JP5812884B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP5812884B2
JP5812884B2 JP2012014335A JP2012014335A JP5812884B2 JP 5812884 B2 JP5812884 B2 JP 5812884B2 JP 2012014335 A JP2012014335 A JP 2012014335A JP 2012014335 A JP2012014335 A JP 2012014335A JP 5812884 B2 JP5812884 B2 JP 5812884B2
Authority
JP
Japan
Prior art keywords
electrode
current collector
recess
secondary battery
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012014335A
Other languages
Japanese (ja)
Other versions
JP2013157082A (en
Inventor
貴司 大戸
貴司 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012014335A priority Critical patent/JP5812884B2/en
Publication of JP2013157082A publication Critical patent/JP2013157082A/en
Application granted granted Critical
Publication of JP5812884B2 publication Critical patent/JP5812884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、二次電池に関するものである。   The present invention relates to a secondary battery.

二次電池は携帯電話やノートPC等の携帯用電子機器に多く使用されており、これらの機器の小型軽量化に伴い、よりエネルギー密度の高い二次電池が求められている。特に、リチウムイオン二次電池は高エネルギー密度であるという理由から、広く普及するに至っている。   Secondary batteries are often used in portable electronic devices such as mobile phones and notebook PCs. As these devices become smaller and lighter, secondary batteries with higher energy density are required. In particular, lithium ion secondary batteries have become widespread because of their high energy density.

従来の平板型二次電池は、集電体を電極やセパレータとともに積層した構造であるため、発電要素や電池の組立時に電極同士の位置ずれが発生し、必要な電池容量が得られなかったり、位置ずれ部分の負極に樹枝(デンドライト)状のLi金属が析出して性能を低下させたり、さらにはショートして発火する等の危険性があった。さらに、ラミネートフィルムへ発電要素を組込む場合には、電極同士の位置ずれの発生による封止不良から漏液などが生じ易いという問題点があった。   Since the conventional flat-type secondary battery has a structure in which a current collector is laminated with electrodes and separators, positional deviation between the electrodes occurs during assembly of the power generation element and the battery, and the required battery capacity cannot be obtained, There was a risk that dendrite-like Li metal was deposited on the negative electrode at the misaligned portion to deteriorate the performance, and further, short-circuited and ignited. Further, when the power generation element is incorporated into the laminate film, there is a problem that liquid leakage or the like is likely to occur due to a sealing failure due to occurrence of positional deviation between the electrodes.

このような位置ずれの発生を抑制する為に、たとえば特許文献1では、正極と負極を互いに近接するように外装体に固定し、外装体を折り曲げて封止した平板型電気化学セルが提案されている。   In order to suppress the occurrence of such misalignment, for example, Patent Document 1 proposes a flat plate electrochemical cell in which a positive electrode and a negative electrode are fixed to an exterior body so as to be close to each other, and the exterior body is bent and sealed. ing.

特開2005−071658号公報JP 2005-071658 A

しかしながら、特許文献1のような構造では、正極と負極との位置合わせを、セパレータを介して正確に行うために高精度な装置を必要としたり、複数の正極と負極と積層する場合に適用できない等の問題があった。   However, the structure as in Patent Document 1 cannot be applied to a case where a highly accurate device is required to accurately align the positive electrode and the negative electrode through the separator, or when a plurality of positive electrodes and negative electrodes are stacked. There was a problem such as.

本発明は、高精度な装置を必要とせずに正確な正極と負極との位置合わせが可能で、複数の正極と負極とを積層した構造にも適用可能な二次電池を提供することを目的とする。   An object of the present invention is to provide a secondary battery that can be accurately aligned with a positive electrode and a negative electrode without requiring a highly accurate device, and can be applied to a structure in which a plurality of positive electrodes and negative electrodes are laminated. And

本発明の二次電池は、第1の電極、第2の電極および非水電解質を有する積層型の発電要素と、第1の集電体と、第2の集電体とを備え、前記第1の集電体に設けられた凹部に前記発電要素および前記第2の集電体が収納され、前記凹部の前記発電要素の積層方向に沿う側面のうち少なくともひとつの側面に開口部が設けられていることを特徴とする。
Secondary battery of the present invention includes a first electrode, and the power generating element of the laminated type having a second electrode and a nonaqueous electrolyte, a first current collector, a second collector, said first the power generating element and said in a recess provided in the first current collector the second current collector is housed, an opening is provided on at least one side surface among the side surfaces along the stacking direction of the power generating element of said recess It is characterized by.

本発明によれば、高精度な装置を必要とせずに正確な正極と負極との位置合わせが可能で、複数の正極と負極とを積層した構造にも適用可能な二次電池を提供できる。   According to the present invention, it is possible to provide a secondary battery that can be accurately aligned with a positive electrode and a negative electrode without requiring a highly accurate device, and can be applied to a structure in which a plurality of positive electrodes and negative electrodes are laminated.

本発明の第1実施形態である二次電池を模式的に示した(a)斜視図、および(b)(a)のA−A’断面図である。1A is a perspective view schematically showing a secondary battery according to a first embodiment of the present invention, and FIG. 2B is a cross-sectional view taken along line A-A ′ in FIG. 本発明の第2実施形態である二次電池を模式的に示した(a)斜視図、および(b)(a)のB−B’断面図である。4A is a perspective view schematically showing a secondary battery according to a second embodiment of the present invention, and FIG. 5B is a cross-sectional view taken along line B-B ′ in FIG. 図2(a)の二次電池をy軸正方向側からみた側面図である。It is the side view which looked at the secondary battery of Fig.2 (a) from the y-axis positive direction side. 本発明の第3実施形態である二次電池を模式的に示したx軸に垂直な断面図である。It is sectional drawing perpendicular | vertical to the x-axis which showed typically the secondary battery which is 3rd Embodiment of this invention. 図4の二次電池をy軸正方向側からみた側面図である。It is the side view which looked at the secondary battery of FIG. 4 from the y-axis positive direction side.

本発明の第1実施形態である二次電池を図1に基づいて説明する。本実施形態の二次電池では、第1の電極1、有機電解液を含んだセパレータ3、第2の電極2がこの順に積層された発電要素4が、第1の集電体5に設けられた凹部6に収納され、第2の集電体7が凹部6とその内部に収納された発電要素4を覆うように配置されている。そして、第1の集電体5と第2の集電体7には、それぞれ接続端子8、9が超音波溶接やスポット溶接等により取り付けられている。   The secondary battery which is 1st Embodiment of this invention is demonstrated based on FIG. In the secondary battery of the present embodiment, the first current collector 5 is provided with a power generation element 4 in which a first electrode 1, a separator 3 containing an organic electrolyte, and a second electrode 2 are laminated in this order. The second current collector 7 is disposed so as to cover the recess 6 and the power generation element 4 stored therein. Connection terminals 8 and 9 are attached to the first current collector 5 and the second current collector 7 by ultrasonic welding or spot welding, respectively.

