JP5813871B2 - 異なる送信電力レベルでのマルチmcsofdm伝送のための無線通信装置及び方法 - Google Patents

異なる送信電力レベルでのマルチmcsofdm伝送のための無線通信装置及び方法 Download PDF

Info

Publication number
JP5813871B2
JP5813871B2 JP2014523908A JP2014523908A JP5813871B2 JP 5813871 B2 JP5813871 B2 JP 5813871B2 JP 2014523908 A JP2014523908 A JP 2014523908A JP 2014523908 A JP2014523908 A JP 2014523908A JP 5813871 B2 JP5813871 B2 JP 5813871B2
Authority
JP
Japan
Prior art keywords
power level
radio channel
level
maximum allowable
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014523908A
Other languages
English (en)
Other versions
JP2014526203A (ja
Inventor
ケニー,トマス,ジェイ.
ペラヒア,エルダッド
Original Assignee
インテル コーポレイション
インテル コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インテル コーポレイション, インテル コーポレイション filed Critical インテル コーポレイション
Publication of JP2014526203A publication Critical patent/JP2014526203A/ja
Application granted granted Critical
Publication of JP5813871B2 publication Critical patent/JP5813871B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Description

本出願における実施形態は、無線通信に関する。いくつかの実施形態は、異なる電力レベルでのマルチMCS OFDM(orthogonal frequency division multiplexed)伝送に関連する。いくつかの実施形態は、認可されていない800MHz−1000MHz帯を含む、1GHz以下の周波数帯における、OFDM伝送に関連する。
1GHz以下の帯域でデータを通信することの一つの問題は、いくつかの管轄において、利用可能な複数のチャネルが、同一でない最大許容送信電力要件を有することである。これにより、かかるチャネルを効率的に利用することが困難となる。いくつかのセルラネットワークは、それらのデータ通信の一部を、WiFiネットワークのような、他のネットワークへとオフロードしたい。1GHz以下の帯域は、かかるオフロード処理を扱うために、有効な容量とスペクトルを有し得る。
従って、同一でない最大許容送信電力要件を有する複数のチャネルを効率的に利用できる、無線通信装置及び方法への一般的な要求がある。また、1GHz以下の帯域において、同一でない最大許容送信電力要件を有する複数のチャネルを効率的に利用できる、無線通信装置及び方法への一般的な要求がある。さらに、1GHz以下の帯域において、同一でない最大送信電力要件を有する複数のチャネルを有する無線ネットワークを含むセルラネットワークから無線ネットワークへの、データ通信のオフロードのための、無線通信装置及び方法への一般的な要求がある。
上述した課題を解決し目的を達成するため、本発明の一実施形態における無線通信装置は、
マルチバンド送信のためのマルチMCS OFDM送信機を有する無線通信装置であって、前記マルチMCS OFDM送信機は:
2以上の無線チャネルで送信するデータを、1の符号化方式を用いて符号化し、符号化されたデータストリームを生成し;
前記2以上の無線チャネルの各々に対して選択された変調レベルに基づいて、前記符号化されたデータストリームのビットを、前記無線チャネルの各々のビットストリームへと分割し;
前記2以上の無線チャネルの各々において、該無線チャネルの最大許容送信電力レベルを超えないように選択された電力レベルで、独立した時間領域のマルチキャリア波を同時に送信する;
ように構成され、
各無線チャネルの前記変調レベルは、該無線チャネルの前記最大許容送信電力レベルの少なくとも一部に基づいて選択される。
また、本発明の一実施形態における方法は、
複数の変調レベルによる伝送のための方法であって:
2以上の無線チャネルで送信するデータを、1の符号化方式を用いて符号化し、符号化されたデータストリームを生成する段階と;
前記2以上の無線チャネルの各々に対して選択された変調レベルに基づいて、前記符号化されたデータストリームのビットを、前記無線チャネルの各々のビットストリームへと分割する段階と;
前記2以上の無線チャネルの各々において、該無線チャネルの最大許容送信電力レベルを超えないように選択された電力レベルで、独立した時間領域のマルチキャリア波を同時に送信する段階と;
を有し、
各無線チャネルの変調レベルは、該無線チャネルの前記最大許容送信電力レベルの少なくとも一部に基づいて選択される。
また、本発明の一実施形態における無線通信装置は、
無線通信装置であって:
セルラ通信技術に従って、セルラネットワークの基地局と通信するセルラ送受信機と;
700MHzと1000MHzとの間の周波数における無線ネットワーク通信技術に従って、無線ネットワークのアクセスポイントと通信する無線ネットワーク送受信機と;
を有し、
前記無線通信装置の上位層は、データ通信を、前記セルラネットワークから、利用可能な無線ネットワークへと、オフロードするよう構成され、
前記無線ネットワーク送受信機は、マルチMCS OFDM送信機であり、該マルチMCS OFDM送信機は:
2以上の無線チャネルで送信するデータを、1の符号化方式を用いて符号化し、符号化されたデータストリームを生成し;
前記2以上の無線チャネルの各々において、該無線チャネルの最大許容送信電力レベルを超えないように選択された電力レベルで、独立した時間領域のマルチキャリア波を同時に送信する;
ように構成され、
各無線チャネルの変調レベルは、該無線チャネルの前記最大許容送信電力レベルの少なくとも一部に基づいて選択される。
本発明によれば、同一でない最大許容送信電力要件を有する複数のチャネルを効率的に利用できる、無線通信装置及び方法が提供される。
いくつかの実施形態における無線ネットワークを示す図。 いくつかの実施形態におけるチャネル帯の例を示す図。 いくつかの実施形態におけるOFDM送信機の機能ブロック図。 いくつかの実施形態における変調レベルの組の例を示す図。 いくつかの実施形態における様々な管轄のチャネル帯を示す図。 いくつかの実施形態における様々な管轄のチャネル帯を示す図。 いくつかの実施形態における様々な管轄のチャネル帯を示す図。 いくつかの実施形態における様々なMCSのパケット誤り率を示す図。
本出願は、2011年8月5日に出願された、米国特許出願第61/515680に対する優先権を主張し、その米国特許出願の全内容は、参照されることにより、本願明細書に組み込まれる。
本出願は、「低電力かつ低データレート処理のための無線装置及び方法(WIRELESS DEVICE AND METHOD FOR LOW POWER AND LOW DATA RATE OPERATION)」(代理人番号884.J67WO1(P39444PCT))と題されるPCT出願に関連する。
以下の詳細な説明及び図面は、当業者が実施可能なように、いくつかの特定の実施形態を十分に説明するものである。他の実施形態は、構造的、論理的、電気的、処理的、及び、他の変更を組み込むことができる。いくつかの実施形態の一部及び特徴部分は、他の実施形態の一部及び特徴部分に含まれても良いし、他の実施形態の一部及び特徴部分によって置き換えられても良い。クレームにおいて説明される実施形態は、かかるクレームの、全ての有効な均等物を包含する。
図1は、いくつかの実施形態における無線ネットワークを示す図である。無線ネットワーク100は、無線通信装置(WCD; Wireless Communication Device)102のような1以上の無線装置と、アクセスポイント(AP)104又は基地局を含み得る。AP104は、インターネットのようなネットワークに接続され、無線通信装置102と他のエンティティとの間の通信を容易にする。
いくつかの実施形態において、無線通信装置102は、マルチバンド伝送のための、マルチMCS OFDM送信機(multi-MCS OFDM transmitter)を含む。これらの実施形態において、輻輳したネットワークでより多くのチャネル選択を可能にし、より高いスループットを提供可能にする、より高い変調レベルが、より大きな伝送電力レベルが許される無線チャネルにおいて用いられる。さらに、これらの実施形態は、最大許容送信電力に応じて異なる変調レベルを用いることにより、利用可能なチャネルの、より良い利用を提供する。無線チャネルは、800MHzと1000MHzの間のスペクトルを占有してもよいが、これは必須ではない。各無線チャネルは、略1MHz、いくつかの場合において2MHzの送信帯域を有することができるが、これは必須ではない。
いくつかの実施形態において、無線通信装置102の、マルチMCS OFDM送信機は、マルチバンド伝送用に設定され得る。いくつかの実施形態において、マルチMCS OFDM送信機は、2以上の無線チャネルで送信するデータを、単一の符号化方式により符号化し、符号化されたデータストリームを生成する。マルチMCS OFDM送信機は、2以上の無線チャネルの各々に対して選択された変調レベルに基づいて、符号化されたデータストリームのビットを、各無線チャネルのビットストリームへと分割することができる。マルチMCS OFDM送信機は、さらに、2以上の選択された無線チャネルの各々において、その無線チャネルの最大許容送信電力レベルを超えないように選択された電力レベルで、独立した時間領域のマルチキャリア波を、同時に送信することができる。各無線チャネルの変調レベルは、少なくとも、その無線チャネルに対する最大許容送信電力レベルの一部に基づいて、選択され得る。いくつかの実施形態において、マルチMCS OFDM送信機は、IEEE 802.11ah通信規格に従い、マルチMCSモード伝送をサポートするよう構成され得る。
いくつかの実施形態において、無線通信装置102のマルチMCS OFDM送信機は、サンプルクロック比クロック信号(sample clock rate clock signal)をダウンクロックすることにより、各RFチャネルを、1MHz又は2MHzの送信帯域に設定することができる。これらの実施形態は、最小限の変更で、IEEE 802.11ac通信のために設定された、従来のOFDM送信機の使用を可能にし得る。これらの実施形態について、後により詳細に述べる。
いくつかの実施形態において、無線通信装置102は、セルラ通信技術に従って、セルラネットワークの基地局と通信するセルラ送受信機と、700MHzと1000MHzとの間の周波数における無線ネットワーク通信技術に従って、無線ネットワークのアクセスポイント(例えば、アクセスポイント104)と通信する無線ネットワーク送受信機とを有し得る。無線通信装置の上位層(upper-level layers)は、データ通信を、セルラネットワークから、利用可能な無線ネットワークへと、オフロードするよう構成され得る。これらの実施形態において、オフロードされたデータは、本明細書で述べられるように、2以上の無線チャネルでのマルチMCS伝送のために設定され得る。これらの実施形態のいくつかにおいて、無線通信装置102は、スマートフォン又はデータを通信するその他の装置であってもよいが、これは必須ではない。
いくつかの実施形態において、無線通信装置102は、例えば、PDA(personal digital assistant)、無線通信が可能なラップトップ又は携帯型コンピュータ、Webタブレット、無線電話、無線ヘッドセット、ポケットベル、インスタントメッセージング装置、デジタルカメラ、アクセスポイント、テレビ、医療機器(例えば、心拍計、血圧計等)、又は、情報を無線で送信若しくは受信可能なその他の装置のような、任意の携帯無線通信装置の一部であってもよい。いくつかの実施形態において、無線通信装置102は、1以上の、キーボード、ディスプレイ、不揮発性メモリ端子、複数のアンテナ、グラフィックプロセッサ、アプリケーションプロセッサ、スピーカ、及び、他の携帯装置部品を含んでも良い。ディスプレイは、タッチスクリーンを含む、LCDスクリーンであってもよい。
いくつかの実施形態において、マルチMCS OFDM送信機は、単一のアンテナを利用することができ、2つのRFチェーン(RF chain)を用いて構成され得る。これらの実施形態は、以下で詳細に説明される。
図2は、いくつかの実施形態におけるチャネル帯の例を示す図である。チャネル帯200は、伝送周波数帯210を占有する、6つの無線チャネル202を表す。チャネル206のような、いくつかの無線チャネル202は、より高い、最大許容送信電力レベル207を有し得る。また、チャネル204のような、いくつかのチャネル202は、より低い、最大許容送信電力レベル205を有し得る。チャネル202の数、チャネルの帯域幅、最大許容送信電力レベル205、207、及び、具体的な伝送周波数帯210は、特定の管轄に基づく。いくつかの無線チャネル202の間の、不均衡な最大電力の制約により、1以上の無線チャネルでの伝送に対して(すなわち、マルチバンド処理)、かかる種別の伝送周波数帯210を、効率的に使用することが困難になる。チャネル204、206は、電力レベル差209を有する。
かかる種別の伝送周波数帯におけるマルチバンド処理に対する一つのアプローチは、マルチバンド伝送中には、伝送周波数帯210の全てのチャネルに対して、より低い最大許容伝送電力レベル205を用いることである。かかるアプローチの欠点は、スループットの実質的な低下を生ずることである。なぜなら、より高い許容電力レベルを有するチャネルは、より低いデータレートを生ずる非常に低い送信電力レベルで、動作するためである。これにより、その装置のスループットを低減するだけでなく、より高い許容電力レベルを有するチャネルで動作する、他の装置のスループットを低減する可能性がある。これらの他の装置は、無線媒体にアクセスするために、より短い時間を有する可能性があるためである。
別のアプローチは、最大許容送信電力レベルの不均衡のあるチャネルの使用を避けることである。しかしながら、かかるアプローチは、無線装置が利用可能なチャネル選択を制限し、マルチチャネル伝送を受け入れるチャネルを発見できる可能性を低下させる。さらに、いくつかの管轄において、同一の最大許容送信電力レベルを有するチャネルが4より少ない。また、いくつかの管轄において、同一の最大許容送信電力レベルを有するチャネルが、2つしかない場合もある。かかるアプローチは、システムスループットと顕著な低下を招く可能性がある。
いくつかの実施形態において、無線通信装置102(図1)は、各チャネル202に対して、変調レベルと電力レベルを、独立に選択することができる。これは、周波数ダイバーシティゲインを得るこめに、1のMCSを用い、(マルチチャネル伝送において)チャネル全体にデータを広げる、従来のアプローチとは異なっている。かかる従来のアプローチにおいて、異なるチャネルで利用可能な電力量の不均衡が存在するため、1のMCSの使用により、十分に活用されないシステムがもたらされる。これは、より低いMCS(より低いデータレート)が、より高い変調レベルをサポートし得るチャネルで用いられなければならない可能性があるためである。
いくつかの実施形態において、無線通信装置102のマルチMCS OFDM送信機は、異なる電力要件を有する無線チャネル202のために、2つの異なる変調レベルを選択することができる。これにより、システムのスループットを最適化することを支援することができる。いくつかの実施形態において、スケーリングブロック(scaling block)が、より高い電力チャネルのために用いられ、使用されるべき、可能なMCSの組み合わせを最大化することを支援し、必要に応じて電力消費を低減する。これらの実施形態は、以下でより詳細に述べられる。
いくつかの実施形態において、マルチMCS OFDM送信機は、2以上の無線チャネル202で送信するデータを、単一の符号化方式により符号化し、符号化されたデータストリームを生成し、さらに、2以上の無線チャネル202の各々に対して選択された変調レベルに基づいて、符号化されたデータストリームの複数のビットを、各無線チャネル202の単一のビットストリームへと分割することができる。符号化方式は、前方誤り訂正(FEC; Forward Error-Correcting)符号化方式であってもよい。送信機は、さらに、2以上の無線チャネルの各々において、その無線チャネルの最大許容送信電力レベルを超えないように選択された電力レベルで、独立した時間領域のマルチキャリア波を、同時に送信することができる。各無線チャネル202の変調レベルは、少なくとも、その無線チャネル202に対する最大許容送信電力レベル205、207の一部に基づいて、選択され得る。
いくつかの実施形態において、輻輳したネットワークでより多くのチャネル選択を可能にし、より高いスループットを提供可能にする、より高い変調レベルが、より大きな伝送電力レベルが許される無線チャネル202において用いられ得る。これらの実施形態は、最大許容送信電力に応じて異なる変調レベルを用いることにより、利用可能なチャネルの、より良い利用を提供する。
