

以下、上記構成の噛み合い起振力の測定装置10を用いたギヤユニット20の噛み合い起振力Fを測定する方法の一例を説明する。   Hereinafter, an example of a method for measuring the meshing vibration force F of the gear unit 20 using the meshing vibration force measuring device 10 having the above-described configuration will be described.

まず、噛み合い起振力Fの測定に先立って、噛み合い起振力Fと、当該起振力Fの発生に伴い固定ギヤ24に作用する荷重f’との関係を取得しておく。具体的には、図4(b)に例示の運動モデル及び上述の数式1〜7を用いて、従動ギヤ22に作用する噛み合い起振力Fを荷重f’の関数として規定し(荷重関数規定工程)、規定した荷重f’の関数を演算装置13に記憶しておく。   First, prior to the measurement of the meshing vibration force F, the relationship between the meshing vibration force F and the load f ′ acting on the fixed gear 24 when the vibration force F is generated is acquired. Specifically, the meshing vibration force F acting on the driven gear 22 is defined as a function of the load f ′ using the motion model illustrated in FIG. Step), the function of the specified load f ′ is stored in the arithmetic unit 13.

然る後、駆動ギヤ21の軸に連結されたモータ(図示は省略する)を駆動させて、駆動ギヤ21を回転させる。これにより、従動ギヤ22が駆動ギヤ21と1歯又は2歯で噛み合いを生じ、回転(自転、公転)を開始する。このとき、駆動ギヤ21と従動ギヤ22との間に噛み合い起振力Fが発生する。この力(噛み合い起振力F)は、従動ギヤ22を介して、従動ギヤ22と噛み合いを生じる固定ギヤ24に伝達されるので、固定ギヤ24の側に設けた荷重測定手段12により上記起振力Fの発生に伴い固定ギヤ24に作用する荷重f’を測定する(荷重測定工程)。   Thereafter, a motor (not shown) connected to the shaft of the drive gear 21 is driven to rotate the drive gear 21. As a result, the driven gear 22 meshes with the drive gear 21 with one or two teeth, and starts rotating (spinning, revolving). At this time, the meshing excitation force F is generated between the drive gear 21 and the driven gear 22. This force (meshing excitation force F) is transmitted via the driven gear 22 to the fixed gear 24 that meshes with the driven gear 22, so that the above-described vibration measurement is performed by the load measuring means 12 provided on the fixed gear 24 side. A load f ′ acting on the fixed gear 24 as the force F is generated is measured (load measurement step).

そして、予め演算装置13に記憶させておいた荷重f’の関数を用いて、荷重測定手段12で測定した荷重f’から噛み合い起振力Fを算出するプログラムを実行し、噛み合い起振力Fを算出する(噛み合い起振力算出工程)。   Then, a program for calculating the meshing vibration force F from the load f ′ measured by the load measuring means 12 is executed using a function of the load f ′ stored in the arithmetic device 13 in advance, and the meshing vibration force F is calculated. Is calculated (meshing excitation force calculation step).

また、噛み合い起振力F(荷重f’)の測定と同時に、駆動ギヤ21と従動ギヤ22の回転方向の振動成分(ここでは回転方向に沿った向きの加速度成分)を振動量測定手段14で測定する(振動量測定工程)。測定した各ギヤ21,22の振動成分(加速度成分)は演算装置13に送られ、上述のようにして算出した噛み合い起振力Fの時間変動成分と照らし合わせることで、各ギヤ間の噛み合い起振力成分が個別に抽出される。   Simultaneously with the measurement of the meshing excitation force F (load f ′), the vibration component in the rotational direction of the drive gear 21 and the driven gear 22 (here, the acceleration component in the direction along the rotational direction) is measured by the vibration amount measuring means 14. Measure (vibration measurement process). The measured vibration components (acceleration components) of the gears 21 and 22 are sent to the arithmetic unit 13 and compared with the time fluctuation component of the meshing vibration force F calculated as described above, thereby causing the meshing between the gears. The vibration component is extracted individually.