このように、発電要素4が、第1の電極1および第2の電極2を収納可能な開口部を有する第1の集電体1の凹部6に収納されているため、高精度な装置を用いなくても電極同士の位置合わせが容易となり、二次電池を組み立てる際の位置ずれの可能性も低減できる。なお、セパレータ3は凹部6の開口部よりも大きく、その周縁部が第1の集電体5と第2の電極2との間、および第1の集電体5の凹部6の周縁部と第2の集電体7の周縁部との間に位置することにより、第1の集電体5と、第2の電極および第2の集電体7との電気的絶縁を担っている。   As described above, since the power generation element 4 is housed in the recess 6 of the first current collector 1 having an opening capable of housing the first electrode 1 and the second electrode 2, a highly accurate device can be obtained. Even if it does not use, alignment of electrodes becomes easy and the possibility of position shift at the time of assembling a secondary battery can also be reduced. In addition, the separator 3 is larger than the opening part of the recessed part 6, The peripheral part is between the 1st electrical power collector 5 and the 2nd electrode 2, and the peripheral part of the recessed part 6 of the 1st electrical power collector 5 By being positioned between the second current collector 7 and the peripheral portion, the first current collector 5 is electrically insulated from the second electrode and the second current collector 7.

なお、第2の電極2が導電性を有する場合は、第2の電極2に直接接続端子9を接続してもよく、この場合第2の集電体7は用いなくてもよい。   In addition, when the 2nd electrode 2 has electroconductivity, the connection terminal 9 may be directly connected to the 2nd electrode 2, and the 2nd electrical power collector 7 does not need to be used in this case.

このとき、第1の集電体5に設けられた凹部6の開口部および底面の形状を第1の電極1および第2の電極2の形状と相似とし、凹部6の底面を第1の電極1および第2電極2の主面よりも若干、たとえばセパレータ3の厚さと同等な20〜100μm程度の範囲で大きくすることで、第1の電極1、セパレータ3および第2の電極2を凹部6に収納する際、電極同士の位置合わせをより正確に行うことができる。さらに、第2の電極2の大きさを第1の電極1よりも小さくしてもよいが、凹部6の開口部の大きさを凹部6の底面の大きさよりも若干、たとえばセパレータ3の厚さと同等な20〜100μm程度の範囲で大きくすることにより、第1の電極1と第2の電極2の大きさを同じにしてそれぞれの電極が有する容量を効率よく利用することができる。   At this time, the shape of the opening and bottom surface of the recess 6 provided in the first current collector 5 is similar to the shape of the first electrode 1 and the second electrode 2, and the bottom surface of the recess 6 is defined as the first electrode. The first electrode 1, the separator 3, and the second electrode 2 are made slightly larger than the main surfaces of the first electrode 2 and the second electrode 2, for example, in the range of about 20 to 100 μm, which is equivalent to the thickness of the separator 3. When housed in, the electrodes can be more accurately aligned. Further, the size of the second electrode 2 may be smaller than that of the first electrode 1, but the size of the opening of the recess 6 is slightly larger than the size of the bottom surface of the recess 6, for example, the thickness of the separator 3. By enlarging within the equivalent range of about 20 to 100 μm, the first electrode 1 and the second electrode 2 can have the same size, and the capacity of each electrode can be used efficiently.

第1の集電体5の凹部6に第1の電極1のみを収納して、凹部6および第1の電極1を覆うように、凹部6の開口部よりも面積が大きいセパレータ3、第2の電極2および第2の集電体7を配置してもよい。この場合、セパレータ3は、第1の集電体5および第1の電極1と、第2の電極2との間に位置しており、第2の集電体7には接していなくてもよい。なお、セパレータ3の大きさは、第1の集電体5および第2の集電体7の大きさ以上であることが、集電体同士のショート防止という点から好ましい。セパレータ3は、第1の集電体5および第2の集電体7の周縁部から突出していてもかまわない。   Only the first electrode 1 is accommodated in the recess 6 of the first current collector 5, and the separator 3 having a larger area than the opening of the recess 6 and the second so as to cover the recess 6 and the first electrode 1. The electrode 2 and the second current collector 7 may be disposed. In this case, the separator 3 is located between the first current collector 5 and the first electrode 1 and the second electrode 2, and may not be in contact with the second current collector 7. Good. In addition, it is preferable that the size of the separator 3 is equal to or larger than the size of the first current collector 5 and the second current collector 7 from the viewpoint of preventing short circuit between the current collectors. The separator 3 may protrude from the peripheral portions of the first current collector 5 and the second current collector 7.

また、第1の集電体5に凹部6を、第2の集電体7に凹部6’を設け、第1の電極1が収納された凹部6と第2の電極2が収納された凹部6’とが、セパレータ3を介して向かい合うように、第1の集電体5と第2の集電体7とを重ね合わせてもよい。この場合も、それぞれの集電体の凹部同士を位置合わせすることで、容易に電極の位置合わせを行うことができる。   The first current collector 5 is provided with a recess 6 and the second current collector 7 is provided with a recess 6 ′. The recess 6 in which the first electrode 1 is stored and the recess in which the second electrode 2 is stored. The first current collector 5 and the second current collector 7 may be overlapped so that 6 'faces the separator 3 via the separator 3. Also in this case, the electrodes can be easily aligned by aligning the recesses of the current collectors.

なお、凹部6の形状は、所望の電池容量を得るための電極の形状に合わせて適宜設計す
ればよく、たとえば500×500mm、深さ10mmなどの形状とすることができる。
The shape of the concave portion 6 may be appropriately designed according to the shape of the electrode for obtaining a desired battery capacity, and may be, for example, a shape of 500 × 500 mm and a depth of 10 mm.

