JP5814782B2 - Method for producing cyclopentanone derivative - Google Patents

Method for producing cyclopentanone derivative Download PDF

Info

Publication number
JP5814782B2
JP5814782B2 JP2011286941A JP2011286941A JP5814782B2 JP 5814782 B2 JP5814782 B2 JP 5814782B2 JP 2011286941 A JP2011286941 A JP 2011286941A JP 2011286941 A JP2011286941 A JP 2011286941A JP 5814782 B2 JP5814782 B2 JP 5814782B2
Authority
JP
Japan
Prior art keywords
group
catalyst
reaction
cyclopentanone derivative
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011286941A
Other languages
Japanese (ja)
Other versions
JP2013133330A (en
Inventor
永澤 敦志
敦志 永澤
真理子 加賀谷
真理子 加賀谷
由晴 安宅
由晴 安宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2011286941A priority Critical patent/JP5814782B2/en
Publication of JP2013133330A publication Critical patent/JP2013133330A/en
Application granted granted Critical
Publication of JP5814782B2 publication Critical patent/JP5814782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、香料素材として有用なメチル(3−オキソシクロペンチル)アセテート誘導体の中間体となり得るシクロペンタノン誘導体の製造方法に関する。   The present invention relates to a method for producing a cyclopentanone derivative that can be an intermediate of a methyl (3-oxocyclopentyl) acetate derivative useful as a perfume material.

2位に炭化水素基を有するメチル(3−オキソシクロペンチル)アセテート誘導体は、メチルジヒドロジャスモネート(メチル(3−オキソ−2−ペンチルシクロペンチル)アセテート)やメチルジャスモネート等、特にジャスミン様の香気を有する香料素材として有用である。
その中間体として、例えば、2位に炭化水素基を有する2−(3−オキソシクロペンチル)マロネートが知られており、製造法としては、2位に炭化水素基を有する2−シクロペンテン−1−オンとエステル化合物とのマイケル付加反応が知られている。
前記マイケル付加反応は一般に均一系塩基触媒の存在下で行われ、例えば、特許文献1及び非特許文献1には、ナトリウムメトキシド等の塩基触媒を用いたマイケル付加反応による不飽和脂環式ケトンの製造方法が開示されている。
また、特許文献2、非特許文献2及び3には、不斉カルボン酸を固定化したアパタイト系固体触媒等を用いたマイケル付加反応物の製造方法が開示されている。
Methyl (3-oxocyclopentyl) acetate derivatives having a hydrocarbon group at the 2-position include methyl dihydrojasmonate (methyl (3-oxo-2-pentylcyclopentyl) acetate) and methyl jasmonate, particularly jasmine-like fragrances. It is useful as a fragrance material having
As the intermediate, for example, 2- (3-oxocyclopentyl) malonate having a hydrocarbon group at the 2-position is known, and the production method is 2-cyclopenten-1-one having a hydrocarbon group at the 2-position. A Michael addition reaction between benzene and an ester compound is known.
The Michael addition reaction is generally performed in the presence of a homogeneous base catalyst. For example, Patent Document 1 and Non-Patent Document 1 describe unsaturated alicyclic ketones by Michael addition reaction using a base catalyst such as sodium methoxide. A manufacturing method is disclosed.
Patent Document 2 and Non-Patent Documents 2 and 3 disclose a method for producing a Michael addition reaction product using an apatite solid catalyst or the like in which an asymmetric carboxylic acid is immobilized.

特表平10−504325号公報Japanese National Patent Publication No. 10-504325 特開2008−246401号公報JP 2008-246401 A

G.BUGHI, B.ECCEIZ, J. Org. Chem., 1971, 36, 2021G.BUGHI, B.ECCEIZ, J. Org. Chem., 1971, 36, 2021 H.Kabashima, H.Tsuji, T.Shibuya, H.Hattori, J. Mol. Cat. A Chemical, 2000, 155, 23H. Kabashima, H. Tsuji, T. Shibuya, H. Hattori, J. Mol. Cat. A Chemical, 2000, 155, 23 B.Veldurthy, J.M.Clacens, F.A.Figueras, Adv. Synth. Catal. 2005, 347, 767B. Veldurthy, J.M.Clacens, F.A. Figueras, Adv. Synth. Catal. 2005, 347, 767

前記メチルジヒドロジャスモネートの中間体である2−(3−オキソシクロペンチル)マロネートを製造する際に、ナトリウムメトキシドのような均一系触媒を用いると、後処理工程として、中和、水洗浄、溶媒除去等の多くの工程を経ることになり、生産効率が低下するばかりか、収率や品質の低下にもつながっていた。
一方、固体触媒を用いると後処理工程が簡略化されると思われるが、前記特許文献2、非特許文献2及び3に開示されているマイケル付加反応は、基質として炭素−炭素不飽和結合部分の炭素に水素原子を有するもののみであり、ここに炭化水素基を有する基質に対するマイケル付加反応は開示されていない。
本発明は、香料素材として有用なメチル(3−オキソシクロペンチル)アセテート誘導体の中間体となり得るシクロペンタノン誘導体の効率的な製造方法を提供することを課題とする。
When a 2- (3-oxocyclopentyl) malonate, which is an intermediate of the methyl dihydrojasmonate, is used, a homogeneous catalyst such as sodium methoxide is used as a post-treatment step. Through many steps such as solvent removal, not only production efficiency decreased, but also yield and quality decreased.
On the other hand, when a solid catalyst is used, the post-treatment process is expected to be simplified. However, the Michael addition reaction disclosed in Patent Document 2, Non-Patent Documents 2 and 3 uses a carbon-carbon unsaturated bond moiety as a substrate. However, there is no disclosure of the Michael addition reaction for a substrate having a hydrocarbon group.
An object of the present invention is to provide an efficient method for producing a cyclopentanone derivative that can be an intermediate of a methyl (3-oxocyclopentyl) acetate derivative useful as a perfume material.

本発明者らは、2位に炭化水素基を有する2−シクロペンテン−1−オン誘導体とエステル化合物とのマイケル付加反応に用いられる触媒を検討した結果、特定の共役系塩基を担持した固体塩基触媒を用いることにより、前記メチル(3−オキソシクロペンチル)アセテート誘導体の中間体となり得るシクロペンタノン誘導体が効率よく得られることを見出した。
すなわち、本発明は、下記の[1]及び[2]を提供する。
[1]フォスファゼン塩基又はグアニジン塩基を含有する固体塩基触媒の存在下、一般式(I)で表される2−シクロペンテン−1−オン誘導体と、一般式(II)で表されるエステル化合物をマイケル付加反応させる、一般式(III)で表されるシクロペンタノン誘導体の製造方法。
As a result of studying a catalyst used in a Michael addition reaction between a 2-cyclopenten-1-one derivative having a hydrocarbon group at the 2-position and an ester compound, the present inventors have found a solid base catalyst supporting a specific conjugated base. It was found that a cyclopentanone derivative that can be an intermediate of the methyl (3-oxocyclopentyl) acetate derivative can be obtained efficiently by using.
That is, the present invention provides the following [1] and [2].
[1] In the presence of a solid base catalyst containing a phosphazene base or a guanidine base, a 2-cyclopenten-1-one derivative represented by the general formula (I) and an ester compound represented by the general formula (II) are mixed with Michael. A method for producing a cyclopentanone derivative represented by the general formula (III), which is subjected to addition reaction.

Figure 0005814782
(式中、R1は炭素数1〜10の炭化水素基を示す。)
Figure 0005814782
(In the formula, R 1 represents a hydrocarbon group having 1 to 10 carbon atoms.)

Figure 0005814782
(式中、R2は炭素数1〜4のアルキル基を示し、R3は炭素数1〜4のアルキル基又はアルコキシ基を示す。)
Figure 0005814782
(In the formula, R 2 represents an alkyl group having 1 to 4 carbon atoms, and R 3 represents an alkyl group or alkoxy group having 1 to 4 carbon atoms.)

Figure 0005814782
(式中、R1、R2及びR3は、前記と同じである。)
Figure 0005814782
(Wherein R 1 , R 2 and R 3 are the same as described above.)