図2は、図1に示すギヤユニット20において本発明に係る測定方法を実施し、その結果得られた噛み合い起振力Fの時間変動成分の一例を示すグラフである。このグラフより、単位噛み合い周期1/fz[s](fz:噛み合い周波数[Hz])の中に、従動ギヤ22の全ての噛み合いに対応する噛み合い起振力成分(1)〜(6)が含まれているのが見て取れる。すなわち、この場合、測定対象となるギヤユニット20は、1個の駆動ギヤ21と、3個の従動ギヤ22と、1個の固定ギヤ24とを有するものであるから、各従動ギヤ22につき駆動ギヤ21との噛み合い及び固定ギヤ24との噛み合いが存在し、これが従動ギヤ22の個数(3個)分だけ存在するので、合計6成分となることが分かる。よって、この結果と、振動量測定手段14で測定した各ギヤ21,22の回転方向振動成分(の時間変動成分)とを時間軸を一致させた状態で重ね合わせることで、例えば(1)〜(6)の噛み合い起振力成分のうち何れが駆動ギヤ21と一の従動ギヤ22との噛み合い起振力成分であるかを判別することができる。また各噛み合い起振力成分ごとに抽出し、その大きさを評価することで、個別にギヤノイズレベルの評価を行うことができる。   FIG. 2 is a graph showing an example of a temporal variation component of the meshing excitation force F obtained as a result of carrying out the measurement method according to the present invention in the gear unit 20 shown in FIG. From this graph, the meshing excitation force components (1) to (6) corresponding to all the meshing of the driven gear 22 are included in the unit meshing cycle 1 / fz [s] (fz: meshing frequency [Hz]). You can see it. In other words, in this case, the gear unit 20 to be measured has one drive gear 21, three driven gears 22, and one fixed gear 24, so that each driven gear 22 is driven. Since there are meshing with the gear 21 and meshing with the fixed gear 24, and there are as many as the number (three) of the driven gears 22, it can be seen that there are a total of six components. Therefore, by superimposing this result and the rotational direction vibration component (time variation component thereof) of each of the gears 21 and 22 measured by the vibration amount measuring means 14 in a state where the time axes coincide with each other, for example, (1) to It can be determined which of the meshing vibration force components of (6) is the meshing vibration force component of the drive gear 21 and the one driven gear 22. Moreover, the gear noise level can be individually evaluated by extracting each meshing excitation force component and evaluating the magnitude thereof.

このように、本発明では、駆動ギヤ21と従動ギヤ22との間の噛み合い起振力Fの発生に伴い固定ギヤ24に作用する荷重f’を測定対象とすることで、実際に発生した噛み合い起振力Fの大きさを正確に反映した測定結果を得ることができる。また、他の物理的事象(変位、加速度など)を測定し、間接的に噛み合い起振力を評価する場合と比べて、信頼性の高い測定結果を得ることが可能となる。加えて、本発明では、上記荷重f’を、固定ギヤ24の側に設けた荷重測定手段12で直接的に測定するようにしたので、減衰等による測定誤差の発生を回避して高精度な測定を安定的に行うことができる。   As described above, in the present invention, the actual engagement is generated by setting the load f ′ acting on the fixed gear 24 with the generation of the meshing excitation force F between the drive gear 21 and the driven gear 22 as a measurement object. A measurement result that accurately reflects the magnitude of the excitation force F can be obtained. In addition, it is possible to obtain a measurement result with higher reliability as compared with the case where other physical events (displacement, acceleration, etc.) are measured and the meshing vibration force is indirectly evaluated. In addition, in the present invention, since the load f ′ is directly measured by the load measuring means 12 provided on the fixed gear 24 side, the occurrence of measurement error due to attenuation or the like can be avoided and high accuracy can be achieved. Measurement can be performed stably.

また、圧電式ロードセルなど高振動レベルに対応可能な荷重測定手段(動荷重測定手段)12を使用して噛み合い起振力Fを測定することで、実使用条件に準じた状態下における噛み合い起振力Fを測定することができるので、ギヤユニット20を例えば減速機や動力分割機構等のユニットアッシーに組み込む前の段階で、すなわちギヤユニット20単体の状態でユニット騒音レベルと相関の高い測定結果を得ることができる。従って、最終的な騒音レベルの推定精度を向上させることができる。これにより、ギヤユニット20の設計スピードが向上すると共に、噛み合い起振力Fを含むギヤユニット20の噛み合い挙動状態を適切に評価できるようになるので、設計レベルの向上にもつながる。   Further, by measuring the meshing excitation force F using a load measuring means (dynamic load measuring means) 12 capable of dealing with a high vibration level such as a piezoelectric load cell, the meshing excitation under a condition in accordance with the actual use conditions. Since the force F can be measured, a measurement result having a high correlation with the unit noise level is obtained at a stage before the gear unit 20 is incorporated in a unit assembly such as a reduction gear or a power split mechanism, that is, in the state of the gear unit 20 alone. Can be obtained. Therefore, the final noise level estimation accuracy can be improved. As a result, the design speed of the gear unit 20 is improved and the meshing behavior state of the gear unit 20 including the meshing vibration force F can be appropriately evaluated, which leads to an improvement in the design level.