いくつかの実施形態において、独立した時間領域のマルチキャリア波は、2以上の無線チャネル202の各々において、その無線チャネルの最大許容送信電力レベルを超えないように選択された電力レベルで、単一のアンテナにより、同時に送信される。いくつかの実施形態において、選択された無線チャネル202は、スペクトル内で隣接する(すなわち、チャネル204Aや206Aのように、スペクトルの隣接する部分を占有する)無線チャネルである。一方、他の実施形態において、選択された無線チャネルは、スペクトル内で隣接しない(すなわち、チャネル204Bや206Bのように、スペクトルの隣接しない部分を占有する)無線チャネルであってもよい。
図3は、いくつかの実施形態におけるOFDM送信機の機能ブロック図である。マルチMCS OFDM送信機300は、無線通信装置102(図1)のマルチMCS OFDM送信機としての利用に適合し得るが、他の構成にも適合し得る。マルチMCS OFDM送信機300は、無線通信装置102の物理レイヤ(PHYレイヤ)の一部であってもよい。無線通信装置102は、メディアアクセス制御(MAC; media-access control)レイヤ回路を含む、他のレイヤの回路と、図示しないPHYレイヤの一部である受信回路とを含んでも良い。一般に、マルチMCS OFDM送信機300は、MACレイヤデータ301を受信し、そのデータを処理して、1以上のアンテナによる伝送のために、OFDM信号335を生成することができる。
いくつかの実施形態において、マルチMCS OFDM送信機300は、2以上の無線チャネル202(図2)で送信するデータを、単一の符号化方式により符号化し、符号化されたデータストリーム309を生成する、エンコーダ308を有し得る。セグメントパーサ312は、各無線チャネル202(図2)に対して選択された変調レベルに基づいて、符号化されたデータストリーム309のビットを、無線チャネル202の各々のビットストリーム313へと分割することができる。独立した時間領域のマルチキャリア波325は、2以上の選択された無線チャネルの各々において、その無線チャネルの最大許容送信電力レベルを超えないように選択された電力レベルで、単一のアンテナを用いて同時に送信するための、離散逆フーリエ変換(IDFT; inverse discrete Fourier transform)回路234により生成される。
マルチMCS OFDM送信機300は、各無線チャネルを対象として分割されたデータ313を、選択された変調レベルに基づいて、コンステレーションシンボルにマップするよう構成される、コンステレーションマッパ316をさらに有し得る。IDFT回路234(図2)は、各無線チャネルに対し、コンステレーションがマップされたデータに関して、IDFTを実行することができ、各無線チャネルに対する時間領域のマルチキャリア波325を生成する。各無線チャネルの時間領域のマルチキャリア波325は、単一のアンテナでの同時送信のために、結合素子(combining element)333により、結合され得る。
いくつかの実施形態において、可変利得素子332が、より高い電力レベルと、より高い変調レベルのチャネルと関連付けられた、時間領域のマルチキャリア波325の送信電力レベルを調整し、所定の性能レベルを満たすために、含まれ得る。これは、以下でより詳細に説明する。
いくつかの実施形態において、マルチMCS OFDM送信機300は、複数のアンテナのうちの各アンテナと関連付けられたエンコーダ308を有してもよい。各エンコーダが1の符号化方式を用い得るため、エンコーダ308は、アンテナごとに異なる符号化方式で、送信用のデータを符号化するよう構成され得る。マルチMCS OFDM送信機300は、2以上の無線チャネルの各々において、OFDM信号335を含む、独立した時間領域のマルチキャリア波を、1のアンテナにより、同時に送信するよう構成され得る。これらの実施形態において、符号化方式は、同じアンテナにより送信される無線チャネルの各々に対して、同じであってもよい。しかしながら、そのチャネルの許容送信電力に応じて、同じアンテナにより送信される各チャネルに対して、異なる変調レベルが用いられても良い。
図3に示されるように、異なるコンステレーションマッパ316が、分割されたストリーム313の各々に対して、利用され得る。しかしながら、同一のエンコーダ308からのストリームは、1のアンテナによる送信のために、結合素子333により、最終的に結合される。このように、各アンテナは、単一の符号化方式と関連付けられ得るが、そのアンテナにより送信される複数の無線チャネルの変調レベルは、異なることが許される。
いくつかの実施形態において、より高い変調レベルが、より高い許容送信電力レベルを有する無線チャネル202(すなわち、チャネル206(図2))に対して選択され、より低い変調レベルが、より低い許容送信電力レベルを有する無線チャネル202(すなわち、チャネル204(図2))に対して選択される。いくつかの実施形態において、無線チャネル202の許容送信電力は、無線通信装置102が配置される管轄の規則に基づいて決定され得る。
いくつかの実施形態において、無線通信装置102は、アクセスポイント104(又は基地局)(図1)から、利用可能な無線チャネルと、利用可能な無線チャネルの各々の最大許容送信電力レベルとを示す信号を受信するよう構成され得る。いくつかの実施形態において、その信号は、ビーコン信号であってもよい。
マルチMCS OFDM送信機300は、エンコーダ308の符号化率を選択し、コンステレーションマッパ316の変調レベルを選択し、さらに、セグメントパーサ312が、利用可能な無線チャネルの各々に対して選択された変調レベルに基づいて分割することができる、ビットの数を決定するよう構成される、コントローラ素子352又は他の処理回路を含んでもよい。コントローラ素子352は、本明細書で述べる他の制御機能を実行するよう構成されても良い。
いくつかの実施形態において、マルチMCS OFDM送信機300は、単一のアンテナに関連付けられた、1より多いRFチェーンコントローラを含んでも良い。図3は、各送信アンテナと関連付けられた、2つのRFチェーンを示しているが、これは必須ではない。各RFチェーンは、データのストリームと関連付けられ得る。既に述べたように、可変利得素子332は、単一のアンテナと関連付けられた、少なくとも一つのRFチェーンと関連付けられ得る。そして、可変利得素子332は、所定の性能レベルをサポートし、かつ、無線チャネルの最大許容送信電力レベルを超えないように選択された電力レベルを有する、無線チャネルの時間領域のマルチキャリア波325を構成し得る。いくつかの実施形態において、より高い変調レベルを利用する無線チャネルは、可変利得素子332を有するRFチェーンであってもよい。このように、2つの無線チャネルで、同一のアンテナにより送信された信号は、管轄の規則の要件を満たしつつ、データスループットを最大化するように、異なる電力レベルを有することができる。これにより、より高い電力チャネルの電力レベルは、最大許容レベルより低いレベルに低減される一方、所定の性能レベルを満たすことができる。いくつかの実施形態において、所定の性能レベルは、ビットあたりの最小電力、最大フレーム誤り率(例えば、1%)、又は、変調及び符号化方式の目標誤り率であってもよい。
いくつかの実施形態において、マルチMCS OFDM送信機300は、サンプルクロック比クロック信号をダウンクロックすることにより、各RFチャネルを、略1MHzか2MHzの何れかの送信帯域を有するよう、設定することができる。各無線チャネルで送信される、時間領域のマルチキャリア波は、複数のサブキャリア(トーン)を有する、OFDM信号であっても良い。選択されたRFチャネル202は、700MHzと1000MHzの間のスペクトル(すなわち、伝送周波数帯210)を占有しても良い。
可変利得素子332は、アナログ回路を含み、図3に示されるように、アナログ信号で動作してもよい。他の実施形態において、可変利得素子332は、デジタルで利得を制御するよう構成されても良い。また、可変利得素子332は、コントローラ素子352の一部であっても良い。さらに、可変利得素子332は、アナログデジタルコンバータ(ADC; analog-to-digital converter)の前であり、IDFT素子324の後ろで提供されても良い。
いくつかの実施形態において、本明細書で述べたように、従来のIEEE802.11ac送信機が、IEEE 802.11ah通信規格に従い、マルチMCSモードをサポートするよう、変更されてもよい。これらの実施形態において、物理レイヤデータユニット(PSDU; physical layer data unit)長の計算、並びに、MAC及びPHYパディングの計算が、送信時間の計算とともに、修正されても良い。いくつかの実施形態において、PSDU長は、以下の式に基づいて、計算され得る。
Figure 0005813871
ここで、
Figure 0005813871
は、2つの変調種別の平均である。各変調種別が使用されるチャネルの数は、以下の式で計算され得る。
Figure 0005813871
ここで、kとlは、第一の変調種別と第二の変調種別がそれぞれ用いられる、チャネルの番号である。上記の式において、NFは、改善されたピーク対平均電力比(PAPR; peak-to-average power ratio)に対してヌル化され得るトーンの数を表す、ナリングファクタ(nulling factor)であっても良い。これらの実施形態において、NFは、何れのトーンもヌル化されないことを表す、1であってもよい。この例において、2つの変調種別のみが、2つの異なる電力レベルを構成するよう考慮されるが、他の割り当てに対して拡張されても良い。
シンボルの数と、PHY及びMACパディングとが計算されると、送信機300内での処理は、ストリームパーサ310まで、従来のIEEE802.11acの流れに従っても良い。ストリームパーサ310は、コンステレーションに基づき、単一の軸(実数又は虚数)の上に符号化されたビットの集合を解析することができる。
符号化とパンクチャリング(puncturing)の後に、FECエンコーダ308の出力におけるデータビットストリームは、
Figure 0005813871
ビットの
Figure 0005813871
ブロックに、再配列され得る。この演算は、「ストリームパージング」と呼ばれることがある。
1の空間ストリーム内の、1のコンステレーション点において、単一の軸(実数又は虚数)に割り当てられるビットの数は、以下の式で表される。
Figure 0005813871
ここで、
Figure 0005813871
は、空間ストリームごとの、サブキャリアあたりの符号化ビット数であり、
Figure 0005813871
は、空間ストリームごとの、シンボルあたりの符号化ビット数であり、
Figure 0005813871
は、空間ストリームの数である。
すべてのストリームに対するこれらの和は、以下の式で表すことができる。
Figure 0005813871
この例において、かかる式は、異なる変調種別を用いるよう、変更され得る(但し、この例にでは、一度に2つの種別のみが許される)。
これは、以下のように表される。
Figure 0005813871
ここで、
Figure 0005813871
は、使用される各変調種別の、空間ストリームごとの、サブキャリアあたりの符号化ビット数を表す。
その結果、全てのストリームの和は、以下のようになる。
Figure 0005813871
ここで、
Figure 0005813871
は、変調種別(チャネル)ごとに割り当てられる、空間ストリームの数である。
これらのストリームは、セグメント(チャネル)に対して解析されるブロックに移され得る。この解析は、変調種別に基づいて行われる。従って、1の変調種別のみが、チャネルの各々へと送信されるだろう。
セグメントパーサ312の次に、インターリーバ314が、各変調種別に対して利用可能なビット数に基づいて、インターリーブ処理を実行することができる。各コンステレーションマッパ316は、選択された変調レベルに基づいて、ビットをマップするよう構成され得る。以上のように、各チャネルは、変調種別に基づいて、処理される。
いくつかの実施形態において、マルチMCS OFDM送信機300の素子は、従来のIEEE802.11送信と比較して、低減された送信帯域幅を超えて、あるいはその範囲内で、送信用のOFDM送信シンボルを生成するために、ダウンクロックされ得る。これらの実施形態において、IDFT素子324及び後続のデジタルアナログ(D/A)コンバータ素子は、ダウンクロックされたサンプルクロック比で動作することができる。ダウンクロックは、IEEE802.11n/ac用に構成された、多くの従来の送信機と比べて、低減された送信帯域幅を提供するために、コントローラ素子352によって、設定され得る。
いくつかの実施形態において、送信機300により送信される時間領域の信号は、サンプルクロック比クロック信号に基づく、伝送帯域を有することができる。IDFT素子324により実行されるIDFTは、サンプルクロック比クロック信号に基づいて実行され得る。時間領域の信号に関し、D/Aコンバータ素子により実行される、デジタルアナログ変換もまた、サンプルクロック比クロック信号に基づくものであり、低減された伝送帯域を有する、OFDM送信シンボルを生成する。これらの実施形態において、サンプルクロック比クロック信号は、10以上のファクタにより、送信信号帯域を低減するよう構成される、ダウンクロックされたサンプルクロック比であってもよい。いくつかの実施形態において、コントローラ素子352は、クロック回路を、そのサンプルクロック比にダウンクロックするよう設定し、IDFT素子324とD/Aコンバータ素子により用いられる、ダウンクロックされたサンプルクロック比を有する、クロック信号を生成する。
1/10にダウンクロックされたサンプルクロックの利用により、例えば、20HMzの波が、2MHzの伝送帯域に適合することができる。これらの実施形態において、ダウンクロックは、送信機のクロックを低くする(この例では、1/10)と同時に、各OFDMシンボルのトーンの数に影響を与えることなく、OFDMシンボル時間を増加させる。周波数領域において、より低い利用帯域が存在し、トーン間隔がより狭いためである。ここで用いられるトーンとは、サブキャリアのことを表し得る。
いくつかの実施形態において、従来のWLANシステム(すなわち、IEEE802.11nに従って構成される)のサンプルクロック比に対して、略1/10又は1/20にダウンクロックされた、サンプロクロック比が、IDFT素子324とD/Aコンバータ素子に提供され得る。これにより、従来のWLANシステムと比べて、顕著に低減された伝送帯域が使用され得る。
これらの例示的な実施形態において、サンプルクロック比が、1/20又は1/10にダウンクロックされた場合、ダウンサンプリングに応じ、52のトーンを使用する、20MHzのIEEE 802.11acの帯域幅は、52の、より狭い間隔のトーンを使用する、1MHz又は2MHzの帯域へと低減され得る。また、108のトーンを使用する、40MHzのIEEE 802.11acの帯域幅の場合には、108の、さらに狭い間隔のトーンを使用する、2MHz又は4MHzの帯域へと低減され得る。また、234のトーンを使用する、80MHzのIEEE 802.11acの帯域幅の場合には、234の、さらに狭い間隔のトーンを使用する、4MHz又は8MHzの帯域へと低減され得る。また、468のトーンを使用する、160MHzのIEEE 802.11acの帯域幅の場合には、468の、さらに狭い間隔のトーンを使用する、8MHz又は16MHzの帯域へと低減され得る。この場合、IEEE 802.11n/ac送信機は、顕著により狭い帯域において、顕著により低い電力により、低いデータレートのデータを送信するために用いられ得る。ダウンサンプリングされたクロック比の利用により、時間当たりのOFDMシンボル長が増加し得る。
いくつかの実施形態において、アナログ及び無線回路は、IDFT素子324からの時間領域の信号を、700MHzと1.0GHzとの間の送信周波数へと、アップコンバートし、1以上の電力増幅器により、送信周波数において、信号を増幅するよう構成され得る。IDFT素子324により生成される送信用の時間領域の信号は、送信帯域幅にわたり、均等に間隔を有する、複数のトーン(すなわち、サブキャリア)を有する。
いくつかの実施形態において、マルチMCS OFDM送信機300は、周波数選択性送信のために設定されても良い。これらの実施形態において、1GHz以下の送信周波数が選択され得る。いくつかの代替の実施形態において、アクティブなトーンは、伝送帯域にわたり均等な間隔を有する代わりに、チャネルの状態に基づいて選択されても良い。これらの実施形態において、AP104(図1)は、チャネル推定を実行し、どのトーンがアクティブなトーンとして使用されるべきかを、送信機300に示すことができる。他の実施形態において、送信機300は、チャネル推定を実行し、どのトーンをアクティブなトーンとして選択するか決定することができる。
サンプルクロック比が1/10にダウンクロックされる、いくつかの実施形態において、送信帯域は、それぞれ、52、108、234、又は468のトーンの組を使用する、2MHz、4MHz、8MHz、又は16MHzの帯域を含んでもよい。サンプルクロック比が1/20にダウンクロックされる、いくつかの実施形態において、送信帯域は、それぞれ、52、108、234、又は468のトーンの組を使用する、1MHz、2MHz、4MHz、又は8MHzの帯域を含んでもよい。いくつかの実施形態において、送信帯域は、サンプルクロック比のダウンクロックによって、1MHz以下の小ささであってもよいし、10MHz以上の大きさであってもよい。
マルチMCS OFDM送信機300は、いくつかの独立した機能素子を有するように説明されるが、1以上の機能素子が統合されても良い。マルチMCS OFDM送信機300は、DSP(digital signal processor)を含む演算素子のような、ソフトウェアにより構成された素子の組み合わせ、及び/又は、他のハードウェア素子により、実装されても良い。例えば、いくつかの素子は、少なくとも本明細書で述べた機能を実行する、1以上の、マイクロプロセッサ、DSP、ASIC(application specific integrated circuits)、RFIC(radio-frequency integrated circuits)、及び、様々なハードウェア及び論理回路の組み合わせを含み得る。いくつかの実施形態において、マルチMCS OFDM送信機300の機能素子は、1以上の演算素子上で動作する、1以上の処理を表し得る。
いくつかの実施形態は、1のハードウェア、ファームウェア及びソフトウェア、又は、それらの組み合わせにより、実現される。いくつかの実施形態は、また、本明細書で述べた演算を実行するために、少なくとも一つのプロセッサにより読み込まれて実行される、コンピュータ読み取り可能な記録装置に格納された命令として、実装され得る。コンピュータ読み取り可能な記録装置は、機械(例えば、コンピュータ)によって読み取り可能な形式で、情報を格納する、任意の持続性方式を含み得る。例えば、コンピュータ読み取り可能な記録装置は、ROM(read-only memory)、RAM(random-access memory)、磁気ディスク記録媒体、光学記録媒体、フラッシュメモリ装置、並びに、他の記録装置及び記録媒体を含んでもよい。いくつかの実施形態において、1以上のプロセッサは、コンピュータ読み取り可能な記録装置に格納された命令を実行するように構成され得る。
図4は、いくつかの実施形態における、MSCレベルの組400を示す。各MCSレベルは、列405のMCSインデックスと関連付けられ得る。MCSインデックスは、列407に示される変調レベルと、列409に示される符号化率により、定義され得る。図示されるように、MCSレベル401は、同一の符号化率1/2を有し、MCSレベル402は、同一の符号化率3/4を有し、MCSレベル403は、同一の符号化率5/6を有する。列411は、所定の品質レベルを達成するために必要な、ビットレベルあたりの電力の例を表す。列412は、列411のレベルの間での差を表す。
いくつかの実施形態において、マルチMCS OFDM送信機300(図3)は、チャネルの許容最大送信電力レベルに加え、そのチャネルのフィードバック(すなわち、SNRのような、チャネルの品質測定)に基づいて、各無線チャネル202(図2)の変調レベルを選択することができる。同一のアンテナにより送信される無線チャネルに対して選択された変調レベルは、同一の符号化率と関連付けられた、変調レベルの組に制限され得る。第一の無線チャネルが、より低い最大許容送信電力レベル(すなわち、チャネル204A(図2))を有し、第二の無線チャネルが、より高い最大許容送信電力レベル(すなわち、チャネル206A(図2))を有する場合、より高い最大許容伝送電力レベルと、より低い最大許容伝送電力レベルとの差209(図2)に基づいて、これらの無線チャネルに対する、変調レベルの組が選択される。これにより、列412に示される、所定の品質レベルをサポートするために必要となる、変調レベルの組の間での電力レベル差は、より高い最大許容送信電力レベルと、より低い最大許容送信電力レベルとの間の差209を超えない。
より高い最大許容送信電力レベルと、より低い最大許容送信電力レベルとの差209(図2)が、略10dBである実施形態の一例において、変調レベルの組は、所定の品質レベルをサポートするための、変調レベルの組の間の電力レベルの差が、10dBを超えない範囲で、選択され得る。図4において示される例において、符号化率が1/2のBPSKとQPSKの、変調レベルの組が選択される。これは、3dBの差のみが、所定の品質レベルをサポートするために必要とされるためである。符号化率が1/2のBPSKと16QAMの、変調レベルの組もまた、選択され得る。これは、送信電力レベルにおける8dBの差のみが、所定の品質レベルをサポートするために必要とされるためである。符号化率が3/4の16QAMと64QAMの、変調レベルの組もまた、選択され得る。これは、送信電力レベルにおける5.5dBの差のみが、所定の品質レベルをサポートするために必要とされるためである。
しかしながら、符号化率が3/4のQPSKと64QAMの、変調レベルの組は、チャネルを最も効率的に利用するために、11dBの差を必要とする可能性がある。より高い変調レベルを有するチャネルが、より低い変調レベルを有するチャネルより、1dB又はそれより良いチャネル条件を得ているとき(例えば、フェーディングによりより損失が少ない)、符号化率が3/4のQPSKと64QAMの、変調レベルの組の使用は、例えば、より高い最大許容送信電力レベルと、より低い最大許容送信電力レベルとの間の差209が、略10dBである状況において、適合し得る。
いくつかの実施形態において、より低い変調レベルと、より低い送信電力レベルとが、より高い電力チャネルに対して選択され、いくつかの状況において、電力消費を低減し(すなわち、送信すべきデータが多くない)、チャネル間の電力レベルの均衡を取りやすくする。さらに、より低い性能レベルが受け入れられるとき、より低い変調レベルと、より低い送信電力レベルとが、より高い電力チャネルに対して選択されても良い。
図4において示されるように、この組は、使用されるMCSにおいて、いくつかの選択を可能とする。列412のいくつかの差は、チャネルの性能よる性能の差を有する、独立したチャネルの各々の、異なるチャネル条件に対して、システムを調整する十分な機会があることを示している。符号化率5/6が使用される場合の上端では、唯一の選択(すなわち、64QAMと256QAM)のみが存在する。このケースでは、より低い電力チャネルが、符号化率5/6で、64QAM伝送をサポートできる場合、より高い電力チャネルは、さらに5dBの分割のみを必要とする。これは、チャネル間で許容できる差が、5dBより大きい場合には、制限にはならないであろう。多くの管轄において、チャネル間の許容できる電力の差は、10dBのオーダーである。
図5A、図5B、図5Cは、いくつかの実施形態における様々な管轄のチャネル帯を示す図である。図5Aは、欧州連合(EU; European Union)において、863から868.6MHz帯の2つの無線チャネルは、より低い最大許容送信電力レベルを有し、3つのチャネルは、より高い最大許容送信電力レベルを有する。図5Bは、韓国において、917から923.5MHz帯の4つの無線チャネルは、より低い最大許容送信電力レベルを有し、2つのチャネルは、より高い最大許容送信電力レベルを有する。図5Cは、日本国において、950.8から957.6MHz帯の3つの無線チャネルは、より低い最大許容送信電力レベルを有し、3つのチャネルは、より高い最大許容送信電力レベルを有する。いくつかの実施形態において、マルチMCS OFDM送信機300(図3)は、これらの管轄の何れにおける、マルチバンド伝送のために構成され、2以上の無線チャネルの各々において、その無線チャネルの最大許容送信電力レベルを超えないように選択された電力レベルで、独立した時間領域のマルチキャリア波を、同時に送信することができる。各無線チャネルの変調レベルは、その管轄において、少なくとも、その無線チャネルに対する最大許容送信電力レベルの一部に基づいて、選択され得る。最大許容送信電力及び受け入れ可能な性能レベルに応じて異なる変調レベルを用いることにより、利用可能な無線チャネルの、より良い利用が提供される。
図6は、いくつかの実施形態における様々な変調及び符号化方式(MCS; modulation and coding schemes)のパケット誤り率(PER; packet-error-rate)を示す図である。図6に示されるように、より低いMCSレベルと同じPER性能を達成するために、より良いチャネル条件(例えば、より高い信号対雑音比(SNR;signal-to-noise ratio))が、より高いMCSレベルに対して、必要とされ得る。このように、同一の符号化率に対する変調レベルの組は、利用可能なチャネルの効率的な利用のために、それらの無線チャネルの最大許容送信電力レベルに応じて、選択され得る。
要約書は、技術的な開示の性質と趣旨を読者が確認できるようにするための要約書を要求している37C.F.R.§1.72(b)に準じて提供される。請求項の範囲または意味を制限または解釈するために使用されないという理解の下に提出される。以下の特許請求の範囲は、個別の実施例として独立している各請求項と共に、本発明の詳細な説明に組み入れられる。

Claims (15)

  1. マルチバンド送信のためのマルチMCS OFDM送信機を有する無線通信装置であって、前記マルチMCS OFDM送信機は:
    2以上の無線チャネルで送信するデータを、単一の符号化方式を用いて符号化し、符号化されたデータストリームを生成し;
    前記2以上の無線チャネルの各々に対して選択された変調レベルに基づいて、前記符号化されたデータストリームのビットを、前記無線チャネルの各々のビットストリームへと分割し;
    前記分割されたビットストリームを、選択された前記変調レベルに基づいて、コンステレーションシンボルにマップし;
    前記コンステレーションシンボルにIDFTを実行し、時間領域のマルチキャリア波を生成し;
    前記2以上の無線チャネルの各々において、該無線チャネルの最大許容送信電力レベルを超えないように選択された各々の電力レベルで、前記時間領域のマルチキャリア波を、単一のアンテナにより同時に送信する;
    ように構成され、
    各無線チャネルの前記変調レベルは、該無線チャネルの前記最大許容送信電力レベルの少なくとも一部に基づいて選択され
    第一の前記無線チャネルが、低最大許容送信電力レベルを有し、第二の前記無線チャネルが、高最大許容送信電力レベルを有し、
    前記高最大許容送信電力レベルと前記低最大許容送信電力レベルとの差に基づいて、前記無線チャネルに対する変調レベルの組が選択され、
    所定の品質レベルをサポートするための前記変調レベルの組の間の電力レベルの差が、前記高最大許容送信電力レベルと前記低最大許容送信電力レベルとの差を超えない、
    無線通信装置。
  2. 前記マルチMCS OFDM送信機は、複数のアンテナのうちの各アンテナと関連付けられるエンコーダを有し、
    前記エンコーダは、前記アンテナの各々により送信されるデータが、異なる符号化方式で符号化されることを可能にするよう構成され、
    前記マルチMCS OFDM送信機は、2以上の無線チャネルの各々における時間領域のマルチキャリア波を、前記アンテナのうちの単一のアンテナを用いて、同時に送信するよう構成される、
    請求項に記載の無線通信装置。
  3. 高変調レベルが、高許容送信電力レベルを有する無線チャネルに対して選択され、低変調レベルが、低許容送信電力レベルを有する無線チャネルに対して選択される、
    請求項に記載の無線通信装置。
  4. 利用可能な無線チャネルと、前記利用可能な無線チャネルの各々の前記最大許容送信電力レベルとを示すアクセスポイントからの信号を受信するようさらに構成される、
    請求項に記載の無線通信装置。
  5. 前記マルチMCS OFDM送信機は、
    単一の送信アンテナに関連付けられる、少なくとも一つのRFチェーンと;
    前記RFチェーンの少なくとも一つと関連付けられる可変利得素子と;
    を有し、
    前記可変利得素子は、所定の性能レベルをサポートし、かつ、前記無線チャネルの前記最大許容送信電力レベルを超えないように選択された電力レベルを有する、無線チャネルの前記時間領域のマルチキャリア波を設定する、
    請求項に記載の無線通信装置。
  6. 前記マルチMCS OFDM送信機は、クロック信号をダウンクロックすることにより、略1MHz又は2MHzの送信帯域を有する各無線チャネルを設定し、
    各無線チャネルで送信される前記時間領域のマルチキャリア波は、複数のサブキャリアを有するOFDM信号であり、
    選択された前記無線チャネルは、略700MHzと1000MHzとの間のスペクトルを占有する、
    請求項に記載の無線通信装置。
  7. 前記2以上の無線チャネルは、前記スペクトル内で隣接する無線チャネルである、
    請求項に記載の無線通信装置。
  8. 前記2以上の無線チャネルは、前記スペクトル内で隣接しない無線チャネルである、
    請求項に記載の無線通信装置。
  9. 前記マルチMCS OFDM送信機は、さらに
    所定の性能レベルを満たすように、高電力レベル及び高変調レベルのチャネルと関連付けられる前記時間領域のマルチキャリア波の送信電力レベルを低減し;
    単一のアンテナでの同時送信のために、各無線チャネルの前記時間領域のマルチキャリア波を結合する;
    よう構成される、請求項に記載の無線通信装置。
  10. 複数の変調レベルによる伝送のための方法であって:
    2以上の無線チャネルで送信するデータを、単一の符号化方式を用いて符号化し、符号化されたデータストリームを生成する段階と;
    前記2以上の無線チャネルの各々に対して選択された変調レベルに基づいて、前記符号化されたデータストリームのビットを、前記無線チャネルの各々のビットストリームへと分割する段階と;
    前記分割されたビットストリームを、選択された前記変調レベルに基づいて、コンステレーションシンボルにマップし;
    前記コンステレーションシンボルにIDFTを実行し、時間領域のマルチキャリア波を生成し;
    前記2以上の無線チャネルの各々において、該無線チャネルの最大許容送信電力レベルを超えないように選択された各々の電力レベルで、前記時間領域のマルチキャリア波を、単一のアンテナにより同時に送信する段階と;
    を有し、
    各無線チャネルの変調レベルは、該無線チャネルの前記最大許容送信電力レベルの少なくとも一部に基づいて選択され
    第一の前記無線チャネルが、低最大許容送信電力レベルを有し、第二の前記無線チャネルが、高最大許容送信電力レベルを有し、
    当該方法は、前記高最大許容送信電力レベルと前記低最大許容送信電力レベルとの差に基づいて、前記無線チャネルの変調レベルの組を選択する段階を含み、
    所定の品質レベルをサポートするための前記変調レベルの組の間の電力レベルの差が、前記高最大許容送信電力レベルと前記低最大許容送信電力レベルとの差を超えない、
    方法。
  11. 前記符号化は、アンテナの各々による送信のために、データが、異なる符号化方式で符号化されることを可能にし、
    前記方法は、2以上の無線チャネルの各々における時間領域のマルチキャリア波を、前記アンテナのうちの単一のアンテナを用いて、同時に送信する段階をさらに有する、
    請求項10に記載の方法。
  12. 高変調レベルが、高許容送信電力レベルを有する無線チャネルに対して選択され、低変調レベルが、低許容送信電力レベルを有する無線チャネルに対して選択される、
    請求項10に記載の方法。
  13. 略1MHz又は2MHzの送信帯域を有する各無線チャネルを設定するために、クロック信号をダウンクロックする段階をさらに有し、
    各無線チャネルで送信される前記時間領域のマルチキャリア波は、複数のサブキャリアを有するOFDM信号であり、
    選択された前記無線チャネルは、略700MHzと1000MHzとの間のスペクトルを占有する、
    請求項12に記載の方法。
  14. 無線通信装置であって:
    セルラ通信技術に従って、セルラネットワークの基地局と通信するセルラ送受信機と;
    700MHzと1000MHzとの間の周波数における無線ネットワーク通信技術に従って、無線ネットワークのアクセスポイントと通信する無線ネットワーク送受信機と;
    を有し、
    前記無線通信装置の上位層は、データ通信を、前記セルラネットワークから、利用可能な無線ネットワークへと、オフロードするよう構成され、
    前記無線ネットワーク送受信機は、マルチMCS OFDM送信機であり、該マルチMCS OFDM送信機は:
    2以上の無線チャネルで送信するデータを、単一の符号化方式を用いて符号化し、符号化されたデータストリームを生成し;
    前記2以上の無線チャネルの各々に対して選択された変調レベルに基づいて、前記符号化されたデータストリームのビットを、前記無線チャネルの各々のビットストリームへと分割し;
    前記分割されたビットストリームを、選択された前記変調レベルに基づいて、コンステレーションシンボルにマップし;
    前記コンステレーションシンボルにIDFTを実行し、時間領域のマルチキャリア波を生成し;
    前記2以上の無線チャネルの各々において、該無線チャネルの最大許容送信電力レベルを超えないように選択された各々の電力レベルで、前記時間領域のマルチキャリア波を、単一のアンテナにより同時に送信する;
    ように構成され、
    各無線チャネルの変調レベルは、該無線チャネルの前記最大許容送信電力レベルの少なくとも一部に基づいて選択され
    第一の前記無線チャネルが、低最大許容送信電力レベルを有し、第二の前記無線チャネルが、高最大許容送信電力レベルを有し、
    前記高最大許容送信電力レベルと前記低最大許容送信電力レベルとの差に基づいて、前記無線チャネルに対する変調レベルの組が選択され、
    所定の品質レベルをサポートするための前記変調レベルの組の間の電力レベルの差が、前記高最大許容送信電力レベルと前記低最大許容送信電力レベルとの差を超えない、
    無線通信装置。
  15. 前記無線通信装置は、タッチスクリーンを有するスマートフォンを含む、
    請求項14に記載の無線通信装置。
JP2014523908A 2011-08-05 2011-12-05 異なる送信電力レベルでのマルチmcsofdm伝送のための無線通信装置及び方法 Expired - Fee Related JP5813871B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161515680P 2011-08-05 2011-08-05
US61/515,680 2011-08-05
PCT/US2011/063301 WO2013022468A1 (en) 2011-08-05 2011-12-05 Wireless communication device and method for multi-mcs ofdm transmissions at different transmission power levels

Publications (2)

Publication Number Publication Date
JP2014526203A JP2014526203A (ja) 2014-10-02
JP5813871B2 true JP5813871B2 (ja) 2015-11-17

Family

ID=47668757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014523908A Expired - Fee Related JP5813871B2 (ja) 2011-08-05 2011-12-05 異なる送信電力レベルでのマルチmcsofdm伝送のための無線通信装置及び方法

Country Status (5)

Country Link
US (1) US9729268B2 (ja)
EP (1) EP2740247A4 (ja)
JP (1) JP5813871B2 (ja)
KR (2) KR20140053252A (ja)
WO (1) WO2013022468A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9729268B2 (en) 2011-08-05 2017-08-08 Intel Corporation Wireless communication device and method for multi-MCS OFDM transmissions at different transmission power levels

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411846B1 (en) * 2009-03-24 2019-09-10 Marvell International Ltd. Multi-radio device for WLAN
KR102036296B1 (ko) 2011-02-04 2019-10-24 마벨 월드 트레이드 리미티드 Wlan용 제어 모드 phy
CN103947170B (zh) 2011-11-21 2018-01-19 英特尔公司 用于低功率和低数据率操作的无线设备和方法
WO2015038647A2 (en) 2013-09-10 2015-03-19 Marvell World Trade Ltd. Extended guard interval for outdoor wlan
US10218822B2 (en) 2013-10-25 2019-02-26 Marvell World Trade Ltd. Physical layer frame format for WLAN
US10194006B2 (en) 2013-10-25 2019-01-29 Marvell World Trade Ltd. Physical layer frame format for WLAN
WO2015061729A1 (en) 2013-10-25 2015-04-30 Marvell World Trade Ltd. Range extension mode for wifi
US11855818B1 (en) 2014-04-30 2023-12-26 Marvell Asia Pte Ltd Adaptive orthogonal frequency division multiplexing (OFDM) numerology in a wireless communication network
CN110708257B (zh) * 2014-09-02 2023-02-28 华为技术有限公司 一种传输数据的方法和设备
US9939521B2 (en) * 2015-01-09 2018-04-10 Qualcomm Incorporated Techniques for use in wideband time-of-arrival estimation
US9660760B2 (en) 2015-02-02 2017-05-23 Intel IP Corporation Apparatus, system and method of communicating a wireless transmission according to a physical layer scheme
US9912381B2 (en) * 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
CN105099621B (zh) 2015-06-29 2018-05-22 珠海市魅族科技有限公司 通信方法和通信设备
CN108370282A (zh) * 2015-12-16 2018-08-03 瑞典爱立信有限公司 发送通信设备、接收通信设备以及其中执行的包括映射星座符号的方法
WO2017167376A1 (en) * 2016-03-31 2017-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Multi-modulation transmitter, receiver and methods for handling multi-modulation in wireless communication systems
WO2017167380A1 (en) 2016-03-31 2017-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Multi-modulation receiver, transmitters and methods for handling multi-modulation in wireless communication systems
US10638474B2 (en) 2016-04-21 2020-04-28 Qualcomm Incorporated Different numerology for signal transmission
US11764914B2 (en) 2016-05-09 2023-09-19 Qualcomm Incorporated Numerology dependent signal transmission
US10727951B2 (en) * 2016-07-20 2020-07-28 Nokia Of America Corporation Low-complexity constellation shaping
US10245460B2 (en) 2016-11-22 2019-04-02 Fitness Anywhere LLC Apparatus, kit, and method for performing strap-based exercises
US10044537B2 (en) 2016-12-28 2018-08-07 Intel IP Corporation Frequency domain pulse position modulation
WO2018173119A1 (ja) * 2017-03-21 2018-09-27 株式会社日立国際電気 無線通信装置、無線通信システム及び無線通信方法
JP7392374B2 (ja) 2019-10-08 2023-12-06 ヤマハ株式会社 無線送信装置、無線受信装置、無線システム及び無線送信方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3875086B2 (ja) 2001-11-30 2007-01-31 ソフトバンクテレコム株式会社 直交周波数分割多重システムおよび送受信装置
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US7394858B2 (en) 2003-08-08 2008-07-01 Intel Corporation Systems and methods for adaptive bit loading in a multiple antenna orthogonal frequency division multiplexed communication system
JP2005101975A (ja) * 2003-09-25 2005-04-14 Matsushita Electric Ind Co Ltd 無線通信装置及びピーク抑圧方法
US7499393B2 (en) 2004-08-11 2009-03-03 Interdigital Technology Corporation Per stream rate control (PSRC) for improving system efficiency in OFDM-MIMO communication systems
US8270512B2 (en) 2004-08-12 2012-09-18 Interdigital Technology Corporation Method and apparatus for subcarrier and antenna selection in MIMO-OFDM system
JP4447416B2 (ja) * 2004-09-22 2010-04-07 株式会社エヌ・ティ・ティ・ドコモ マルチバンド移動通信システムおよび送信機
US7422487B2 (en) 2005-01-27 2008-09-09 Oscos Inc. Electrical connector and devices using the same
CN1835415A (zh) 2005-03-16 2006-09-20 松下电器产业株式会社 无线通信系统中使用的低复杂度比特和功率分配方法和装置
CN101346959A (zh) 2005-10-27 2009-01-14 高通股份有限公司 用于使用可变保护带以实现灵活带宽的方法和设备
US20070147226A1 (en) 2005-10-27 2007-06-28 Aamod Khandekar Method and apparatus for achieving flexible bandwidth using variable guard bands
