JP5809655B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP5809655B2
JP5809655B2 JP2013058688A JP2013058688A JP5809655B2 JP 5809655 B2 JP5809655 B2 JP 5809655B2 JP 2013058688 A JP2013058688 A JP 2013058688A JP 2013058688 A JP2013058688 A JP 2013058688A JP 5809655 B2 JP5809655 B2 JP 5809655B2
Authority
JP
Japan
Prior art keywords
groove
shoulder
tire
axial direction
tire axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013058688A
Other languages
Japanese (ja)
Other versions
JP2013116741A (en
Inventor
允紀 寺嶋
允紀 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2013058688A priority Critical patent/JP5809655B2/en
Publication of JP2013116741A publication Critical patent/JP2013116741A/en
Application granted granted Critical
Publication of JP5809655B2 publication Critical patent/JP5809655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ノイズ性能を悪化させることなくショルダー部の早期摩耗性能を向上した空気入りタイヤに関する。   The present invention relates to a pneumatic tire with improved early wear performance of a shoulder portion without deteriorating noise performance.

空気入りタイヤ、とりわけ乗用車用の空気入りタイヤでは、近年の車輌の高出力化、高速化に伴い、例えば70%以下の低扁平化が進む傾向にある。そしてこのような低扁平化したタイヤのトレッド輪郭形状X1、即ちタイヤ子午断面におけるトレッド部外面の輪郭線X1は、従来、図8に示すように、曲率半径rがタイヤ軸方向外側に向かって順次小さくなるように曲率半径rが異なる複数の円弧を接続して形成することが行われている(例えば特許文献1、2参照。)   Pneumatic tires, particularly pneumatic tires for passenger cars, tend to be flattened by, for example, 70% or less with the recent increase in output and speed of vehicles. And, the tread contour shape X1 of such a low-flat tire, that is, the contour line X1 of the outer surface of the tread portion in the tire meridional section is conventionally, as shown in FIG. A plurality of arcs having different curvature radii r are connected and formed so as to be small (see, for example, Patent Documents 1 and 2).

しかしこのようなトレッド輪郭形状X1のタイヤでは、トレッド接地縁Te側にてタイヤ半径Trが大きく減少して路面との滑り量が増す。そのためショルダー部Shの摩耗速度が相対的に早くなり、このショルダー部に配される横溝が早期に摩滅してしまうという問題がある。   However, in the tire having such a tread contour shape X1, the tire radius Tr is greatly reduced on the tread contact edge Te side, and the slip amount with the road surface is increased. Therefore, there is a problem that the wear rate of the shoulder portion Sh becomes relatively fast, and the lateral groove arranged in the shoulder portion is worn away at an early stage.

なお前記横溝の摩滅を遅らせるために、横溝の溝深さを増すことが考えられるが、溝深さを増した場合には、ノイズ性能を悪化させるとともに、ショルダー部のブロック剛性が減じるため変形量が増し、耐摩耗性がさらに悪化するという恐れを招く。   In order to delay the wear of the horizontal groove, it is conceivable to increase the groove depth of the horizontal groove. However, when the groove depth is increased, the noise performance is deteriorated and the block rigidity of the shoulder portion is reduced, so that the deformation amount is reduced. Increases the wear resistance.

特開平10−181309号公報JP-A-10-181309 特開平10−287106号公報Japanese Patent Laid-Open No. 10-287106

そこで本発明は、トレッド輪郭形状を単一円弧で形成するとともに、ショルダー部に設ける横溝のタイヤ周方向に対する角度、溝深さ、及び内端位置などを規制することを基本として、ショルダー部の早期摩耗性能を高めることができ、ノイズ性能を悪化させることなく横溝の早期摩滅を抑制しうる空気入りタイヤを提供することを目的としている。   Therefore, the present invention is based on the concept that the tread contour shape is formed by a single arc and the angle of the lateral groove provided in the shoulder portion with respect to the tire circumferential direction, the groove depth, the inner end position, and the like are basically controlled. An object of the present invention is to provide a pneumatic tire that can enhance wear performance and can suppress early wear of the lateral grooves without deteriorating noise performance.

本発明のうち請求項1記載の発明は、タイヤ偏平率を55%より大かつ70%より小とした空気入りタイヤであって、正規リムにリム組みしかつ正規内圧の5%の内圧を充填した5%内圧状態におけるタイヤ子午断面において、トレッド部の表面の輪郭線が、単一の曲率半径を有する円弧をなし、前記曲率半径Rは、トレッド接地縁間のタイヤ軸方向巾である接地巾TW1の3.0〜4.5倍であり、前記トレッド部に、タイヤ周方向に連続してのびかつタイヤ軸方向最外側に配されるショルダー周方向主溝を含む周方向主溝と、前記ショルダー周方向主溝のタイヤ軸方向外側に配されるショルダー陸部に設けられかつトレッド接地縁のタイヤ軸方向外側からタイヤ軸方向内側に向かってのびるとともにタイヤ軸方向内端が前記ショルダー陸部内で途切れる複数のショルダー横溝とを具え、前記ショルダー横溝は、タイヤ周方向に対する角度αが80〜90°の範囲であり、かつタイヤ軸方向内端と前記ショルダー周方向主溝との間のタイヤ軸方向の距離Dsが3.5〜5.5mmの範囲であり、前記ショルダー横溝は、溝深さが最大となる最深部を有しかつ該最深部の溝深さが、前記ショルダー周方向主溝の溝深さの70〜90%であり、前記ショルダー横溝は、タイヤ軸方向内端からタイヤ軸方向外側に向かって溝深さが漸増する第1の傾斜部と、この第1の傾斜部に連なりかつ溝深さが一定でのびる定深さ部とを具え、前記定深さ部は前記最深部をなし、前記第1の傾斜部のタイヤ軸方向長さを、前記ショルダー横溝のタイヤ軸方向内端からトレッド接地縁までのタイヤ軸方向長さの25〜50%としたことを特徴とする。
The invention according to claim 1 of the present invention is a pneumatic tire having a tire flatness ratio of more than 55% and less than 70%, which is assembled to a normal rim and filled with an internal pressure of 5% of the normal internal pressure. In the tire meridional section in the 5% internal pressure state, the contour line of the surface of the tread portion forms an arc having a single radius of curvature R, and the radius of curvature R is a ground contact width that is the tire axial width between the tread ground contact edges. A circumferential main groove including a shoulder circumferential main groove that is 3.0 to 4.5 times the width TW1 and extends continuously in the tire circumferential direction and is arranged on the outermost side in the tire axial direction on the tread portion; Provided in a shoulder land portion disposed on the outer side in the tire axial direction of the shoulder circumferential main groove and extending from the outer side in the tire axial direction to the inner side in the tire axial direction of the tread contact edge, and the inner end in the tire axial direction is the shoulder A plurality of shoulder lateral grooves that are interrupted in the section, the shoulder lateral grooves having an angle α with respect to the tire circumferential direction in a range of 80 to 90 °, and a tire between an inner end in the tire axial direction and the shoulder circumferential main groove The axial distance Ds is in the range of 3.5 to 5.5 mm, the shoulder lateral groove has a deepest portion where the groove depth is maximum, and the groove depth of the deepest portion is the shoulder circumferential main. 70 to 90% of the groove depth of the groove, and the shoulder lateral groove includes a first inclined portion in which the groove depth gradually increases from the inner end in the tire axial direction toward the outer side in the tire axial direction, and the first inclined portion. And a constant depth portion extending at a constant groove depth, wherein the constant depth portion is the deepest portion, and the tire axial direction length of the first inclined portion is defined as a tire axis of the shoulder lateral groove. Tire axial direction from the inner edge of the direction to the tread contact edge And characterized in that 25 to 50% of the length.

また請求項2記載の発明は、前記ショルダー陸部は、前記ショルダー横溝のタイヤ軸方向内端を通ってタイヤ周方向にのび、かつ前記ショルダー主溝よりも巾狭のショルダー細溝を具え、前記ショルダー細溝の溝深さは、前記ショルダー横溝のタイヤ軸方向内端での溝深さと同一であることを特徴とする。   In the invention according to claim 2, the shoulder land portion includes a shoulder narrow groove extending in the tire circumferential direction through an inner end in the tire axial direction of the shoulder lateral groove and narrower than the shoulder main groove, The groove depth of the shoulder narrow groove is the same as the groove depth at the inner end in the tire axial direction of the shoulder lateral groove.

また請求項3記載の発明は、前記トレッド接地縁間のタイヤ軸方向巾である接地巾TW1と、タイヤ断面巾TW0との比TW1/TW0が、0.73〜0.79であることを特徴とする。   The invention according to claim 3 is characterized in that a ratio TW1 / TW0 of a ground contact width TW1 which is a tire axial width between the tread ground edges and a tire cross-sectional width TW0 is 0.73 to 0.79. And

また請求項4記載の発明は、前記ショルダー細溝は、溝深さが2mm以下であることを特徴とする。
The invention according to claim 4 is characterized in that the shoulder narrow groove has a groove depth of 2 mm or less .

また請求項5記載の発明は、前記ショルダー横溝は、トレッド接地縁における溝深さが4.0〜5.0mmであることを特徴とする。   In the invention according to claim 5, the shoulder lateral groove has a groove depth of 4.0 to 5.0 mm at a tread grounding edge.

また請求項6記載の発明は、前記ショルダー陸部は、トレッド面と、前記ショルダー周方向主溝の溝壁面とが交わるコーナ部に、円弧状の面取り部を具えることを特徴とする。   According to a sixth aspect of the present invention, the shoulder land portion includes an arc-shaped chamfered portion at a corner portion where a tread surface and a groove wall surface of the shoulder circumferential main groove intersect.

ここで、前記「5%内圧状態」でのタイヤ形状は、通常、加硫金型内でのタイヤ形状と略一致しており、加硫金型の形状を特定することにより、5%内圧状態のタイヤ形状をコントロールしうる。又本明細書では、特に断りがない限り、タイヤの各部の寸法等は、前記5%内圧状態にて特定される値とする。   Here, the tire shape in the “5% internal pressure state” is generally substantially the same as the tire shape in the vulcanization mold. By specifying the shape of the vulcanization mold, the 5% internal pressure state is determined. The tire shape can be controlled. In the present specification, unless otherwise specified, the dimensions and the like of each part of the tire are values specified in the 5% internal pressure state.

なお前記「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば標準リム、TRAであれば "Design Rim" 、或いはETRTOであれば "Measuring Rim"を意味する。又前記「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE"を意味するが、乗用車用タイヤの場合には180kPaとする。   The “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO means "Measuring Rim". The “regular internal pressure” is the air pressure defined by the standard for each tire. The maximum air pressure for JATMA, the maximum value described in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” for TRA, If it is ETRTO, it means “INFLATION PRESSURE”, but in the case of a passenger car tire, it is 180 kPa.

又トレッド接地縁は、正規リムにリム組みしかつ正規内圧を充填したタイヤに正規荷重を付加したときに接地するトレッド接地面のタイヤ軸方向最外端の位置であって、前記「正規荷重」とは、前記規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY"である。   The tread grounding edge is the position of the outermost end in the tire axial direction of the tread grounding surface that comes into contact when a regular load is applied to a tire that is assembled with a regular rim and filled with a regular internal pressure. Is the load defined by the standard for each tire. If it is JATMA, it is the maximum load capacity. If it is TRA, it is the maximum value described in the table "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES". If it is ETRTO, " LOAD CAPACITY ".

本発明は叙上の如く、トレッド部の表面の輪郭線を、単一の曲率半径を有する円弧で形成している。従って、ショルダー陸部において、タイヤ半径の変化の割合を小さく抑えることができ、タイヤ軸方向の位置の違いに対する路面との滑り量の差を相対的に小さくすることができる。
In the present invention, as described above, the contour line of the surface of the tread portion is formed by an arc having a single radius of curvature. Therefore, it is possible in the shoulder land portion, the ratio of the tire radius variation can be reduced, to reduce the difference in slip between the road surface with respect to differences in the positions in the tire axial direction relative.

又ショルダー横溝のタイヤ周方向に対する角度αを80〜90°としてタイヤ軸方向に近づけているため、例えばショルダー横溝とショルダー周方向主溝とで挟まれるコーナ部分が剣先状となって摩耗の起点となるのを防止することができる。しかもショルダー横溝のタイヤ軸方向内端をショルダー周方向主溝から離間させているため、前記コーナ部分だけでなくショルダー陸部全体の剛性を高めることができる。従って、前記ショルダー横溝の最深部の溝深さを、ショルダー周方向主溝の溝深さの70〜90%と、従来よりも深くした場合にも、剛性低下を低く抑えることができ、前記トレッド輪郭形状を単一円弧としたことによる滑り量の低減効果と相俟って、早期摩耗性能を向上させながらショルダー横溝の深溝化を図ることができ、ショルダー横溝の早期摩滅を抑制しうる。   In addition, since the angle α of the shoulder lateral groove with respect to the tire circumferential direction is set to 80 to 90 ° and is close to the tire axial direction, for example, the corner portion sandwiched between the shoulder lateral groove and the shoulder circumferential main groove becomes a sword tip and the origin of wear Can be prevented. Moreover, since the inner end in the tire axial direction of the shoulder lateral groove is separated from the shoulder circumferential main groove, the rigidity of not only the corner portion but also the entire shoulder land portion can be increased. Therefore, even when the groove depth of the deepest part of the shoulder lateral groove is 70 to 90% of the groove depth of the shoulder circumferential main groove, which is deeper than before, the reduction in rigidity can be suppressed to a low level. Combined with the effect of reducing the amount of slip due to the single circular arc of the contour shape, the shoulder lateral groove can be deepened while improving the early wear performance, and early wear of the shoulder lateral groove can be suppressed.

又ショルダー横溝の深溝化に起因するノイズ性能の悪化は、前記ショルダー横溝の内端がショルダー周方向主溝から離間することで、抑制される。   Further, the deterioration of noise performance due to the deepening of the shoulder lateral groove is suppressed by separating the inner end of the shoulder lateral groove from the shoulder circumferential main groove.

さらに、第1の傾斜部は、広範囲に亘り溝深さが徐々に変化するなど、剛性変化を滑らかとすることができ、最深部での溝深さを大きく確保しショルダー横溝の早期摩滅を抑えながら、タイヤ軸方向内端付近を起点とした偏摩耗の発生を抑制することができる。又定深さ部により、最深部を広範囲に形成でき、高い排水性を発揮することができる。   In addition, the first inclined part can smoothly change the rigidity, such as the groove depth gradually changing over a wide range, ensuring a large groove depth at the deepest part and suppressing early wear of the shoulder lateral groove. However, it is possible to suppress the occurrence of uneven wear starting from the vicinity of the inner end in the tire axial direction. Further, the deepest portion can be formed in a wide range by the constant depth portion, and high drainage can be exhibited.

本発明の空気入りタイヤの一実施例を示す断面図である。It is sectional drawing which shows one Example of the pneumatic tire of this invention. トレッド輪郭形状を示す線図である。It is a diagram which shows a tread outline shape. 前記空気入りタイヤのトレッドパターンを平面に展開して示す展開図である。It is an expanded view which expands and shows the tread pattern of the pneumatic tire on a plane. ショルダー陸部を拡大して示す展開図である。It is an expanded view which expands and shows a shoulder land part. ミドル陸部を拡大して示す展開図である。It is an expanded view which expands and shows a middle land part. (A)はショルダー横溝の溝巾中心を通るI−I線断面図、(B)はミドル傾斜溝の溝巾中心を通るII−II線断面図である。(A) is a sectional view taken along the line II of the shoulder lateral groove passing through the center of the groove width, and (B) is a sectional view taken along the line II-II passing through the center of the middle inclined groove. トレッドパターンの他の例を示す展開図である。It is an expanded view which shows the other example of a tread pattern. 従来タイヤのトレッド輪郭形状の一例を示す断面図である。It is sectional drawing which shows an example of the tread outline shape of the conventional tire.

以下、本発明の実施の形態について、詳細に説明する。図1は、本発明の空気入りタイヤ1が正規リム30にリム組みしかつ正規内圧の5%の内圧が充填された5%内圧状態におけるタイヤ子午断面であり、図1において、前記空気入りタイヤ1は、トレッド部2からサイドウォール部3をへてビード部4のビードコア5に至るカーカス6と、トレッド部2の内方かつ前記カーカス6の半径方向外側に配されるベルト層7とを具える。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a meridional section of a tire in a 5% internal pressure state in which the pneumatic tire 1 of the present invention is assembled to a normal rim 30 and is filled with an internal pressure of 5% of the normal internal pressure. In FIG. 1 includes a carcass 6 extending from the tread portion 2 through the sidewall portion 3 to the bead core 5 of the bead portion 4, and a belt layer 7 disposed on the inner side of the tread portion 2 and on the radially outer side of the carcass 6. Yeah.

なお前記カーカス6及びベルト層7としては、従来タイヤと同様の構造のものが好適に採用でき、本例ではカーカス6として、カーカスコードをタイヤ周方向に対して例えば75゜〜90゜の角度で配列した1枚のカーカスプライ6Aから形成された場合が例示される。このカーカスプライ6Aは、前記ビードコア5、5間に跨るトロイド状のプライ本体部6aの両端に、前記ビードコア5の廻りでタイヤ軸方向内側から外側に折り返されるプライ折返し部6bを一連に具え、又前記プライ本体部6aとプライ折返し部6bとの間には、前記ビードコア5からタイヤ半径方向外側に先細状にのびるビード補強用のビードエーペックスゴム8が配置されている。   As the carcass 6 and the belt layer 7, those having the same structure as that of the conventional tire can be suitably employed. In this example, the carcass 6 has a carcass cord at an angle of 75 ° to 90 ° with respect to the tire circumferential direction. The case where it forms from one arranged carcass ply 6A is illustrated. The carcass ply 6A includes a series of ply turn-up portions 6b that are turned from the inner side to the outer side in the tire axial direction around the bead core 5 at both ends of the toroidal ply main body portion 6a straddling the bead cores 5 and 5. Between the ply body portion 6a and the ply turn-up portion 6b, a bead apex rubber 8 for bead reinforcement that extends from the bead core 5 outward in the tire radial direction is disposed.

又前記ベルト層7として、本例では、ベルトコードをタイヤ周方向に対して例えば10〜35゜程度で配列した例えば2枚のベルトプライ7A、7Bから形成された場合が例示され、各ベルトコードがプライ間相互で交差することにより、ベルト剛性を高め、トレッド部2の略全巾をタガ効果を有して強固に補強している。なお、ベルト層7の半径方向外側には、高速耐久性などを高める目的で、バンドコードを周方向に螺旋状に巻回させた周知構造のバンド層9を設けることができる。   In the present example, the belt layer 7 is formed of, for example, two belt plies 7A and 7B in which the belt cord is arranged at, for example, about 10 to 35 ° with respect to the tire circumferential direction. By crossing the plies between each other, the belt rigidity is enhanced, and the substantially entire width of the tread portion 2 is strongly reinforced with a tagging effect. A band layer 9 having a known structure in which a band cord is spirally wound in the circumferential direction can be provided on the outer side in the radial direction of the belt layer 7 for the purpose of improving high-speed durability and the like.

この空気入りタイヤ1は、タイヤ偏平率が55%より大かつ70%より小の偏平タイヤであり、しかも前記5%内圧状態におけるタイヤ子午断面において、図2に示すように、トレッド部2の表面2S(トレッド面2Sという場合がある)の輪郭線Xを、単一の曲率半径Rを有する円弧にて形成している。このように、前記範囲の偏平率を有する偏平タイヤのトレッド輪郭形状Xを、単一円弧とすることにより、従来の偏平タイヤのトレッド輪郭形状X1(一点鎖線で示す)に比して、タイヤ接地端側におけるタイヤ半径の変化の割合ΔTrを小さく抑えることができ、タイヤ軸方向の位置の違いに対する路面との滑り量の差を相対的に小さくすることができる。なおトレッド接地縁Te、Te間のタイヤ軸方向巾である接地巾TW1と、タイヤ断面巾TW0との比TW1/TW0は0.73〜0.79の範囲であって、タイヤ偏平率及び比TW1/TW0が前記範囲の偏平タイヤのトレッド輪郭形状は、従来、複数の円弧を接続した複合円弧にて形成されていた。なお前記曲率半径Rは、前記接地巾TW1の3.0〜4.5倍の範囲が好ましい。   This pneumatic tire 1 is a flat tire having a tire flatness ratio of more than 55% and less than 70%, and in the meridional section of the tire in the 5% internal pressure state, as shown in FIG. An outline X of 2S (sometimes referred to as a tread surface 2S) is formed by an arc having a single radius of curvature R. In this way, the tread contour shape X of the flat tire having the flattening ratio in the above range is a single arc, so that the tire ground contact can be achieved as compared with the tread contour shape X1 (indicated by a one-dot chain line) of the conventional flat tire. The change ratio ΔTr of the tire radius on the end side can be kept small, and the difference in the slip amount from the road surface with respect to the difference in the position in the tire axial direction can be made relatively small. The ratio TW1 / TW0 between the contact width TW1 which is the tire axial width between the tread contact edges Te and Te and the tire cross-sectional width TW0 is in the range of 0.73 to 0.79, and the tire flatness ratio and ratio TW1 The tread contour shape of a flat tire having a range of / TW0 in the above range has conventionally been formed by a composite arc formed by connecting a plurality of arcs. The radius of curvature R is preferably in the range of 3.0 to 4.5 times the ground contact width TW1.

次に、図3に示すように、前記トレッド部2に、タイヤ周方向に連続してのびかつタイヤ軸方向最外側に配されるショルダー周方向主溝10sを含む周方向主溝10と、前記ショルダー周方向主溝10sのタイヤ軸方向外側に配されるショルダー陸部11sに設けられる複数のショルダー横溝12とを具える。   Next, as shown in FIG. 3, in the tread portion 2, a circumferential main groove 10 including a shoulder circumferential main groove 10s extending continuously in the tire circumferential direction and disposed on the outermost side in the tire axial direction, It includes a plurality of shoulder lateral grooves 12 provided in a shoulder land portion 11s arranged on the outer side in the tire axial direction of the shoulder circumferential main groove 10s.

具体的には、本例では、周方向主溝10として、前記ショルダー周方向主溝10sと、その内側かつタイヤ赤道Co両側に配されるクラウン周方向主溝10cとの4本が形成され、これにより、前記トレッド部2を、前記クラウン周方向主溝10c、10c間のクラウン陸部11c、クラウン周方向主溝10cとショルダー周方向主溝10sと間のミドル陸部11m、及び前記ショルダー陸部11sに区分している。   Specifically, in this example, as the circumferential main groove 10, four of the shoulder circumferential main groove 10s and a crown circumferential main groove 10c disposed on both sides of the tire equator Co and the tire equator Co are formed. As a result, the tread portion 2 is divided into the crown land portion 11c between the crown circumferential main grooves 10c and 10c, the middle land portion 11m between the crown circumferential main groove 10c and the shoulder circumferential main groove 10s, and the shoulder land. It is divided into parts 11s.