また、この実施形態のように、ギヤユニット20が3軸噛み合い構造(サンギヤとピニオン、ピニオンとリングギヤ)をなす遊星ギヤユニットの場合、本発明に係る測定方法は特に有効である。すなわち、ギヤノイズに係る不具合の存在が認められた場合、ギヤ組替え試験を行わないとどのギヤがギヤノイズの直接の原因であるかを特定することは困難であった。これに対して、本発明のように、回転方向振動成分の測定と、噛み合い起振力Fの測定結果とを同期させて比較することで、言い換えると、時間軸を一致させて、振動成分の変動が著しい部分と、これに対応する噛み合い起振力成分を照らし合わせることで、例えば噛み合い起振力成分が極めて大きい値を示すギヤを、ギヤノイズの発生源として容易に特定することができる。従って、ギヤノイズに問題が生じた場合の原因解明、及びその後の設計変更に要する時間を大幅に短縮することができる。   Moreover, the measurement method according to the present invention is particularly effective when the gear unit 20 is a planetary gear unit in which the gear unit 20 has a triaxial meshing structure (sun gear and pinion, pinion and ring gear). That is, when the existence of a problem related to gear noise is recognized, it is difficult to identify which gear is the direct cause of the gear noise unless the gear change test is performed. On the other hand, as in the present invention, the measurement of the rotational direction vibration component and the measurement result of the meshing excitation force F are compared in synchronization, in other words, the time axis is matched to By comparing the portion where the fluctuation is remarkable and the meshing vibration force component corresponding thereto, for example, a gear having a very large meshing vibration force component can be easily specified as a generation source of gear noise. Therefore, it is possible to greatly reduce the time required for elucidating the cause when a problem occurs in gear noise and for subsequent design change.

なお、上記実施形態では、図4(b)に示す従動ギヤ22の運動モデルを用いて、噛み合い起振力Fを示す荷重f’の関数を規定するに際し、入力側(駆動ギヤ21)の回転数が一定として荷重f’の関数を規定したが、もちろん、これ以外の駆動条件下における噛み合い起振力Fの荷重f’による関数化も可能である。例えば所定の加速度で回転数を増加させる場合など、駆動条件によっては、加速度を所定の値として数式2及び数式5に代入し、代入後の式を解くことで、噛み合い起振力Fと荷重f’との関係(荷重f’の関数)を求めるようにしてもよい。   In the above embodiment, when the function of the load f ′ indicating the meshing vibration force F is defined using the motion model of the driven gear 22 shown in FIG. The function of the load f ′ is defined with the number being constant, but of course, the function of the meshing vibration force F by the load f ′ under other driving conditions is also possible. For example, when the rotational speed is increased at a predetermined acceleration, depending on the driving conditions, the acceleration is substituted into Formula 2 and Formula 5 as a predetermined value, and the meshing excitation force F and the load f are solved by solving the substituted formula. A relationship with “(function of load f)” may be obtained.

また、上記実施形態では、プラネタリ型で従動ギヤを3個有する遊星ギヤユニットを測定対象とした場合を説明したが、もちろんこれ以外のタイプの遊星ギヤユニットにも本発明を適用することは可能である。例えば従動ギヤ22は3個に限らず、1個又は2個、あるいは4個以上のタイプについても本発明を適用することが可能である。同様に、プラネタリ型以外の型(例えば図1に示す駆動ギヤ21と固定ギヤ24を入れ替えたタイプなど)の遊星ギヤユニットについても本発明を適用可能である。   In the above embodiment, the planetary type planetary gear unit having three driven gears has been described as a measurement target. However, the present invention can be applied to other types of planetary gear units. is there. For example, the present invention can be applied not only to three driven gears 22 but also to one, two, or four or more types. Similarly, the present invention can be applied to a planetary gear unit of a type other than the planetary type (for example, a type in which the drive gear 21 and the fixed gear 24 shown in FIG. 1 are interchanged).