[2]前記[1]の製造方法で得られた一般式(III)で表されるシクロペンタノン誘導体と水を反応させる、メチル(3−オキソシクロペンチル)アセテート誘導体の製造方法。 [2] A process for producing a methyl (3-oxocyclopentyl) acetate derivative, wherein the cyclopentanone derivative represented by the general formula (III) obtained by the process of [1] is reacted with water.

本発明によれば、香料素材として有用なメチル(3−オキソシクロペンチル)アセテート誘導体の中間体となり得るシクロペンタノン誘導体を効率的に製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cyclopentanone derivative which can become an intermediate body of the methyl (3-oxocyclopentyl) acetate derivative useful as a fragrance | flavor raw material can be manufactured efficiently.

本発明の前記一般式(III)で表されるシクロペンタノン誘導体の製造方法は、フォスファゼン塩基又はグアニジン塩基を含有する固体塩基触媒の存在下、前記一般式(I)で表される2−シクロペンテン−1−オン誘導体と、前記一般式(II)で表されるエステル化合物をマイケル付加反応させることを特徴とする。   The method for producing a cyclopentanone derivative represented by the general formula (III) according to the present invention includes a 2-cyclopentene represented by the general formula (I) in the presence of a solid base catalyst containing a phosphazene base or a guanidine base. A Michael addition reaction is performed between the -1-one derivative and the ester compound represented by the general formula (II).

[2−シクロペンテン−1−オン誘導体]
本発明に用いられる2−シクロペンテン−1−オン誘導体は、下記一般式(I)で表される。
[2-Cyclopenten-1-one derivative]
The 2-cyclopenten-1-one derivative used in the present invention is represented by the following general formula (I).

Figure 0005814782
(式中、R1は炭素数1〜10の炭化水素基を示す。)
Figure 0005814782
(In the formula, R 1 represents a hydrocarbon group having 1 to 10 carbon atoms.)

一般式(I)のR1である炭化水素基の炭素数は、最終的に得られるメチル(3−オキソシクロペンチル)アセテート誘導体の香調及びマイケル付加反応の反応性の観点から、1〜8が好ましく、3〜7がより好ましく、4〜6が更に好ましい。
1である炭化水素基としては、最終的に得られるメチル(3−オキソシクロペンチル)アセテート誘導体の香調の観点から、アルキル基、アルケニル基、アルキニル基が好ましく、アルキル基及びアルケニル基がより好ましく、アルキル基が更に好ましい。
アルキル基の好適例としては、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、中でも最終的に得られるメチル(3−オキソシクロペンチル)アセテート誘導体の香調の観点から、n−ペンチル基が好ましい。
アルケニル基の好適例としては、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等が挙げられ、中でも最終的に得られるメチル(3−オキソシクロペンチル)アセテート誘導体の香調の観点から、ペンテニル基が好ましい。
The number of carbon atoms of the hydrocarbon group represented by R 1 in the general formula (I) is 1 to 8 from the viewpoint of the fragrance of the finally obtained methyl (3-oxocyclopentyl) acetate derivative and the reactivity of the Michael addition reaction. Preferably, 3-7 are more preferable, and 4-6 are still more preferable.
As the hydrocarbon group as R 1 , an alkyl group, an alkenyl group, and an alkynyl group are preferable, and an alkyl group and an alkenyl group are more preferable from the viewpoint of the fragrance of the finally obtained methyl (3-oxocyclopentyl) acetate derivative. An alkyl group is more preferable.
Preferable examples of the alkyl group include a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group and the like. Among them, from the viewpoint of the fragrance of the finally obtained methyl (3-oxocyclopentyl) acetate derivative, n -A pentyl group is preferred.
Preferable examples of the alkenyl group include a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, etc. Among them, a pentenyl group is preferable from the viewpoint of the fragrance of the finally obtained methyl (3-oxocyclopentyl) acetate derivative. .

[エステル化合物]
本発明に用いられるエステル化合物は、下記一般式(II)で表される。
[Ester compound]
The ester compound used in the present invention is represented by the following general formula (II).

Figure 0005814782
(式中、R2は炭素数1〜4のアルキル基を示し、R3は炭素数1〜4のアルキル基又はアルコキシ基を示す。)
Figure 0005814782
(In the formula, R 2 represents an alkyl group having 1 to 4 carbon atoms, and R 3 represents an alkyl group or alkoxy group having 1 to 4 carbon atoms.)

2である炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基が挙げられるが、反応性と最終的に得られるメチル(3−オキソシクロペンチル)アセテート誘導体の香調の観点から、メチル基及びエチル基が好ましく、メチル基がより好ましい。
3である炭素数1〜4のアルキル基又はアルコキシ基としては、反応性の観点から、アルコキシ基が好ましい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基が挙げられるが、反応性と最終的に得られるメチル(3−オキソシクロペンチル)アセテート誘導体の香調の観点から、メトキシ基及びエトキシ基が好ましく、メトキシ基がより好ましい。
Examples of the alkyl group having 1 to 4 carbon atoms as R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group, but the reactivity and the finally obtained methyl (3-oxocyclopentyl) acetate From the viewpoint of the fragrance of the derivative, a methyl group and an ethyl group are preferable, and a methyl group is more preferable.
As a C1-C4 alkyl group or alkoxy group which is R < 3 >, an alkoxy group is preferable from a reactive viewpoint. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a butoxy group. From the viewpoint of reactivity and fragrance of the methyl (3-oxocyclopentyl) acetate derivative finally obtained. Therefore, a methoxy group and an ethoxy group are preferable, and a methoxy group is more preferable.

[固体塩基触媒]
本発明に用いられる固体塩基触媒は、フォスファゼン塩基又はグアニジン塩基を含有する。
これら塩基を含有する固体塩基触媒を用いることで、一般式(III)で表されるシクロペンタノン誘導体が効率的に得られる理由は定かではないが、以下のように考えられる。すなわち、フォスファゼン塩基及びグアニジン塩基は、有機塩基であり、炭素原子又はリン原子に対し、少なくとも3個以上の窒素原子と結合し、そのうちの1つは二重結合を形成していることから、強い塩基性を示す。そこで、フォスファゼン塩基又はグアニジン塩基を含有する固体塩基触媒の存在下で、一般式(I)で表される2−シクロペンテン−1−オン誘導体と、一般式(II)で表されるエステル化合物をマイケル付加反応させると、強い有機塩基が存在するために、基質分子との親和性に優れ、触媒としての効率を高められることから、一般式(III)で表されるシクロペンタノン誘導体が効率的に得られるものと考えられる。
[Solid base catalyst]
The solid base catalyst used in the present invention contains a phosphazene base or a guanidine base.
The reason why the cyclopentanone derivative represented by the general formula (III) can be efficiently obtained by using a solid base catalyst containing these bases is not clear, but is considered as follows. That is, phosphazene base and guanidine base are organic bases, which are strong because they are bonded to at least three nitrogen atoms with respect to the carbon atom or phosphorus atom, and one of them forms a double bond. Shows basicity. Therefore, in the presence of a solid base catalyst containing a phosphazene base or a guanidine base, a 2-cyclopenten-1-one derivative represented by the general formula (I) and an ester compound represented by the general formula (II) are mixed with Michael. When the addition reaction is performed, a strong organic base is present, so that the affinity with the substrate molecule is excellent, and the efficiency as a catalyst can be increased. Therefore, the cyclopentanone derivative represented by the general formula (III) is efficiently produced. It is considered to be obtained.

フォスファゼン塩基又はグアニジン塩基を含有する固体塩基触媒は、該塩基を担体に担持したものであることが好ましい。
担体としては、有機高分子、シリカ、アルミナ、シリカアルミナ、チタニア、ジルコニア、ケイソウ土、活性炭等を用いることができる。担体を過剰に用いると、固体塩基触媒の含有量が低下し、触媒活性を低下させるため、触媒中の担体の占める割合は、50〜90質量%が好ましい。
固体塩基触媒の形状は、粉末でも成型したものでもよい。また、固体塩基は、全て同一組成であってもよく、異なる組成の固体塩基を組み合わせて用いてもよい。
The solid base catalyst containing a phosphazene base or a guanidine base is preferably one in which the base is supported on a carrier.
As the carrier, organic polymer, silica, alumina, silica alumina, titania, zirconia, diatomaceous earth, activated carbon and the like can be used. If the carrier is used in excess, the content of the solid base catalyst is lowered and the catalytic activity is lowered. Therefore, the proportion of the carrier in the catalyst is preferably 50 to 90% by mass.
The shape of the solid base catalyst may be a powder or a molded one. Moreover, all the solid bases may have the same composition, or a combination of solid bases having different compositions may be used.