前記クラウン周方向主溝10c及びショルダー周方向主溝10sは、タイヤ周方向に直線状にのびるストレート溝であって、タイヤ赤道Coを中心とした線対称位置に配されている。前記クラウン周方向主溝10c及びショルダー周方向主溝10sの溝巾Wg及び溝深さHg(図6(B)に示す。)としては、従来的な周方向主溝の溝巾及び溝深さが好適に採用でき、例えば乗用車用タイヤの場合、前記溝巾Wgとして、その下限値を3mm以上、さらには5mm以上とするのが好ましく、また上限値を14mm以下、さらには12mm以下とするのが好ましい。又溝深さHgとしては、その下限値を5mm以上、さらには6mm以上とするのが好ましく、また上限値を12mm以下、さらには10mm以下とするのが好ましい。本例の場合、クラウン周方向主溝10cの溝巾Wgcは10.5mm、溝深さHgcは8.2mm、ショルダー周方向主溝10sの溝巾Wgsは8.2mm、溝深さHgsは8.2mmとしている。   The crown circumferential main groove 10c and the shoulder circumferential main groove 10s are straight grooves extending linearly in the tire circumferential direction, and are arranged at line-symmetrical positions around the tire equator Co. As the groove width Wg and the groove depth Hg (shown in FIG. 6B) of the crown circumferential main groove 10c and the shoulder circumferential main groove 10s, the groove width and groove depth of the conventional circumferential main groove are shown. For example, in the case of a passenger car tire, the lower limit of the groove width Wg is preferably 3 mm or more, more preferably 5 mm or more, and the upper limit is 14 mm or less, more preferably 12 mm or less. Is preferred. The groove depth Hg has a lower limit of preferably 5 mm or more, more preferably 6 mm or more, and an upper limit of 12 mm or less, more preferably 10 mm or less. In this example, the crown circumferential main groove 10c has a groove width Wgc of 10.5 mm, a groove depth Hgc of 8.2 mm, the shoulder circumferential main groove 10s has a groove width Wgs of 8.2 mm, and a groove depth Hgs of 8 mm. .2 mm.

又前記ショルダー陸部11sには、タイヤ周方向に隔置される複数のショルダー横溝12が設けられる。このショルダー横溝12は、図4に示すように、前記トレッド接地縁Teのタイヤ軸方向外側からタイヤ軸方向内側に向かってのびるとともに、そのタイヤ軸方向内端12iは、前記ショルダー陸部11s内で途切れている。前記ショルダー横溝のタイヤ周方向に対する小さい側の角度αは、80〜90°の範囲であり、又前記タイヤ軸方向内端12iと、前記ショルダー周方向主溝10sとの間のタイヤ軸方向の距離Dsは3.5〜5.5mmの範囲である。特に本例では、ショルダー横溝12のタイヤ軸方向内端12iにおけるタイヤ周方向に対する角度αiを、84〜90°としている。   The shoulder land portion 11s is provided with a plurality of shoulder lateral grooves 12 spaced in the tire circumferential direction. As shown in FIG. 4, the shoulder lateral groove 12 extends from the outer side in the tire axial direction of the tread grounding edge Te toward the inner side in the tire axial direction, and the inner end 12i in the tire axial direction is formed in the shoulder land portion 11s. It is interrupted. The angle α on the small side of the shoulder lateral groove with respect to the tire circumferential direction is in the range of 80 to 90 °, and the tire axial distance between the tire axial inner end 12i and the shoulder circumferential main groove 10s. Ds is in the range of 3.5 to 5.5 mm. Particularly in this example, the angle αi with respect to the tire circumferential direction at the tire axial direction inner end 12i of the shoulder lateral groove 12 is set to 84 to 90 °.

このように、前記角度αを規制し、前記ショルダー横溝12をタイヤ軸方向に近づけているため、例えばショルダー横溝12とショルダー周方向主溝10sとで挟まれるコーナ部分Qが剣先状となって摩耗の起点となるのを防止することができる。しかもショルダー横溝12のタイヤ軸方向内端12iをショルダー周方向主溝10sから離間させているため、前記コーナ部分Qだけでなくショルダー陸部11s全体の剛性を高く確保することができる。   In this way, the angle α is regulated and the shoulder lateral groove 12 is made closer to the tire axial direction, so that, for example, the corner portion Q sandwiched between the shoulder lateral groove 12 and the shoulder circumferential main groove 10s becomes a sword tip and wears. Can be prevented from starting. In addition, since the inner end 12i in the tire axial direction of the shoulder lateral groove 12 is separated from the shoulder circumferential main groove 10s, not only the corner portion Q but also the entire shoulder land portion 11s can have high rigidity.

従って、後述するように、前記ショルダー横溝12の最深部15の溝深さH12aを従来よりも深くした場合にも、剛性低下を低く抑えることができ、前記トレッド輪郭形状を単一円弧としたことによる滑り量の低減効果と相俟って、早期摩耗性能を向上させながらショルダー横溝12の深溝化を図ることができ、ショルダー横溝12の早期摩滅を抑制しうる。   Therefore, as will be described later, even when the groove depth H12a of the deepest portion 15 of the shoulder lateral groove 12 is made deeper than before, a reduction in rigidity can be suppressed low, and the tread contour shape is a single arc. In combination with the effect of reducing the amount of slip, the shoulder lateral groove 12 can be deepened while improving the early wear performance, and the early wear of the shoulder lateral groove 12 can be suppressed.

即ち、図6(A)にショルダー横溝12の溝巾中心に沿ったI−I線断面を示すように、前記ショルダー横溝12は、溝深さH12が最大となる最深部15を有し、かつ該最深部15の溝深さH12aを、前記ショルダー周方向主溝10sの溝深さHgsの70〜90%と、従来よりも深く設定している。   That is, as shown in FIG. 6A, a cross-section taken along line I-I along the center of the width of the shoulder lateral groove 12, the shoulder lateral groove 12 has a deepest portion 15 where the groove depth H12 is maximum, and The groove depth H12a of the deepest portion 15 is set to be 70 to 90% of the groove depth Hgs of the shoulder circumferential main groove 10s, which is deeper than conventional.

具体的には、前記ショルダー横溝12は、タイヤ軸方向内端12iからタイヤ軸方向外側に向かって溝深さH12が漸増する第1の傾斜部12Aと、この第1の傾斜部12Aに連なりかつ溝深さが一定の定深さ部12Bとを具え、この定深さ部12Bには、タイヤ軸方向外側に向かって溝深さが漸減する第2の傾斜部12Cが連なる。なお前記第1の傾斜部12Aは、直線状に傾斜し、又該第1の傾斜部12Aのタイヤ軸方向長さLa(図4に示す。)は、前記ショルダー横溝12のタイヤ軸方向内端12iからトレッド接地縁Teまでのタイヤ軸方向長さL12の25〜50%としている。又前記ショルダー横溝12は、前記定深さ部12Bにおいて最深部15をなすとともに、本例ではトレッド接地縁Teにおける溝深さH12bを4.0〜5.0mmとしている。   Specifically, the shoulder lateral groove 12 is connected to the first inclined portion 12A in which the groove depth H12 gradually increases from the inner end 12i in the tire axial direction toward the outer side in the tire axial direction, and the first inclined portion 12A. A constant depth portion 12B having a constant groove depth is provided, and this constant depth portion 12B is connected to a second inclined portion 12C in which the groove depth gradually decreases toward the outer side in the tire axial direction. The first inclined portion 12A is inclined linearly, and the tire axial direction length La (shown in FIG. 4) of the first inclined portion 12A is the inner end of the shoulder lateral groove 12 in the tire axial direction. The tire axial length L12 from 12i to the tread grounding edge Te is set to 25 to 50%. Further, the shoulder lateral groove 12 forms the deepest portion 15 in the constant depth portion 12B, and in this example, the groove depth H12b in the tread grounding edge Te is set to 4.0 to 5.0 mm.

このように、前記第1の傾斜部12Aは、広範囲に亘り溝深さH12が徐々に変化するなど、剛性変化を滑らかとすることができ、最深部15での溝深さH12aを大きく確保しショルダー横溝12の早期摩滅を抑えながら、タイヤ軸方向内端12i付近を起点とした偏摩耗の発生を抑制することができる。又前記定深さ部12Bにより、最深部15を広範囲に形成でき、高い排水性を発揮することができる。   As described above, the first inclined portion 12A can smoothly change the rigidity, for example, the groove depth H12 gradually changes over a wide range, and ensures a large groove depth H12a at the deepest portion 15. While suppressing the early wear of the shoulder lateral grooves 12, it is possible to suppress the occurrence of uneven wear starting from the vicinity of the inner end 12i in the tire axial direction. Moreover, the deepest part 15 can be formed in a wide range by the constant depth part 12B, and high drainage can be exhibited.

又ショルダー横溝12の深溝化はノイズ性能の悪化をもたらすが、本実施形態では前記ショルダー横溝12の内端12iがショルダー周方向主溝10sから離間しているため、ショルダー横溝12からの圧縮空気がショルダー周方向主溝10sに流れて、気柱共鳴などのノイズを誘発するのを抑制しうる。又ショルダー横溝12は、トレッド接地縁Teの外側で開口するため、ショルダー横溝12におけるポンピング音の悪化は抑えられる。   Further, the deepening of the shoulder lateral groove 12 causes deterioration in noise performance. However, in this embodiment, since the inner end 12i of the shoulder lateral groove 12 is separated from the shoulder circumferential main groove 10s, the compressed air from the shoulder lateral groove 12 is generated. It can be suppressed that it flows into the shoulder circumferential main groove 10s and induces noise such as air column resonance. Further, since the shoulder lateral groove 12 opens outside the tread ground edge Te, deterioration of the pumping sound in the shoulder lateral groove 12 can be suppressed.

ここで、前記ショルダー横溝12の角度αが80°を下回る、特に内端12iにおける角度αiが84°を下回ると、前記コーナ部分Qが剣先状となって剛性が低下し、このコーナ部分Qを起点として偏摩耗を招くなど早期摩耗性を低下させる。又前記距離Dsが3.5mmを下回る場合にも、前記コーナ部分Qの剛性が不充分となって早期摩耗性を低下させ、逆に前記距離Dsが5.5mmを上回る場合には、排水性が不充分となる。又前記最深部15の溝深さH12aがショルダー周方向主溝10sの溝深さHgsの70%未満では、早期摩耗を抑制するとはいえ、溝深さH12a自体が小であるため早期摩滅を抑制することが難しい。逆に90%を越えると、深すぎてショルダー陸部11sの剛性が低下するため早期摩耗性を低下させる。又前記第1の傾斜部12Aのタイヤ軸方向長さLaがショルダー横溝12の前記長さL12の25%未満では、溝深さH12が急激に変化する、即ち剛性変化が大となって、ショルダー横溝12の内端12i付近を起点とした偏摩耗を招き、逆に50%を越えると、排水性、及びショルダー横溝12の早期摩滅に不利となる。同様にトレッド接地縁Teにおけるショルダー横溝12の溝深さH12bが4.0mm未満でも排水性及び早期摩滅に不利となり、逆に5.0mmを越えると、ショルダー陸部11sの剛性低下を招く。   Here, when the angle α of the shoulder lateral groove 12 is less than 80 °, particularly when the angle αi at the inner end 12i is less than 84 °, the corner portion Q becomes a sword tip and the rigidity is lowered. Reduces early wear, such as causing uneven wear as a starting point. Also, when the distance Ds is less than 3.5 mm, the corner portion Q has insufficient rigidity to reduce early wear, and conversely, when the distance Ds exceeds 5.5 mm, drainage Is insufficient. Further, if the groove depth H12a of the deepest portion 15 is less than 70% of the groove depth Hgs of the shoulder circumferential main groove 10s, although the early wear is suppressed, the early wear is suppressed because the groove depth H12a itself is small. Difficult to do. On the other hand, if it exceeds 90%, it is too deep and the rigidity of the shoulder land portion 11s is lowered, so that the early wear resistance is lowered. If the length La of the first inclined portion 12A in the tire axial direction is less than 25% of the length L12 of the shoulder lateral groove 12, the groove depth H12 changes abruptly, that is, the rigidity change becomes large and the shoulder changes. If uneven wear starts from the vicinity of the inner end 12i of the lateral groove 12 and exceeds 50%, the drainage and the early wear of the shoulder lateral groove 12 are disadvantageous. Similarly, even if the groove depth H12b of the shoulder lateral groove 12 at the tread grounding edge Te is less than 4.0 mm, it is disadvantageous for drainage and premature wear, and conversely if it exceeds 5.0 mm, the rigidity of the shoulder land portion 11s is reduced.

又本例では、ショルダー陸部11sには、前記ショルダー横溝12の内端12iを通ってタイヤ周方向にのびるショルダー細溝16を具える。このショルダー細溝16の溝巾W16は、前記ショルダー周方向主溝10sの溝巾Wgsよりも充分小であり、本例では、前記溝巾W16を3mm以下、好ましくは2mm以下で形成している。又ショルダー細溝16の溝深さH16も、ショルダー周方向主溝10sの溝深さHgsよりも充分小であり、本例では、溝深さH16を3mm以下、好ましくは2mm以下で形成している。本例では、前記ショルダー細溝16の前記溝深さH16は、前記ショルダー横溝12の内端12iでの溝深さH12cと同一としている。   In this example, the shoulder land portion 11s includes a shoulder narrow groove 16 extending in the tire circumferential direction through the inner end 12i of the shoulder lateral groove 12. The groove width W16 of the shoulder narrow groove 16 is sufficiently smaller than the groove width Wgs of the shoulder circumferential main groove 10s, and in this example, the groove width W16 is 3 mm or less, preferably 2 mm or less. . The groove depth H16 of the shoulder narrow groove 16 is also sufficiently smaller than the groove depth Hgs of the shoulder circumferential main groove 10s. In this example, the groove depth H16 is 3 mm or less, preferably 2 mm or less. Yes. In this example, the groove depth H16 of the shoulder narrow groove 16 is the same as the groove depth H12c at the inner end 12i of the shoulder lateral groove 12.

又ショルダー陸部11sは、トレッド面2Sと、前記ショルダー周方向主溝10sの溝壁面とが交わるコーナ部Pに、円弧状の面取り部25を具え、本例では、ショルダー周方向主溝10sの溝壁面と、ミドル陸部11mのトレッド面2Sとが交わるコーナ部Pにも、同様の面取り部25を形成している。この面取り部25の曲率半径は1.5〜3.0mm程度であり、前記コーナ部Pを起点とした偏摩耗を抑制する。   The shoulder land portion 11s includes an arc-shaped chamfered portion 25 at a corner portion P where the tread surface 2S and the groove wall surface of the shoulder circumferential main groove 10s intersect, and in this example, the shoulder circumferential direction main groove 10s. A similar chamfered portion 25 is also formed at the corner portion P where the groove wall surface and the tread surface 2S of the middle land portion 11m intersect. The radius of curvature of the chamfered portion 25 is about 1.5 to 3.0 mm, and suppresses uneven wear starting from the corner portion P.

なお本例では、前記ミドル陸部11mには、複数のミドル傾斜溝17が形成されている。このミドル傾斜溝17は、図5に示すように、前記ショルダー周方向主溝10sからタイヤ軸方向内側に向かって、タイヤ周方向に対して0〜45°の小な角度βで急傾斜でのびるとともに、そのタイヤ軸方向内端17eは、前記ミドル陸部11m内で途切れる。前記タイヤ軸方向内端17eと前記クラウン周方向主溝10cとの間のタイヤ軸方向距離Dmは、1.5〜3.5mmの範囲が好ましく、本例では前記距離Dsよりも小に設定している。又本例では、ミドル傾斜溝17の周方向長さLmは、ミドル傾斜溝17の周方向ピッチPmの72〜84%に設定されており、又前記周方向ピッチPmは、前記ショルダー横溝10sの周方向ピッチPsの2.5〜3.5倍の範囲に設定されている。   In this example, a plurality of middle inclined grooves 17 are formed in the middle land portion 11m. As shown in FIG. 5, the middle inclined groove 17 extends steeply at a small angle β of 0 to 45 ° with respect to the tire circumferential direction from the shoulder circumferential main groove 10 s toward the inner side in the tire axial direction. At the same time, the inner end 17e in the tire axial direction is interrupted in the middle land portion 11m. The tire axial distance Dm between the tire axial inner end 17e and the crown circumferential main groove 10c is preferably in the range of 1.5 to 3.5 mm, and in this example is set to be smaller than the distance Ds. ing. In this example, the circumferential length Lm of the middle inclined groove 17 is set to 72 to 84% of the circumferential pitch Pm of the middle inclined groove 17, and the circumferential pitch Pm is equal to the shoulder lateral groove 10s. It is set in the range of 2.5 to 3.5 times the circumferential pitch Ps.

ここで、前記ミドル傾斜溝17は、そのタイヤ軸方向内側に、タイヤ周方向に対して20°以下の角度β1で直線状にのびる直線状溝部17Aを具える。なお前記「直線状にのびる」とは、前記ミドル傾斜溝17の溝巾中心線17iが直線をなす以外に、2つの直線が170〜180°の角度で屈曲する屈曲部を1つ有する場合も含まれる。   Here, the middle inclined groove 17 includes a linear groove portion 17A extending linearly at an angle β1 of 20 ° or less with respect to the tire circumferential direction on the inner side in the tire axial direction. The term “straightly extending” refers to a case where two straight lines are bent at an angle of 170 ° to 180 ° in addition to the groove width center line 17i of the middle inclined groove 17 being a straight line. included.

具体的には、本例のミドル傾斜溝17は、前記タイヤ軸方向内端17eからのびる前記直線状溝部17Aと、この前記直線状溝部17Aから前記ショルダー周方向主溝10sまで、前記角度βがタイヤ軸方向外側に向かって順次増加するように円弧状に湾曲しながら及び/又は折れ線状に屈曲しながらのびる継ぎ溝部17Bとから形成される。前記直線状溝部17Aは、本例では、そのタイヤ軸方向の溝内側縁17Aeが直線をなし、又直線状溝部17Aの周方向長さLm1は、前記ミドル傾斜溝17の周方向長さLmの40〜70%に設定される。   Specifically, the middle inclined groove 17 of the present example has the linear groove portion 17A extending from the tire axial direction inner end 17e, and the angle β from the linear groove portion 17A to the shoulder circumferential main groove 10s. The joint groove portion 17B extends while being curved in an arc shape and / or bent in a polygonal line so as to increase sequentially toward the outer side in the tire axial direction. In this example, the linear groove portion 17A has a groove inner edge 17Ae in the tire axial direction that forms a straight line, and the circumferential length Lm1 of the linear groove portion 17A is equal to the circumferential length Lm of the middle inclined groove 17. It is set to 40 to 70%.

このように前記ミドル傾斜溝17は、前記周方向長さLmを有して急傾斜することにより、排水抵抗を減じるなど排水性を高めることができる。又ミドル傾斜溝17のタイヤ軸方向内端17eが、クラウン周方向主溝10cから前記距離Dmを隔てて途切れるため、ミドル陸部11mの周方向剛性を高く確保することができ、前記排水性を発揮しながら耐偏摩耗性及び操縦安定性を向上させることができる。特に、ミドル傾斜溝17に直線状溝部17Aを形成することにより排水性をいっそう高めることができる。しかも直線状溝部17Aによりクラウン周方向主溝10cとの距離が滑らかに減じるため、偏摩耗の起点となるような大きな剛性変化点の形成が抑えられる。特に前記溝内側縁17Aeを直線とすることにより、より剛性変化点の形成が抑えられ耐偏摩耗性に有利となる。なお前記角度βが45°を上回ると排水性を充分確保するのが難しくなる。又直線状溝部17Aの前記角度β1が20°を上回る、及びその周方向長さLm1がミドル傾斜溝17の周方向長さLmの40%を下回る場合には、前記直線状溝部17Aによる排水性の向上効果、及び偏摩耗の起点の発生を抑えて耐偏摩耗性を向上する効果が充分発揮させなくなる。又前記距離Dmが1.5mm未満では、ミドル陸部11mの剛性が減じて耐偏摩耗性及び操縦安定性の低下を招き、逆に3.5mmを越えると排水性が不充分となる。   As described above, the middle inclined groove 17 has a circumferential length Lm and is steeply inclined, thereby improving drainage performance such as reducing drainage resistance. Further, the inner end 17e in the tire axial direction of the middle inclined groove 17 is interrupted at a distance Dm from the crown circumferential main groove 10c, so that the circumferential rigidity of the middle land portion 11m can be ensured high, and the drainage performance can be improved. Uneven wear resistance and steering stability can be improved while exhibiting. In particular, the drainage can be further improved by forming the linear groove portion 17A in the middle inclined groove 17. Moreover, since the distance from the crown circumferential main groove 10c is smoothly reduced by the linear groove portion 17A, formation of a large rigidity change point that becomes a starting point of uneven wear can be suppressed. In particular, by forming the groove inner edge 17Ae as a straight line, formation of a rigidity change point is further suppressed, which is advantageous in uneven wear resistance. If the angle β exceeds 45 °, it is difficult to ensure sufficient drainage. Further, when the angle β1 of the linear groove portion 17A exceeds 20 ° and the circumferential length Lm1 thereof is less than 40% of the circumferential length Lm of the middle inclined groove 17, the drainage by the linear groove portion 17A. And the effect of improving the uneven wear resistance by suppressing the occurrence of the starting point of uneven wear cannot be exhibited sufficiently. On the other hand, if the distance Dm is less than 1.5 mm, the rigidity of the middle land portion 11 m is reduced, resulting in a decrease in uneven wear resistance and steering stability. Conversely, if the distance Dm exceeds 3.5 mm, the drainage is insufficient.

又前記継ぎ溝部17Bは、前記角度βのうち、前記ショルダー周方向主溝10sとの交わり部Jaにおける角度βjが3.5〜4.5°であり、これにより、前記交わり部Jaにおける排水性の低下、及び横剛性の低下が抑制される。なお前記角度βjが前記範囲を外れると、交わり部Jaにおける排水性が減じ、かつ横剛性の低下を招く   The joint groove portion 17B has an angle βj of 3.5 to 4.5 ° at the intersection portion Ja with the shoulder circumferential main groove 10s out of the angle β, and thereby drainage at the intersection portion Ja. And a decrease in lateral rigidity are suppressed. If the angle βj is out of the range, the drainage at the intersecting portion Ja is reduced and the lateral rigidity is lowered.

なお前記ミドル傾斜溝17は、その溝巾W17が前記溝巾Wgsより小である。又図6(B)にミドル傾斜溝17の溝巾中心に沿ったII−II線断面図を示すように、ミドル傾斜溝17の溝深さ(最深部の深さ)H17は、前記溝深さHgs以下としている。   The middle inclined groove 17 has a groove width W17 smaller than the groove width Wgs. Further, as shown in FIG. 6B, a sectional view taken along line II-II along the center of the groove width of the middle inclined groove 17, the groove depth (depth of the deepest portion) H17 of the middle inclined groove 17 is the groove depth. Hgs or less.

又前記ミドル陸部11mには、排水性のために、タイヤ周方向で隣り合うミドル傾斜溝17、17間を通って前記ショルダー周方向主溝10sからタイヤ軸方向内側に向かってのびる第1、第2のミドル副溝18、19が配される。この第1、第2のミドル副溝18、19は、ミドル傾斜溝17と同様4.5°以下の角度γで傾斜するとともに、そのタイヤ軸方向内端18e、19eは、何れもミドル陸部11m内で途切れている。前記第1、第2のミドル副溝18、19は、その周方向長さL18、L19が、それぞれ前記ミドル傾斜溝17の周方向長さLmの30%以下であって、本例では、前記角度γがタイヤ軸方向内側に向かって減じるように円弧状に湾曲している。なお前記長さL18、L19が前記周方向長さLmの30%を越えると、ミドル陸部11mの剛性を過度に減じて、操縦安定性に悪影響を招く。   Further, the middle land portion 11m has a first drainage extending from the shoulder circumferential main groove 10s toward the inner side in the tire axial direction through the middle inclined grooves 17 and 17 adjacent in the tire circumferential direction for drainage. Second middle sub-grooves 18 and 19 are arranged. The first and second middle sub-grooves 18 and 19 are inclined at an angle γ of 4.5 ° or less similarly to the middle inclined groove 17, and the tire axial direction inner ends 18e and 19e are both middle land portions. It is interrupted within 11m. The circumferential lengths L18 and L19 of the first and second middle sub-grooves 18 and 19 are 30% or less of the circumferential length Lm of the middle inclined groove 17, respectively. It is curved in an arc shape so that the angle γ decreases toward the inside in the tire axial direction. If the lengths L18 and L19 exceed 30% of the circumferential length Lm, the rigidity of the middle land portion 11m is excessively reduced, and the steering stability is adversely affected.

又ショルダー周方向主溝10sとミドル傾斜溝17との交わり部をJa、ショルダー周方向主溝10sと第1のミドル副溝18との交わり部をJb、ショルダー周方向主溝10sと第2のミドル副溝19との交わり部をJcとしたとき、周方向で隣り合う交わり部Ja、Jb間の周方向距離Q1、交わり部Jb、Jc間の周方向距離Q2、交わり部Jc、Ja間の周方向距離Q3は、それぞれ前記ミドル傾斜溝17の周方向ピッチPmの30〜35%の範囲であり、前記第1、第2のミドル副溝18、19は、ミドル傾斜溝17、17間にほぼ均等な周方向間隔で配されている。   The intersection of the shoulder circumferential main groove 10s and the middle inclined groove 17 is Ja, the intersection of the shoulder circumferential main groove 10s and the first middle subgroove 18 is Jb, and the shoulder circumferential main groove 10s and the second When the intersection with the middle sub-groove 19 is Jc, the circumferential distance Q1 between the intersections Ja and Jb adjacent in the circumferential direction, the circumferential distance Q2 between the intersections Jb and Jc, and between the intersections Jc and Ja The circumferential distance Q3 is in the range of 30 to 35% of the circumferential pitch Pm of the middle inclined groove 17, and the first and second middle subgrooves 18 and 19 are located between the middle inclined grooves 17 and 17, respectively. They are arranged at almost equal circumferential intervals.

又前記クラウン陸部11cには、本例では、該クラウン陸部11cを横切り、かつタイヤ周方向に隔置される複数のクラウン横溝20が設けられている。前記クラウン横溝20は、本例では溝巾W20が0.5〜1.0mmの細溝であり、タイヤ周方向に対して角度δでのびる。この角度δは、本例では、前記角度αの最大値よりも小、かつ前記角度βの最小値よりも大に設定される。   The crown land portion 11c is provided with a plurality of crown lateral grooves 20 that cross the crown land portion 11c and are spaced apart in the tire circumferential direction in this example. The crown lateral groove 20 is a narrow groove having a groove width W20 of 0.5 to 1.0 mm in this example, and extends at an angle δ with respect to the tire circumferential direction. In this example, the angle δ is set smaller than the maximum value of the angle α and larger than the minimum value of the angle β.

又図7に、空気入りタイヤ1におけるトレッドパターンの他の実施例を示す。本例では、周方向主溝10が、前記ショルダー周方向主溝10sと、その内側かつタイヤ赤道Co上に配されるクラウン周方向主溝10cとの3本から形成される場合が示される。従って、本例のトレッド部2は、クラウン周方向主溝10cとショルダー周方向主溝10sと間のミドル陸部11m、及び前記ショルダー陸部11sの4本の陸部に区分されており、クラウン陸部11cが削除されている。しかしそれ以外は、実質的に同構成で形成されている。   FIG. 7 shows another embodiment of the tread pattern in the pneumatic tire 1. In this example, the case where the circumferential main groove 10 is formed by three of the shoulder circumferential main groove 10s and the crown circumferential main groove 10c arranged on the inner side and on the tire equator Co is shown. Therefore, the tread portion 2 of this example is divided into a middle land portion 11m between the crown circumferential direction main groove 10c and the shoulder circumferential direction main groove 10s, and four land portions of the shoulder land portion 11s. The land portion 11c is deleted. However, other than that, it is formed with substantially the same configuration.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

図1のトレッドパターンを基本パターンとし、タイヤサイズが195/65R15の乗用車用ラジアルタイヤを表1の仕様に基づき試作するとともに、各試供タイヤの、ノイズ性能、及び早期摩耗性能をテストした。各タイヤとも表1に記載以外は実質的に同仕様としている。共通仕様は以下の通りである。
・クラウン周方向主溝
溝巾Wgc −−−10.5mm
溝深さHgc −−−8.2mm
・ショルダー周方向主溝
溝巾Wgs −−−8.2mm
溝深さHgs −−−8.2mm
・ショルダー横溝
溝巾W12 −−−3.0mm
溝深さ(最大値)H12a −−− 表1
・ミドル傾斜溝
溝巾W17 −−−4.5mm
溝深さ(最大値)H17 −−−6.7mm
・クラウン横溝
溝巾W20 −−−0.8mm
溝深さ(最大値)H20 −−−4.0mm
A radial tire for a passenger car having a tire size of 195 / 65R15 with the tread pattern of FIG. 1 as a basic pattern was manufactured based on the specifications in Table 1, and noise performance and early wear performance of each sample tire were tested. Each tire has substantially the same specifications except those listed in Table 1. The common specifications are as follows.
・ Crown circumferential main groove Groove width Wgc --- 10.5mm
Groove depth Hgc --- 8.2mm
・ Shoulder circumferential main groove Groove width Wgs ---- 8.2mm
Groove depth Hgs --- 8.2mm
・ Shoulder lateral groove Groove width W12 ---- 3.0mm
Groove depth (maximum value) H12a --- Table 1
・ Middle inclined groove Groove width W17 --4.5mm
Groove depth (maximum value) H17 --6.7 mm
・ Crown lateral groove Groove width W20 --- 0.8mm
Groove depth (maximum value) H20 --- 4.0 mm

<ノイズ性能>
リム(15×6J)、内圧(200kPa)にて、車両(排気量2000cc)の全輪に装着し、乾燥した舗装路面を車両が通過する際のパターンノイズに起因する騒音レベルを測定した。評価結果は、測定値の逆数を用い、比較例1を100とする指数にて示した。この指数値が大きいほどパターンノイズが少なく優れている。
<Noise performance>
The rim (15 × 6J) and internal pressure (200 kPa) were attached to all the wheels of the vehicle (displacement 2000 cc), and the noise level caused by the pattern noise when the vehicle passed through the dry paved road surface was measured. The evaluation results are shown as an index using Comparative Example 1 as 100, using the reciprocal of the measured value. The larger the index value, the smaller the pattern noise and the better.

<早期摩耗性能>
上記車両を用い、MIX路摩耗モード(高速道路50%、一般路35%、山岳路15%)にて8,000km走行した後の、ショルダー横溝の溝残量を測定し、比較例1を100とした指数で評価している。測定位置は、トレッド接地縁からタイヤ軸方向内側に10mm隔たった位置とした。
<Early wear performance>
Using the above vehicle, the remaining amount of the shoulder lateral groove after running 8,000 km in MIX road wear mode (highway 50%, general road 35%, mountain road 15%) was measured. The index is evaluated. The measurement position was a position 10 mm away from the tread ground edge on the inner side in the tire axial direction.

Figure 0005809655
Figure 0005809655
Figure 0005809655
Figure 0005809655

表のように実施例のタイヤは、ノイズ性能を悪化させることなくショルダー部の早期摩耗性能を向上させているのが確認できる。   As shown in the table, it can be confirmed that the tires of the examples improve the early wear performance of the shoulder portion without deteriorating the noise performance.

2 トレッド部
2S 表面
10 周方向主溝
10s ショルダー周方向主溝
11s ショルダー陸部
12 ショルダー横溝
12i タイヤ軸方向内端
12A 第1の傾斜部
12B 定深さ部
15 最深部
16 ショルダー細溝
25 面取り部
30 正規リム
P コーナ部
R 曲率半径
Te トレッド接地縁
X 輪郭線
2 tread portion 2S surface 10 circumferential main groove 10s shoulder circumferential main groove 11s shoulder land portion 12 shoulder lateral groove 12i tire axial direction inner end 12A first inclined portion 12B constant depth portion 15 deepest portion 16 shoulder narrow groove 25 chamfered portion 30 Regular rim P Corner radius R Curvature radius Te Tread grounding edge X Contour line

Claims (6)

タイヤ偏平率を55%より大かつ70%より小とした空気入りタイヤであって、
正規リムにリム組みしかつ正規内圧の5%の内圧を充填した5%内圧状態におけるタイヤ子午断面において、トレッド部の表面の輪郭線が、単一の曲率半径を有する円弧をなし、前記曲率半径Rは、トレッド接地縁間のタイヤ軸方向巾である接地巾TW1の3.0〜4.5倍であり、
前記トレッド部に、タイヤ周方向に連続してのびかつタイヤ軸方向最外側に配されるショルダー周方向主溝を含む周方向主溝と、
前記ショルダー周方向主溝のタイヤ軸方向外側に配されるショルダー陸部に設けられかつ前記トレッド接地縁のタイヤ軸方向外側からタイヤ軸方向内側に向かってのびるとともにタイヤ軸方向内端が前記ショルダー陸部内で途切れる複数のショルダー横溝とを具え、
前記ショルダー横溝は、タイヤ周方向に対する角度αが80〜90°の範囲であり、かつタイヤ軸方向内端と前記ショルダー周方向主溝との間のタイヤ軸方向の距離Dsが3.5〜5.5mmの範囲であり、
前記ショルダー横溝は、溝深さが最大となる最深部を有しかつ該最深部の溝深さが、前記ショルダー周方向主溝の溝深さの70〜90%であり、
前記ショルダー横溝は、タイヤ軸方向内端からタイヤ軸方向外側に向かって溝深さが漸増する第1の傾斜部と、この第1の傾斜部に連なりかつ溝深さが一定でのびる定深さ部とを具え、前記定深さ部は前記最深部をなし、
前記第1の傾斜部のタイヤ軸方向長さは、前記ショルダー横溝のタイヤ軸方向内端からトレッド接地縁までのタイヤ軸方向長さの25〜50%であることを特徴とする空気入りタイヤ。
A pneumatic tire having a tire flatness ratio of greater than 55% and less than 70%,
In a tire meridional section in a 5% internal pressure state in which a rim is assembled to a normal rim and filled with an internal pressure of 5% of the normal internal pressure, the contour line of the surface of the tread portion forms an arc having a single radius of curvature R, and the curvature The radius R is 3.0 to 4.5 times the ground contact width TW1, which is the tire axial width between the tread ground edges,
In the tread portion, a circumferential main groove including a shoulder circumferential main groove that extends continuously in the tire circumferential direction and is arranged on the outermost side in the tire axial direction;
The shoulder circumferential main axially inner end with provided in the shoulder land portions disposed in the tire axial direction outer side and the axially outer side of the tread grounding edge extending towards the inside of the tire axial direction of the groove is the shoulder land With a plurality of shoulder lateral grooves that break in the club,
The shoulder lateral groove has an angle α with respect to the tire circumferential direction in the range of 80 to 90 °, and a tire axial distance Ds between the inner end in the tire axial direction and the shoulder circumferential main groove is 3.5 to 5. In the range of 5 mm,
The shoulder lateral groove has a deepest portion where the groove depth is maximum, and the groove depth of the deepest portion is 70 to 90% of the groove depth of the shoulder circumferential main groove,
The shoulder lateral groove has a first inclined portion in which the groove depth gradually increases from the inner end in the tire axial direction toward the outer side in the tire axial direction, and a constant depth that is continuous with the first inclined portion and has a constant groove depth. And the constant depth portion is the deepest portion,
The pneumatic tire according to claim 1, wherein a tire axial direction length of the first inclined portion is 25 to 50% of a tire axial direction length from a tire axial inner end of the shoulder lateral groove to a tread contact edge.
前記ショルダー陸部は、前記ショルダー横溝のタイヤ軸方向内端を通ってタイヤ周方向にのび、かつ前記ショルダー主溝よりも巾狭のショルダー細溝を具え、
前記ショルダー細溝の溝深さは、前記ショルダー横溝のタイヤ軸方向内端での溝深さと同一であることを特徴とする請求項1記載の空気入りタイヤ。
The shoulder land portion includes a shoulder narrow groove extending in the tire circumferential direction through an inner end in the tire axial direction of the shoulder lateral groove, and narrower than the shoulder main groove,
The pneumatic tire according to claim 1, wherein a groove depth of the shoulder narrow groove is the same as a groove depth at an inner end in the tire axial direction of the shoulder lateral groove.
前記トレッド接地縁間のタイヤ軸方向巾である接地巾TW1と、タイヤ断面巾TW0との比TW1/TW0が、0.73〜0.79であることを特徴とする請求項1又は2記載の空気入りタイヤ。   The ratio TW1 / TW0 of the ground contact width TW1 which is the tire axial width between the tread ground edges and the tire cross-sectional width TW0 is 0.73 to 0.79. Pneumatic tire. 前記ショルダー細溝は、溝深さが2mm以下である請求項2記載の空気入りタイヤ。   The pneumatic tire according to claim 2, wherein the shoulder narrow groove has a groove depth of 2 mm or less. 前記ショルダー横溝は、トレッド接地縁における溝深さが4.0〜5.0mmであることを特徴とする請求項1〜4の何れかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 4, wherein the shoulder lateral groove has a groove depth of 4.0 to 5.0 mm at a tread ground contact edge. 前記ショルダー陸部は、トレッド面と、前記ショルダー周方向主溝の溝壁面とが交わるコーナ部に、円弧状の面取り部を具えることを特徴とする請求項1〜5の何れかに記載の空気入りタイヤ。
The said shoulder land part equips the corner part where the tread surface and the groove wall surface of the said shoulder circumferential direction main groove | channel cross | intersect, and comprises an arc-shaped chamfering part in any one of Claim 1-5 characterized by the above-mentioned. Pneumatic tire.
JP2013058688A 2013-03-21 2013-03-21 Pneumatic tire Active JP5809655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013058688A JP5809655B2 (en) 2013-03-21 2013-03-21 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013058688A JP5809655B2 (en) 2013-03-21 2013-03-21 Pneumatic tire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010294491A Division JP5395786B2 (en) 2010-12-29 2010-12-29 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2013116741A JP2013116741A (en) 2013-06-13
JP5809655B2 true JP5809655B2 (en) 2015-11-11

Family

ID=48711586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013058688A Active JP5809655B2 (en) 2013-03-21 2013-03-21 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5809655B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015225939A1 (en) * 2015-12-18 2017-06-22 Continental Reifen Deutschland Gmbh Vehicle tires
JP7358936B2 (en) 2019-11-22 2023-10-11 住友ゴム工業株式会社 tire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537799B2 (en) * 2004-08-06 2010-09-08 住友ゴム工業株式会社 Pneumatic tire
JP4754517B2 (en) * 2007-03-13 2011-08-24 株式会社ブリヂストン Pneumatic radial tire
JP4217267B1 (en) * 2007-09-13 2009-01-28 住友ゴム工業株式会社 Pneumatic tire
JP4406455B2 (en) * 2007-12-18 2010-01-27 住友ゴム工業株式会社 Pneumatic tire
JP2009208595A (en) * 2008-03-04 2009-09-17 Bridgestone Corp Pneumatic radial tire

Also Published As

Publication number Publication date
JP2013116741A (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP5395786B2 (en) Pneumatic tire
KR101790798B1 (en) Pneumatic tire
JP5266307B2 (en) Pneumatic tire
KR102055818B1 (en) Pneumatic tire
JP4866177B2 (en) Heavy duty tire
AU2014388518B2 (en) Pneumatic tire
KR101720801B1 (en) Pneumatic tire
EP2769853A1 (en) Pneumatic tire
JP6762267B2 (en) tire
WO2016056506A1 (en) Pneumatic tire
JP6887908B2 (en) tire
JP6450224B2 (en) Pneumatic tire
EP2428371B1 (en) Pneumatic tire
JP2012121491A (en) Pneumatic tire
JP5541416B1 (en) Pneumatic tire
JP2022048323A (en) Tire for heavy load
JP2011143891A (en) Pneumatic tire
WO2016143477A1 (en) Pneumatic tire
JP5809655B2 (en) Pneumatic tire
JP6348008B2 (en) Pneumatic tire
WO2016093069A1 (en) Pneumatic tire
JP5613273B2 (en) Pneumatic tire
JP2019112021A (en) Pneumatic tire
JP7225490B2 (en) pneumatic tire
JP2020131919A (en) Pneumatic tire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141028

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141106

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150911

R150 Certificate of patent or registration of utility model

Ref document number: 5809655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250