また、上記実施形態では、駆動ギヤ21と従動ギヤ22、及び固定ギヤ24を有するギヤユニット20として遊星ギヤユニットを例示したが、これ以外のタイプのギヤユニット20についても本発明を適用することが可能である。図5はその一例を示すもので、同図に示すギヤユニット20は、固定ギヤ24として平板状の部材表面に歯切りを施してなるラックを有するものであってもよい。この場合、従動ギヤ22と固定ギヤ24とは、いわゆるラック・ピニオン機構を成し、ピニオンギヤとしての従動ギヤ22に駆動ギヤ21を噛み合わせることで、固定ギヤ24(ラック)と噛み合いながらその平行な歯面上を従動ギヤ22が直進回転運動するようになっている。よって、この場合も、固定ギヤ24としてのラック(の長手方向に沿った向き)に上述の荷重測定手段12を取り付けて、噛み合い起振力Fの発生に伴い、従動ギヤ22を介して固定ギヤ24に作用する荷重f’を測定することで、噛み合い起振力Fを精度良く測定することが可能となる。   In the above embodiment, the planetary gear unit is exemplified as the gear unit 20 having the drive gear 21, the driven gear 22, and the fixed gear 24. However, the present invention can be applied to other types of gear units 20. Is possible. FIG. 5 shows an example thereof, and the gear unit 20 shown in FIG. 5 may have a rack formed by cutting the surface of a flat plate member as the fixed gear 24. In this case, the driven gear 22 and the fixed gear 24 form a so-called rack and pinion mechanism, and the drive gear 21 is meshed with the driven gear 22 as a pinion gear, so that the parallel gear is engaged with the fixed gear 24 (rack). The driven gear 22 is configured to linearly rotate on the tooth surface. Therefore, also in this case, the load measuring means 12 is attached to the rack (the direction along the longitudinal direction) as the fixed gear 24, and the fixed gear is connected via the driven gear 22 as the meshing vibration force F is generated. By measuring the load f ′ acting on 24, the meshing vibration force F can be accurately measured.

本発明に係る噛み合い起振力の測定方法の有用性を確認するため、下記の測定試験を行った。すなわち、図1に示す構造の噛み合い起振力測定装置を用いて、従動ギヤを2個有するプラネタリ型の遊星ギヤユニットにおける噛み合い起振力Fを測定した。   In order to confirm the usefulness of the measurement method of the meshing excitation force according to the present invention, the following measurement test was performed. That is, the meshing vibration force F in a planetary planetary gear unit having two driven gears was measured using the meshing vibration force measuring device having the structure shown in FIG.

ここで、測定対象として使用したギヤユニットは、駆動ギヤ、従動ギヤ、固定ギヤ何れもS45Cを素材とし、モジュールを1、駆動ギヤの歯数を12、従動ギヤの歯数を24、固定ギヤの歯数を60とした。歯幅は何れも10mmとした。また、動荷重測定手段には、水晶圧電式ロードセルを使用した。そして、入力回転数を1200rpm、キャリヤへの負荷を0.4Nmとして、噛み合い起振力の発生に伴い固定ギヤに作用する荷重を測定した。   Here, the gear unit used as a measurement object is made of S45C as a material for all of the driving gear, driven gear, and fixed gear, the module is 1, the number of teeth of the driving gear is 12, the number of teeth of the driven gear is 24, The number of teeth was 60. Each tooth width was 10 mm. A quartz piezoelectric load cell was used as the dynamic load measuring means. Then, the load acting on the fixed gear with the generation of the meshing vibration force was measured by setting the input rotation speed to 1200 rpm and the load to the carrier to 0.4 Nm.