上記担体の中では有機高分子が好ましい。有機高分子は形状を調整することが容易であるため、塩基を有機高分子に担持することにより、前記基質分子との親和性を維持しつつ、接触面積を高めたり、固液分離して触媒の除去を容易にすることができる。
有機高分子としては、ポリスチレン系樹脂が挙げられ、例えば、ArgoPore(登録商標)樹脂(アミノメチルポリマー樹脂:P−アミノメチル化ポリスチレンと1%ジビニルベンゼン共重合体)等が挙げられる。
また、得られるシクロペンタノン誘導体に不純物の混入を防ぐ観点から、架橋樹脂が好ましい。架橋樹脂としては、架橋ポリスチレン、架橋ポリメチルメタクリレート、クロスポビドン(架橋ポリビニルピロリドン)、架橋カルボキシメチルデンプンナトリウム、架橋カルボキシルメチルセルロースナトリウム等が挙げられる。これらの中では、汎用性等の観点から、架橋ポリスチレン樹脂がより好ましい。架橋ポリスチレン樹脂としては、Jandajel(登録商標)樹脂(1,4−ブタンジオール構造を有する架橋化剤により架橋したポリスチレン樹脂)等が好ましく挙げられる。
Among the above carriers, organic polymers are preferable. Since it is easy to adjust the shape of the organic polymer, by supporting the base on the organic polymer, the contact area is increased while maintaining the affinity with the substrate molecule, or the catalyst is separated by solid-liquid separation. Can be easily removed.
Examples of the organic polymer include polystyrene resins, such as ArgoPore (registered trademark) resin (aminomethyl polymer resin: P-aminomethylated polystyrene and 1% divinylbenzene copolymer).
In addition, a crosslinked resin is preferable from the viewpoint of preventing impurities from being mixed into the obtained cyclopentanone derivative. Examples of the crosslinked resin include crosslinked polystyrene, crosslinked polymethyl methacrylate, crospovidone (crosslinked polyvinyl pyrrolidone), crosslinked carboxymethyl starch sodium, and crosslinked carboxymethyl cellulose sodium. Among these, a crosslinked polystyrene resin is more preferable from the viewpoint of versatility and the like. Preferred examples of the crosslinked polystyrene resin include Jandajel (registered trademark) resin (polystyrene resin crosslinked with a crosslinking agent having a 1,4-butanediol structure).

<フォスファゼン塩基>
フォスファゼン塩基は、1以上のフォスファゼン・ユニットからなる構造を有し、共役酸のカチオン性を広範囲に非局在化し、共鳴構造を安定化することにより著しく強力な塩基性を示す。フォスファゼン塩基としては、所望の塩基性を有するものであれば特に制限はなく、公知のもの又は公知技術を適用して合成されるものから適宜選択して使用することができる。例えば、Schwesinger R. et al., Liebigs Ann., 1055-1081 (1996); Schwab P. F. H. et al., J. Org. Chem., 67, 443-449 (2002)等に記載のもの等が挙げられる。
これらの中では、下記式(IV)で示されるフォスファゼン塩基が好ましい。
<Phosphazene base>
The phosphazene base has a structure composed of one or more phosphazene units, and exhibits extremely strong basicity by delocalizing the cationic property of the conjugate acid over a wide range and stabilizing the resonance structure. The phosphazene base is not particularly limited as long as it has a desired basicity, and can be appropriately selected from known ones or those synthesized by applying known techniques. Examples include those described in Schwesinger R. et al., Liebigs Ann., 1055-1081 (1996); Schwab PFH et al., J. Org. Chem., 67, 443-449 (2002). .
Of these, the phosphazene base represented by the following formula (IV) is preferable.

Figure 0005814782
Figure 0005814782

式(IV)中、Zはアルキル基又はアリール基を示し、Yは、ジアルキルアミノ基、ピロリジノ基、ピペリジノ基、モルホリノ基、ピペラジノ基、トリスジアルキルアミノフォスフィンイミノ基、トリスピロリジノフォスフィンイミノ基、又は二つのYがアルキレン基で結合されたアルキレンジアミノ基、N−アルキルアルキレンジアミノ基、N,N’−ジアルキルアルキレンジアミノ基を示し、それぞれのYは同一でも異なっていてもよく、qは1〜3の整数を示す。前記アルキル基又はアルキレン基は、炭素原子1〜6のものが好ましく、炭素原子2〜4のものがより好ましい。
触媒活性の観点から、Zは、炭素原子1〜6、好ましくは炭素原子2〜4のアルキル基が好ましく、Yは、炭素原子1〜6のアルキル基を有するジアルキルアミノ基又は二つのYが炭素原子1〜3のアルキレン基で結合されたアルキレンジアミノ基が好ましく、qは1又は2が好ましく。
上記フォスファゼン塩基の中でも、特に好ましい市販品としては、下記式(IV-1)で示される、2−tert−ブチルイミノ−2−ジエチルアミノ−1,3−ジメチルパーヒドロ−1,3,2−ジアザホスフォリン(以下、「BEMP」ともいう)がポリスチレン系有機高分子に担持されたP−BEMP(シグマアルドリッチ社製、登録商標)が挙げられる。
In formula (IV), Z represents an alkyl group or an aryl group, and Y represents a dialkylamino group, a pyrrolidino group, a piperidino group, a morpholino group, a piperazino group, a trisdialkylaminophosphine imino group, or a trispyrrolidinophosphine imino group. Or an alkylenediamino group, an N-alkylalkylenediamino group, or an N, N′-dialkylalkylenediamino group in which two Ys are bonded by an alkylene group, each Y may be the same or different, and q is 1 An integer of ~ 3 is shown. The alkyl group or alkylene group is preferably one having 1 to 6 carbon atoms, more preferably 2 to 4 carbon atoms.
From the viewpoint of catalytic activity, Z is preferably an alkyl group having 1 to 6 carbon atoms, preferably 2 to 4 carbon atoms, Y is a dialkylamino group having an alkyl group having 1 to 6 carbon atoms, or two Y are carbon atoms. An alkylenediamino group bonded by an alkylene group of 1 to 3 atoms is preferable, and q is preferably 1 or 2.
Among the phosphazene bases, a particularly preferable commercially available product is 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diaza represented by the following formula (IV-1): P-BEMP (manufactured by Sigma-Aldrich Co., Ltd.) in which phospholine (hereinafter also referred to as “BEMP”) is supported on a polystyrene-based organic polymer is exemplified.

Figure 0005814782
Figure 0005814782

<グアニジン塩基>
グアニジン塩基としては、下記式(V)で表される環状グアニジン塩基が好ましい。
<Guanidine base>
As the guanidine base, a cyclic guanidine base represented by the following formula (V) is preferable.

Figure 0005814782
Figure 0005814782

式(V)中、Xは、N又はCであり、n及びmは、独立に1〜4の整数を示す。
触媒活性の観点から、XがNであり、n及びmが独立に1又は2である2環式グアニジンが好ましい。
これらの中でも、下記式(IV-1)で表される1,4−ブタンジオール構造を有する架橋化剤により架橋したポリスチレン樹脂であるJandajel(登録商標)樹脂に、1,3,4,6,7,8−ヘキサヒドロ−2H−ピリミド−[1,2−A]ピリミジン(以下、「TBD」ともいう)を担持した、下記構造式(IV-2)で表されるJandajel−TBD(シグマアルドリッチ社製)が挙げられる。
In formula (V), X is N or C, and n and m independently represent an integer of 1 to 4.
From the viewpoint of catalytic activity, a bicyclic guanidine in which X is N and n and m are independently 1 or 2 is preferred.
Among these, the 1,3,4,6,6, 1,4,6,6, and Jandajel (registered trademark) resins, which are polystyrene resins crosslinked by a crosslinking agent having a 1,4-butanediol structure represented by the following formula (IV-1): Jandajel-TBD (Sigma Aldrich) represented by the following structural formula (IV-2) carrying 7,8-hexahydro-2H-pyrimido- [1,2-A] pyrimidine (hereinafter also referred to as “TBD”) Manufactured).