本発明の第2実施形態では、図2に示すように、第2の電極2が両主面に設けられた第2の集電体7が、有機電解液を含んだセパレータ3を介して第1の電極1および1’の2層に挟持されて、第2の集電体7を含む発電要素4を形成している。第1の集電体は、凹部6を有する第1の集電体5と、凹部を有さない第1の集電体5’とからなり、第1の集電体5の凹部6は、その内部に収納される発電要素4の積層方向に沿う側面のひとつに開口部が設けられている。発電要素4は、第2の電極2および第2の集電体7が、第1の集電体5の凹部6の側面に接触しないように凹部6に収納され、さらに第1の集電体5’が凹部6とその内部に収納された発電要素4を覆うように配置され、第1の集電体5の凹部6の周縁部は、直接または導電性材料を介して第1の集電体5’の周縁部と重なり合っている。第1の集電体5または5’および第2の集電体7には、それぞれ接続端子8、9が超音波溶接やスポット溶接等により取り付けられ、第2の集電体7に取り付けられた接続端子9は、第1の集電体5の凹部6の側面に設けられた開口部から外部に引き出されている。   In the second embodiment of the present invention, as shown in FIG. 2, the second current collector 7 in which the second electrode 2 is provided on both main surfaces is provided via the separator 3 containing an organic electrolyte. A power generation element 4 including a second current collector 7 is formed by being sandwiched between two layers of one electrode 1 and 1 ′. The first current collector comprises a first current collector 5 having a recess 6 and a first current collector 5 ′ having no recess, and the recess 6 of the first current collector 5 is: An opening is provided on one of the side surfaces along the stacking direction of the power generation elements 4 housed therein. The power generation element 4 is housed in the recess 6 so that the second electrode 2 and the second current collector 7 do not contact the side surface of the recess 6 of the first current collector 5, and further the first current collector 5 'is disposed so as to cover the recess 6 and the power generation element 4 housed therein, and the peripheral edge of the recess 6 of the first current collector 5 is directly or via a conductive material. It overlaps with the peripheral edge of the body 5 '. Connection terminals 8 and 9 are attached to the first current collector 5 or 5 ′ and the second current collector 7 by ultrasonic welding, spot welding, or the like, respectively, and attached to the second current collector 7. The connection terminal 9 is drawn out from an opening provided on the side surface of the recess 6 of the first current collector 5.

このとき、第1の集電体5に設けられた凹部6の開口部および底面の形状を第1の電極1、1’および第2の電極2と相似形とし、凹部6の底面を第1の電極1および第2電極2の主面よりも若干、たとえばセパレータ3の厚さと同等な20〜100μm程度の範囲で大きくすることで、第1の電極1、1’、セパレータ3および第2の電極2が両主面に設けられた第2の集電体7を凹部6に収納する際、第1実施形態と同様に高精度な装置を用いなくても電極同士の位置合わせをより正確に行うことができる。このとき、第2の電極2が両主面に設けられた第2の集電体7は、凹部6の側面に接触しないようセパレータ3で周囲を覆われた状態、あるいは袋状のセパレータ3に挿入された状態で凹部6に収納されることが好ましい。また、セパレータ3は凹部6の側面に設けられた開口部から突出していてもよいが、第1の電極1、1’および第2の電極2は、凹部6の側面に設けられた開口部から突出しないことが好ましい。   At this time, the shape of the opening and bottom surface of the recess 6 provided in the first current collector 5 is similar to that of the first electrode 1, 1 ′ and the second electrode 2, and the bottom surface of the recess 6 is the first. The first electrode 1, 1 ′, the separator 3 and the second electrode 2 are slightly larger than the main surfaces of the electrode 1 and the second electrode 2, for example, in the range of about 20 to 100 μm, which is equivalent to the thickness of the separator 3. When the second current collector 7 having the electrodes 2 provided on both main surfaces is accommodated in the recess 6, the electrodes can be more accurately aligned without using a high-accuracy device as in the first embodiment. It can be carried out. At this time, the second current collector 7 provided with the second electrode 2 on both main surfaces is covered with the separator 3 so as not to come into contact with the side surface of the recess 6, or on the bag-like separator 3. It is preferable to be accommodated in the recess 6 in the inserted state. The separator 3 may protrude from the opening provided on the side surface of the recess 6, but the first electrodes 1, 1 ′ and the second electrode 2 are provided from the opening provided on the side surface of the recess 6. It is preferable not to protrude.

本発明の第3実施形態では、第2実施形態における第1の集電体5の凹部6に第2の集電体7および発電要素4が収納されたものを複数積み重ね、そのうち最も端に位置する第1の集電体5の、他の第1の集電体5で覆われていない凹部6の開口部とその内部に収納された発電要素4とを覆うように、凹部を有さない第1の集電体5’を配置したものである。   In the third embodiment of the present invention, a plurality of the second current collectors 7 and the power generating elements 4 housed in the recess 6 of the first current collector 5 in the second embodiment are stacked, and the end is located at the end. The first current collector 5 does not have a recess so as to cover the opening of the recess 6 that is not covered with the other first current collector 5 and the power generation element 4 housed therein. A first current collector 5 ′ is arranged.

このとき、接続端子9は、それぞれの第2の集電体7または発電要素4の第2の電極2に個別に接続端子9を接続し、その接続端子9群を第1の集電体5の凹部6の側面に設けられた開口部からそれぞれ引き出し、束ねて、超音波溶着やスポット溶接で接続すればよい。また、接続端子8は、発電要素4および第2の集電体7が収納されたそれぞれの第1の集電体5に個別に接続端子8を接続し、その接続端子8群を束ねて超音波溶着やスポット溶接で接続してもよいし、互いに電気的に接続された第1の集電体5および5’のいずれか1ヶ所に接続端子8を接続してもよい。   At this time, the connection terminals 9 individually connect the connection terminals 9 to the second current collectors 7 or the second electrodes 2 of the power generation elements 4, and the group of connection terminals 9 is connected to the first current collector 5. What is necessary is just to draw | extract out from the opening part provided in the side surface of the recessed part 6, and bundle and to connect by ultrasonic welding or spot welding. In addition, the connection terminal 8 is connected to the first current collector 5 in which the power generation element 4 and the second current collector 7 are housed individually, and the connection terminal 8 group is bundled and superposed. The connection terminal 8 may be connected to any one of the first current collectors 5 and 5 'electrically connected to each other by sonic welding or spot welding.

これら第1〜第3実施形態において示したような、集電体および接続端子付きの発電要素4を、外装体である缶やラミネートフィルムに収納し、必要に応じて非水電解質溶液を注入し、外装体を密閉することで二次電池となる。   As shown in the first to third embodiments, the power generation element 4 with the current collector and the connection terminal is housed in a can or a laminate film that is an exterior body, and a nonaqueous electrolyte solution is injected as necessary. By sealing the outer package, a secondary battery is obtained.