測定結果を図3に示す。同図に示すように、噛み合い周期1/fz(≒5[ms])に対応する噛み合い起振力成分が確認できると共に、従動ギヤと固定ギヤとの噛み合い周期4×1/fz(≒20[ms])に対応する噛み合い起振力成分が確認できる。また、これら噛み合い起振力成分の大小も確認することができる。従って、上述のように、各ギヤの回転方向振動成分の測定を噛み合い起振力の測定と同時に行い、各々の結果(時間変動成分)を照らし合わせることで、複数(この場合は4つ)ある噛み合い起振力成分のうち何れが駆動ギヤと従動ギヤ(さらにはどの従動ギヤ)との噛み合い起振力成分であるかを判別し、個別に評価することができる。   The measurement results are shown in FIG. As shown in the figure, the meshing excitation force component corresponding to the meshing cycle 1 / fz (≈5 [ms]) can be confirmed, and the meshing cycle 4 × 1 / fz (≈20 [ ms]) and the meshing excitation force component can be confirmed. In addition, the magnitude of these meshing excitation force components can be confirmed. Therefore, as described above, the measurement of the vibration component in the rotational direction of each gear is performed simultaneously with the measurement of the meshing excitation force, and by comparing each result (time variation component), there are a plurality (four in this case). It is possible to discriminate which of the meshing vibration force components is the meshing vibration force component between the drive gear and the driven gear (and which driven gear) and to evaluate them individually.

10 噛み合い起振力の測定装置
11 接地側部材
12 動荷重測定手段
13 演算装置
14 振動量測定手段
20 ギヤユニット
21 駆動ギヤ
22 従動ギヤ
23 キャリヤ
24 固定ギヤ
F 噛み合い起振力
f 噛み合い起振力の発生に伴い従動ギヤが固定ギヤから受ける抵抗力
f’ 噛み合い起振力の発生に伴い固定ギヤに作用する荷重
DESCRIPTION OF SYMBOLS 10 Measuring device of meshing vibration force 11 Grounding side member 12 Dynamic load measuring means 13 Arithmetic device 14 Vibration amount measuring means 20 Gear unit 21 Driving gear 22 Driven gear 23 Carrier 24 Fixed gear F Meshing vibration force f Meshing vibration force Resistance force f ′ received by the driven gear from the fixed gear as a result of generation The load acting on the fixed gear as a result of meshing vibration generation

Claims (2)

駆動ギヤと、該駆動ギヤと噛み合うことで回転する従動ギヤと、該従動ギヤと噛み合う固定ギヤとを有するギヤユニットにおいて生じる噛み合い起振力を測定する方法であって、
前記固定ギヤの側に、前記固定ギヤに作用した荷重を測定可能な荷重測定手段が配設され、
前記駆動ギヤと前記従動ギヤとの噛み合い回転により前記噛み合い起振力が生じた際に、前記従動ギヤを介して前記固定ギヤに作用する前記荷重を前記荷重測定手段で測定する荷重測定工程と、
前記従動ギヤの噛み合い挙動を直進回転運動にモデル化して、前記噛み合い起振力を前記荷重の関数として規定する荷重関数規定工程と、
前記荷重関数規定工程で規定した前記荷重の関数を用いて、前記荷重測定工程で測定した前記荷重から前記噛み合い起振力を算出する噛み合い起振力算出工程とを具備し、
前記荷重関数規定工程において、前記荷重の関数は、前記噛み合い挙動のモデル化によって得られる前記従動ギヤの直進運動に係る運動方程式と、前記従動ギヤの回転運動に係る運動方程式、及び前記従動ギヤの加速度と角加速度との関係式の少なくとも一つに基づいて規定される噛み合い起振力の測定方法。
A method for measuring a meshing excitation force generated in a gear unit having a drive gear, a driven gear that rotates by meshing with the drive gear, and a fixed gear that meshes with the driven gear,
A load measuring means capable of measuring a load acting on the fixed gear is arranged on the fixed gear side,
A load measuring step of measuring the load acting on the fixed gear via the driven gear by the load measuring means when the meshing vibration is generated by the meshing rotation of the drive gear and the driven gear;
A load function defining step of modeling the meshing behavior of the driven gear into a linearly rotating motion and defining the meshing excitation force as a function of the load;
Using the function of the load defined in the load function defining step, and a meshing excitation force calculating step of calculating the meshing excitation force from the load measured in the load measuring step ,
In the load function defining step, the function of the load is an equation of motion related to the linear motion of the driven gear obtained by modeling the meshing behavior, an equation of motion related to the rotational motion of the driven gear, and the driven gear. A method for measuring a meshing vibration force defined based on at least one of relational expressions between acceleration and angular acceleration .
前記駆動ギヤと前記従動ギヤには、前記駆動ギヤと前記従動ギヤの回転方向振動成分を測定する振動量測定手段がそれぞれ設けられ、
前記振動量測定手段で測定された前記回転方向振動成分と、前記噛み合い起振力算出工程で得た前記噛み合い起振力とに基づき、前記駆動ギヤ、前記従動ギヤ、前記固定ギヤ相互間の各噛み合い起振力を評価する請求項に記載の噛み合い起振力の測定方法。
The driving gear and the driven gear are each provided with vibration amount measuring means for measuring the rotational vibration component of the driving gear and the driven gear,
Based on the rotational direction vibration component measured by the vibration amount measuring means and the meshing vibration force obtained in the meshing vibration force calculation step, each of the drive gear, the driven gear, and the fixed gear is connected to each other. The method for measuring a meshing vibration force according to claim 1 , wherein the meshing vibration force is evaluated.
JP2011159738A 2011-07-21 2011-07-21 Measuring method of meshing vibration force Active JP5820177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011159738A JP5820177B2 (en) 2011-07-21 2011-07-21 Measuring method of meshing vibration force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011159738A JP5820177B2 (en) 2011-07-21 2011-07-21 Measuring method of meshing vibration force

Publications (2)

Publication Number Publication Date
JP2013024723A JP2013024723A (en) 2013-02-04
JP5820177B2 true JP5820177B2 (en) 2015-11-24

Family

ID=47783245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011159738A Active JP5820177B2 (en) 2011-07-21 2011-07-21 Measuring method of meshing vibration force

Country Status (1)

Country Link
JP (1) JP5820177B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201723448A (en) * 2015-12-23 2017-07-01 Prodrives & Motions Co Ltd Axial rotation torque sensor allows one end of the elastic piece to sensitively produce bending and deformation under state of force received

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145498A (en) * 1995-10-31 1997-06-06 Sugisaki Keiki Kk Load torque testing device
JP2005016635A (en) * 2003-06-26 2005-01-20 Nissan Motor Co Ltd Driving device for automobile
JP2006200984A (en) * 2005-01-19 2006-08-03 Toyota Motor Corp Dynamic characteristic measuring device and method for planetary gear mechanism
JP2009036544A (en) * 2007-07-31 2009-02-19 Toyota Motor Corp Gear noise evaluation method of gear transmission, and device therefor

Also Published As

Publication number Publication date
JP2013024723A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
EP3049788B1 (en) Gear fault detection
JP5757936B2 (en) Method for detecting structural anomalies in a mechanical assembly including a rotating member
Cheng et al. Envelope deformation in computed order tracking and error in order analysis
CN102636347A (en) Vibration signal time domain synchronous averaging method for variable speed gearbox
CN107436236A (en) The noise detecting method and detecting system of vehicle gear box
CN104819841B (en) Built-in-coding-information-based single sensing flexible angle-domain averaging method
CN104034407A (en) Method for reducing periodic error in rotating machinery torsional vibration signal pulse measuring method
JP6052161B2 (en) Dynamic characteristic measuring apparatus and dynamic characteristic measuring method for planetary gear mechanism
KR101220391B1 (en) Apparatus for inspection of gear
Xue et al. The diagnostic analysis of the planet bearing faults using the torsional vibration signal
CN105300691A (en) Bevel gear transmission error measuring method based on optimal mounting distance
André et al. Comparison between angular sampling and angular resampling methods applied on the vibration monitoring of a gear meshing in non stationary conditions
CN107314845B (en) Method for testing dynamic meshing force of gears
JP5820177B2 (en) Measuring method of meshing vibration force
Jiang et al. Vibration response mechanism of fixed-shaft gear train with cracks based on rigid-flexible coupling dynamics and signal convolution model
CN104535318A (en) Method for measuring variable stiffness in process of gear mesh
JP2010236929A (en) Nick detection device of gear, and nick detection method of gear
Park et al. Experimental approach for estimating mesh stiffness in faulty states of rotating gear
RU2631493C1 (en) Method of gear teeth diagnostics
Xie et al. Vibration Diagnosis and Optimization of Industrial Robot Based on TPA and EMD Methods.
CN110569478B (en) Improved variational modal decomposition method for encoder signal analysis
JP4780321B2 (en) Gear vibration forcing evaluation system
RU2561236C2 (en) Method for diagnosis of cyclic machines - metal-cutting machines using phase-chronometric method
Mones et al. Fault Diagnosis of Planetary Gearboxes via Processing the On-Rotor MEMS Accelerometer Signals
Yao et al. Study on wavelet package analysis technology applied to fault diagnosis of vehicle transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151002

R150 Certificate of patent or registration of utility model

Ref document number: 5820177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250