Figure 0005814782
Figure 0005814782

Figure 0005814782
Figure 0005814782

[シクロペンタノン誘導体の製造方法]
本発明における下記一般式(III)で表されるシクロペンタノン誘導体の製造方法は、フォスファゼン塩基又はグアニジン塩基を含有する固体塩基触媒の存在下、前記一般式(I)で表される2−シクロペンテン−1−オン誘導体と、前記一般式(II)で表されるエステル化合物をマイケル付加反応させる。
マイケル付加反応とはα,β-不飽和カルボニル化合物に対して求核剤(一般式(II)で表されるエステル化合物)を付加させる反応である。
[Method for producing cyclopentanone derivative]
In the present invention, the process for producing a cyclopentanone derivative represented by the following general formula (III) comprises 2-cyclopentene represented by the above general formula (I) in the presence of a solid base catalyst containing a phosphazene base or a guanidine base. The -1-one derivative and the ester compound represented by the general formula (II) are subjected to a Michael addition reaction.
The Michael addition reaction is a reaction in which a nucleophile (an ester compound represented by the general formula (II)) is added to an α, β-unsaturated carbonyl compound.

Figure 0005814782
(式中、R1は炭素数1〜10の炭化水素基を示し、R2は炭素数1〜4のアルキル基示し、R3は炭素数1〜4のアルキル基又はアルコキシ基を示す。)
Figure 0005814782
(In the formula, R 1 represents a hydrocarbon group having 1 to 10 carbon atoms, R 2 represents an alkyl group having 1 to 4 carbon atoms, and R 3 represents an alkyl group or alkoxy group having 1 to 4 carbon atoms.)

本発明において、一般式(I)で表される2−シクロペンテン−1−オン誘導体、一般式(II)で表されるエステル化合物、及び前記固体塩基触媒を混合する順序に特に制限はないが、該固体塩基触媒と該エステル化合物を混合し、その後、該2−シクロペンテン−1−オン誘導体を滴下して反応させることが好ましい。
本発明においては、基質を溶解するために、溶媒を用いることが好ましい。溶媒は基質を溶解するものであれば特に制限されないが、炭素数1〜3のアルコールが好ましく、メタノールがより好ましい。
このマイケル付加反応は、例えば、窒素、アルゴン等の不活性ガスの雰囲気中、通常0〜60℃、好ましくは0〜20℃で、1〜50時間程度、好ましくは4〜40時間の条件で行なわれる。
2−シクロペンテン−1−オン誘導体に対する前記エステル化合物の使用割合(エステル化合物/2−シクロペンテン−1−オン誘導体)(モル比)は、通常1〜10、好ましくは1.1〜2.5、より好ましくは1.2〜2.0である。エステル化合物を過剰に用いることで効率よく反応を進行させることができる。
In the present invention, the order of mixing the 2-cyclopenten-1-one derivative represented by the general formula (I), the ester compound represented by the general formula (II), and the solid base catalyst is not particularly limited. It is preferable that the solid base catalyst and the ester compound are mixed, and then the 2-cyclopenten-1-one derivative is dropped and reacted.
In the present invention, it is preferable to use a solvent in order to dissolve the substrate. The solvent is not particularly limited as long as it dissolves the substrate, but an alcohol having 1 to 3 carbon atoms is preferable, and methanol is more preferable.
This Michael addition reaction is performed, for example, in an atmosphere of an inert gas such as nitrogen or argon, usually at 0 to 60 ° C., preferably 0 to 20 ° C. for about 1 to 50 hours, preferably 4 to 40 hours. It is.
The proportion of the ester compound used relative to the 2-cyclopenten-1-one derivative (ester compound / 2-cyclopenten-1-one derivative) (molar ratio) is usually 1 to 10, preferably 1.1 to 2.5. Preferably it is 1.2-2.0. By using an ester compound in excess, the reaction can proceed efficiently.

固体塩基触媒の使用量は、反応形式、条件等により適宜最適化することができる。
回分式の場合は、反応性及び経済性の観点から、2−シクロペンテン−1−オン誘導体、エステル化合物、及び触媒の合計量に対する触媒量として、0.5〜20質量%が好ましく、1〜10質量%がより好ましい。
固体塩基触媒は反応終了物から容易に分離することができ、中和工程を省略して触媒をリサイクルすることも可能である。
使用後の固体塩基触媒の分離方法としては、沈降分離方式、濾過方式等が挙げられ、固体触媒の粒径や比重に応じて適宜選択することができる。例えば、固体触媒の粒径が大きい場合や比重が大きい場合は、重力による沈降分離方式が好ましい。一方、固体触媒の粒径が小さい場合や比重が小さい場合は、遠心力を利用した遠心沈降分離方式又は遠心濾過方式、あるいは、加圧又は減圧を利用して濾材隔壁によって濾過ケーキと濾液に分離する濾過方式が好ましい。
The amount of the solid base catalyst used can be appropriately optimized depending on the reaction mode, conditions and the like.
In the case of a batch type, from the viewpoint of reactivity and economy, the amount of the catalyst is preferably 0.5 to 20% by mass with respect to the total amount of the 2-cyclopenten-1-one derivative, the ester compound, and the catalyst. The mass% is more preferable.
The solid base catalyst can be easily separated from the reaction product, and the catalyst can be recycled by omitting the neutralization step.
Examples of the method for separating the solid base catalyst after use include a sedimentation separation method and a filtration method, and can be appropriately selected according to the particle size and specific gravity of the solid catalyst. For example, when the particle size of the solid catalyst is large or the specific gravity is large, a sedimentation separation method by gravity is preferable. On the other hand, when the particle size of the solid catalyst is small or the specific gravity is small, it is separated into a filter cake and a filtrate by a centrifugal separation method or centrifugal filtration method using centrifugal force, or by a filter medium partition wall using pressure or reduced pressure. A filtration method is preferred.

[メチル(3−オキソシクロペンチル)アセテート誘導体の製造方法]
本発明におけるメチル(3−オキソシクロペンチル)アセテート誘導体の製造方法は、本発明の前記方法で得られた一般式(III)で表されるシクロペンタノン誘導体を原料として用いるものであり、該シクロペンタノン誘導体と水を反応させる方法である。
特に前記エステル化合物がマロン酸エステルである場合、水はシクロペンタノン誘導体に対して1〜3モル倍量を加えることが好ましく、反応系中に滴下しながら反応させることが好ましい。この際の反応温度は150〜230℃が好ましく、180〜220℃がより好ましい。
このようにして得られたメチル(3−オキソシクロペンチル)アセテート誘導体は、収率がよく、高純度で得るための精製負荷も低減でき、香料素材として優れたものである。
[Method for producing methyl (3-oxocyclopentyl) acetate derivative]
The method for producing a methyl (3-oxocyclopentyl) acetate derivative in the present invention uses a cyclopentanone derivative represented by the general formula (III) obtained by the above-described method of the present invention as a raw material. This is a method of reacting a non-derivative with water.
In particular, when the ester compound is a malonic acid ester, water is preferably added in an amount of 1 to 3 moles relative to the cyclopentanone derivative, and the reaction is preferably carried out while dropping in the reaction system. The reaction temperature at this time is preferably 150 to 230 ° C, more preferably 180 to 220 ° C.
The methyl (3-oxocyclopentyl) acetate derivative thus obtained has a good yield and can reduce the purification load for obtaining high purity, and is excellent as a perfume material.

以下の実施例、比較例において、「%」は特記しない限り「質量%」である。
なお、生成物の定量はガスクロマトグラフィー(GC)による内部標準法〔GC測定機器(Agilent Technology社製、6890N、カラム:DB−1(30m×0.25mm×0.25μm)、GC条件(オーブン:100℃→5℃/min.→210℃→20℃/min.→280℃(4.5min.hold)(計30min.)、キャリア:He、流量:1.6mL/min.、注入口:280℃、検出器(FID):280℃、注入量:1μL、スプリット:100:1)、内部標準:ウンデカン〕によって行った。
In the following examples and comparative examples, “%” is “% by mass” unless otherwise specified.
The product was quantified by an internal standard method by gas chromatography (GC) [GC measurement instrument (Agilent Technology, 6890N, column: DB-1 (30 m × 0.25 mm × 0.25 μm), GC conditions (oven : 100 ° C. → 5 ° C./min.→210° C. → 20 ° C./min.→280° C. (4.5 min. Hold) (total 30 min.), Carrier: He, flow rate: 1.6 mL / min., Inlet: 280 ° C., detector (FID): 280 ° C., injection volume: 1 μL, split: 100: 1), internal standard: undecane].

実施例1(固体塩基触媒P−BEMPを用いたジメチル2−(3−オキソ−2−ペンチルシクロペンチル)マロネートの製造)
(1)2−ペンチル−2−シクロペンテン−1−オンの合成
(1−i)滴下槽を備えた6m3の反応槽に、シクロペンタノン2241kg(26.6kmol)、水1007kg、48%NaOH 11kgを仕込み、撹拌しながら15℃に冷却した後、同温度でバレルアルデヒド985kg(11.4kmol)を5時間かけて滴下した。滴下終了後、同温度で1時間撹拌した。反応終了後、中和し、過剰のシクロペンタノンを蒸留回収した結果、反応終了品1868kgを得た。
(1−ii)脱水管を備えた300mlの4つ口フラスコに、前記(1−i)で得られた反応終了品を精留して得られた2−(1−ヒドロキシペンチル)−シクロペンタノン170g(0.99mol)、TiO2(球状成型品、直径1.5mm)8.5gを加え、100℃、53kPaになるように加熱混合し、6時間反応させた。
反応終了物中の固体酸触媒を濾過し、153gの濾過終了物を得た。この中に含まれる2−ペンチリデンシクロペンタノンは141g(0.93mol)であった(収率93%)。
(1−iii)前記(1−ii)で得られた濾過終了物をn−ブタノール153gに溶かし、130℃に昇温した後、同温度で3−ピコリン14.5g(0.15mol)と35%塩酸10.5g(0.1mol)の混合液を30分で滴下した。滴下終了後、同温度で3.5時間加熱攪拌した。反応終了後、室温まで冷却し、水酸化ナトリウム水溶液で中和した後、有機層を分析した結果、反応終了品中には、2−ペンチル−2−シクロペンテン−1−オンが118g含まれていた(収率は83%)。
Example 1 (Production of dimethyl 2- (3-oxo-2-pentylcyclopentyl) malonate using solid base catalyst P-BEMP)
(1) Synthesis of 2-pentyl-2-cyclopenten-1-one (1-i) In a 6 m 3 reaction tank equipped with a dropping tank, 2241 kg (26.6 kmol) of cyclopentanone, 1007 kg of water, 11 kg of 48% NaOH Was cooled to 15 ° C. with stirring, and 985 kg (11.4 kmol) of valeraldehyde was added dropwise at the same temperature over 5 hours. After completion of dropping, the mixture was stirred at the same temperature for 1 hour. After the completion of the reaction, the reaction mixture was neutralized and excess cyclopentanone was recovered by distillation to obtain 1868 kg of a reaction completed product.
(1-ii) 2- (1-hydroxypentyl) -cyclopenta obtained by rectifying the reaction-finished product obtained in (1-i) above in a 300 ml four-necked flask equipped with a dehydrating tube Non-170 g (0.99 mol) and 8.5 g of TiO 2 (spherical molded product, diameter 1.5 mm) were added, heated and mixed to 100 ° C. and 53 kPa, and reacted for 6 hours.
The solid acid catalyst in the reaction product was filtered to obtain 153 g of the filtration product. The 2-pentylidenecyclopentanone contained in this was 141 g (0.93 mol) (yield 93%).
(1-iii) The filtered product obtained in (1-ii) above was dissolved in 153 g of n-butanol, heated to 130 ° C., and then 14.5 g (0.15 mol) of 3-picoline and 35 at the same temperature. A mixture of 10.5 g (0.1 mol) of% hydrochloric acid was added dropwise over 30 minutes. After completion of dropping, the mixture was heated and stirred at the same temperature for 3.5 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and neutralized with an aqueous sodium hydroxide solution, and the organic layer was analyzed. As a result, 118 g of 2-pentyl-2-cyclopenten-1-one was contained in the finished product. (Yield 83%).

(2)ジメチル2−(3−オキソ−2−ペンチルシクロペンチル)マロネートの製造
50mlのガラス製受器に、フォスファゼン塩基を含有する固体塩基触媒「P−BEMP」(シグマアルドリッチ社製)0.30g(0.752mmol)、メタノール1.52g、マロン酸ジメチル4.96g(0.0375mol)を加え、0℃に冷却した。前記(1)で得られた2−ペンチル−2−シクロペンテン−1−オン3.80g(純度85%、0.021mol)を滴下して加え、窒素雰囲気下、0℃で25時間、101kPa(常圧)の条件にて攪拌して反応を行った。
反応終了後に反応終了物をGCにより定量した結果、ジメチル2−(3−オキソ−2−ペンチルシクロペンチル)マロネート5.49g(0.019mol)が生成していた。
また、遠心分離器を用いて反応終了物を2200rpm、5分間の条件で遠心分離し、固体触媒を沈殿させた。その後、ピペットを用いて有機層を回収し、メタノール及び未反応のマロン酸ジメチルを減圧留去して、ジメチル2−(3−オキソ−2−ペンチルシクロペンチル)マロネートを得た(収率92%)。結果を表1に示す。
(2) Production of dimethyl 2- (3-oxo-2-pentylcyclopentyl) malonate In a 50 ml glass receiver, 0.30 g of a solid base catalyst “P-BEMP” (manufactured by Sigma-Aldrich) containing phosphazene base 0.752 mmol), 1.52 g of methanol, and 4.96 g (0.0375 mol) of dimethyl malonate were added and cooled to 0 ° C. 3.80 g (purity 85%, 0.021 mol) of 2-pentyl-2-cyclopenten-1-one obtained in (1) above was added dropwise, and 101 kPa (ordinary) at 0 ° C. for 25 hours under a nitrogen atmosphere. The reaction was conducted with stirring under the condition of (pressure).
After completion of the reaction, the reaction product was quantified by GC. As a result, 5.49 g (0.019 mol) of dimethyl 2- (3-oxo-2-pentylcyclopentyl) malonate was produced.
In addition, the reaction product was centrifuged using a centrifuge at 2200 rpm for 5 minutes to precipitate a solid catalyst. Thereafter, the organic layer was recovered using a pipette, and methanol and unreacted dimethyl malonate were distilled off under reduced pressure to obtain dimethyl 2- (3-oxo-2-pentylcyclopentyl) malonate (yield 92%). . The results are shown in Table 1.

実施例2(触媒のリサイクル性の確認)
実施例1(2)で遠心分離後有機層を回収した後の触媒を用いた以外は、実施例1(2)と同様の反応を29時間行ったところ、ジメチル2−(3−オキソ−2−ペンチルシクロペンチル)マロネートの収率は91%であった。
Example 2 (Confirmation of catalyst recyclability)
A reaction similar to that in Example 1 (2) was carried out for 29 hours except that the catalyst after the organic layer was recovered after centrifugation in Example 1 (2) was subjected to 29 hours. As a result, dimethyl 2- (3-oxo-2) was obtained. The yield of -pentylcyclopentyl) malonate was 91%.

実施例3(触媒のリサイクル性の確認;2回目)
実施例2で遠心分離後有機層から回収した後の触媒を用いた以外は、実施例1(2)と同様の反応を31時間行ったところ、ジメチル2−(3−オキソ−2−ペンチルシクロペンチル)マロネートの収率は67%であった。
Example 3 (Confirmation of catalyst recyclability; second time)
Except for using the catalyst recovered from the organic layer after centrifugation in Example 2, the same reaction as in Example 1 (2) was performed for 31 hours. As a result, dimethyl 2- (3-oxo-2-pentylcyclopentyl) was obtained. ) The yield of malonate was 67%.