US20070183533A1 (en) * 2006-02-08 2007-08-09 Schmidl Timothy M MIMO system with spatial diversity
KR101221751B1 (ko) 2006-03-07 2013-01-11 삼성전자주식회사 직교 주파수 분할 다중 접속 시스템에서 데이터 송수신장치 및 방법
US7634016B2 (en) 2006-04-25 2009-12-15 Microsoft Corporation Variable OFDM subchannel coding and modulation
US7751368B2 (en) * 2006-05-01 2010-07-06 Intel Corporation Providing CQI feedback to a transmitter station in a closed-loop MIMO system
JP2008078790A (ja) 2006-09-19 2008-04-03 Toshiba Corp Ofdm送信機
US8290447B2 (en) 2007-01-19 2012-10-16 Wi-Lan Inc. Wireless transceiver with reduced transmit emissions
EP2111005A1 (en) 2007-06-18 2009-10-21 Mitsubishi Electric R&D Centre Europe B.V. Method for allocating, by a telecommunication device, at least a channel element of a group of channel elements of a channel resource to a destination
US20090074094A1 (en) 2007-09-14 2009-03-19 Qualcomm Incorporated Beacon symbols with multiple active subcarriers for wireless communication
US20090135922A1 (en) * 2007-11-28 2009-05-28 Chang Yong Kang Power savings in ofdm-based wireless communication
KR101533295B1 (ko) * 2008-04-23 2015-07-03 삼성전자주식회사 이동통신 시스템에서 전이중 방식을 사용하는 중계국의 네트워크 진입을 위한 장치 및 방법
US20090279503A1 (en) 2008-05-11 2009-11-12 Qualcomm Incorporated Systems and methods for multimode wireless communication handoff
US8472309B2 (en) 2008-08-20 2013-06-25 Qualcomm Incorporated Using CDMA to send uplink signals in WLANs
JP5293079B2 (ja) 2008-10-23 2013-09-18 株式会社日立製作所 無線通信システム及びその送信電力並びにデータレート制御方法
US8320233B2 (en) 2009-06-12 2012-11-27 Maxim Integrated Products, Inc. Transmitter and method for applying multi-tone OFDM based communications within a lower frequency range
US8238831B2 (en) * 2010-03-26 2012-08-07 Apple Inc. Wireless interference mitigation
US9178745B2 (en) 2011-02-04 2015-11-03 Marvell World Trade Ltd. Control mode PHY for WLAN
US8781326B2 (en) 2011-04-11 2014-07-15 Nec Laboratories America, Inc. Energy efficient OFDM transceiver
WO2013022468A1 (en) 2011-08-05 2013-02-14 Intel Corporation Wireless communication device and method for multi-mcs ofdm transmissions at different transmission power levels
CN103947170B (zh) 2011-11-21 2018-01-19 英特尔公司 用于低功率和低数据率操作的无线设备和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9729268B2 (en) 2011-08-05 2017-08-08 Intel Corporation Wireless communication device and method for multi-MCS OFDM transmissions at different transmission power levels

Also Published As

Publication number Publication date
EP2740247A1 (en) 2014-06-11
US9729268B2 (en) 2017-08-08
EP2740247A4 (en) 2015-03-25
JP2014526203A (ja) 2014-10-02
KR20140053252A (ko) 2014-05-07
US20150295676A1 (en) 2015-10-15
KR20150048912A (ko) 2015-05-07
WO2013022468A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5813871B2 (ja) 異なる送信電力レベルでのマルチmcsofdm伝送のための無線通信装置及び方法
JP6624754B2 (ja) 通信チャネルを介した送信のためのデータユニットを生成する方法および装置
US8902869B2 (en) Low bandwidth PHY for WLAN
EP2617146B1 (en) Selecting frequency bands for transmitting data packets
US9281924B2 (en) Method and apparatus for generating various transmission modes for WLAN systems
US8988979B2 (en) Information bit padding schemes for WLAN
US9281928B2 (en) Range extension within single user, multiple user, multiple access, and/or MIMO wireless communications
US9408090B1 (en) Signaling guard interval capability in a communication system
US10153812B2 (en) Techniques for supporting multiple bandwidth modes
EP1714417B1 (en) Adaptive channelization scheme for high throughput multicarrier systems
US20140126450A1 (en) Preamble and header bit allocation for power savings within multiple user, multiple access, and/or mimo wireless communications
BR112013022512A2 (pt) modulação com base em pacote adaptativo e seleção de taxa de codificação com base para transmissões de dados de largura de banda larga
KR20120083483A (ko) 무선랜 시스템에서 데이터 전송 방법 및 장치
US20170019306A1 (en) Techniques for supporting definitions for reduced numbers of spatial streams
US11737123B2 (en) Communication based on a multi-resource unit in wireless local area network system
CN116709520B (zh) 一种数据处理方法、装置
CN115714631A (zh) 发送物理层协议数据单元的方法和通信装置
KR20210131212A (ko) Wlan 시스템에서 다중 자원 단위에 기초한 통신을 위한 장치 및 방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150916

R150 Certificate of patent or registration of utility model

Ref document number: 5813871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees