JP5811352B2 - X-ray fluorescence analyzer - Google Patents

X-ray fluorescence analyzer Download PDF

Info

Publication number
JP5811352B2
JP5811352B2 JP2012051901A JP2012051901A JP5811352B2 JP 5811352 B2 JP5811352 B2 JP 5811352B2 JP 2012051901 A JP2012051901 A JP 2012051901A JP 2012051901 A JP2012051901 A JP 2012051901A JP 5811352 B2 JP5811352 B2 JP 5811352B2
Authority
JP
Japan
Prior art keywords
sample
ray
spacer
type
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012051901A
Other languages
Japanese (ja)
Other versions
JP2013185986A (en
Inventor
寺下 衛作
衛作 寺下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2012051901A priority Critical patent/JP5811352B2/en
Publication of JP2013185986A publication Critical patent/JP2013185986A/en
Application granted granted Critical
Publication of JP5811352B2 publication Critical patent/JP5811352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、蛍光X線分析装置に関する。   The present invention relates to a fluorescent X-ray analyzer.

汎用型の蛍光X線分析装置は試料を試料台上に密着した状態で、試料を観察するためのカメラの視野の中心に向けて斜め下方向からX線を試料に照射し、発生した蛍光X線を反対側に設置した検出器により測定する構造が知られている(特許文献1参照)。   A general-purpose fluorescent X-ray analyzer irradiates a sample with X-rays obliquely downward toward the center of the field of view of a camera for observing the sample while the sample is closely attached to the sample stage. A structure in which a line is measured by a detector installed on the opposite side is known (see Patent Document 1).

近年の分析要求の多様性から試料中の異物など微小部分を測定する要求がある。その場合も通常、カメラ視野の中心に測定マーカを表示し、測定マーカに異物などの微小部分が一致するように試料を移動すればカメラ視野の中心とX線照射位置は一致しているので目的の測定が可能となる。   Due to the variety of analysis requirements in recent years, there is a need to measure minute parts such as foreign matters in a sample. In that case as well, the measurement marker is usually displayed at the center of the camera field of view, and if the sample is moved so that a minute part such as a foreign object coincides with the measurement marker, the center of the camera field of view and the X-ray irradiation position coincide with each other. Can be measured.

しかし、プリント基板に部品が実装されている試料を測定する場合は、試料台に試料の測定面を密着させることができないため、通常測定のX線管とカメラの位置設定ではカメラ視野の中心とX線照射位置が一致しなくなる。   However, when measuring a sample with components mounted on a printed circuit board, the measurement surface of the sample cannot be brought into close contact with the sample stage. X-ray irradiation positions do not match.

また、プリント基板の測定面に部品が実装されている試料を試料台上に設置した場合は、プリント基板は試料台と平行でなく、測定場所によりカメラ視野の中心とX線照射位置とのずれ量が異なる。   In addition, when a sample with components mounted on the measurement surface of the printed circuit board is placed on the sample table, the printed circuit board is not parallel to the sample table, and the center of the camera field of view and the X-ray irradiation position differ depending on the measurement location. The amount is different.

特開2009−2795号公報JP 2009-2795 A

試料台に密着していない試料を測定するとき、X線照射位置と試料観察用カメラの中心がずれているので、実際の測定位置を誤認する問題がある。試料台と平行でない測定面では測定場所によりずれ量が異なり、さらに大きな問題となる。また、X線管から試料のX線照射位置までの距離が変われば試料への照射強度が変わり分析結果に影響を及ぼす。   When measuring a sample that is not in close contact with the sample stage, the X-ray irradiation position is misaligned with the center of the sample observation camera. On the measurement surface that is not parallel to the sample stage, the amount of deviation varies depending on the measurement location, which is a further problem. Further, if the distance from the X-ray tube to the X-ray irradiation position of the sample changes, the irradiation intensity on the sample changes and affects the analysis result.

X線を試料の斜め下方から照射し、試料台と試料の間にスペーサを配置することにより一次X線光路長を変化させることが可能な蛍光X線分析装置において、試料台と試料の間に設置するスペーサの種類あるいはスペーサの有無に対応した実際のX線照射位置をあらかじめ記憶しておく。   In a fluorescent X-ray analyzer capable of changing a primary X-ray optical path length by irradiating X-rays from an oblique lower side of a sample and arranging a spacer between the sample table and the sample, between the sample table and the sample The actual X-ray irradiation position corresponding to the type of spacer to be installed or the presence or absence of the spacer is stored in advance.

試料台とプリント基板が平行になるように試料台とプリント基板の間にスペーサを設置する。ユーザーは現在使用しているスペーサの種類を入力装置から入力する。その情報に従い、スペーサの種類あるいは有無に応じて実際のX線照射位置と一致するように測定マーカの位置を切り替えて表示させる。   A spacer is installed between the sample table and the printed circuit board so that the sample table and the printed circuit board are parallel to each other. The user inputs the type of spacer currently used from the input device. According to the information, the position of the measurement marker is switched and displayed so as to coincide with the actual X-ray irradiation position according to the type or presence of the spacer.

前記のユーザーによる入力によらず、自動的にスペーサの種類を判別できる機構を設けてより簡便に、実際のX線照射位置と一致するように測定マーカの位置を切り替えて表示させてもよい。   A mechanism that can automatically discriminate the type of the spacer regardless of the input by the user may be provided, and the position of the measurement marker may be switched and displayed more easily so as to coincide with the actual X-ray irradiation position.

試料台と試料の間に設置するスペーサの種類あるいは有無に対応した蛍光X線基準強度をあらかじめ記憶しておく。ユーザーは現在使用しているスペーサの種類を入力装置から入力する。その情報に従い、スペーサの種類に応じた蛍光X線基準強度とスペーサが無い時の蛍光X線基準強度の関係により補正して正確な定量結果を算出する。   A fluorescent X-ray reference intensity corresponding to the type or presence or absence of a spacer placed between the sample stage and the sample is stored in advance. The user inputs the type of spacer currently used from the input device. According to the information, an accurate quantitative result is calculated with correction based on the relationship between the fluorescent X-ray reference intensity corresponding to the type of spacer and the fluorescent X-ray reference intensity when there is no spacer.

前記のユーザーによる入力によらず、自動的にスペーサの種類を判別できる機構を設けてより簡便に、正確な定量計算してもよい。   An accurate quantitative calculation may be performed more simply by providing a mechanism that can automatically determine the type of spacer regardless of the input by the user.

本発明は通常の試料台に密着した試料の測定もプリント基板など試料台に密着が困難な試料の測定も測定条件にスペーサの有無あるいはスペーサの種類を設定するだけで簡略かつ正確に測定することが可能となる蛍光X線分析装置を提供できる。   In the present invention, measurement of a sample that is in close contact with a normal sample stage and measurement of a sample that is difficult to be in close contact with a sample stage such as a printed circuit board can be performed simply and accurately by simply setting the presence or absence of a spacer or the type of spacer as a measurement condition. Thus, it is possible to provide a fluorescent X-ray analysis apparatus that can perform the above.

本発明の一実施例に係る蛍光X線分析装置の概略構成図。1 is a schematic configuration diagram of a fluorescent X-ray analyzer according to an embodiment of the present invention. 同実施例に係る蛍光X線分析装置の実際の使用状況を説明するための図。The figure for demonstrating the actual use condition of the fluorescent X-ray-analysis apparatus based on the Example. 同実施例に係る蛍光X線分析装置において試料画像上に測定目標マーカを重畳表示した状態を示す図。The figure which shows the state which superimposed and displayed the measurement target marker on the sample image in the fluorescent X-ray-analysis apparatus based on the Example. 同実施例に係る蛍光X線分析装置のスペーサ種類の認識機構を説明するための図。The figure for demonstrating the recognition mechanism of the spacer kind of the fluorescent X-ray-analysis apparatus based on the Example.

X線を試料の斜め下方から照射し、X線源と試料の間にスペーサを配置することにより一次X線光路長を変化させることが可能な蛍光X線分析装置に係わる本発明の実施例を図を使用して以下に詳細に説明する。   An embodiment of the present invention relating to a fluorescent X-ray analyzer capable of changing a primary X-ray optical path length by irradiating X-rays from obliquely below a sample and arranging a spacer between the X-ray source and the sample This will be described in detail below with reference to the drawings.

図1は本実施例に係わる蛍光X線分析装置の概略構成図である。X線管12から放出されたX線をコリメータ30によって所定の径に絞って蛍光板40或いは標準試料板39または試料25(図2参照)に照射し、そこで発生した蛍光X線を検出器13で検出する。試料の下方に配置した試料観察カメラ14により測定部の撮像ができる。これらは通常X線遮蔽筐体10の内部に収容され、X線の外部への漏洩を防止している。   FIG. 1 is a schematic configuration diagram of a fluorescent X-ray analyzer according to the present embodiment. The X-rays emitted from the X-ray tube 12 are focused to a predetermined diameter by the collimator 30 and irradiated to the fluorescent plate 40, the standard sample plate 39 or the sample 25 (see FIG. 2), and the fluorescent X-rays generated there are detected by the detector 13. To detect. The measurement part can be imaged by the sample observation camera 14 arranged below the sample. These are usually housed inside the X-ray shielding housing 10 and prevent leakage of X-rays to the outside.

検出器13からの信号は信号処理部16でデジタル処理され中央制御部19に送られる。試料観察カメラ14からの信号は画像生成部17で画像処理され中央制御部19に送られる。入力部18は通常はキーボードでユーザーからの入力情報は中央制御部19に送られる。中央制御部19は各部からの情報を基に演算し、情報と演算結果を記憶部に記憶する。また、中央制御部19はあらかじめ作成してある測定目標マーカ31(図3参照)のグラフィック情報と画像生成部17からの試料画像情報をあわせて表示部20に表示する。   The signal from the detector 13 is digitally processed by the signal processing unit 16 and sent to the central control unit 19. The signal from the sample observation camera 14 is subjected to image processing by the image generation unit 17 and sent to the central control unit 19. The input unit 18 is usually a keyboard, and input information from the user is sent to the central control unit 19. The central control unit 19 calculates based on information from each unit, and stores information and calculation results in the storage unit. Further, the central control unit 19 displays the graphic information of the measurement target marker 31 (see FIG. 3) prepared in advance and the sample image information from the image generation unit 17 on the display unit 20.

長さが異なる数種類のスペーサを用意し、その長さに対応してスペーサ番号を付しておく。たとえば、スペーサ長さが0mm(スペーサなし)をS0、長さが5mmのものをS1、10mmのものをS2と定めておく。   Several types of spacers having different lengths are prepared, and spacer numbers are assigned corresponding to the lengths. For example, a spacer length of 0 mm (no spacer) is defined as S0, a spacer length of 5 mm is defined as S1, and a spacer length of 10 mm is defined as S2.

図1に示すように、X線遮蔽筐体10内の試料台11と蛍光板40の間に用意したスペーサ15を複数個挿入した状態で、X線管12から放出されたX線をコリメータ30によって所定の径に絞って照射し、蛍光板が蛍光発光した像を試料観察カメラで撮像し、使用したスペーサ長さが5mmなら蛍光位置をS1位置、10mmならS2位置の名称で記憶部21に記憶する。   As shown in FIG. 1, X-rays emitted from the X-ray tube 12 are collimated by a collimator 30 in a state where a plurality of spacers 15 prepared between the sample stage 11 and the fluorescent plate 40 in the X-ray shielding housing 10 are inserted. An image of a fluorescent light emitted from the fluorescent plate is picked up with a predetermined diameter, and the fluorescent image is captured by a sample observation camera. If the spacer length used is 5 mm, the fluorescent position is stored in the storage unit 21 with the name of the S1 position and if it is 10 mm. .

試料台11に密着した状態の蛍光板40に、上記と同じ状態のX線を照射し、蛍光板が蛍光発光した像を試料観察カメラ14で撮像し蛍光位置をS0位置の名称で記憶部21に記憶する。   The fluorescent plate 40 in close contact with the sample stage 11 is irradiated with X-rays in the same state as described above, and an image of the fluorescent plate emitting fluorescence is captured by the sample observation camera 14 and the fluorescent position is stored in the storage unit 21 as the name of the S0 position. To do.

図2に示すとおり、実際の試料25たとえば部品実装されたプリント基板と試料台11との間に試料25と試料台11を平行にすべくスペーサ15を配置して、蛍光X線分析を実施する。その際、使用したスペーサの番号を分析条件として図1に示す入力部18から入力する。たとえば、使用したスペーサ長さが5mmならS1と入力する。   As shown in FIG. 2, an X-ray fluorescence analysis is performed by arranging a spacer 15 between the actual sample 25, for example, a printed circuit board on which components are mounted, and the sample table 11 so that the sample 25 and the sample table 11 are parallel to each other. . At that time, the number of the used spacer is input as an analysis condition from the input unit 18 shown in FIG. For example, if the used spacer length is 5 mm, S1 is input.

中央制御部19のソフトウエアにより、分析条件のスペーサ番号に応じてあらかじめ記憶部21に記憶していたスペーサ番号位置に測定目標マーカ31を試料画像に重畳して図3に示すように表示部20に表示させる。   With the software of the central control unit 19, the measurement target marker 31 is superimposed on the sample image at the spacer number position previously stored in the storage unit 21 in accordance with the spacer number of the analysis condition, as shown in FIG. To display.

図4はスペーサの種類を認識する機構の例を説明する図でスペーサの断面、試料台の断面と認識スイッチを示す。スペーサに種類により異なる位置の突起部を設け、スペーサの突起部が嵌め込めるように試料台に穴を穿っておく。スペーサが試料台に嵌め込まれたとき、スペーサの突起部により作動するように認識スイッチを試料台の下部に設置する。   FIG. 4 is a diagram for explaining an example of a mechanism for recognizing the type of spacer, and shows a cross section of the spacer, a cross section of the sample stage, and a recognition switch. The spacer is provided with a protrusion at a different position depending on the type, and a hole is made in the sample stage so that the protrusion of the spacer can be fitted. When the spacer is fitted into the sample stage, a recognition switch is installed at the lower part of the sample stage so as to be operated by the protrusion of the spacer.

たとえば、スペーサA41を嵌め込んだときは認識スイッチA43が、スペーサB42を嵌め込んだときは認識スイッチB44が作動する。スイッチの情報は中央制御部19に送られ、入力部からの入力情報と同様にスペーサの種類の情報として扱われる。前記スペーサ番号を入力する代わりに図4に示すようなスペーサの種類の認識機構を設置すればより簡便に目的を達成できる。   For example, the recognition switch A43 is activated when the spacer A41 is fitted, and the recognition switch B44 is activated when the spacer B42 is fitted. The switch information is sent to the central control unit 19 and is treated as spacer type information as is the input information from the input unit. If a spacer type recognition mechanism as shown in FIG. 4 is installed instead of inputting the spacer number, the object can be achieved more easily.

実施例1と同様に長さが異なる数種類のスペーサを用意し、その長さに対応してスペーサ番号を付しておく。   Similar to the first embodiment, several types of spacers having different lengths are prepared, and spacer numbers are assigned according to the lengths.

試料台11と標準試料板39の間に用意した長さのスペーサ15を挿入した状態で、X線管12から放出されたX線をコリメータ30によって所定の径に絞って照射し、そのとき検出器13で測定した蛍光X線基準強度を使用したスペーサ種類に対応させS1強度、S2強度の名称で記憶部21に記憶する。   The X-ray emitted from the X-ray tube 12 is squeezed to a predetermined diameter by the collimator 30 with the spacer 15 having a length prepared between the sample stage 11 and the standard sample plate 39 inserted and detected at that time. The fluorescent X-ray reference intensity measured by the vessel 13 is stored in the storage unit 21 with the names of S1 intensity and S2 intensity corresponding to the spacer type using the reference.

試料台11に密着した状態の標準試料板に、上記と同じ状態のX線を照射し、その際検出器13で測定した蛍光X線基準強度をS0強度の名称で記憶部21に記憶する。   The standard sample plate in close contact with the sample stage 11 is irradiated with X-rays in the same state as described above, and the fluorescent X-ray reference intensity measured by the detector 13 at that time is stored in the storage unit 21 under the name of S0 intensity.

実際の試料25たとえば部品実装されたプリント基板と試料台11との間に試料25と試料台11を平行にすべくスペーサ15を配置して、蛍光X線分析を実施する。その際、使用したスペーサの番号を分析条件として入力部18から入力する。たとえば、使用したスペーサ長さが5mmならS1と入力する。   An X-ray fluorescence analysis is performed by placing a spacer 15 between an actual sample 25, for example, a printed circuit board on which components are mounted, and the sample table 11 so that the sample 25 and the sample table 11 are parallel to each other. At that time, the number of the used spacer is input from the input unit 18 as an analysis condition. For example, if the used spacer length is 5 mm, S1 is input.

実際の試料の定量計算時には、中央制御部19のソフトウエアにより、スペーサ番号に応じてあらかじめ記憶部21に記憶していた蛍光X線基準強度とS0強度の関係によりスペーサ設置によるX線光路長変化の影響を補正し、正確な定量結果を算出する。たとえば、スペーサ番号1を使用している場合は、測定結果に(S0強度/S1強度)を乗じたものがスペーサ設置によるX線光路長変化の影響を補正した正確な定量結果となる。   At the time of quantitative calculation of the actual sample, the software of the central control unit 19 changes the X-ray optical path length by installing the spacer according to the relationship between the fluorescent X-ray reference intensity and the S0 intensity stored in advance in the storage unit 21 according to the spacer number. To correct the influence of, and calculate accurate quantitative results. For example, when spacer number 1 is used, the result obtained by multiplying the measurement result by (S0 intensity / S1 intensity) is an accurate quantitative result in which the influence of the change in the X-ray optical path length due to the spacer installation is corrected.

前記スペーサ番号を入力する代わりに図4に示すようなスペーサの種類の認識機構を設置すればより簡便に目的を達成できる。   If a spacer type recognition mechanism as shown in FIG. 4 is installed instead of inputting the spacer number, the object can be achieved more easily.

10 X線遮蔽筐体
11 試料台
12 X線管
13 検出器
14 試料観察カメラ
15 スペーサ
16 信号処理部
17 画像生成部
18 入力部
19 中央制御部
20 表示部
21 記憶部
25 試料(部品が実装されたプリント基板)
30 コリメータ
31 測定目標マーカ
39 標準試料板
40 蛍光板
41 スペーサA
42 スペーサB
43 認識スイッチA
44 認識スイッチB
DESCRIPTION OF SYMBOLS 10 X-ray shielding housing | casing 11 Sample stand 12 X-ray tube 13 Detector 14 Sample observation camera 15 Spacer 16 Signal processing part 17 Image generation part 18 Input part 19 Central control part 20 Display part 21 Storage part 25 Sample (component is mounted) Printed circuit board)
30 Collimator 31 Measurement target marker 39 Standard sample plate 40 Fluorescent plate 41 Spacer A
42 Spacer B
43 Recognition switch A
44 Recognition switch B

Claims (4)

X線を試料の斜め下方から照射し、試料台と試料の間にスペーサを配置することにより一次X線光路長を変化させることが可能な蛍光X線分析装置において、前記スペーサの種類に対応した一次X線の試料への照射位置を記憶する手段と、前記スペーサの種類をユーザーが指定するための入力手段と、前記試料の被分析面を撮像する撮像手段と、現在指定されているスペーサの種類に対応した一次X線の照射位置を示すマーカを前記撮像手段によって撮像された試料画像上に重畳して表示する表示手段を備えたことを特徴とする蛍光X線分析装置。   In a fluorescent X-ray analyzer capable of changing the primary X-ray optical path length by irradiating X-rays from obliquely below the sample and arranging a spacer between the sample stage and the sample, corresponding to the type of the spacer Means for storing the irradiation position of the primary X-ray sample, input means for the user to specify the type of the spacer, imaging means for imaging the surface to be analyzed of the sample, and the currently designated spacer A fluorescent X-ray analysis apparatus comprising display means for displaying a marker indicating a primary X-ray irradiation position corresponding to a type superimposed on a sample image picked up by the image pickup means. X線を試料の斜め下方から照射し、試料台と試料の間にスペーサを配置することにより一次X線光路長を変化させることが可能な蛍光X線分析装置において、前記スペーサの種類を識別する手段と、前記スペーサの種類に対応した一次X線の照射位置を記憶する手段と、前記試料の被分析面を撮像する撮像手段と、現在使用されているスペーサの種類に対応した一次X線の照射位置を示すマーカを前記撮像手段によって撮像された試料画像上に重畳して表示する表示手段を備えたことを特徴とする蛍光X線分析装置。   In a fluorescent X-ray analysis apparatus capable of changing a primary X-ray optical path length by irradiating X-rays from obliquely below a sample and arranging a spacer between the sample stage and the sample, the type of the spacer is identified. Means for storing the irradiation position of the primary X-ray corresponding to the type of the spacer, imaging means for imaging the surface to be analyzed of the sample, and the primary X-ray corresponding to the type of the spacer currently used A fluorescent X-ray analysis apparatus comprising display means for displaying a marker indicating an irradiation position in a superimposed manner on a sample image picked up by the image pickup means. X線を試料の斜め下方から照射し、試料台と試料の間に、長さが異なる複数種類のスペーサから選択された1種類のスペーサを配置することにより一次X線光路長を変化させることが可能な蛍光X線分析装置において、前記長さが異なる複数種類のスペーサの種類に対応した蛍光X線基準強度を記憶する手段と、前記選択された1種類のスペーサの種類をユーザーが指定するための入力手段と、前記指定されたスペーサ種類に対応した蛍光X線基準強度に基づいて定量計算する演算手段を備えたことを特徴とする蛍光X線分析装置。 It is possible to change the primary X-ray optical path length by irradiating X-rays from obliquely below the sample and arranging one type of spacer selected from a plurality of types of spacers having different lengths between the sample stage and the sample. In a possible X-ray fluorescence analyzer, a means for storing a fluorescent X-ray reference intensity corresponding to a plurality of types of spacers having different lengths , and a user specifying the type of the selected one type of spacer the input means, the fluorescent X-ray analysis apparatus characterized by comprising a calculating means for quantifying calculated based on X-ray fluorescence reference intensity corresponding to the type of the designated spacers. X線を試料の斜め下方から照射し、試料台と試料の間に、長さが異なる複数種類のスペーサから選択された1種類のスペーサを配置することにより一次X線光路長を変化させることが可能な蛍光X線分析装置において、前記選択された1つのスペーサの種類を識別する手段と、前記長さが異なる複数種類のスペーサの種類に対応した蛍光X線基準強度を記憶する手段と、現在使用されている前記識別されたスペーサの種類に対応した蛍光X線基準強度に基づいて定量計算する演算手段を備えたことを特徴とする蛍光X線分析装置。
It is possible to change the primary X-ray optical path length by irradiating X-rays from obliquely below the sample and arranging one type of spacer selected from a plurality of types of spacers having different lengths between the sample stage and the sample. In a possible X-ray fluorescence analyzer, a means for identifying the type of one selected spacer, a means for storing fluorescent X-ray reference intensities corresponding to a plurality of types of spacers having different lengths , A fluorescent X-ray analysis apparatus comprising an operation means for quantitatively calculating based on a fluorescent X-ray reference intensity corresponding to the type of the identified spacer being used.
JP2012051901A 2012-03-08 2012-03-08 X-ray fluorescence analyzer Active JP5811352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012051901A JP5811352B2 (en) 2012-03-08 2012-03-08 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012051901A JP5811352B2 (en) 2012-03-08 2012-03-08 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP2013185986A JP2013185986A (en) 2013-09-19
JP5811352B2 true JP5811352B2 (en) 2015-11-11

Family

ID=49387534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012051901A Active JP5811352B2 (en) 2012-03-08 2012-03-08 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP5811352B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110254A1 (en) * 2016-12-15 2018-06-21 株式会社堀場製作所 Radiation detection device and computer program
CN106645231A (en) * 2016-12-27 2017-05-10 中国科学院山西煤炭化学研究所 Light path continuously adjustable catalyst dynamic structure in-suit representation device, and applications thereof
JP2018115921A (en) * 2017-01-17 2018-07-26 東芝Itコントロールシステム株式会社 X-ray inspection device
JP2021012054A (en) * 2019-07-04 2021-02-04 日本電子株式会社 Fluorescent x-ray analyzer and method for calibrating the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459044A (en) * 1987-08-28 1989-03-06 Shimadzu Corp X-ray analyzer
JP2838172B2 (en) * 1991-05-03 1998-12-16 株式会社 堀場製作所 X-ray fluorescence analyzer
JP3482896B2 (en) * 1998-12-25 2004-01-06 株式会社島津製作所 X-ray fluorescence analyzer
JP2006329944A (en) * 2005-05-30 2006-12-07 Matsushita Electric Ind Co Ltd Fluorescent x-ray analyzer
JP2009002795A (en) * 2007-06-21 2009-01-08 Shimadzu Corp Fluorescent x-ray analyzer
JP5307504B2 (en) * 2008-08-22 2013-10-02 株式会社日立ハイテクサイエンス X-ray analyzer and X-ray analysis method

Also Published As

Publication number Publication date
JP2013185986A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
US8068583B2 (en) X-ray analysis apparatus and X-ray analysis method
JP5811352B2 (en) X-ray fluorescence analyzer
JP2021503078A5 (en)
US8548121B2 (en) X-ray analyzer
KR102052138B1 (en) Method and system for determining quality of tubes
TWI655424B (en) X-ray analysis test plate and fluorescent X-ray analysis device
RU2009101910A (en) X-RAY DEVICE AND METHOD OF VISUALIZING THE OBJECT TO BE TESTED
US20130202009A1 (en) Method and apparatus for displaying the temperature of an object
JP2014185951A (en) X-ray fluorescence analyzer
KR101387844B1 (en) X-ray analyzing apparatus and x-ray analyzing method
JP2015028468A (en) Automatic analyzer
KR20130105453A (en) Fluorescence x-ray analyzing apparatus and method of analyzing fluorescence x-ray
JP2011169821A (en) X-ray analyzer and mapping method for x-ray analysis
CN103592267A (en) Optical correction device, biological detection correction system and operation method thereof
JP4630313B2 (en) X-ray analyzer
US20120106716A1 (en) Method and equipment for an x-ray apparatus
US9746432B2 (en) Spacer accessory for XRF handheld analyzers
JP2013190361A (en) X-ray inspection device and method for controlling the same
US9829447B2 (en) X-ray fluorescence analyzer and method of displaying sample thereof
JP2007248338A (en) Inspection device, and inspection method using the inspection device
JP2013217915A (en) Fluorescent x-ray analyzer and fluorescent x-ray analysis method
KR20200136037A (en) Measuring device, program and control method of measuring device
JP4596881B2 (en) Transmission electron microscope equipment
JP6762514B2 (en) Optical analysis method, program, optical analysis system and chip with built-in light guide path
CN114636688B (en) Model correction method, spectroscopic apparatus, computer apparatus, and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150901

R151 Written notification of patent or utility model registration

Ref document number: 5811352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151