なお、いずれの実施形態においても、第1の集電体5側と、第2の集電体7または第1の集電体5’側の両方から圧力を加えることで、それぞれの集電体と電極との接触性が向上するとともに、第1の電極1(および1’)と第2の電極2の電極間距離が小さくなり、電極間の電気的抵抗が低減され、電池性能が向上する。これは、第1の電極1(および
1’)と第2の電極2のいずれか一方または両方に、活物質を含む焼結体を用いた場合に特に有効となる。活物質を含む焼結体を電極とした場合、焼結体と集電体との間の導電性を向上させるため、焼結体の集電体との接触部分に、Pt、Au、Al等を蒸着したり、導電性接着剤を塗布するなどしてもよい。
In any of the embodiments, by applying pressure from both the first current collector 5 side and the second current collector 7 or the first current collector 5 ′ side, each current collector is provided. Between the first electrode 1 (and 1 ') and the second electrode 2 is reduced, the electrical resistance between the electrodes is reduced, and the battery performance is improved. . This is particularly effective when a sintered body containing an active material is used for one or both of the first electrode 1 (and 1 ') and the second electrode 2. In the case where a sintered body containing an active material is used as an electrode, Pt, Au, Al, etc. are formed on the contact portion of the sintered body with the current collector in order to improve the conductivity between the sintered body and the current collector. May be deposited or a conductive adhesive may be applied.

凹部6は、集電体となる金属箔や導電性材料をプレス成形するなどして形成すればよい。特に金属箔を用いることが、導電性や、凹部6の形成が容易な点から好ましい。   The recess 6 may be formed by press-molding a metal foil or a conductive material serving as a current collector. In particular, it is preferable to use a metal foil in terms of conductivity and easy formation of the recess 6.

発電要素4の正極側に配する集電体の材料としては、正極の電位において溶解などの反応が発生しない耐食性を有する金属、たとえばアルミニウム、タンタル、ニオブ、チタン、金、白金等を含む材料を用いることができる。その中でもアルミニウム、金、白金は耐食性に優れ、容易に入手できるため好ましい。特にアルミニウムは、表面に酸化被膜を形成して不動態化し、高い電位においても耐食性に優れる点から好ましい。   As a material of the current collector disposed on the positive electrode side of the power generating element 4, a material including a metal having corrosion resistance that does not generate a reaction such as dissolution at the potential of the positive electrode, such as aluminum, tantalum, niobium, titanium, gold, platinum, or the like. Can be used. Among these, aluminum, gold, and platinum are preferable because they are excellent in corrosion resistance and easily available. Aluminum is particularly preferable because it is passivated by forming an oxide film on the surface and excellent in corrosion resistance even at a high potential.

また、負極側に配する集電体の材料としては、負極の電位においてイオン伝導体である金属(Liなど)との合金化などの副反応が発生しない金属、たとえば、銅、ニッケル、真鍮、亜鉛、アルミニウム、ステンレス、タングステン、金、白金等を含む材料を用いればよく、箔として用いた時の強度が高いステンレス、銅、金、白金などが好ましい。特に、導電性が高く比較的安価な点から、銅またはニッケルを用いることが好ましい。   In addition, as a material of the current collector disposed on the negative electrode side, a metal that does not cause side reactions such as alloying with a metal (such as Li) that is an ionic conductor at the potential of the negative electrode, such as copper, nickel, brass, A material containing zinc, aluminum, stainless steel, tungsten, gold, platinum or the like may be used, and stainless steel, copper, gold, platinum, or the like having high strength when used as a foil is preferable. In particular, it is preferable to use copper or nickel from the viewpoint of high conductivity and relatively low cost.

第1の集電体5(および5’)、第2の集電体7の厚さは、電池作製工程において損傷なくハンドリングが可能であればよく、たとえば5μm〜100μmの範囲とすればよい。   The thicknesses of the first current collector 5 (and 5 ') and the second current collector 7 are not particularly limited as long as they can be handled without damage in the battery manufacturing process, and may be in the range of, for example, 5 μm to 100 μm.

電極と集電体との電気的接続確保のため、導電性接着剤を用いる場合は、たとえば、金、銀、ニッケル、酸化亜鉛、酸化錫、酸化インジウム、酸化チタン、チタン酸化カリム等の導電性フィラーと、アクリル系樹脂、エポキシ樹脂、シリコン系樹脂、ポリアミド系樹脂、フェノール樹脂、ポリエステル樹脂、ポリイミド系樹脂等の高分子粘着材とからなる混合物を用いることができる。導電性接着剤の厚さは、二次電池として充分なエネルギー密度を得られるだけの発電要素4の厚さを確保し、導電性接着剤による電気抵抗を最小限に抑えるために、10μm以下とすることが望ましい。   In order to ensure electrical connection between the electrode and the current collector, when using a conductive adhesive, for example, conductivity such as gold, silver, nickel, zinc oxide, tin oxide, indium oxide, titanium oxide, and titanium kalim oxide. A mixture composed of a filler and a polymer adhesive such as an acrylic resin, an epoxy resin, a silicon resin, a polyamide resin, a phenol resin, a polyester resin, or a polyimide resin can be used. The thickness of the conductive adhesive is 10 μm or less in order to secure the thickness of the power generation element 4 that can obtain a sufficient energy density as a secondary battery and to minimize the electric resistance due to the conductive adhesive. It is desirable to do.

第1の電極1(および1’)、第2の電極2としては、正極活物質または負極活物質の粒子を結着材で固めたものや、正極活物質または負極活物質からなる圧粉体および焼結体を用いることができる。特に、発電に直接かかわらない導電助剤や結着材、固体電解質などを含まず、正極活物質および負極活物質の充填率をより高めることができ、よりエネルギー密度の高い二次電池が得られることから、焼結体を使用することが好ましい。   Examples of the first electrode 1 (and 1 ′) and the second electrode 2 include a positive electrode active material or negative electrode active material particles hardened with a binder, and a green compact made of a positive electrode active material or a negative electrode active material. And a sintered compact can be used. In particular, it does not contain conductive additives, binders, solid electrolytes, etc. that are not directly related to power generation, and can further increase the filling ratio of the positive electrode active material and the negative electrode active material, thereby obtaining a secondary battery with higher energy density. Therefore, it is preferable to use a sintered body.