実施例4(固体塩基触媒Jandajel−TBDを用いたジメチル2−(3−オキソー2−ペンチルシクロペンチル)マロネートの製造)
50mlのガラス製受器に、Jandajel−TBD(シグマアルドリッチ社製)0.88g(0.748mmol)、メタノール1.69g、マロン酸ジメチル4.96g(0.0375mol)を加え、0℃に冷却した。実施例(1)で得られた2−ペンチル−2−シクロペンテン−1−オン3.81g(純度85%、0.021mol)を滴下して加え、窒素雰囲気下、0℃で29時間、101kPa(常圧)の条件にて攪拌して反応を行った。
反応終了後に反応終了物をGCにより定量した結果、ジメチル2−(3−オキソー2−ペンチルシクロペンチル)マロネート4.69g(0.017mol)が生成していた。
また、実施例1と同様に遠心分離して固体触媒を沈殿させた後、有機層を回収し、メタノール及び未反応のマロン酸ジメチルを減圧留去して、ジメチル2−(3−オキソ−2−ペンチルシクロペンチル)マロネートを得た(収率75%)。結果を表1に示す。
Example 4 (Production of dimethyl 2- (3-oxo-2-pentylcyclopentyl) malonate using solid base catalyst Jandajel-TBD)
To a 50 ml glass receiver, 0.88 g (0.748 mmol) of Jandajel-TBD (Sigma Aldrich), 1.69 g of methanol and 4.96 g (0.0375 mol) of dimethyl malonate were added and cooled to 0 ° C. . 3.81 g (purity 85%, 0.021 mol) of 2-pentyl-2-cyclopenten-1-one obtained in Example (1) was added dropwise, and the mixture was added 101 kPa (29 kPa) at 0 ° C. for 29 hours in a nitrogen atmosphere. The reaction was carried out with stirring under the conditions of (normal pressure).
After completion of the reaction, the reaction product was quantified by GC. As a result, 4.69 g (0.017 mol) of dimethyl 2- (3-oxo-2-pentylcyclopentyl) malonate was produced.
Moreover, after centrifuging similarly to Example 1 and precipitating a solid catalyst, the organic layer was recovered, methanol and unreacted dimethyl malonate were distilled off under reduced pressure, and dimethyl 2- (3-oxo-2 -Pentylcyclopentyl) malonate was obtained (yield 75%). The results are shown in Table 1.

比較例1(炭酸カリウム触媒使用)
50mlのガラス製受器に、炭酸カリウム0.2g、メタノール1.52g、マロン酸ジメチル4.96g(0.0373mol)を加えた。実施例1と同様に合成した2−ペンチルシクロペンテン−1−オン3.80g(純度85%、0.021mol)を滴下して加え、窒素雰囲気下、0℃で5時間、101kPa(常圧)の条件にて攪拌して反応を行った。
反応終了後に反応終了物をGCにより定量した結果、ジメチル2−(3−オキソー2−ペンチルシクロペンチル)マロネート4.17g(0.015mol)が生成していた。
また、実施例1と同様に遠心分離して固体触媒を沈殿させた後、有機層を回収し、メタノール及び未反応のマロン酸ジメチルを減圧留去して、ジメチル2−(3−オキソ−2−ペンチルシクロペンチル)マロネートを得た(収率72%)。結果を表1に示す。
Comparative Example 1 (using potassium carbonate catalyst)
To a 50 ml glass receiver, 0.2 g of potassium carbonate, 1.52 g of methanol, and 4.96 g (0.0373 mol) of dimethyl malonate were added. 2.80 g (purity 85%, 0.021 mol) of 2-pentylcyclopenten-1-one synthesized in the same manner as in Example 1 was added dropwise, and the mixture was 101 kPa (normal pressure) at 0 ° C. for 5 hours under a nitrogen atmosphere. The reaction was carried out with stirring under the conditions.
After completion of the reaction, the reaction product was quantified by GC. As a result, 4.17 g (0.015 mol) of dimethyl 2- (3-oxo-2-pentylcyclopentyl) malonate was produced.
Moreover, after centrifuging similarly to Example 1 and precipitating a solid catalyst, the organic layer was recovered, methanol and unreacted dimethyl malonate were distilled off under reduced pressure, and dimethyl 2- (3-oxo-2 -Pentylcyclopentyl) malonate was obtained (yield 72%). The results are shown in Table 1.

比較例2(炭酸カリウム触媒のリサイクル性の確認)
遠心分離後有機層から回収した触媒を用いた以外は、比較例1と同様の反応を5時間行ったところ、ジメチル2−(3−オキソ−2−ペンチルシクロペンチル)マロネートの収率は46%であった。
比較例3(炭酸カリウム触媒のリサイクル性の確認;2回目)
比較例5の反応終了後の触媒の代わりに遠心分離後有機層から回収した触媒を用いた以外は、比較例2と同様の反応を5時間行ったところ、ジメチル2−(3−オキソ−2−ペンチルシクロペンチル)マロネートの収率は6%であった。
Comparative Example 2 (Confirmation of recyclability of potassium carbonate catalyst)
Except for using the catalyst recovered from the organic layer after centrifugation, the same reaction as in Comparative Example 1 was carried out for 5 hours. As a result, the yield of dimethyl 2- (3-oxo-2-pentylcyclopentyl) malonate was 46%. there were.
Comparative Example 3 (Confirmation of recyclability of potassium carbonate catalyst; second time)
A reaction similar to that of Comparative Example 2 was carried out for 5 hours, except that the catalyst recovered from the organic layer after centrifugation was used instead of the catalyst after completion of the reaction of Comparative Example 5. As a result, dimethyl 2- (3-oxo-2 The yield of -pentylcyclopentyl) malonate was 6%.

比較例4(MgO触媒使用)
50mlのガラス製受器に、酸化マグネシウム(協和化学工業株式会社製、商品名;キョウワマグ150)0.19g、メタノール1.53g、マロン酸ジメチル4.96g(0.0375mol)を加えた。実施例(1)で得られた2−ペンチル−2−シクロペンテン−1−オン3.82g(純度85%、0.021mol)を滴下して加え、窒素雰囲気下、25℃で105時間、101kPa(常圧)の条件にて攪拌して反応を行った。
反応終了後に反応終了物をGCにより定量した結果、2−ペンチルシクロペンテン3.82gが回収され、ジメチル2−(3−オキソ−2−ペンチルシクロペンチル)マロネートは生成しなかった。結果を表1に示す。
Comparative Example 4 (using MgO catalyst)
To a 50 ml glass receiver, 0.19 g of magnesium oxide (manufactured by Kyowa Chemical Industry Co., Ltd., trade name: Kyowa Mag 150), 1.53 g of methanol, and 4.96 g (0.0375 mol) of dimethyl malonate were added. 3.82 g (purity 85%, 0.021 mol) of 2-pentyl-2-cyclopenten-1-one obtained in Example (1) was added dropwise, and 101 kPa (105 kPa) at 25 ° C. under a nitrogen atmosphere for 105 hours. The reaction was carried out with stirring under the conditions of (normal pressure).
After completion of the reaction, the reaction product was quantified by GC. As a result, 3.82 g of 2-pentylcyclopentene was recovered, and dimethyl 2- (3-oxo-2-pentylcyclopentyl) malonate was not produced. The results are shown in Table 1.

比較例5(ハイドロタルサイト触媒使用)
50mlのガラス製受器に、ハイドロタルサイト(協和化学工業株式会社製、商品名;KW−1000)0.19g、メタノール1.52g、マロン酸ジメチル4.95g(0.0375mol)を加えた。実施例(1)で得られた2−ペンチル−2−シクロペンテン−1−オン3.80g(純度85%、0.021mol)を滴下して加え、窒素雰囲気下、25℃で80時間、101kPa(常圧)の条件にて攪拌して反応を行った。
反応終了後に反応終了物をGCにより定量した結果、2−ペンチルシクロペンテン3.80gが回収され、ジメチル2−(3−オキソ−2−ペンチルシクロペンチル)マロネートは生成しなかった。結果を表1に示す。
Comparative Example 5 (using hydrotalcite catalyst)
Hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd., trade name: KW-1000) 0.19 g, methanol 1.52 g, and dimethyl malonate 4.95 g (0.0375 mol) were added to a 50 ml glass receiver. 3.80 g (purity 85%, 0.021 mol) of 2-pentyl-2-cyclopenten-1-one obtained in Example (1) was added dropwise and added under nitrogen atmosphere at 25 ° C. for 80 hours, 101 kPa ( The reaction was carried out with stirring under the conditions of (normal pressure).
After completion of the reaction, the reaction product was quantified by GC. As a result, 3.80 g of 2-pentylcyclopentene was recovered, and dimethyl 2- (3-oxo-2-pentylcyclopentyl) malonate was not produced. The results are shown in Table 1.

比較例6(強塩基性陰イオン交換樹脂触媒使用)
50mlのガラス製受器に、強塩基性陰イオン交換樹脂(オルガノ株式会社製、商品名;アンバーライトIRA458RF、常法に従いCL−型からOH−型へと調整済み)0.20g、メタノール1.52g、マロン酸ジメチル4.97g(0.0376mol)を加えた。実施例1と同様に合成した2−ペンチルシクロペンテン−1−オン3.80g(純度85%、0.021mol)を滴下して加え、窒素雰囲気下、25℃で31時間、101kPa(常圧)の条件にて攪拌して反応を行った。
反応終了後に反応終了物をGCにより定量した結果、2−ペンチルシクロペンテン3.80gが回収され、ジメチル2−(3−オキソー2−ペンチルシクロペンチル)マロネートは生成しなかった。結果を表1に示す。
Comparative Example 6 (Using strongly basic anion exchange resin catalyst)
In a 50 ml glass receiver, 0.20 g of strongly basic anion exchange resin (manufactured by Organo Corporation, trade name: Amberlite IRA458RF, adjusted from CL-type to OH-type according to a conventional method), methanol 1. 52 g and 4.97 g (0.0376 mol) of dimethyl malonate were added. 3.80 g (purity 85%, 0.021 mol) of 2-pentylcyclopenten-1-one synthesized in the same manner as in Example 1 was added dropwise, and the reaction was performed at 101 kPa (normal pressure) at 25 ° C. for 31 hours under a nitrogen atmosphere. The reaction was carried out with stirring under the conditions.
After completion of the reaction, the reaction product was quantified by GC. As a result, 3.80 g of 2-pentylcyclopentene was recovered, and dimethyl 2- (3-oxo-2-pentylcyclopentyl) malonate was not produced. The results are shown in Table 1.

比較例7(ナトリウムメトキシド触媒使用)
窒素雰囲気下にて、マロン酸ジメチル(Aldrich社製)208g(1.56mol)を無水メタノール(Aldrich社製)63gに溶解し、0℃に冷却して、ナトリウムメトキシド(和光純薬工業株式会社製、30%メタノール溶液)6.5g(0.035mol)を添加した。実施例(1)で得られた2−ペンチル−2−シクロペンテン−1−オン183.48g(純度84%、1.01mol)を滴下して加え、窒素雰囲気下、0℃で5時間、101kPa(常圧)の条件にて攪拌して反応を行った。
反応終了後、酸性になるまで酢酸を添加して触媒を中和して、メタノール及び未反応のマロン酸ジメチルを減圧留去して、有機層を水で2回洗浄して、硫酸マグネシウム上で乾燥し、283.48gのジメチル2−(3−オキソー2−ペンチルシクロペンチル)マロネートを得た(収率94%)。結果を表1に示す。
Comparative Example 7 (using sodium methoxide catalyst)
Under a nitrogen atmosphere, 208 g (1.56 mol) of dimethyl malonate (Aldrich) was dissolved in 63 g of anhydrous methanol (Aldrich), cooled to 0 ° C., and sodium methoxide (Wako Pure Chemical Industries, Ltd.). Manufactured, 30% methanol solution) 6.5 g (0.035 mol) was added. 183.48 g (purity 84%, 1.01 mol) of 2-pentyl-2-cyclopenten-1-one obtained in Example (1) was added dropwise and added under nitrogen atmosphere at 0 ° C. for 5 hours, 101 kPa ( The reaction was carried out with stirring under the conditions of (normal pressure).
After completion of the reaction, acetic acid is added to neutralize the catalyst until it becomes acidic, methanol and unreacted dimethyl malonate are distilled off under reduced pressure, and the organic layer is washed twice with water, and over magnesium sulfate. It was dried to obtain 283.48 g of dimethyl 2- (3-oxo-2-pentylcyclopentyl) malonate (yield 94%). The results are shown in Table 1.

Figure 0005814782
Figure 0005814782

表1から、実施例1〜4の製造方法によれば、2−シクロペンテン−1−オンとエステル化合物とのマイケル付加反応が効率的に進み、高収率でシクロペンタノン誘導体を得ることができると同時に、精製操作も効率的でことが分かる。また、実施例2から、固体塩基触媒を再利用しても十分な触媒活性を発揮することが分かる。
更に、実施例2及び3から、本発明の方法によれば、中和工程を省略して触媒をリサイクルすることも可能であることが分かる。
一方、比較例1〜3の固体塩基触媒を用いる方法では、収率が低く、リサイクルすることで大幅に収率が低下することが分かる。
更に比較例4〜6の固体塩基触媒を用いる方法では、目的とするシクロペンタノン誘導体を得ることができなかった。
比較例7の方法では、目的とするシクロペンタノン誘導体を得ることができたが、均一系触媒であるため精製操作が煩雑であり、生産効率が低下した。
From Table 1, according to the production methods of Examples 1 to 4, the Michael addition reaction between 2-cyclopenten-1-one and an ester compound proceeds efficiently, and a cyclopentanone derivative can be obtained in a high yield. At the same time, it can be seen that the purification operation is also efficient. In addition, Example 2 shows that sufficient catalytic activity is exhibited even when the solid base catalyst is reused.
Further, Examples 2 and 3 show that according to the method of the present invention, the neutralization step can be omitted and the catalyst can be recycled.
On the other hand, in the method using the solid base catalyst of Comparative Examples 1 to 3, the yield is low, and it can be seen that the yield is significantly reduced by recycling.
Furthermore, in the methods using the solid base catalysts of Comparative Examples 4 to 6, the target cyclopentanone derivative could not be obtained.
In the method of Comparative Example 7, the target cyclopentanone derivative could be obtained, but since it was a homogeneous catalyst, the purification operation was complicated and the production efficiency was lowered.

実施例5(メチル(3−オキソシクロペンチル)アセテートの製造)
蒸留留出管を取り付けた反応装置に、実施例1で得られたジメチル2−(3−オキソ−2−ペンチルシクロペンチル)マロネート283.48gを加え、215℃に加熱し、水を滴下した。発生する二酸化炭素とメタノールを留出させながら、215℃で、4時間滴下反応を行った。反応終了後、粗生成物203.27gを得た。
粗生成物を精留して得られたメチル(3−オキソ−2−ペンチルシクロペンチル)アセテート(148.71g)は、フルーティでジャスミン様の香気を有しており、香料素材としても優れたものであった。
Example 5 (Production of methyl (3-oxocyclopentyl) acetate)
To a reaction apparatus equipped with a distillation distillation tube, 283.48 g of dimethyl 2- (3-oxo-2-pentylcyclopentyl) malonate obtained in Example 1 was added, heated to 215 ° C., and water was added dropwise. While distilling off the generated carbon dioxide and methanol, a drop reaction was carried out at 215 ° C. for 4 hours. After the reaction, 203.27 g of a crude product was obtained.
Methyl (3-oxo-2-pentylcyclopentyl) acetate (148.71 g) obtained by rectifying the crude product has a fruity and jasmine-like fragrance, and is an excellent fragrance material. there were.

本発明の製造方法によれば、2−シクロペンテン−1−オン誘導体とエステル化合物とのマイケル付加反応を効率的に行うことができ、精製も効率的であり、触媒の再利用も可能であるため、香料素材として有用なメチル(3−オキソシクロペンチル)アセテート誘導体の中間体となり得るシクロペンタノン誘導体の製造方法として有用である。   According to the production method of the present invention, the Michael addition reaction between the 2-cyclopenten-1-one derivative and the ester compound can be efficiently performed, the purification is efficient, and the catalyst can be reused. It is useful as a method for producing a cyclopentanone derivative that can be an intermediate of a methyl (3-oxocyclopentyl) acetate derivative useful as a perfume material.