焼結体を電極として用いる場合、以下のような手順で作製すればよい。正極活物質や負極活物質の原料粉末と、ブチラール等のバインダーとを、必要に応じて分散剤、可塑剤を加えた水、またはトルエン等の有機溶剤を溶媒として周知の方法でそれぞれ混合し、スラリーを作製する。このスラリーをポリエチレンテレフタレート(PET)製フィルム等の基材フィルム上に周知の方法で塗工、乾燥して所望の厚さのグリーンシートを作製する。このとき、スラリーを乾燥造粒し、ロールプレスによりグリーンシートを作製したり、所望の形状にプレス成形してもよい。得られたグリーンシートを所望の形状に打ち抜き、必要に応じて脱脂処理を行った後、焼成することで、緻密な焼結体が得られる。焼成温度は原料粉末である活物質の焼結性に応じて適宜選択すればよい。   What is necessary is just to produce in the following procedures, when using a sintered compact as an electrode. The positive electrode active material and the negative electrode active material raw material powder and a binder such as butyral are mixed in a well-known manner using a solvent such as a dispersant, water added with a plasticizer, or an organic solvent such as toluene, if necessary. Make a slurry. The slurry is coated on a base film such as a polyethylene terephthalate (PET) film by a known method and dried to produce a green sheet having a desired thickness. At this time, the slurry may be dried and granulated, and a green sheet may be produced by roll pressing, or may be press-formed into a desired shape. The obtained green sheet is punched into a desired shape, degreased as necessary, and then fired to obtain a dense sintered body. What is necessary is just to select a calcination temperature suitably according to the sinterability of the active material which is raw material powder.

第1の電極1(および1’)、第2の電極2の厚さは、それぞれ20μm〜200μmとすることが好ましい。これにより、電池容量を得るために必要な活物質の絶対量が確保
できるとともに、良好な充放電特性の二次電池が得られる。また、第1の電極1(および1’)や第2の電極2として焼結体を用いる場合も、上記厚みとすることで、ハンドリング性がよく取り扱いが容易な電極となる。
The thicknesses of the first electrode 1 (and 1 ′) and the second electrode 2 are preferably 20 μm to 200 μm, respectively. Thereby, the absolute amount of the active material necessary for obtaining the battery capacity can be secured, and a secondary battery having good charge / discharge characteristics can be obtained. Moreover, also when using a sintered compact as the 1st electrode 1 (and 1 ') and the 2nd electrode 2, it becomes an electrode with good handleability and easy handling by setting it as the said thickness.

正極活物質としては、リチウムイオン二次電池の場合、リチウムを含む遷移金属の複合酸化物、たとえばリチウムコバルト複合酸化物、リチウムマンガン複合酸化物、二酸化マンガン、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムバナジウム複合酸化物などが挙げられる。このうち、特にリチウムコバルト複合酸化物は電子伝導性が高く、出力特性に優れた二次電池とすることができる。また、リチウムニッケルマンガン複合酸化物(LiNiMn(x=0.1〜0.5、y=1.5〜1.9))は、他の材料に比べ電位が高く、起電力の高い二次電池とすることが出来る。なお、正極は相対密度の高い焼結体として用いることが好ましく、その相対密度は85%以上、さらには90%以上であることが好ましい。 As the positive electrode active material, in the case of a lithium ion secondary battery, a transition metal composite oxide containing lithium, such as lithium cobalt composite oxide, lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, lithium nickel cobalt composite Examples thereof include oxides and lithium vanadium composite oxides. Among these, in particular, lithium cobalt composite oxide has a high electron conductivity and can be a secondary battery excellent in output characteristics. Further, lithium nickel manganese composite oxide (LiNi x Mn y O 4 (x = 0.1 to 0.5, y = 1.5 to 1.9)) has a higher potential than other materials, and an electromotive force. High secondary battery. The positive electrode is preferably used as a sintered body having a high relative density, and the relative density is preferably 85% or more, and more preferably 90% or more.

負極活物質としては、例えば、黒鉛、難黒鉛化性炭素、ガラス状炭素などの炭素質材料、金属ケイ素およびその合金、ケイ素と酸素や窒素とを含む化合物等のケイ素含有材料、酸化チタン、酸化ニオブ、リチウムチタン複合酸化物などが挙げられる。なかでもリチウムチタン複合酸化物は、相対密度が85%以上、さらには90%以上の焼結体として用いた場合も、充放電における負極の体積変化を小さくすることができ、サイクル特性の良い二次電池とすることが出来る。   Examples of the negative electrode active material include carbonaceous materials such as graphite, non-graphitizable carbon, and glassy carbon, silicon-containing materials such as metal silicon and alloys thereof, compounds containing silicon, oxygen, and nitrogen, titanium oxide, and oxidation. Examples include niobium and lithium titanium composite oxide. In particular, the lithium titanium composite oxide can reduce the volume change of the negative electrode during charge and discharge even when used as a sintered body having a relative density of 85% or more, more preferably 90% or more. A secondary battery can be used.

また、金属ケイ素およびその合金、ケイ素と酸素や窒素とを含む化合物等は、高容量を得られるという点から好ましい。このようなケイ素含有材料は、その粒子と、炭素とを含む塗膜や焼結体として用いればよい。なお、ケイ素を含む粒子は充放電時に体積変化するが、焼結体として用いる場合でも、気孔率を10〜60%の範囲とすることにより、体積変化により発生した応力を焼結体内部に存在する気孔で吸収することができる。ケイ素含有材料を含む焼結体は、ケイ素含有材料の原料粉末と、熱処理により炭化して炭素質材料となる炭素前駆体とを混合し、所望の形状に成形、乾燥して、非酸化雰囲気で熱処理を行うことで得られる。炭素前駆体としては、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂、フラン樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、キシレン樹脂等の熱硬化性樹脂、ナフタレン、アセナフチレン、フェナントレン、アントラセン、トリフェニレン、ピレン、ペリレン、ペンタフェン、ペンタセン等の縮合系多環炭化水素化合物またはその誘導体、あるいはその混合物を主成分とするピッチ等の有機材料が挙げられる。なお、熱処理により炭化して炭素質材料となる炭素前駆体には、さらに上述した黒鉛、難黒鉛化性炭素等の炭素質材料の粒子を加えてもよい。また、気孔を形成するために、熱処理時に消失して気孔となる樹脂材料等を造孔剤として添加してもよい。なお、正極及び負極の相対密度や気孔率は、アルキメデス法、水銀圧入法、電極断面写真の画像解析等の手法を用いて算出すればよい。   Metal silicon and its alloys, compounds containing silicon, oxygen and nitrogen, and the like are preferable from the viewpoint of obtaining a high capacity. Such a silicon-containing material may be used as a coating film or a sintered body containing the particles and carbon. In addition, although the particle | grains containing silicon change at the time of charging / discharging, even when using as a sintered compact, the stress which generate | occur | produced by the volume change exists in a sintered compact by making a porosity into the range of 10 to 60%. Can be absorbed by pores. A sintered body containing a silicon-containing material is prepared by mixing a raw material powder of a silicon-containing material and a carbon precursor that is carbonized by heat treatment to form a carbonaceous material, and molding and drying the resulting material in a non-oxidizing atmosphere. Obtained by heat treatment. As the carbon precursor, thermosetting resins such as phenol resin, epoxy resin, polyester resin, furan resin, urea resin, melamine resin, alkyd resin, xylene resin, naphthalene, acenaphthylene, phenanthrene, anthracene, triphenylene, pyrene, perylene, Examples thereof include organic materials such as pitch mainly composed of condensed polycyclic hydrocarbon compounds such as pentaphen and pentacene, derivatives thereof, or mixtures thereof. Note that particles of a carbonaceous material such as graphite and non-graphitizable carbon described above may be added to the carbon precursor that is carbonized by heat treatment to become a carbonaceous material. In order to form pores, a resin material that disappears during heat treatment and becomes pores may be added as a pore-forming agent. The relative density and porosity of the positive electrode and the negative electrode may be calculated using techniques such as the Archimedes method, the mercury intrusion method, and image analysis of electrode cross-sectional photographs.