Claims (9)

フォスファゼン塩基又はグアニジン塩基を含有する固体塩基触媒の存在下、一般式(I)で表される2−シクロペンテン−1−オン誘導体と、一般式(II)で表されるエステル化合物をマイケル付加反応させる、一般式(III)で表されるシクロペンタノン誘導体の製造方法。
Figure 0005814782

(式中、Rは炭素数3〜8の、アルキル基、アルケニル基、又はアルキニル基を示す。)
Figure 0005814782

(式中、Rは炭素数1〜4のアルキル基を示し、Rは炭素数1〜4のアルキル基又はアルコキシ基を示す。)
Figure 0005814782

(式中、R、R及びRは、前記と同じである。)
In the presence of a solid base catalyst containing a phosphazene base or a guanidine base, a 2-cyclopenten-1-one derivative represented by the general formula (I) and an ester compound represented by the general formula (II) are subjected to a Michael addition reaction. The manufacturing method of the cyclopentanone derivative represented by general formula (III).
Figure 0005814782

(In the formula, R 1 represents an alkyl group, an alkenyl group, or an alkynyl group having 3 to 8 carbon atoms.)
Figure 0005814782

(In the formula, R 2 represents an alkyl group having 1 to 4 carbon atoms, and R 3 represents an alkyl group or alkoxy group having 1 to 4 carbon atoms.)
Figure 0005814782

(Wherein R 1 , R 2 and R 3 are the same as described above.)
固体塩基触媒が、フォスファゼン塩基又はグアニジン塩基を有機高分子に担持したものである、請求項1に記載のシクロペンタノン誘導体の製造方法。   The method for producing a cyclopentanone derivative according to claim 1, wherein the solid base catalyst is a phosphazene base or guanidine base supported on an organic polymer. 有機高分子が架橋ポリスチレン樹脂である、請求項2に記載のシクロペンタノン誘導体の製造方法。   The method for producing a cyclopentanone derivative according to claim 2, wherein the organic polymer is a crosslinked polystyrene resin. ホスファゼン塩基が、2−tert−ブチルイミノ−2−ジエチルアミノ−1,3−ジメチルパーヒドロ−1,3,2−ジアザホスフォリンである、請求項1〜3のいずれかに記載のシクロペンタノン誘導体の製造方法。   The cyclopentanone derivative according to any one of claims 1 to 3, wherein the phosphazene base is 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorin. Manufacturing method. グアニジン塩基が、1,3,4,6,7,8−ヘキサヒドロ−2H−ピリミド−[1,2−A]ピリミジンである、請求項1〜3のいずれかに記載のシクロペンタノン誘導体の製造方法。   The production of a cyclopentanone derivative according to any one of claims 1 to 3, wherein the guanidine base is 1,3,4,6,7,8-hexahydro-2H-pyrimido- [1,2-A] pyrimidine. Method.   R 1 が炭素数3〜7のアルキル基である、請求項1〜5のいずれかに記載のシクロペンタノン誘導体の製造方法。Is a C3-C7 alkyl group, The manufacturing method of the cyclopentanone derivative in any one of Claims 1-5.   R 3 が炭素数1〜4のアルコキシ基である、請求項1〜6のいずれかに記載のシクロペンタノン誘導体の製造方法。Is a C1-C4 alkoxy group, The manufacturing method of the cyclopentanone derivative in any one of Claims 1-6. がn−ペンチル基である、請求項1〜のいずれかに記載のシクロペンタノン誘導体の製造方法。 The method for producing a cyclopentanone derivative according to any one of claims 1 to 7 , wherein R 1 is an n-pentyl group. がメチル基、Rがメトキシ基である、請求項1〜のいずれかに記載のシクロペンタノン誘導体の製造方法。 The method for producing a cyclopentanone derivative according to any one of claims 1 to 8 , wherein R 2 is a methyl group and R 3 is a methoxy group.
JP2011286941A 2011-12-27 2011-12-27 Method for producing cyclopentanone derivative Active JP5814782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286941A JP5814782B2 (en) 2011-12-27 2011-12-27 Method for producing cyclopentanone derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286941A JP5814782B2 (en) 2011-12-27 2011-12-27 Method for producing cyclopentanone derivative

Publications (2)

Publication Number Publication Date
JP2013133330A JP2013133330A (en) 2013-07-08
JP5814782B2 true JP5814782B2 (en) 2015-11-17

Family

ID=48910264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286941A Active JP5814782B2 (en) 2011-12-27 2011-12-27 Method for producing cyclopentanone derivative

Country Status (1)

Country Link
JP (1) JP5814782B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106946705B (en) * 2016-12-30 2022-02-15 北京安胜瑞力科技有限公司 Method for synthesizing (1R,2S) -methyl dihydrojasmonate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260830A (en) * 1980-01-18 1981-04-07 International Flavors & Fragrances Inc. Process for the preparation of methyl dihydrojasmonate and lower alkyl homologues
JPS6137756A (en) * 1984-07-30 1986-02-22 Sumitomo Chem Co Ltd Production of cyclopentylacetic acid
BRPI0512937A (en) * 2004-07-01 2008-04-15 Mitsui Chemicals Inc phosphazene supported catalyst, new compounds thereof and their uses
ES2614999T3 (en) * 2008-04-11 2017-06-02 Kao Corporation Method for the production of 2-alkyl-2-cycloalken-1-one
JP2010111633A (en) * 2008-11-07 2010-05-20 Chiba Univ Guanidine compound, and polymer-fixed complex of guanidine compound

Also Published As

Publication number Publication date
JP2013133330A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
CN113896674B (en) Synthesis method of apremilast
WO2005044805A1 (en) A novel process for preparing donepezil and its derivatives
JP5814782B2 (en) Method for producing cyclopentanone derivative
US7906651B2 (en) Method for producing optically active hydroxymethylated compounds
Salama et al. Silicon-assisted O-heterocyclic synthesis: mild and efficient one-pot syntheses of (E)-3-benzylideneflavanones, coumarin-3-carbonitriles/carboxamides, and benzannulated spiropyran derivatives
CN114516796A (en) Method for preparing 5-oxohexanoate
JP6676146B2 (en) Novel production method of chromanol derivative
JP5004138B2 (en) Process for producing β-hydroxycarbonyl compound
US8378147B2 (en) Process for producing a 2-alkyl-2-cycloalkene-1-one
JP5019447B2 (en) Cyanosilylation catalysts for organic carbonyl compounds
JP5229479B2 (en) Method for producing adamantane dialcohol
JP3000731B2 (en) Process for producing oxyflavans
JP5089423B2 (en) Method for producing optically active piperidine derivative
JP2002069026A (en) Method for manufacturing (e)-3-methyl-2- cyclopentadecenone
CN104961722B (en) Method for preparing eprosartan intermediate by using reaction auxiliary agent
JP6216638B2 (en) Method for producing α-methyl-γ-butyrolactone
CN117362142A (en) Asymmetric catalytic hydrogenation method of cyclohexene derivative
KR101465351B1 (en) METHOD FOR PREPARING CHIRAL β-HYDROXY THIOESTER BY CATALYTIC ENANTIOSELECTIVE ALDOL REACTION AND CHIRAL β-HYDROXY THIOESTER SYNTHESIZED BY THE METHOD
JP5787399B2 (en) Novel asymmetric catalyst, optically active carboxylic acid ester, optically active alcohol, and method for producing optically active carboxylic acid
WO2007094297A1 (en) Method for producing polymerizable alkyl diamantyl ester compound
CN116606250A (en) Preparation method of key intermediate of montelukast sodium
CN116135847A (en) Method for constructing chiral quaternary carbon center-containing cyclic beta-keto ester compound
JP3962520B2 (en) 1- (4-Oxocyclohexyl) -1- (4&#39;-hydroxyphenyl) cycloalkanes and process for producing the same
WO2004024667A1 (en) Process for production of 2-(hydroxymethyl)cyclo- propanecarboxylic acids
JP2003192629A (en) Method for producing bis(phenylacetyl)benzene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150918

R151 Written notification of patent or utility model registration

Ref document number: 5814782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250