本実施形態ではいずれも、第1の電極1(および1’)と第2の電極2との少なくともいずれか一方を活物質の焼結体で構成した場合に特に有効である。なお、他方の電極は塗膜電極、すなわち、活物質とバインダーを含む塗液を集電体上に塗布し、乾燥又は熱処理して集電体に接合させた塗膜を電極として用いてもよい。   In the present embodiment, both are particularly effective when at least one of the first electrode 1 (and 1 ') and the second electrode 2 is formed of a sintered body of an active material. The other electrode may be a coated electrode, that is, a coated film obtained by applying a coating liquid containing an active material and a binder onto a current collector, and drying or heat-treating it to join the current collector. .

特にリチウムを含む遷移金属の複合酸化物は焼結体化が容易で、活物質充填率の高い正極とすることができるため、正極として、リチウムを含む遷移金属の複合酸化物の焼結体を用いることが好ましい。第1の実施形態においては、第2の電極2を正極とし、第1の電極1を負極として、第1の集電体5の凹部6に負極活物質の粒子等を含む炭素前駆体を塗布し、必要に応じて熱処理して負極を形成した後に、負極が形成された凹部6内部にセパレータ3および正極活物質の焼結体である正極を収納し、それを覆うように第2の集電
体7を配置することで、焼結体である正極の位置ズレを抑制できる。
In particular, transition metal composite oxides containing lithium are easy to sinter and can be made into a positive electrode having a high active material filling rate. Therefore, a transition metal composite oxide sintered body containing lithium is used as the positive electrode. It is preferable to use it. In the first embodiment, the second electrode 2 is used as a positive electrode, the first electrode 1 is used as a negative electrode, and a carbon precursor containing particles of a negative electrode active material or the like is applied to the recess 6 of the first current collector 5. Then, after the heat treatment is performed as necessary, the negative electrode is formed, and then the separator 3 and the positive electrode which is a sintered body of the positive electrode active material are accommodated in the recess 6 where the negative electrode is formed, and the second collector is covered so as to cover it. By disposing the electric body 7, the positional deviation of the positive electrode that is a sintered body can be suppressed.

第2、第3の実施形態においても同様に、第2の電極2を正極とし、負極が形成された第1の集電体5の凹部6の内部に、セパレータ3で周囲を覆われた第2の集電体7および正極を収納して、凹部6と、セパレータ3で周囲を覆われた第2の集電体7および正極とを、さらに負極が形成された第1の集電体5’の負極が形成された面で覆うように配置してもよいし、別の第1の集電体5の凹部6の底面の裏側に負極を形成して積み重ねてもよい。なお、この場合、負極は第1の集電体5および5’の両面全面に形成されていてもよい。   Similarly, in the second and third embodiments, the second electrode 2 is used as a positive electrode, and the inside of the recess 6 of the first current collector 5 on which the negative electrode is formed is covered with a separator 3. The second current collector 7 and the positive electrode are housed, the concave portion 6, the second current collector 7 and the positive electrode covered with the separator 3, and the first current collector 5 on which the negative electrode is further formed. It may be arranged so as to be covered with the surface on which the negative electrode of 'is formed, or the negative electrode may be formed and stacked on the back side of the bottom surface of the recess 6 of another first current collector 5. In this case, the negative electrode may be formed on the entire surfaces of the first current collectors 5 and 5 '.

非水電解質としては、有機電解液、高分子固体電解質、無機固体電解質、イオン液体等のいずれも用いることができる。   As the non-aqueous electrolyte, any of an organic electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, an ionic liquid, and the like can be used.

有機電解液を用いる場合は、正極と負極との間にセパレータ3を配する。有機電解液は、有機溶媒と電解質塩によって構成され、必要に応じて、電極表面への固体電解質層の形成抑制、過充電防止、難燃性の付与等を目的とした添加剤を加えてもよい。   When using an organic electrolyte, the separator 3 is disposed between the positive electrode and the negative electrode. The organic electrolyte is composed of an organic solvent and an electrolyte salt, and if necessary, additives for the purpose of suppressing formation of a solid electrolyte layer on the electrode surface, preventing overcharge, imparting flame retardancy, etc. may be added. Good.

有機溶媒としては、高誘電率を有し、低粘性、低蒸気圧のものが好適に用いられ、このような材料としては、たとえば、エチレンカーボネイト、プロピレンカーボネイト、ブチレンカーボネイト、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、炭酸ジメチル、炭酸ジエチル、メチルエチルカーボネイト、ジメチルカーボネイト、ジエチルカーボネイトなどから選ばれる1種もしくは2種以上を混合した溶媒が挙げられる。   As the organic solvent, those having a high dielectric constant, low viscosity and low vapor pressure are preferably used. Examples of such materials include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, Mix one or more selected from 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, diethyl carbonate, etc. Solvent.

電解質塩としては、例えばLiClO、LiBF、LiPF、LiCFSO、LiN(CFSO)、LiN(CSO)などのリチウム塩があげられる。 Examples of the electrolyte salt include lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 .

セパレータ3には、有機樹脂繊維の不織布や、無機繊維の不織布、セラミックの多孔質材料などを用いることができるが、ポリプロピレンやポリエチレンなどのポリオレフィンを主成分とした有機多孔質膜にセラミック粒子を混合したものや、セラミックフィラーを含む多孔質膜を接着したもの、無機繊維の不織布、有機材料と無機材料の複合多孔質膜、セラミックの多孔質材料を用いることが好ましい。これらは耐熱性が高く、二次電池の熱暴走に対する安全性を高めることができる。   The separator 3 can be a nonwoven fabric of organic resin fibers, a nonwoven fabric of inorganic fibers, a ceramic porous material, or the like. Ceramic particles are mixed with an organic porous film mainly composed of polyolefin such as polypropylene or polyethylene. It is preferable to use a material obtained by bonding a porous film containing a ceramic filler, an inorganic fiber nonwoven fabric, a composite porous film of an organic material and an inorganic material, or a ceramic porous material. These have high heat resistance and can improve the safety against thermal runaway of the secondary battery.

高分子固体電解質、無機固体電解質を用いる場合は、第1〜第3実施形態におけるセパレータ3に替えて、高分子固体電解質のシートを用いたり、第2の電極2の表面に固体電解質層を形成して被覆すればよい。第1実施形態においては、第1の集電体5と第2の集電体7とは絶縁材を介して重ね合わせればよく、絶縁性接着剤を用いて第1の集電体5と第2の集電体7の周縁部を接着することもできる。   When a polymer solid electrolyte or an inorganic solid electrolyte is used, a sheet of a polymer solid electrolyte is used instead of the separator 3 in the first to third embodiments, or a solid electrolyte layer is formed on the surface of the second electrode 2 And then cover. In the first embodiment, the first current collector 5 and the second current collector 7 may be overlapped via an insulating material, and the first current collector 5 and the second current collector 5 may be overlapped using an insulating adhesive. It is also possible to bond the peripheral portions of the two current collectors 7.

接続端子8、9の材質は、負極側ではNiまたはCuを用いることが、負極の電位において電解液中のイオン伝導体である金属(Liなど)との合金化などの副反応が発生しない点、導電性が高く比較的安価な点から好ましく、正極側ではAlを用いることが、表面に酸化皮膜を形成して不動態化し、高い電位においても耐酸化性に優れている点から好ましい。   The material of the connection terminals 8 and 9 is that Ni or Cu is used on the negative electrode side, and no side reaction such as alloying with a metal (such as Li) that is an ionic conductor in the electrolyte occurs at the potential of the negative electrode. It is preferable from the viewpoint of high conductivity and relatively inexpensive, and it is preferable to use Al on the positive electrode side from the viewpoint that it is passivated by forming an oxide film on the surface and excellent in oxidation resistance even at a high potential.

本発明の実施例として、まず、正極を以下のようにして作製した。正極活物質としてコバルト酸リチウムを用い、その原料粉末に、成形助剤、可塑剤、分散剤、溶剤を加えて混
合し、スラリーを調整した。このスラリーを、ポリエチレンテレフタレート(PET)フィルム上にドクターブレード法にて塗布した後乾燥させて、グリーンシートを作製した。作製したグリーンシートを、焼成後の寸法が40×50mmになるように打ち抜き、大気中にて975℃で焼成し、相対密度85%、厚さ35μmの焼結体である正極を作製した。
As an example of the present invention, first, a positive electrode was produced as follows. Using lithium cobaltate as a positive electrode active material, a forming aid, a plasticizer, a dispersant, and a solvent were added to the raw material powder and mixed to prepare a slurry. This slurry was applied on a polyethylene terephthalate (PET) film by a doctor blade method and then dried to prepare a green sheet. The produced green sheet was punched out so that the size after firing was 40 × 50 mm, and fired at 975 ° C. in the atmosphere to produce a positive electrode which was a sintered body having a relative density of 85% and a thickness of 35 μm.

負極活物質としては、フェノール樹脂の熱処理により得られる炭素質材料を用いた。
市販のフェノール樹脂を溶剤であるテトラヒドロフラン(THF)に溶解した濃度35質量%のフェノール樹脂溶液を、厚さ10μmのCu箔の一方の表面上に、ドクターブレード法により塗布し乾燥した後、窒素雰囲気中にて最高温度900℃で10分間熱処理することにより、Cu箔上に炭素質材料を結着させ、41×51mm、厚さ56μmの負極を形成した。
As the negative electrode active material, a carbonaceous material obtained by heat treatment of a phenol resin was used.
A phenol resin solution having a concentration of 35% by mass obtained by dissolving a commercially available phenol resin in tetrahydrofuran (THF) as a solvent is applied onto one surface of a 10 μm-thick Cu foil by a doctor blade method and dried, and then a nitrogen atmosphere. A carbonaceous material was bound on the Cu foil by heat treatment at a maximum temperature of 900 ° C. for 10 minutes to form a negative electrode of 41 × 51 mm and a thickness of 56 μm.

負極を結着したCu箔を、45×55mmの四辺形の中央部に負極が位置するとともに、一方の短辺側に幅5mm、長さ20mmのタブを有する形状にカットした。なお、タブの位置は、短辺を二等分した一方の領域の中央付近とした。   The Cu foil to which the negative electrode was bound was cut into a shape having a negative electrode located at the center of a 45 × 55 mm quadrilateral and a tab having a width of 5 mm and a length of 20 mm on one short side. The position of the tab was set near the center of one region obtained by dividing the short side into two equal parts.

Cu箔の負極が形成された面にセパレータとしてポリエチレン製の不織布(45×58mm、厚さ16μm)を重ね合わせ、プレス機を用いてCu箔に41×51mm、深さ90μmの凹部を形成した。なお、プレスの際には負極が凹部の底面に位置するように調整した。   A non-woven fabric made of polyethylene (45 × 58 mm, thickness 16 μm) as a separator was superimposed on the surface of the Cu foil on which the negative electrode was formed, and a concave portion having a depth of 41 × 51 mm and a depth of 90 μm was formed on the Cu foil using a press. In addition, it adjusted so that the negative electrode might be located in the bottom face of a recessed part in the case of a press.

作製した正極の一方の主面にPtを蒸着し、他方の主面が凹部内のセパレータと対向するようにCu箔の凹部内に正極を収納した。さらに、45×55mmの四辺形で、一方の短辺側に幅5mm、長さ20mmのタブを有する形状にカットした、厚さ10μmのAl箔を、Cu箔の凹部と凹部内に収納した正極のPtを蒸着した面を覆うように重ね合わせた。なお、このときCu箔のタブとAl箔のタブとが重ならないようにAl箔を配置した。   Pt was vapor-deposited on one main surface of the produced positive electrode, and the positive electrode was housed in the concave portion of the Cu foil so that the other main surface was opposed to the separator in the concave portion. Further, a positive electrode in which a 10 μm-thick Al foil cut into a shape having a 45 × 55 mm quadrilateral and a tab having a width of 5 mm and a length of 20 mm on one short side is accommodated in a concave portion and a concave portion of a Cu foil. The Pt was deposited so as to cover the surface deposited with Pt. At this time, the Al foil was arranged so that the tab of the Cu foil and the tab of the Al foil did not overlap.

Cu箔のタブにNiリード線を、Al箔のタブにAlリード線を接続端子としてスポット溶接で接続した後、これら発電要素と集電体からなる極群を外装体である袋状のアルミラミネートフィルムに挿入し、有機電解液としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)を体積比3:7の比で混合した溶媒に、ヘキサフルオロリン酸
リチウムLiPFを1mol/Lで溶解させたものを注入して、リード線のみを外装体の開口部から引き出した状態で外装体の開口部を熱溶着により密閉し、二次電池とした。
After connecting the Ni lead wire to the tab of Cu foil and spot welding using the Al lead wire as the connection terminal to the tab of Al foil, the electrode group consisting of these power generation elements and the current collector is a bag-shaped aluminum laminate Inserted into a film and dissolved in lithium hexafluorophosphate LiPF 6 at 1 mol / L in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed as an organic electrolyte in a volume ratio of 3: 7 In the state where only the lead wire was pulled out from the opening of the outer package, the opening of the outer package was sealed by thermal welding to obtain a secondary battery.

作製した二次電池10個について、以下の条件で500サイクルの充放電試験を行った。   About ten produced secondary batteries, the charge / discharge test of 500 cycles was done on condition of the following.

充電レート:1.0C
放電レート:0.2C
充放電電圧:3.0V−4.2V
測定温度 :30℃
充放電試験の結果、作製した二次電池のいずれも顕著な容量劣化は確認されなかった。また、充放電試験後の二次電池を解体して観察した結果、電極の位置ずれやデンドライト状Li金属の析出はみられなかった。
Charging rate: 1.0C
Discharge rate: 0.2C
Charge / discharge voltage: 3.0V-4.2V
Measurement temperature: 30 ° C
As a result of the charge / discharge test, no significant capacity deterioration was confirmed in any of the produced secondary batteries. Further, as a result of disassembling and observing the secondary battery after the charge / discharge test, no electrode misalignment or precipitation of dendritic Li metal was observed.

1、1’ :第1の電極
2 :第2の電極
3 :セパレータ
4 :発電要素
5、5’ :第1の集電体
6 :凹部
7 :第2の集電体
8、9 :接続端子
DESCRIPTION OF SYMBOLS 1, 1 ': 1st electrode 2: 2nd electrode 3: Separator 4: Power generation element 5, 5': 1st electrical power collector 6: Recessed part 7: 2nd electrical power collector 8, 9: Connection terminal

Claims (2)

第1の電極、第2の電極および非水電解質を有する積層型の発電要素と、
第1の集電体と、第2の集電体とを備え、
前記第1の集電体に設けられた凹部に前記発電要素および前記第2の集電体が収納され、前記凹部の前記発電要素の積層方向に沿う側面のうち少なくともひとつの側面に開口部が設けられていることを特徴とする二次電池。
A laminated power generation element having a first electrode, a second electrode, and a non-aqueous electrolyte;
A first current collector and a second current collector;
The power generating element and the second current collector in a recess provided in the first current collector is housed, an opening on at least one side surface among the side surfaces along the stacking direction of the power generating element of the recess A secondary battery characterized by being provided .
前記第1の電極および前記第2の電極のうち、少なくともいずれか一方が焼結体であることを特徴とする請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein at least one of the first electrode and the second electrode is a sintered body.
JP2012014335A 2012-01-26 2012-01-26 Secondary battery Expired - Fee Related JP5812884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012014335A JP5812884B2 (en) 2012-01-26 2012-01-26 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014335A JP5812884B2 (en) 2012-01-26 2012-01-26 Secondary battery

Publications (2)

Publication Number Publication Date
JP2013157082A JP2013157082A (en) 2013-08-15
JP5812884B2 true JP5812884B2 (en) 2015-11-17

Family

ID=49052092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014335A Expired - Fee Related JP5812884B2 (en) 2012-01-26 2012-01-26 Secondary battery

Country Status (1)

Country Link
JP (1) JP5812884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713962B1 (en) * 1999-05-05 2007-05-02 포스터 애셋츠 코포레이션 A camera and method of film loading and pre-winding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3349273T3 (en) * 2015-12-15 2019-12-31 Lg Chem, Ltd. Electrode for electrochemical device and electrochemical device including the same
JP6575557B2 (en) * 2017-04-07 2019-09-18 トヨタ自動車株式会社 All-solid battery and method for producing all-solid battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604306B2 (en) * 2000-03-10 2011-01-05 ソニー株式会社 Solid electrolyte battery and manufacturing method thereof
JP4554780B2 (en) * 2000-07-27 2010-09-29 トータル ワイヤレス ソリューショオンズ リミテッド Electrode laminate and sheet-like polymer battery using the same
JP3439743B2 (en) * 2001-01-29 2003-08-25 松下電器産業株式会社 Nonaqueous electrolyte battery and method for producing the same
JP2006278141A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Thin battery
JP2007273350A (en) * 2006-03-31 2007-10-18 Toyota Motor Corp Stacked battery and manufacturing method therefor
JP5448964B2 (en) * 2010-03-26 2014-03-19 京セラ株式会社 All solid-state lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713962B1 (en) * 1999-05-05 2007-05-02 포스터 애셋츠 코포레이션 A camera and method of film loading and pre-winding

Also Published As

Publication number Publication date
JP2013157082A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5543269B2 (en) Secondary battery
US9214697B2 (en) Lithium secondary battery
JP5693982B2 (en) Non-aqueous secondary battery
KR101829528B1 (en) Electrode, nonaqueous electrolyte battery and battery pack
JP2017532715A (en) Square battery cell including two or more case members
JP5541957B2 (en) Multilayer secondary battery
JP2008066040A (en) Battery and its manufacturing method
JPH11185820A (en) Nonaqueous electrolyte secondary battery
CN111095613B (en) Electrode, nonaqueous electrolyte battery and battery pack
CN107836061B (en) Nonaqueous electrolyte battery and battery pack
WO2012093588A1 (en) Non-aqueous secondary battery
JP4678235B2 (en) Nonaqueous electrolyte secondary battery
KR101933655B1 (en) Battery Cell Having Recess Portion Formed at Portion of Electrode Tab
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
JP5812884B2 (en) Secondary battery
JP5474596B2 (en) Power storage device
JP2009054469A (en) Nonaqueous secondary battery
US20230098130A1 (en) Current collector, power storage element, and power storage module
JP5844659B2 (en) Electrode plate and secondary battery using the same
JP2011222128A (en) Secondary battery
JP2007087801A (en) Lithium ion secondary battery
JP5113959B2 (en) Square battery
CN111697261A (en) Lithium secondary battery
JP6178183B2 (en) Nonaqueous electrolyte battery, assembled battery and storage battery device
JP5829564B2 (en) Electrode structure and power storage device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150915

R150 Certificate of patent or registration of utility model

Ref document number: 5812884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees