JP5808866B2 - Non-aqueous electroplating method and non-aqueous electroplating apparatus - Google Patents

Non-aqueous electroplating method and non-aqueous electroplating apparatus Download PDF

Info

Publication number
JP5808866B2
JP5808866B2 JP2014532661A JP2014532661A JP5808866B2 JP 5808866 B2 JP5808866 B2 JP 5808866B2 JP 2014532661 A JP2014532661 A JP 2014532661A JP 2014532661 A JP2014532661 A JP 2014532661A JP 5808866 B2 JP5808866 B2 JP 5808866B2
Authority
JP
Japan
Prior art keywords
aqueous
plating solution
plating
electroplating
hydrophobic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014532661A
Other languages
Japanese (ja)
Other versions
JPWO2014033890A1 (en
Inventor
芳典 根岸
芳典 根岸
広 中野
中野  広
晴夫 赤星
晴夫 赤星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP5808866B2 publication Critical patent/JP5808866B2/en
Publication of JPWO2014033890A1 publication Critical patent/JPWO2014033890A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • C25D3/665Electroplating: Baths therefor from melts from ionic liquids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/11Use of protective surface layers on electrolytic baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/02Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0628In vertical cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

本発明は、非水系めっき液を用いた電気めっき方法および該方法を実施するための非水系電気めっき装置に関するものである。   The present invention relates to an electroplating method using a nonaqueous plating solution and a nonaqueous electroplating apparatus for carrying out the method.

金属の電気めっきプロセスは、多くの場合にめっき液として水溶液が用いられている。水性めっき液は揮発性が低くて管理しやすく排水処理も比較的容易であることから、水系電気めっきは低コストプロセスとして位置づけられている。   In many cases, metal electroplating processes use an aqueous solution as a plating solution. Aqueous electroplating is positioned as a low-cost process because the aqueous plating solution has low volatility and is easy to manage and wastewater treatment is relatively easy.

一方、めっき液溶媒として水を用いることにより、電気化学的に析出可能な金属元素の種類は限られていた。機能性金属薄膜として期待されるアルミニウム(Al)、チタン(Ti)、マグネシウム(Mg)などの金属元素は、酸素に対する親和力が大きく、その酸化還元電位が水の還元分解電位に比べて卑であるため(標準電極電位が負であるため)、これらの金属種を水溶液から電気めっきすることは困難であった。   On the other hand, by using water as a plating solution solvent, the types of metal elements that can be electrochemically deposited have been limited. Metal elements such as aluminum (Al), titanium (Ti), and magnesium (Mg), which are expected as functional metal thin films, have a large affinity for oxygen and their redox potential is lower than that of water. Therefore (because the standard electrode potential is negative), it was difficult to electroplate these metal species from an aqueous solution.

酸化還元電位が卑な金属(卑金属)やこれを含む合金膜を電気めっきすることを目的として、電気分解しない安定な電位領域(電位窓)が水に比べて広い有機溶媒や溶融塩等を用いる電気めっき(いわゆる非水系電気めっき)が研究されてきた。例えば、アルミニウムめっきでは、有機溶媒系のめっき液として、塩化アルミニウム(AlCl3)と水素化アルミニウムリチウム(LiAlH4)とを、またはAlCl3と水素化リチウム(LiH)とをエーテル(例えば、ジエチルエーテルやテトラヒドロフラン)に溶解したもの等が知られている。しかしながら、これらのめっき液は、発火性や大きい引火性を有するため、取り扱いに厳重な注意が必要という問題があった。For the purpose of electroplating a base metal with a redox potential (base metal) or an alloy film containing the same, an organic solvent, a molten salt, or the like, which has a stable potential region (potential window) that does not undergo electrolysis, is wider than water. Electroplating (so-called non-aqueous electroplating) has been studied. For example, in aluminum plating, as an organic solvent-based plating solution, aluminum chloride (AlCl 3 ) and lithium aluminum hydride (LiAlH 4 ), or AlCl 3 and lithium hydride (LiH) are ether (for example, diethyl ether). And those dissolved in tetrahydrofuran) are known. However, since these plating solutions have ignitability and high flammability, there is a problem that strict care is required for handling.

そのため、安全性の高い溶媒(例えば、高い化学的安定性、不燃性、小さい蒸気圧などの特徴を有する溶媒)として、室温レベルで液体として存在する溶融塩(いわゆるイオン液体)を用いた電気めっきが研究されている。例えば、特許文献1(特開平5-51785)には、アルミニウムハロゲン化物(A)と、モノアルキルピリジニウムハロゲン化物、ジアルキルピリジニウムハロゲン化物、1-アルキルイミダゾリウムハロゲン化物、1,3-ジアルキルイミダゾリウムハロゲン化物からなる群から選ばれる少なくとも1種の化合物(B)とを「A:B=1:1〜3:1」のモル比で混合溶融してなるめっき浴に、ポリスチレンまたはポリメチルスチレンを0.1〜50 g/L含有させた電気アルミニウムめっき浴が開示されている。特許文献1によると、爆発や発火の危険がなく、平滑で緻密な光沢表面を呈するアルミニウム皮膜を常温または低温で作業性良く形成することができるとされている。   Therefore, electroplating using a molten salt (so-called ionic liquid) that exists as a liquid at room temperature as a highly safe solvent (for example, a solvent having characteristics such as high chemical stability, nonflammability, and low vapor pressure). Has been studied. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 5-51785) discloses an aluminum halide (A), a monoalkylpyridinium halide, a dialkylpyridinium halide, a 1-alkylimidazolium halide, and a 1,3-dialkylimidazolium halogen. In a plating bath obtained by mixing and melting at least one compound (B) selected from the group consisting of chemical compounds in a molar ratio of “A: B = 1: 1 to 3: 1”, 0.1% of polystyrene or polymethylstyrene is added. An electroaluminum plating bath containing ˜50 g / L is disclosed. According to Patent Document 1, it is said that there is no danger of explosion or ignition, and an aluminum film exhibiting a smooth and dense glossy surface can be formed with good workability at normal or low temperatures.

また、特許文献2(特開平1-132791)には、塩化アルミニウムとブチルピリジニウムクロリドとの溶融塩めっき液またはこれに有機溶媒を添加しためっき液と陽極とを収容するめっき槽を上部が開閉自在な密閉型にするとともに、めっき液の貯蔵槽をも密閉型にして、両槽に不活性導入口を設け、また、両槽を循環管で接続し、めっき槽内部にバレルをアルミニウム軸の陰極で軸架した電気アルミニウムめっき装置が開示されている。特許文献2によると、当該めっき装置は、めっき槽と貯蔵槽とを密閉型にし、かつ、両槽を循環管で接続して、めっき液を全量貯蔵槽の方へ移送できるようになっているので、めっき液が酸化されることがないとされている。   Further, in Patent Document 2 (Japanese Patent Laid-Open No. 1-132791), the upper part of a plating tank containing a molten salt plating solution of aluminum chloride and butylpyridinium chloride or a plating solution obtained by adding an organic solvent to this and an anode can be opened and closed freely. In addition, the plating solution storage tanks are also sealed, both tanks are provided with inert inlets, both tanks are connected by a circulation pipe, and the barrel is a cathode of an aluminum shaft inside the plating tank. An electro-aluminum plating apparatus pivoted on is disclosed. According to Patent Document 2, the plating apparatus is configured such that the plating tank and the storage tank are hermetically sealed, and both tanks are connected by a circulation pipe, so that the plating solution can be transferred to the entire storage tank. Therefore, the plating solution is not oxidized.

また、非特許文献1には、ニッケル(Ni)、コバルト(Co)およびそれらのアルミニウム合金の結晶電析に関する研究が報告されている。非特許文献1によると、水性電解質に比して広い電気化学窓を有するイオン性電解質(室温溶融塩やイオン液体)から、Ni、CoおよびそれらのAl合金のナノスケールの電気めっきが可能であることが示されている。   Non-Patent Document 1 reports a study on crystal electrodeposition of nickel (Ni), cobalt (Co), and aluminum alloys thereof. According to Non-Patent Document 1, nanoscale electroplating of Ni, Co, and their Al alloys is possible from ionic electrolytes (room temperature molten salts and ionic liquids) having a wider electrochemical window than aqueous electrolytes. It has been shown.

特開平5−51785号公報Japanese Patent Laid-Open No. 5-51785 特開平1−132791号公報JP-A-1-132791

W. Freyland, C.A. Zell, S.Zein El Abedin, F. Endres: ”Nanoscale electrodeposition of metals and semiconductors from ionic liquids”, Electrochimica Acta 48 (2003) 3053-3061.W. Freyland, C.A.Zell, S. Zein El Abedin, F. Endres: “Nanoscale electrodeposition of metals and semiconductors from ionic liquids”, Electrochimica Acta 48 (2003) 3053-3061.

前述したように、非水系電気めっき液は、一般的に化学的安定性が低いため大気中の水分や酸素に触れると、めっき液が酸化・分解され易く、電流効率が低下したり、めっき皮膜の仕上がりが悪化したりするという問題があった。特に、塩化アルミニウムを使用するめっき液では、塩化アルミニウム自体が水(例えば、大気中の水分)と化学反応して塩化水素を発生するため、電気めっきの安定性の観点のみならず作業安全性の観点からも、当該めっき液を実質的に大気に晒すことが出来ないという取り扱い上の困難さがある。   As described above, non-aqueous electroplating solutions are generally low in chemical stability, so if they come into contact with moisture or oxygen in the atmosphere, the plating solution tends to be oxidized and decomposed, resulting in decreased current efficiency or There was a problem that the finish of the deteriorated. In particular, in a plating solution using aluminum chloride, aluminum chloride itself reacts with water (for example, moisture in the atmosphere) to generate hydrogen chloride, so that not only the stability of electroplating but also work safety is ensured. From the viewpoint, there is a difficulty in handling that the plating solution cannot be substantially exposed to the atmosphere.

特許文献1に記載のめっき浴は、酸素や水分に触れても安全とされているが、めっき浴の安定性維持の観点およびめっき性状の観点から、乾燥無酸素雰囲気中(乾燥窒素やアルゴン中)で用いることが望ましいとされている。すなわち、めっき液を大気に晒さないようにすることが望ましい点においては、従来からの取り扱い上の手間は存続していると言える。   Although the plating bath described in Patent Document 1 is safe even if it comes into contact with oxygen and moisture, it is in a dry oxygen-free atmosphere (in dry nitrogen or argon) from the viewpoint of maintaining the stability of the plating bath and the plating properties. ). That is, it can be said that the conventional handling has been continued in that it is desirable not to expose the plating solution to the atmosphere.

また、特許文献2に記載の電気アルミニウムめっき装置は、電気めっきを行うめっき槽が、乾燥窒素やアルゴン等によって不活性雰囲気にされた密閉構造となるため、被めっき体の出し入れ作業に加えて、わずかな電極の位置調整作業などにおいても、全てのめっき液を貯蔵槽に移送してからめっき槽を解放するという操作が必須となり、めっき装置の操業性が悪いという問題があった。   In addition, the electroaluminum plating apparatus described in Patent Document 2 has a sealed structure in which an electroplating tank is made an inert atmosphere by dry nitrogen, argon, or the like. Even in a slight electrode position adjustment operation, an operation of transferring all the plating solution to the storage tank and then releasing the plating tank is essential, and there is a problem that the operability of the plating apparatus is poor.

なお、非特許文献1は、イオン液体からの結晶電析のメカニズムを考察した学術論文であり、電気めっき液の取り扱い性、アルミニウム合金の電気めっき方法、および電気めっき装置に関して特段議論するものではない。   Non-Patent Document 1 is an academic paper that considers the mechanism of crystal electrodeposition from an ionic liquid, and does not specifically discuss the handling of the electroplating solution, the electroplating method of the aluminum alloy, and the electroplating apparatus. .

このような背景から、酸化還元電位が卑な金属(卑金属)やこれを含む合金膜の電気めっきに関して、高い安全性と高い作業性とめっき皮膜の健全性とを兼ね備えた電気めっき方法および電気めっき装置が強く望まれていた。したがって、本発明の目的は、大気雰囲気下(大気に解放された雰囲気中)においても、安全に、高効率にかつ健全に卑金属および卑金属を含む合金を電気めっきすることが可能な非水系電気めっき方法、および該方法を可能とし操業性の高い非水系電気めっき装置を提供することにある。   Against this backdrop, electroplating methods and electroplating that combine high safety, high workability, and soundness of the plating film for the electroplating of metals with a low redox potential (base metals) and alloy films containing them. The device was highly desired. Accordingly, an object of the present invention is to provide a non-aqueous electroplating capable of safely and efficiently electroplating a base metal and an alloy containing the base metal even in an air atmosphere (in an atmosphere released to the air). It is an object of the present invention to provide a method and a non-aqueous electroplating apparatus that enables the method and has high operability.

(I)本発明の一つの態様によると、非水系めっき液を用いて被めっき体に電気めっきする方法であって、前記非水系めっき液は、めっきする金属のハロゲン化物(金属ハロゲン化物)と、前記金属ハロゲン化物に対してイオン対をなす有機化合物とを含み、前記非水系めっき液と相分離しかつ前記非水系めっき液よりも比重が小さい疎水性液体を更に用い、前記疎水性液体により前記非水系めっき液の上面が液体封止されている非水系電気めっき方法を提供する。   (I) According to one aspect of the present invention, there is provided a method of electroplating an object to be plated using a non-aqueous plating solution, wherein the non-aqueous plating solution is a metal halide (metal halide) to be plated. An organic compound that forms an ion pair with the metal halide, and further uses a hydrophobic liquid that is phase-separated from the non-aqueous plating solution and has a specific gravity smaller than that of the non-aqueous plating solution. Provided is a non-aqueous electroplating method in which the upper surface of the non-aqueous plating solution is liquid-sealed.

上記の本発明に係る非水系電気めっき方法(I)において、次のような改良や変更を加えることができる。
(i)前記被めっき体は、前記非水系めっき液を液体封止する前記疎水性液体の層を通過して前記非水系めっき液に浸漬されて電気めっきが施され、その後、前記疎水性液体の層を通過して取り出される。
(ii)前記疎水性液体は、流動パラフィン、およびシリコーンオイルのうち少なくとも一つからなる。
(iii)前記有機化合物は、ジアルキルイミダゾリウム塩、ピリジニウム塩、脂肪族ホスホニウム塩、および4級アンモニウム塩のうち少なくとも一つからなる。
(iv)前記非水系めっき液は、前記金属ハロゲン化物のモル濃度が前記有機化合物のモル濃度の1倍以上3倍以下である。
(v)前記金属ハロゲン化物は、少なくともハロゲン化アルミニウムを含有する。
(vi)前記金属ハロゲン化物は、2種以上の金属ハロゲン化物からなる。
In the non-aqueous electroplating method (I) according to the present invention, the following improvements and changes can be made.
(I) The object to be plated passes through the hydrophobic liquid layer for liquid-sealing the non-aqueous plating solution and is immersed in the non-aqueous plating solution to be electroplated, and then the hydrophobic liquid Is taken out through the layer.
(Ii) The hydrophobic liquid comprises at least one of liquid paraffin and silicone oil.
(Iii) The organic compound comprises at least one of a dialkylimidazolium salt, a pyridinium salt, an aliphatic phosphonium salt, and a quaternary ammonium salt.
(Iv) In the non-aqueous plating solution, the molar concentration of the metal halide is 1 to 3 times the molar concentration of the organic compound.
(V) The metal halide contains at least an aluminum halide.
(Vi) The metal halide is composed of two or more metal halides.

(II)本発明の他の態様によると、被めっき体に電気めっきを施すめっき装置であって、前記電気めっきが、上記の本発明に係る非水系電気めっき方法によって行われる非水系電気めっき装置を提供する。   (II) According to another aspect of the present invention, there is provided a plating apparatus for performing electroplating on an object to be plated, wherein the electroplating is performed by the nonaqueous electroplating method according to the present invention. I will provide a.

(III)本発明の更に他の態様によると、被めっき体に電気めっきを施すめっき装置であって、
前記被めっき体を挿抜して電気めっきを施すために上面が解放されためっき槽と、
めっきする金属のハロゲン化物(金属ハロゲン化物)と前記金属ハロゲン化物に対してイオン対をなす有機化合物とを含む非水系めっき液を貯蔵するためのめっき液貯蔵タンクと、
前記非水系めっき液よりも比重が小さくかつ前記非水系めっき液と相分離する疎水性液体を貯蔵するための疎水性液体貯蔵タンクと、
前記めっき液貯蔵タンクと前記めっき槽とを接続し前記非水系めっき液を循環させるためのめっき液循環パイプおよびめっき液循環ポンプと、
前記疎水性液体貯蔵タンクと前記めっき槽とを接続し前記疎水性液体を循環させるための疎水性液体循環パイプおよび疎水性液体循環ポンプとを具備する非水系電気めっき装置を提供する。
(III) According to still another aspect of the present invention, a plating apparatus for performing electroplating on an object to be plated,
A plating tank whose upper surface is released in order to perform electroplating by inserting and removing the object to be plated;
A plating solution storage tank for storing a non-aqueous plating solution containing a metal halide to be plated (metal halide) and an organic compound forming an ion pair with the metal halide;
A hydrophobic liquid storage tank for storing a hydrophobic liquid having a specific gravity smaller than that of the non-aqueous plating solution and phase-separated from the non-aqueous plating solution;
A plating solution circulation pipe and a plating solution circulation pump for connecting the plating solution storage tank and the plating tank and circulating the non-aqueous plating solution;
Provided is a non-aqueous electroplating apparatus comprising a hydrophobic liquid circulation pipe and a hydrophobic liquid circulation pump for connecting the hydrophobic liquid storage tank and the plating tank and circulating the hydrophobic liquid.

上記の本発明に係る非水系電気めっき装置(III)において、次のような改良や変更を加えることができる。
(vii)前記めっき槽で前記非水系めっき液に接触する箇所に前記非水系めっき液の温度を制御するための第1の液温制御機構と、前記めっき槽で前記疎水性液体に接触する箇所に前記疎水性液体の温度を制御するための第2の液温制御機構とを更に具備する。
(viii)前記めっき液貯蔵タンクに前記非水系めっき液の温度を制御するための第3の液温制御機構と、前記疎水性液体貯蔵タンクに前記疎水性液体の温度を制御するための第4の液温制御機構とを更に具備する。
In the non-aqueous electroplating apparatus (III) according to the present invention, the following improvements and changes can be added.
(Vii) a first liquid temperature control mechanism for controlling the temperature of the non-aqueous plating solution at a position in contact with the non-aqueous plating solution in the plating tank, and a position in contact with the hydrophobic liquid in the plating tank And a second liquid temperature control mechanism for controlling the temperature of the hydrophobic liquid.
(Viii) a third liquid temperature control mechanism for controlling the temperature of the non-aqueous plating solution in the plating solution storage tank, and a fourth for controlling the temperature of the hydrophobic liquid in the hydrophobic liquid storage tank. And a liquid temperature control mechanism.

本発明によれば、大気雰囲気下(大気に解放された雰囲気中)においても、安全に、高効率にかつ健全に卑金属および卑金属を含む合金を電気めっきすることが可能な非水系電気めっき方法を提供することができる。また、当該めっき方法を実施するための非水系電気めっき装置を提供することができる。   According to the present invention, there is provided a non-aqueous electroplating method capable of safely and efficiently electroplating a base metal and an alloy containing the base metal even in an air atmosphere (in an atmosphere released to the air). Can be provided. Moreover, the non-aqueous electroplating apparatus for implementing the said plating method can be provided.

本発明に係る非水系電気めっき方法の一例を示す模式図である。It is a schematic diagram which shows an example of the non-aqueous electroplating method which concerns on this invention. 本発明に係る非水系電気めっき方法の他の一例を示す模式図である。It is a schematic diagram which shows another example of the non-aqueous electroplating method which concerns on this invention. 本発明に係る非水系電気めっき装置の一例を示す模式図である。It is a schematic diagram which shows an example of the non-aqueous electroplating apparatus which concerns on this invention.

以下、図面等を参照しながら、本発明の実施形態について説明する。ただし、本発明はここで取り上げた実施形態に限定されるものではなく、発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments taken up here, and can be appropriately combined and improved without departing from the technical idea of the present invention.

(非水系電気めっき方法)
図1は、本発明に係る非水系電気めっき方法の一例を示す模式図である。図1に示したように、本発明の非水系電気めっきは、非水系めっき液101と、該非水系めっき液101と相分離しかつ非水系めっき液101よりも比重が小さい疎水性液体102とを用い、疎水性液体102が非水系めっき液101の上面を液体封止した状態で行われる。非水系めっき液101は、疎水性液体102により液体封止されることで大気と遮断される。これにより、非水系めっき液101への大気中水分の侵入を防止するとともに、酸素の侵入も抑制可能となり、上面が大気解放されためっき槽103を利用して(すなわち、大気雰囲気下において)非水系めっきが実施可能となる。
(Non-aqueous electroplating method)
FIG. 1 is a schematic view showing an example of a non-aqueous electroplating method according to the present invention. As shown in FIG. 1, the non-aqueous electroplating of the present invention comprises a non-aqueous plating solution 101 and a hydrophobic liquid 102 that is phase-separated from the non-aqueous plating solution 101 and has a specific gravity smaller than that of the non-aqueous plating solution 101. The hydrophobic liquid 102 is used in a state where the upper surface of the non-aqueous plating solution 101 is liquid-sealed. The non-aqueous plating solution 101 is shielded from the atmosphere by being sealed with a hydrophobic liquid 102. As a result, intrusion of moisture in the atmosphere into the non-aqueous plating solution 101 can be prevented, and invasion of oxygen can also be suppressed, and the non-aqueous plating solution 103 is utilized by using the plating tank 103 whose upper surface is open to the atmosphere (that is, in an atmospheric atmosphere). Water-based plating can be performed.

被めっき体104および対極105は、非水系めっき液101中に全体が浸漬・配置され、リード線106を介して電源107に接続されている。通電することにより、被めっき体104は全体がめっき膜によって被覆される。   The object to be plated 104 and the counter electrode 105 are entirely immersed and arranged in a non-aqueous plating solution 101 and connected to a power source 107 via a lead wire 106. By energizing, the object to be plated 104 is entirely covered with a plating film.

対極105には、不溶性電極(例えば、白金、チタン-白金など)を用いてもよいし、めっきしようとする金属からなる可溶解性電極を用いてもよい。可溶解性電極を用いると、めっきで消費される金属イオンが自動的に補給され、めっき液中の金属イオン濃度を一定の範囲に保つことができる。特に、連続的にめっきする場合には、通電量に応じて金属イオンが自動補給されるため、可溶性電極を用いることが好ましい。   As the counter electrode 105, an insoluble electrode (for example, platinum, titanium-platinum, etc.) may be used, or a soluble electrode made of a metal to be plated may be used. When a dissolvable electrode is used, metal ions consumed by plating are automatically replenished, and the metal ion concentration in the plating solution can be maintained within a certain range. In particular, in the case of continuous plating, it is preferable to use a soluble electrode because metal ions are automatically replenished in accordance with the amount of energization.

被めっき体104を非水系めっき液101中に配置する際、被めっき体104は、疎水性液体102の層を通過して非水系めっき液101に浸漬される。そのため、水性のめっき前処理液や該めっき前処理液を洗浄するための純水が被めっき体104表面に残存している場合でも、疎水性液体102の層を通過する際にそれらの水分が疎水性液体102により排除される作用効果もある。   When the object to be plated 104 is disposed in the non-aqueous plating solution 101, the object to be plated 104 passes through the layer of the hydrophobic liquid 102 and is immersed in the non-aqueous plating solution 101. For this reason, even when an aqueous plating pretreatment liquid or pure water for washing the plating pretreatment liquid remains on the surface of the object to be plated 104, the water content thereof passes through the hydrophobic liquid 102 layer. There is also an effect that is eliminated by the hydrophobic liquid 102.

非水系めっき液101は、めっきする金属のハロゲン化物(金属ハロゲン化物)と、該金属ハロゲン化物とイオン対をなす有機化合物とを含む。本発明で用いる金属ハロゲン化物としては、卑金属(標準電極電位が負の金属、例えば、錫、ニッケル、コバルト、クロム、亜鉛、アルミニウムなど)の塩化物や臭化物を好適に用いることができる。使用する金属ハロゲン化物は無水塩が好ましい。なお、本発明は、卑金属の電気めっきに限定されるものではなく、卑金属を含む合金の電気めっきはもちろんのこと、貴金属(標準電極電位が正の金属、例えば、銅、金など)の電気めっきに利用してもよい。また、金属ハロゲン化物は、2種以上の異なる金属種のハロゲン化物を混合して用いてもよい。   The non-aqueous plating solution 101 includes a metal halide to be plated (metal halide) and an organic compound that forms an ion pair with the metal halide. As the metal halide used in the present invention, a chloride or bromide of a base metal (a metal having a negative standard electrode potential, such as tin, nickel, cobalt, chromium, zinc, or aluminum) can be suitably used. The metal halide used is preferably an anhydrous salt. Note that the present invention is not limited to base metal electroplating, not to mention electroplating of alloys containing base metals, but also to electroplating of noble metals (metals having a positive standard electrode potential, such as copper and gold). You may use it. The metal halide may be a mixture of two or more different metal halides.

本発明で用いる有機化合物(上記金属ハロゲン化物とイオン対をなす有機化合物)としては、ジアルキルイミダゾリウム塩、ピリジニウム塩、脂肪族ホスホニウム塩、および4級アンモニウム塩のうち少なくとも一つを好適に用いることができる。より具体的には、ジアルキルイミダゾリウム塩としては、例えば、1-エチル-3-メチルイミダゾリウムクロリド、1-エチル-3-メチルイミダゾリウムブロミド、1-エチル-3-メチルイミダゾリウムヨージド、1-ブチル-3-メチルイミダゾリウムクロリド、1-ブチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムヨージドなどが挙げられる。ピリジニウム塩としては、例えば、メチルピリジニウムクロリド、メチルピリジニウムブロミド、メチルピリジニウムヨージド、エチルピリジニウムクロリド、エチルピリジニウムブロミド、エチルピリジニウムヨージド、ブチルピリジニウムクロリド、ブチルピリジニウムブロミド、ブチルピリジニウムヨージドなどが挙げられる。脂肪族ホスホニウム塩としては、エチルトリブチルホスホニウムクロリド、エチルトリブチルホスホニウムブロミド、エチルトリブチルホスホニウムヨージド、メチルトリブチルホスホニウムクロリド、メチルトリブチルホスホニウムブロミド、メチルトリブチルホスホニウムヨージドなどが挙げられる。4級アンモニウム塩としては、テトラエチルアンモニウムブロミド、トリメチルエチルアンモニウムクロリド、テトラブチルアンモニウムクロリドなどが挙げられる。   As the organic compound (an organic compound that forms an ion pair with the metal halide) used in the present invention, at least one of a dialkylimidazolium salt, a pyridinium salt, an aliphatic phosphonium salt, and a quaternary ammonium salt is preferably used. Can do. More specifically, examples of the dialkylimidazolium salt include 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium iodide, 1 -Butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium iodide and the like. Examples of the pyridinium salt include methylpyridinium chloride, methylpyridinium bromide, methylpyridinium iodide, ethylpyridinium chloride, ethylpyridinium bromide, ethylpyridinium iodide, butylpyridinium chloride, butylpyridinium bromide, and butylpyridinium iodide. Examples of the aliphatic phosphonium salt include ethyl tributyl phosphonium chloride, ethyl tributyl phosphonium bromide, ethyl tributyl phosphonium iodide, methyl tributyl phosphonium chloride, methyl tributyl phosphonium bromide, methyl tributyl phosphonium iodide and the like. Examples of the quaternary ammonium salt include tetraethylammonium bromide, trimethylethylammonium chloride, and tetrabutylammonium chloride.

上述の有機化合物と金属ハロゲン化物とは、「1:1 ≦ 有機化合物:金属ハロゲン化物 ≦ 1:3」のモル比で混合溶融していることが好ましく、「1:1.5 ≦ 有機化合物:金属ハロゲン化物 ≦ 1:3」のモル比がより好ましい。金属ハロゲン化物のモル濃度が有機化合物のモル濃度以下になると、めっき析出速度が著しく低下し、めっきの析出均一性が劣化する。一方、金属ハロゲン化物のモル濃度が有機化合物のモル濃度の3倍より大きくなると、非水系めっき液101の粘度が増加し、めっきの電流効率が低下する。   The organic compound and the metal halide are preferably mixed and melted at a molar ratio of “1: 1 ≦ organic compound: metal halide ≦ 1: 3”, and “1: 1.5 ≦ organic compound: metal halide”. More preferred is a molar ratio of "Chemicals ≤ 1: 3". When the molar concentration of the metal halide is less than or equal to the molar concentration of the organic compound, the plating deposition rate is remarkably reduced, and the plating deposition uniformity is deteriorated. On the other hand, when the molar concentration of the metal halide is higher than three times the molar concentration of the organic compound, the viscosity of the non-aqueous plating solution 101 increases and the current efficiency of plating decreases.

金属ハロゲン化物として2種以上の異なる金属種のハロゲン化物を混合して用いた場合(すなわち、合金めっきの場合)、「1:1 ≦ 有機化合物:金属ハロゲン化物全体 ≦ 1:3」のモル比で混合溶融させることが好ましい。混合する金属種の比率に関しては、厳密には金属種ごとの析出効率(析出比率)に依存するが、めっきしようとする合金の組成比に概ね合致する。   When a mixture of two or more different metal halides is used as the metal halide (ie, in the case of alloy plating), the molar ratio of “1: 1 ≦ organic compound: whole metal halide ≦ 1: 3” It is preferable to mix and melt with. Strictly speaking, the ratio of the metal species to be mixed depends on the deposition efficiency (precipitation ratio) for each metal species, but generally matches the composition ratio of the alloy to be plated.

本発明で用いる疎水性液体102としては、非水系めっき液101と相分離し(言い換えると、非水系めっき液101との相溶性が低く)、かつ非水系めっき液101よりも低比重であることが好ましい。特に、比重が1よりも小さいことがより好ましく、例えば、流動パラフィンやシリコーンオイルを好適に用いることができる。   The hydrophobic liquid 102 used in the present invention is phase-separated from the non-aqueous plating solution 101 (in other words, has low compatibility with the non-aqueous plating solution 101) and has a lower specific gravity than the non-aqueous plating solution 101. Is preferred. In particular, the specific gravity is more preferably less than 1, for example, liquid paraffin or silicone oil can be suitably used.

なお、疎水性液体102は、常温(20〜25℃)で液体であり、水と相分離する液体である。粘性については、常温で攪拌できる程度の粘性であれば差し支えないが、低粘度である方が好ましい。疎水性液体102の平均分子量は、上記の条件を満たす限り特に限定されないが、例えば、200以上1000以下が好ましい。   The hydrophobic liquid 102 is a liquid that is liquid at room temperature (20 to 25 ° C.) and phase-separated from water. The viscosity is not particularly limited as long as it can be stirred at room temperature, but a lower viscosity is preferable. The average molecular weight of the hydrophobic liquid 102 is not particularly limited as long as the above conditions are satisfied. For example, the average molecular weight is preferably 200 or more and 1000 or less.

めっき処理温度は、作業性を勘案すると20〜80℃が好ましく、25〜60℃がより好ましい。通電条件としては、直流もしくはパルス電流により、電流密度0.01 A/dm2以上10 A/dm2以下で行うことが好ましい。それにより、電流効率が高くかつ均一なめっき膜を形成することができる。電流密度が高すぎると、化合物の分解や、めっき膜の不均一化や、電流効率の低下が起こるため好ましくない。なお、電流効率としては、生産効率の観点から、30%以上が好ましく、80%以上がより好ましい。The plating temperature is preferably 20 to 80 ° C., more preferably 25 to 60 ° C. in consideration of workability. The energization condition is preferably performed at a current density of 0.01 A / dm 2 or more and 10 A / dm 2 or less by direct current or pulse current. Thereby, a uniform plating film with high current efficiency can be formed. If the current density is too high, the decomposition of the compound, the unevenness of the plating film, and the decrease in current efficiency occur, which is not preferable. The current efficiency is preferably 30% or more and more preferably 80% or more from the viewpoint of production efficiency.

図2は、本発明に係る非水系電気めっき方法の他の一例を示す模式図である。図2に示したように、本実施形態の非水系電気めっき方法は、被めっき体204および対極205それぞれの一部分が非水系めっき液101に浸漬・配置されている点で、前述の実施形態(図1参照)と異なっている。通電することにより、被めっき体204には、非水系めっき液101に浸漬した部分に選択的にめっき膜が析出する。本実施形態のめっき方法を用いることで、絶縁テープ等によるマスキングを行うことなく、簡便に被めっき体204を部分的・選択的にめっき膜で被覆することが可能になる。他の作用効果は、前述の実施形態と同様である。   FIG. 2 is a schematic view showing another example of the non-aqueous electroplating method according to the present invention. As shown in FIG. 2, the non-aqueous electroplating method of the present embodiment is the same as that of the above-described embodiment (in that a part of each of the workpiece 204 and the counter electrode 205 is immersed and arranged in the non-aqueous plating solution 101. (See FIG. 1). When energized, a plating film is selectively deposited on the portion 204 to be plated in the portion immersed in the non-aqueous plating solution 101. By using the plating method of this embodiment, it becomes possible to easily and partially coat the object to be plated 204 with a plating film without masking with an insulating tape or the like. Other functions and effects are the same as those of the above-described embodiment.

(非水系電気めっき装置)
図3は、本発明に係る非水系電気めっき装置の一例を示す概略模式図である。図3に示したように、本発明の非水系電気めっき装置300は、上面が大気開放されためっき槽303を具備し、該めっき槽303には非水系めっき液101と疎水性液体102とが収容され、非水系めっき液101は疎水性液体102により液体封止されることで大気と遮断されている。
(Non-aqueous electroplating equipment)
FIG. 3 is a schematic diagram showing an example of a non-aqueous electroplating apparatus according to the present invention. As shown in FIG. 3, the non-aqueous electroplating apparatus 300 of the present invention includes a plating tank 303 whose upper surface is open to the atmosphere, and the plating tank 303 contains a non-aqueous plating solution 101 and a hydrophobic liquid 102. The non-aqueous plating solution 101 is contained and is sealed from the atmosphere by being sealed with a hydrophobic liquid 102.

非水系電気めっき装置300は、非水系めっき液101を貯蔵するためのめっき液貯蔵タンク306と、疎水性液体102を貯蔵するための疎水性液体貯蔵タンク307と、めっき液貯蔵タンク306とめっき槽303とを接続し非水系めっき液101を循環させるためのめっき液循環パイプ308およびめっき液循環ポンプ309と、疎水性液体貯蔵タンク307とめっき槽303とを接続し疎水性液体102を循環させるための疎水性液体循環パイプ310および疎水性液体循環ポンプ311とを更に具備する。めっき液循環パイプ308の往路および復路は、めっき槽303の底部と接続されている。疎水性液体循環パイプ310の復路はめっき槽303の底部と接続されているが、疎水性液体循環パイプ310の往路はめっき槽303の上部(非水系めっき液101と疎水性液体102とをめっき槽303に収容したときに、疎水性液体102の層が形成される領域)と接続されている。   The non-aqueous electroplating apparatus 300 includes a plating solution storage tank 306 for storing the non-aqueous plating solution 101, a hydrophobic liquid storage tank 307 for storing the hydrophobic liquid 102, a plating solution storage tank 306, and a plating tank. In order to circulate the hydrophobic liquid 102 by connecting the plating liquid circulation pipe 308 and the plating liquid circulation pump 309 for connecting the non-aqueous plating liquid 101 with the 303 and the hydrophobic liquid storage tank 307 and the plating tank 303. And a hydrophobic liquid circulation pipe 310 and a hydrophobic liquid circulation pump 311. The forward path and the return path of the plating solution circulation pipe 308 are connected to the bottom of the plating tank 303. The return path of the hydrophobic liquid circulation pipe 310 is connected to the bottom of the plating tank 303, but the forward path of the hydrophobic liquid circulation pipe 310 is the upper part of the plating tank 303 (the nonaqueous plating solution 101 and the hydrophobic liquid 102 are plated with the plating tank). When it is accommodated in 303, it is connected to a region where a layer of the hydrophobic liquid 102 is formed.

めっき槽303に非水系めっき液101を収容する際は、先に、めっき槽303の上部に接続された疎水性液体循環パイプ310の往路から疎水性液体102を供給し、その後、めっき槽303の底部に接続されためっき液循環パイプ308の往路から非水系めっき液101を供給する。これにより、非水系めっき液101を大気に晒すことなくめっき槽303に導入することができる。めっき槽303から非水系めっき液101を排出する際は、先に、めっき槽303の底部に接続されためっき液循環パイプ308の復路から非水系めっき液101を排出し、その後、めっき槽303の底部に接続された疎水性液体循環パイプ310の復路から疎水性液体102を排出する。これにより、非水系めっき液101の導入と同様に、大気に晒すことなくめっき槽303から非水系めっき液101を排出することができる。また、めっき液循環パイプ308およびめっき液循環ポンプ309により、非水系めっき液101の供給と排出とを同時に行うことで、非水系めっき液101の循環が可能となる。   When the non-aqueous plating solution 101 is stored in the plating tank 303, the hydrophobic liquid 102 is first supplied from the forward path of the hydrophobic liquid circulation pipe 310 connected to the upper part of the plating tank 303, and then the plating tank 303 A non-aqueous plating solution 101 is supplied from an outward path of a plating solution circulation pipe 308 connected to the bottom. Thereby, the non-aqueous plating solution 101 can be introduced into the plating tank 303 without being exposed to the atmosphere. When discharging the non-aqueous plating solution 101 from the plating tank 303, first discharge the non-aqueous plating solution 101 from the return path of the plating solution circulation pipe 308 connected to the bottom of the plating tank 303, and then the plating tank 303 The hydrophobic liquid 102 is discharged from the return path of the hydrophobic liquid circulation pipe 310 connected to the bottom. Thereby, similarly to the introduction of the non-aqueous plating solution 101, the non-aqueous plating solution 101 can be discharged from the plating tank 303 without being exposed to the atmosphere. Further, the nonaqueous plating solution 101 can be circulated by simultaneously supplying and discharging the nonaqueous plating solution 101 by the plating solution circulation pipe 308 and the plating solution circulation pump 309.

図3においては、被めっき体304として長尺連続体を用いた場合を示している。被めっき体304は、疎水性液体102の層を通過して非水系めっき液101に浸漬されて電気めっきが施され、その後、疎水性液体102の層を通過して取り出される。めっき槽303の開口面上方には通電ロール312が配設され、めっき槽303内の非水系めっき液101が収容される領域にシンクロール313が配設されている。また、めっき槽303内の非水系めっき液101が収容される領域において、被めっき体304と対向するように、対極305が被めっき体303と平行に配設されている。対極305の形状や数に特段の限定はなく、例えば、平行平板であってもよいし、筒状であってもよい。通電ロール312およびシンクロール313に被めっき体304を巻きつけ、被めっき体304の搬送およびめっき時の通電が行われる。   In FIG. 3, the case where a long continuous body is used as the to-be-plated body 304 is shown. The object to be plated 304 passes through the hydrophobic liquid 102 layer and is immersed in the non-aqueous plating solution 101 to be electroplated, and then passes through the hydrophobic liquid 102 layer and is taken out. An energizing roll 312 is disposed above the opening surface of the plating tank 303, and a sink roll 313 is disposed in a region of the plating tank 303 in which the nonaqueous plating solution 101 is accommodated. In addition, a counter electrode 305 is disposed in parallel to the object to be plated 303 so as to face the object to be plated 304 in a region where the nonaqueous plating solution 101 is accommodated in the plating tank 303. The shape and number of the counter electrodes 305 are not particularly limited, and may be, for example, a parallel plate or a cylinder. The plated body 304 is wound around the energizing roll 312 and the sink roll 313, and the plated body 304 is conveyed and energized during plating.

用いる非水系めっき液101の種類により、めっき液温度は適宜制御されることが好ましい。非水系めっき液101の温度を正確にかつ安定して制御するためには、非水系めっき液101と疎水性液体102との液温が同じであることが好ましい。そのため、めっき槽303内の非水系めっき液101が収容される領域(非水系めっき液101に接触する箇所)に、非水系めっき液101の温度を制御するための第1の液温制御機構314が配設され、めっき槽303内の疎水性液体102の層が収容される領域(疎水性液体102に接触する箇所)に、疎水性液体102の温度を制御するための第2の液温制御機構315が配設されることが好ましい。   The plating solution temperature is preferably controlled as appropriate depending on the type of non-aqueous plating solution 101 used. In order to accurately and stably control the temperature of the non-aqueous plating solution 101, the liquid temperatures of the non-aqueous plating solution 101 and the hydrophobic liquid 102 are preferably the same. Therefore, the first liquid temperature control mechanism 314 for controlling the temperature of the non-aqueous plating solution 101 in the region in the plating tank 303 in which the non-aqueous plating solution 101 is accommodated (location that contacts the non-aqueous plating solution 101). Is provided, and a second liquid temperature control for controlling the temperature of the hydrophobic liquid 102 in a region (a portion in contact with the hydrophobic liquid 102) in which the layer of the hydrophobic liquid 102 in the plating tank 303 is accommodated A mechanism 315 is preferably provided.

また、上記と同様の理由により、めっき液貯蔵タンク306に非水系めっき液101の温度を制御するための第3の液温制御機構316が配設され、疎水性液体貯蔵タンク307に疎水性液体102の温度を制御するための第4の液温制御機構317が配設されることが好ましい。両貯蔵タンク内の非水系めっき液101および疎水性液体102の液温をあらかじめ所望の液温に調整しておくことで、めっき槽303に供給した際に、めっき槽303内での液温制御を効率よく行うことができる。   For the same reason as described above, a third liquid temperature control mechanism 316 for controlling the temperature of the non-aqueous plating solution 101 is disposed in the plating solution storage tank 306, and the hydrophobic liquid storage tank 307 has a hydrophobic liquid. A fourth liquid temperature control mechanism 317 for controlling the temperature of 102 is preferably provided. By adjusting the liquid temperature of the non-aqueous plating solution 101 and the hydrophobic liquid 102 in both storage tanks to the desired solution temperature in advance, the liquid temperature control in the plating tank 303 is performed when the solution is supplied to the plating tank 303. Can be performed efficiently.

以下に具体的な実施例を示して、本発明の内容を更に詳細に説明する。ただし、以下の実施例は本発明の内容の具体例を示すものであり、本発明がこれらの実施例に限定されるものではない。また、本発明は、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。   The present invention will be described in more detail with reference to specific examples. However, the following examples show specific examples of the contents of the present invention, and the present invention is not limited to these examples. The present invention can be variously changed and modified by those skilled in the art within the scope of the technical idea disclosed in this specification.

(実施例1)
金属ハロゲン化物として無水塩化アルミニウム(和光純薬工業株式会社製、AlCl3)を用い、有機化合物として1-エチル-3-メチルイミダゾリウムクロリド(関東化学株式会社製、EMIMCl)を用い、「EMIMCl:AlCl3=1:2」のモル比となるように混合して非水系めっき液を得た。非水系めっき液の調合は、アルゴン雰囲気下のグローブボックス内(温度25℃、相対湿度5%)で実施した。用意した非水系めっき液60 mLをガラス製の100 mLビーカーに入れた。
(Example 1)
Anhydrous aluminum chloride (AlCl 3 , manufactured by Wako Pure Chemical Industries, Ltd.) is used as the metal halide, and 1-ethyl-3-methylimidazolium chloride (EMIMCl, manufactured by Kanto Chemical Co., Ltd.) is used as the organic compound. A non-aqueous plating solution was obtained by mixing at a molar ratio of “AlCl 3 = 1: 2”. The non-aqueous plating solution was prepared in a glove box under an argon atmosphere (temperature 25 ° C., relative humidity 5%). The prepared nonaqueous plating solution (60 mL) was placed in a glass 100 mL beaker.

次に、疎水性液体として流動パラフィン(関東化学株式会社製)を用い、40 mLを先の非水系めっき液の入ったビーカーに注ぎ、非水系めっき液を疎水性液体で液体封止した。これを実施例1の評価溶液とした。   Next, liquid paraffin (manufactured by Kanto Chemical Co., Inc.) was used as the hydrophobic liquid, and 40 mL was poured into the beaker containing the previous non-aqueous plating solution, and the non-aqueous plating solution was liquid-sealed with the hydrophobic liquid. This was used as the evaluation solution of Example 1.

大気暴露の影響(空気中水分の影響)を調査するため、温度と相対湿度とを調整した空気(温度25℃、相対湿度60%)を導入した空気雰囲気グローブボックスを用意した。導入する空気の温湿度調整は、純水を入れたガス洗浄瓶に空気を通した後、調湿機(ジーエルサイエンス株式会社製、EFA5-100-A)を用いて行った。実施例1の評価溶液をアルゴン雰囲気グローブボックスから空気雰囲気グローブボックスに移し、温湿度制御した空気(湿潤空気)に所定時間暴露した。   In order to investigate the effect of atmospheric exposure (the effect of moisture in the air), an air atmosphere glove box was introduced that introduced air (temperature 25 ° C, relative humidity 60%) with adjusted temperature and relative humidity. The temperature and humidity of the introduced air were adjusted using a humidity controller (EFA5-100-A, manufactured by GL Sciences Inc.) after passing air through a gas washing bottle containing pure water. The evaluation solution of Example 1 was transferred from an argon atmosphere glove box to an air atmosphere glove box and exposed to temperature-humidity controlled air (humid air) for a predetermined time.

電気めっきは次のように行った。被めっき体として銅箔(純度99.9%、縦×横×厚さ=20 mm×35 mm×0.1 mm)を用い、対極としてアルミニウム板(純度99.9%、縦×横×厚さ=25 mm×35 mm×2 mm)を用いた。リード線をそれぞれ接続した被めっき体と対極とを、30 mmの間隔を置いてビーカー内に対向させるようにして評価溶液内に浸漬した。両リード線を定電流電源に接続し、電気めっきを実施した(電流密度=-1 A/dm2、めっき時間=30分間、めっき液温度=25℃)。電気めっき終了後、めっきした被めっき体をアセトンおよび純水で洗浄し、窒素ガスで乾燥して、測定の供試材とした。Electroplating was performed as follows. Copper foil (purity 99.9%, length x width x thickness = 20 mm x 35 mm x 0.1 mm) is used as the object to be plated, and aluminum plate (purity 99.9%, length x width x thickness = 25 mm x 35) as the counter electrode mm × 2 mm) was used. The object to be plated and the counter electrode to which the lead wires were respectively connected were immersed in the evaluation solution so as to face each other in the beaker with an interval of 30 mm. Both lead wires were connected to a constant current power source, and electroplating was performed (current density = -1 A / dm 2 , plating time = 30 minutes, plating solution temperature = 25 ° C.). After completion of electroplating, the plated object was washed with acetone and pure water, and dried with nitrogen gas to obtain a test material for measurement.

温湿度制御した空気(湿潤空気)に2時間、12時間、24時間暴露した評価溶液を用いて、上記の電気めっきを実施し、それぞれの評価溶液における電流効率を算出した。めっきしたアルミニウムの析出量を実測して求め、これをクーロンメータの電流値を基に算出される析出量と比較し、計算析出量に対する実析出量の割合(百分率)を電流効率として求めた。めっき浴の構成と該めっき浴を用いて行った電気めっきの電流効率の算出結果を後述する表1に示す。   The above electroplating was performed using the evaluation solution exposed to temperature / humidity-controlled air (humid air) for 2, 12, and 24 hours, and the current efficiency in each evaluation solution was calculated. The precipitation amount of the plated aluminum was determined by actual measurement, and this was compared with the precipitation amount calculated based on the current value of the coulomb meter, and the ratio (percentage) of the actual precipitation amount to the calculated precipitation amount was determined as the current efficiency. The structure of the plating bath and the calculation result of the current efficiency of electroplating performed using the plating bath are shown in Table 1 described later.

(比較例1)
疎水性液体を用いないこと以外は上記実施例1と同様にして、比較例1の評価溶液を用意し、各供試材を作製した。めっき浴の構成と電流効率の算出結果とを表1に併記する。
(Comparative Example 1)
Except not using a hydrophobic liquid, it carried out similarly to the said Example 1, the evaluation solution of the comparative example 1 was prepared, and each test material was produced. The composition of the plating bath and the calculation result of the current efficiency are also shown in Table 1.

Figure 0005808866
Figure 0005808866

表1に示したように、非水系めっき液を疎水性液体で液体封止していない比較例1では、2時間の湿潤空気暴露によって電流効率が56%まで低下し、さらに湿潤空気暴露12時間以降では電流効率が0%になった(アルミニウム自体が析出しなくなった)。すなわち、非水系めっき液は、空気中の水分によって著しく劣化することが確認された。また、比較例1では、非水系めっき液の湿潤空気暴露に伴って、塩化水素ガスと考えられる白煙の発生が観察された。   As shown in Table 1, in Comparative Example 1 in which the non-aqueous plating solution was not liquid-sealed with a hydrophobic liquid, the current efficiency was reduced to 56% by exposure to wet air for 2 hours, and further exposure to wet air for 12 hours. After that, the current efficiency became 0% (aluminum itself no longer deposited). That is, it was confirmed that the non-aqueous plating solution was significantly deteriorated by moisture in the air. In Comparative Example 1, generation of white smoke considered to be hydrogen chloride gas was observed with exposure of the non-aqueous plating solution to wet air.

これに対し、本発明に係る実施例1では、流動パラフィンで非水系めっき液を液体封止したことにより、湿潤空気暴露に伴う電流効率の変化がほとんどなく、例えば、24時間の湿潤空気暴露においても電流効率は99%と極めて良好な状態にあった。また、実施例1では、湿潤空気暴露しても白煙の発生は観察されなかった。   On the other hand, in Example 1 according to the present invention, the non-aqueous plating solution was liquid-sealed with liquid paraffin, so that there was almost no change in current efficiency due to exposure to wet air. However, the current efficiency was in a very good state of 99%. In Example 1, generation of white smoke was not observed even when exposed to wet air.

(実施例2)
疎水性液体としてシリコーンオイル(信越化学工業株式会社製、KF-96L-1cs)を用いた以外は、実施例1と同様にして、実施例2の評価溶液を用意し、各供試材を作製した。めっき浴の構成と電流効率の算出結果とを表1に併記する。表1に示したように、実施例2でも、シリコーンオイルで非水系めっき液を液体封止したことにより、湿潤空気暴露に伴う電流効率の変化がほとんどなく、例えば、24時間の湿潤空気暴露においても電流効率は100%と極めて良好な状態にあった。また、湿潤空気暴露中に白煙の発生も観察されなかった。この結果から、疎水性液体としてシリコーンオイルも有効であることが確認された。
(Example 2)
The evaluation solution of Example 2 is prepared in the same manner as in Example 1 except that silicone oil (KF-96L-1cs, manufactured by Shin-Etsu Chemical Co., Ltd.) is used as the hydrophobic liquid. did. The composition of the plating bath and the calculation result of the current efficiency are also shown in Table 1. As shown in Table 1, even in Example 2, since the non-aqueous plating solution was sealed with silicone oil, there was almost no change in current efficiency due to exposure to wet air. However, the current efficiency was very good at 100%. In addition, no white smoke was observed during exposure to wet air. From this result, it was confirmed that silicone oil is also effective as a hydrophobic liquid.

(実施例3)
金属ハロゲン化物として無水塩化アルミニウム(和光純薬工業株式会社製、AlCl3)を用い、有機化合物としてブチルピリジニウムクロリド(関東化学株式会社製、BPCl)を用い、「BPCl:AlCl3=1:1.5」のモル比となるように混合して非水系めっき液を調合した。それ以外は、実施例1と同様にして、実施例3の評価溶液を用意し、各供試材を作製した。めっき浴の構成と電流効率の算出結果とを表1に併記する。
(Example 3)
Anhydrous aluminum chloride (AlCl 3 , manufactured by Wako Pure Chemical Industries, Ltd.) is used as the metal halide, and butylpyridinium chloride (BPCl, manufactured by Kanto Chemical Co., Ltd.) is used as the organic compound. “BPCl: AlCl 3 = 1: 1.5” A non-aqueous plating solution was prepared by mixing so that the molar ratio was. Other than that was carried out similarly to Example 1, and prepared the evaluation solution of Example 3, and produced each test material. The composition of the plating bath and the calculation result of the current efficiency are also shown in Table 1.

(比較例2)
疎水性液体を用いないこと以外は上記実施例3と同様にして、比較例2の評価溶液を用意し、各供試材を作製した。めっき浴の構成と電流効率の算出結果とを表1に併記する。
(Comparative Example 2)
Except not using a hydrophobic liquid, it carried out similarly to the said Example 3, and prepared the evaluation solution of the comparative example 2, and produced each test material. The composition of the plating bath and the calculation result of the current efficiency are also shown in Table 1.

表1に示したように、非水系めっき液を疎水性液体で液体封止していない比較例2は、湿潤空気暴露時間の増加に伴って電流効率が低下する傾向が認められ、2時間の湿潤空気暴露で電流効率が82%まで低下し、12時間の湿潤空気暴露で21%に減少し、さらに24時間の湿潤空気暴露では0%となりアルミニウムの析出が認められなかった。これに対し、実施例3では、湿潤空気暴露に伴う電流効率の変化がほとんどなく、例えば、24時間の湿潤空気暴露においても電流効率は95%と非常に良好な状態を維持することが確認された。   As shown in Table 1, in Comparative Example 2 in which the non-aqueous plating solution was not sealed with a hydrophobic liquid, the current efficiency tended to decrease with increasing wet air exposure time, The current efficiency decreased to 82% when exposed to wet air, decreased to 21% when exposed to wet air for 12 hours, and further decreased to 0% when exposed to wet air for 24 hours. No precipitation of aluminum was observed. On the other hand, in Example 3, there was almost no change in current efficiency due to exposure to wet air, and for example, it was confirmed that the current efficiency was maintained at a very good state of 95% even after exposure to wet air for 24 hours. It was.

(実施例4)
金属ハロゲン化物として無水塩化アルミニウム(和光純薬工業株式会社製、AlCl3)を用い、有機化合物としてテトラブチルアンモニウムクロリド(関東化学株式会社製、TBACl)を用い、「TBACl:AlCl3=1:1.5」のモル比となるように混合して非水系めっき液を調合した。また、電気めっき条件を「電流密度=-0.1 A/dm2、めっき時間=300分間」とした。それら以外は、実施例1と同様にして、実施例4の評価溶液を用意し、各供試材を作製した。めっき浴の構成と電流効率の算出結果とを表1に併記する。
Example 4
Anhydrous aluminum chloride (manufactured by Wako Pure Chemical Industries, Ltd., AlCl 3 ) is used as the metal halide, and tetrabutylammonium chloride (manufactured by Kanto Chemical Co., Inc., TBACl) is used as the organic compound, and “TBACl: AlCl 3 = 1: 1.5 To prepare a non-aqueous plating solution. The electroplating conditions were “current density = −0.1 A / dm 2 , plating time = 300 minutes”. Except for these, the evaluation solution of Example 4 was prepared in the same manner as in Example 1, and each test material was prepared. The composition of the plating bath and the calculation result of the current efficiency are also shown in Table 1.

(比較例3)
疎水性液体を用いないこと以外は上記実施例4と同様にして、比較例3の評価溶液を用意し、各供試材を作製した。めっき浴の構成と電流効率の算出結果とを表1に併記する。
(Comparative Example 3)
Except not using a hydrophobic liquid, it carried out similarly to the said Example 4, and prepared the evaluation solution of the comparative example 3, and produced each test material. The composition of the plating bath and the calculation result of the current efficiency are also shown in Table 1.

表1に示したように、非水系めっき液を疎水性液体で液体封止していない比較例3は、2時間の湿潤空気暴露で電流効率が20%と低く、さらに湿潤空気暴露12時間以降では電流効率が0%となりアルミニウムの析出が認められなかった。一方、実施例4では、実施例1〜3に比して電流効率が低かったが、湿潤空気暴露時間が増加しても電流効率はほとんど変化しなかった。なお、実施例4の電流効率自体が低かった要因としては、非水系めっき液において、AlCl3の溶解量がやや少なくアルミニウム析出に寄与するアルミニウム錯体の量が不足したことが考えられる。また、非水系めっき液の粘度が高めであったため、導電率に影響があった可能性も考えられる。As shown in Table 1, in Comparative Example 3 in which the non-aqueous plating solution was not sealed with a hydrophobic liquid, the current efficiency was as low as 20% when exposed to wet air for 2 hours, and after 12 hours of exposure to wet air. The current efficiency was 0% and no aluminum deposition was observed. On the other hand, in Example 4, the current efficiency was lower than in Examples 1 to 3, but the current efficiency hardly changed even when the wet air exposure time was increased. In addition, it is considered that the reason why the current efficiency itself of Example 4 was low was that the amount of the aluminum complex contributing to aluminum precipitation was insufficient in the non-aqueous plating solution because the dissolution amount of AlCl 3 was somewhat small. Moreover, since the viscosity of the non-aqueous plating solution was high, there is a possibility that the conductivity was affected.

(実施例5)
金属ハロゲン化物として無水塩化アルミニウム(和光純薬工業株式会社製、AlCl3)を用い、有機化合物としてメチルトリブチルホスホニウムクロリド(日本化学工業株式会社製、MTBPCl)を用い、「MTBPCl:AlCl3=1:1.5」のモル比となるように混合して非水系めっき液を調合した。それ以外は、実施例4と同様にして、実施例5の評価溶液を用意し、各供試材を作製した。めっき浴の構成と電流効率の算出結果とを表1に併記する。
(Example 5)
Anhydrous aluminum chloride (manufactured by Wako Pure Chemical Industries, Ltd., AlCl 3 ) is used as the metal halide, and methyltributylphosphonium chloride (manufactured by Nippon Chemical Industry Co., Ltd., MTBPCl) is used as the organic compound, and “MTBPCl: AlCl 3 = 1: A non-aqueous plating solution was prepared by mixing at a molar ratio of 1.5 ". Other than that was carried out similarly to Example 4, and prepared the evaluation solution of Example 5, and produced each test material. The composition of the plating bath and the calculation result of the current efficiency are also shown in Table 1.

(比較例4)
疎水性液体を用いないこと以外は上記実施例5と同様にして、比較例4の評価溶液を用意し、各供試材を作製した。めっき浴の構成と電流効率の算出結果とを表1に併記する。
(Comparative Example 4)
Except not using a hydrophobic liquid, it carried out similarly to the said Example 5, the evaluation solution of the comparative example 4 was prepared, and each test material was produced. The composition of the plating bath and the calculation result of the current efficiency are also shown in Table 1.

表1に示したように、非水系めっき液を疎水性液体で液体封止していない比較例4は、2時間の湿潤空気暴露で電流効率が18%と低く、さらに湿潤空気暴露12時間以降では電流効率が0%となりアルミニウムの析出が認められなかった。一方、実施例5では、湿潤空気暴露時間が増加しても電流効率は変化しなかった。なお、実施例5の電流効率自体が低かった要因としては、実施例4と同様に、非水系めっき液におけるAlCl3の溶解量、溶液粘度、および/または導電率が関係していると考えられる。As shown in Table 1, in Comparative Example 4 in which the non-aqueous plating solution was not sealed with a hydrophobic liquid, the current efficiency was as low as 18% when exposed to humid air for 2 hours, and after 12 hours of exposure to wet air. The current efficiency was 0% and no aluminum deposition was observed. On the other hand, in Example 5, the current efficiency did not change even when the wet air exposure time increased. The reason why the current efficiency itself of Example 5 was low is considered to be related to the amount of AlCl 3 dissolved in the non-aqueous plating solution, the solution viscosity, and / or the conductivity, as in Example 4. .

(実施例6)
金属ハロゲン化物として無水塩化アルミニウム(和光純薬工業株式会社製、AlCl3)と無水塩化ニッケル(関東化学株式会社製、NiCl2)とを用い、有機化合物として1-エチル-3-メチルイミダゾリウムクロリド(関東化学株式会社製、EMIMCl)を用い、「EMIMCl:AlCl3:NiCl2=1:2:0.33」のモル比となるように混合して非水系めっき液を調合した。それ以外は、実施例1と同様に実施して、実施例6の評価溶液を用意し、各供試材を作製した。めっき浴の構成と電流効率の算出結果とを表1に併記する。なお、電流効率の算出は、アルミニウムが単独析出したと仮定して計算した。
(Example 6)
Anhydrous aluminum chloride (Wako Pure Chemical Industries, Ltd., AlCl 3 ) and anhydrous nickel chloride (Kanto Chemical Co., Ltd., NiCl 2 ) are used as the metal halide, and 1-ethyl-3-methylimidazolium chloride is used as the organic compound. (EMITOCl, manufactured by Kanto Chemical Co., Inc.) was used to prepare a non-aqueous plating solution by mixing so that the molar ratio of “EMIMCl: AlCl 3 : NiCl 2 = 1: 2: 0.33” was obtained. Otherwise, the same procedure as in Example 1 was performed to prepare the evaluation solution of Example 6, and each sample material was prepared. The composition of the plating bath and the calculation result of the current efficiency are also shown in Table 1. The current efficiency was calculated on the assumption that aluminum was precipitated alone.

(比較例5)
疎水性液体を用いないこと以外は上記実施例6と同様にして、比較例5の評価溶液を用意し、各供試材を作製した。めっき浴の構成と電流効率の算出結果とを表1に併記する。
(Comparative Example 5)
Except not using a hydrophobic liquid, it carried out similarly to the said Example 6, the evaluation solution of the comparative example 5 was prepared, and each test material was produced. The composition of the plating bath and the calculation result of the current efficiency are also shown in Table 1.

表1に示したように、非水系めっき液を疎水性液体で液体封止していない比較例5は、2時間の湿潤空気暴露で電流効率が51%と低く、さらに湿潤空気暴露12時間以降では電流効率が0%となりアルミニウムの析出が認められなかった。これに対し、実施例6では、湿潤空気暴露の時間増加に伴う電流効率の変化がほとんどなく、例えば、24時間の湿潤空気暴露においても電流効率は95%と非常に良好な状態を維持することが確認された。   As shown in Table 1, Comparative Example 5 in which the non-aqueous plating solution was not sealed with a hydrophobic liquid had a low current efficiency of 51% after exposure to wet air for 2 hours, and after 12 hours of exposure to wet air. The current efficiency was 0% and no aluminum deposition was observed. On the other hand, in Example 6, there is almost no change in current efficiency with increasing time of exposure to wet air. Was confirmed.

(実施例7)
金属ハロゲン化物として塩化亜鉛(関東化学株式会社製、ZnCl2)を用い、有機化合物として1-エチル-3-メチルイミダゾリウムクロリド(関東化学株式会社製、EMIMCl)を用い、「EMIMCl:ZnCl2=1:2」のモル比となるように混合して非水系めっき液を調合した。疎水性液体として流動パラフィン(関東化学株式会社製)を用いた。その他は実施例1と同様にして、実施例7の評価溶液を用意した。
(Example 7)
Zinc chloride (Kanto Chemical Co., Ltd., ZnCl 2 ) was used as the metal halide, and 1-ethyl-3-methylimidazolium chloride (Kanto Chemical Co., Ltd., EMIMCl) was used as the organic compound, and “EMIMCl: ZnCl 2 = A non-aqueous plating solution was prepared by mixing at a molar ratio of 1: 2. Liquid paraffin (manufactured by Kanto Chemical Co., Inc.) was used as the hydrophobic liquid. Others were the same as in Example 1, and the evaluation solution of Example 7 was prepared.

電気めっきは次のように行った。被めっき体としてニッケル箔(純度99%、縦×横×厚さ=20 mm×35 mm×0.1 mm)を用い、対極として亜鉛板(純度99.9%、縦×横×厚さ=25 mm×35 mm×2 mm)を用いた。リード線をそれぞれ接続した被めっき体と対極とを、30 mmの間隔を置いてビーカー内に対向させるようにして評価溶液内に浸漬した。また、参照極として亜鉛線(純度99.9%、直径=1 mm)を評価溶液内に浸漬した。リード線を介して被めっき体、対極および参照極を電気化学測定システム(北斗電工株式会社、HZ-5000)に接続し、定電位電気めっきを実施した(電位=0.15 V、通電量=10 C、めっき液温度=70℃)。電気めっき終了後、めっきした被めっき体をアセトンおよび純水で洗浄し、窒素ガスで乾燥して、測定の供試材とした。電流効率の算出は、実施例1と同様に行った。めっき浴の構成と電流効率の算出結果とを表1に併記する。   Electroplating was performed as follows. Nickel foil (99% purity, length x width x thickness = 20 mm x 35 mm x 0.1 mm) was used as the object to be plated, and zinc plate (purity 99.9%, length x width x thickness = 25 mm x 35) as the counter electrode mm × 2 mm) was used. The object to be plated and the counter electrode to which the lead wires were respectively connected were immersed in the evaluation solution so as to face each other in the beaker with an interval of 30 mm. Further, a zinc wire (purity 99.9%, diameter = 1 mm) was immersed in the evaluation solution as a reference electrode. The object to be plated, the counter electrode, and the reference electrode were connected to the electrochemical measurement system (Hokuto Denko Co., Ltd., HZ-5000) via lead wires, and constant potential electroplating was performed (potential = 0.15 V, current supply = 10 C). , Plating solution temperature = 70 ° C). After completion of electroplating, the plated object was washed with acetone and pure water, and dried with nitrogen gas to obtain a test material for measurement. Calculation of current efficiency was performed in the same manner as in Example 1. The composition of the plating bath and the calculation result of the current efficiency are also shown in Table 1.

(比較例6)
疎水性液体を用いないこと以外は上記実施例7と同様にして、比較例6の評価溶液を用意し、各供試材を作製した。めっき浴の構成と電流効率の算出結果とを表1に併記する。
(Comparative Example 6)
An evaluation solution of Comparative Example 6 was prepared in the same manner as in Example 7 except that the hydrophobic liquid was not used, and each test material was prepared. The composition of the plating bath and the calculation result of the current efficiency are also shown in Table 1.

表1に示したように、非水系めっき液を疎水性液体で液体封止していない比較例6は、2時間の湿潤空気暴露で電流効率が40%と低く、さらに湿潤空気暴露12時間以降では電流効率が0%となり亜鉛の析出が認められなかった。これに対し、実施例7では、湿潤空気暴露の時間増加に伴う電流効率の変化がほとんどないことが確認された。   As shown in Table 1, Comparative Example 6 in which the non-aqueous plating solution is not sealed with a hydrophobic liquid has a low current efficiency of 40% when exposed to wet air for 2 hours, and after 12 hours of exposure to wet air. The current efficiency was 0% and no zinc deposition was observed. On the other hand, in Example 7, it was confirmed that there is almost no change in current efficiency with increasing time of exposure to wet air.

(実施例8)
被めっき体として銅箔(純度99.9%、縦×横×厚さ=20 mm×35 mm×0.1 mm)を用い、純水洗浄によって濡れた状態の被めっき体をめっき浴中に挿入・設置したこと以外は、実施例1と同様にして、電気めっきを実施した。その結果、純水で濡れた状態の被めっき体をめっき浴中に挿入しても、塩化水素ガスによる白煙は発生しなかった。また、形成されためっき膜は銀白色で均一な外観を呈しており、電流効率も実施例1と同様の結果が得られた。これは、被めっき体が疎水性液体(ここでは流動パライン)を通過する際に、被めっき体の表面に付着した水分が排除されたためと考えられる。
(Example 8)
Using copper foil (purity 99.9%, length x width x thickness = 20 mm x 35 mm x 0.1 mm) as the object to be plated, the object to be plated wet by pure water cleaning was inserted and installed in the plating bath. Except for this, electroplating was performed in the same manner as in Example 1. As a result, even if the object to be plated wet with pure water was inserted into the plating bath, white smoke due to hydrogen chloride gas was not generated. Further, the formed plating film was silver white and had a uniform appearance, and the current efficiency was the same as that of Example 1. This is considered to be because moisture adhered to the surface of the object to be plated was eliminated when the object to be plated passed through the hydrophobic liquid (here, fluid pipeline).

(比較例7)
疎水性液体を使用しないこと以外は上記実施例8と同様にして、電気めっきを実施した。純水で濡れた被めっき体を非水系めっき液に浸漬した際に、純水と非水系めっき液とが化学反応し、塩化水素ガスによる白煙が発生した。また、形成されためっき膜は、黒ずんだ外観を呈していた。
(Comparative Example 7)
Electroplating was carried out in the same manner as in Example 8 except that no hydrophobic liquid was used. When the object to be plated wet with pure water was immersed in a non-aqueous plating solution, the pure water and the non-aqueous plating solution chemically reacted to generate white smoke due to hydrogen chloride gas. Further, the formed plating film had a dark appearance.

(実施例9)
図3に示したような構造を有する電気めっき装置を用いて、アルミニウムめっきを実施した。非水系めっき液としては、実施例1と同様に、無水塩化アルミニウム(和光純薬工業株式会社製、AlCl3)と1-エチル-3-メチルイミダゾリウムクロリド(関東化学株式会社製、EMIMCl)とを、「EMIMCl:AlCl3=1:2」のモル比となるように混合したものを用い、疎水性液体としては流動パラフィン(関東化学株式会社製)を用いた。非水系めっき液の液温および疎水性液体の液温は、第1および第2の液温制御機構により、それぞれ30℃に制御した。対極には純度99.9%のアルミニウム板を用い、被めっき体としては長尺鋼帯を用いた。「電流密度=-1 A /dm」で12時間の連続めっきを行ったところ、形成されためっき膜の外観は、終始一様であった。
Example 9
Aluminum plating was performed using an electroplating apparatus having a structure as shown in FIG. As the non-aqueous plating solution, as in Example 1, anhydrous aluminum chloride (Wako Pure Chemical Industries, Ltd., AlCl 3 ) and 1-ethyl-3-methylimidazolium chloride (Kanto Chemical Co., Ltd., EMIMCl) Were mixed so that the molar ratio of “EMIMCl: AlCl 3 = 1: 2” was used, and liquid paraffin (manufactured by Kanto Chemical Co., Inc.) was used as the hydrophobic liquid. The liquid temperature of the non-aqueous plating solution and the liquid temperature of the hydrophobic liquid were controlled to 30 ° C. by the first and second liquid temperature control mechanisms, respectively. An aluminum plate with a purity of 99.9% was used as the counter electrode, and a long steel strip was used as the object to be plated. When continuous plating was performed for 12 hours at “current density = −1 A / dm 2 ”, the appearance of the formed plating film was uniform throughout.

(比較例8)
疎水性液体を使用しないこと以外は上記実施例9と同様にして、12時間の連続めっきを実施した。その結果、めっき時間の経過とともに、形成されためっき膜の外観が黒色化し、9時間経過時点からアルミニウムの析出が認められなくなった。
(Comparative Example 8)
Continuous plating for 12 hours was carried out in the same manner as in Example 9 except that the hydrophobic liquid was not used. As a result, as the plating time passed, the appearance of the formed plating film turned black, and no aluminum deposition was observed after 9 hours.

以上の説明から明らかなように、本発明に係る非水系電気めっき方法および非水系電気めっき装置は、非水系めっき液を疎水性液体で液体封止することにより、非水系めっき液と大気との接触を防ぐことが可能となり、大気雰囲気下(大気に解放された雰囲気中)においても、安全に、高効率にかつ健全に卑金属および卑金属を含む合金を電気めっきすることが可能であることが実証された。   As is apparent from the above description, the non-aqueous electroplating method and the non-aqueous electroplating apparatus according to the present invention seal the non-aqueous plating solution with a hydrophobic liquid, thereby allowing the non-aqueous plating solution and the atmosphere to be sealed. It is possible to prevent contact, and it has been demonstrated that it is possible to safely and efficiently electroplate base metals and alloys containing base metals even in an air atmosphere (in an atmosphere released to the air). It was done.

101…非水系めっき液、102…疎水性液体、103,303…めっき槽、104,204,304…被めっき体、105,205,305…対極、106…リード線、107…電源、306…めっき液貯蔵タンク、307…疎水性液体貯蔵タンク、308…めっき液循環パイプ、309…めっき液循環ポンプ、310…疎水性液体循環パイプ、311…疎水性液体循環ポンプ、312…通電ロール、313…シンクロール、314…第1の液温制御機構、315…第2の液温制御機構、316…第3の液温制御機構、317…第4の液温制御機構。   DESCRIPTION OF SYMBOLS 101 ... Non-aqueous plating solution, 102 ... Hydrophobic liquid, 103, 303 ... Plating tank, 104, 204, 304 ... To-be-plated object, 105, 205, 305 ... Counter electrode, 106 ... Lead wire, 107 ... Power supply, 306 ... Plating Liquid storage tank, 307 ... hydrophobic liquid storage tank, 308 ... plating solution circulation pipe, 309 ... plating solution circulation pump, 310 ... hydrophobic liquid circulation pipe, 311 ... hydrophobic liquid circulation pump, 312 ... energizing roll, 313 ... sink Roll, 314: First liquid temperature control mechanism, 315: Second liquid temperature control mechanism, 316: Third liquid temperature control mechanism, 317: Fourth liquid temperature control mechanism

Claims (11)

非水系めっき液を用いて被めっき体に電気めっきする方法であって、
前記非水系めっき液は、めっきする金属のハロゲン化物(金属ハロゲン化物)と、前記金属ハロゲン化物に対してイオン対をなす有機化合物とを含み、
前記非水系めっき液と相分離しかつ前記非水系めっき液よりも比重が小さい疎水性液体を更に用い、
前記疎水性液体により前記非水系めっき液の上面が液体封止されていることを特徴とする非水系電気めっき方法。
A method of electroplating an object to be plated using a non-aqueous plating solution,
The non-aqueous plating solution contains a metal halide to be plated (metal halide) and an organic compound that forms an ion pair with the metal halide,
Further using a hydrophobic liquid phase-separated from the non-aqueous plating solution and having a specific gravity smaller than that of the non-aqueous plating solution,
A non-aqueous electroplating method, wherein an upper surface of the non-aqueous plating solution is liquid-sealed with the hydrophobic liquid.
請求項1に記載の非水系電気めっき方法において、
前記被めっき体は、前記非水系めっき液を液体封止する前記疎水性液体の層を通過して前記非水系めっき液に浸漬されて電気めっきが施され、その後、前記疎水性液体の層を通過して取り出されることを特徴とする非水系電気めっき方法。
The non-aqueous electroplating method according to claim 1,
The object to be plated passes through the hydrophobic liquid layer that seals the non-aqueous plating solution and is immersed in the non-aqueous plating solution to be subjected to electroplating. A non-aqueous electroplating method characterized by being taken out by passing.
請求項1または請求項2に記載の非水系電気めっき方法において、
前記疎水性液体は、流動パラフィン、およびシリコーンオイルのうち少なくとも一つからなることを特徴とする非水系電気めっき方法。
In the non-aqueous electroplating method according to claim 1 or 2,
The non-aqueous electroplating method, wherein the hydrophobic liquid comprises at least one of liquid paraffin and silicone oil.
請求項1乃至請求項3のいずれかに記載の非水系電気めっき方法において、
前記有機化合物は、ジアルキルイミダゾリウム塩、ピリジニウム塩、脂肪族ホスホニウム塩、および4級アンモニウム塩のうち少なくとも一つからなることを特徴とする非水系電気めっき方法。
In the non-aqueous electroplating method according to any one of claims 1 to 3,
The organic compound is composed of at least one of a dialkylimidazolium salt, a pyridinium salt, an aliphatic phosphonium salt, and a quaternary ammonium salt.
請求項1乃至請求項4のいずれかに記載の非水系電気めっき方法において、
前記非水系めっき液は、前記金属ハロゲン化物のモル濃度が前記有機化合物のモル濃度の1倍以上3倍以下であることを特徴とする非水系電気めっき方法。
In the non-aqueous electroplating method according to any one of claims 1 to 4,
The non-aqueous electroplating method is characterized in that the molar concentration of the metal halide is 1 to 3 times the molar concentration of the organic compound.
請求項1乃至請求項5のいずれかに記載の非水系電気めっき方法において、
前記金属ハロゲン化物は、少なくともハロゲン化アルミニウムを含有することを特徴とする非水系電気めっき方法。
In the non-aqueous electroplating method according to any one of claims 1 to 5,
The non-aqueous electroplating method, wherein the metal halide contains at least aluminum halide.
請求項1乃至請求項6のいずれかに記載の非水系電気めっき方法において、
前記金属ハロゲン化物は、2種以上の金属ハロゲン化物からなることを特徴とする非水系電気めっき方法。
In the non-aqueous electroplating method according to any one of claims 1 to 6,
The non-aqueous electroplating method, wherein the metal halide comprises two or more metal halides.
被めっき体に電気めっきを施すめっき装置であって、
前記電気めっきは、請求項1乃至請求項7のいずれかに記載の非水系電気めっき方法によって行われることを特徴とする非水系電気めっき装置。
A plating apparatus for performing electroplating on an object to be plated,
The said electroplating is performed by the nonaqueous electroplating method in any one of Claim 1 thru | or 7, The nonaqueous electroplating apparatus characterized by the above-mentioned.
被めっき体に電気めっきを施すめっき装置であって、
前記被めっき体を挿抜して電気めっきを施すために上面が解放されためっき槽と、
めっきする金属のハロゲン化物(金属ハロゲン化物)と、前記金属ハロゲン化物に対してイオン対をなす有機化合物とを含む非水系めっき液を貯蔵するためのめっき液貯蔵タンクと、
前記非水系めっき液よりも比重が小さくかつ前記非水系めっき液と相分離する疎水性液体を貯蔵するための疎水性液体貯蔵タンクと、
前記めっき液貯蔵タンクと前記めっき槽とを接続し前記非水系めっき液を循環させるためのめっき液循環パイプおよびめっき液循環ポンプと、
前記疎水性液体貯蔵タンクと前記めっき槽とを接続し前記疎水性液体を循環させるための疎水性液体循環パイプおよび疎水性液体循環ポンプとを具備することを特徴とする非水系電気めっき装置。
A plating apparatus for performing electroplating on an object to be plated,
A plating tank whose upper surface is released in order to perform electroplating by inserting and removing the object to be plated;
A plating solution storage tank for storing a non-aqueous plating solution containing a metal halide to be plated (metal halide) and an organic compound that forms an ion pair with the metal halide;
A hydrophobic liquid storage tank for storing a hydrophobic liquid having a specific gravity smaller than that of the non-aqueous plating solution and phase-separated from the non-aqueous plating solution;
A plating solution circulation pipe and a plating solution circulation pump for connecting the plating solution storage tank and the plating tank and circulating the non-aqueous plating solution;
A non-aqueous electroplating apparatus comprising a hydrophobic liquid circulation pipe and a hydrophobic liquid circulation pump for connecting the hydrophobic liquid storage tank and the plating tank and circulating the hydrophobic liquid.
請求項9に記載の非水系電気めっき装置において、
前記めっき槽で前記非水系めっき液に接触する箇所に前記非水系めっき液の温度を制御するための第1の液温制御機構と、
前記めっき槽で前記疎水性液体に接触する箇所に前記疎水性液体の温度を制御するための第2の液温制御機構とを更に具備することを特徴とする非水系電気めっき装置。
In the non-aqueous electroplating apparatus according to claim 9,
A first liquid temperature control mechanism for controlling the temperature of the non-aqueous plating solution at a position in contact with the non-aqueous plating solution in the plating tank;
A non-aqueous electroplating apparatus, further comprising a second liquid temperature control mechanism for controlling the temperature of the hydrophobic liquid at a position in contact with the hydrophobic liquid in the plating tank.
請求項9または請求項10に記載の非水系電気めっき装置において、
前記めっき液貯蔵タンクに前記非水系めっき液の温度を制御するための第3の液温制御機構と、
前記疎水性液体貯蔵タンクに前記疎水性液体の温度を制御するための第4の液温制御機構とを更に具備することを特徴とする非水系電気めっき装置。
In the non-aqueous electroplating apparatus according to claim 9 or 10,
A third liquid temperature control mechanism for controlling the temperature of the non-aqueous plating liquid in the plating liquid storage tank;
The non-aqueous electroplating apparatus, further comprising a fourth liquid temperature control mechanism for controlling the temperature of the hydrophobic liquid in the hydrophobic liquid storage tank.
JP2014532661A 2012-08-31 2012-08-31 Non-aqueous electroplating method and non-aqueous electroplating apparatus Expired - Fee Related JP5808866B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072093 WO2014033890A1 (en) 2012-08-31 2012-08-31 Nonaqueous electroplating method and nonaqueous electroplating apparatus

Publications (2)

Publication Number Publication Date
JP5808866B2 true JP5808866B2 (en) 2015-11-10
JPWO2014033890A1 JPWO2014033890A1 (en) 2016-08-08

Family

ID=50182738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014532661A Expired - Fee Related JP5808866B2 (en) 2012-08-31 2012-08-31 Non-aqueous electroplating method and non-aqueous electroplating apparatus

Country Status (3)

Country Link
EP (1) EP2891730A4 (en)
JP (1) JP5808866B2 (en)
WO (1) WO2014033890A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11261533B2 (en) * 2017-02-10 2022-03-01 Applied Materials, Inc. Aluminum plating at low temperature with high efficiency
JP2020132948A (en) * 2019-02-20 2020-08-31 トヨタ自動車株式会社 Film forming apparatus for metal film
CN110714212B (en) * 2019-10-12 2021-04-30 常州大学 Method for preparing super-hydrophobic nickel film in aqueous solution system by nickel chloride one-step method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1647021A (en) * 1923-10-16 1927-10-25 Nat Carbon Co Inc Electrolyte seal and process of making the same
BE540052A (en) * 1955-06-13
DE1951324A1 (en) * 1969-10-10 1971-04-22 Siemens Ag Electrolytic plating bath automatic - analysis and replenishment
JPS5887868U (en) * 1981-12-07 1983-06-14 日本ペイント株式会社 Improvements in metal surface treatment equipment
JPS61213389A (en) * 1985-03-18 1986-09-22 Sumitomo Metal Ind Ltd Electroplating device by molten salt bath
JPH01104795A (en) * 1987-10-15 1989-04-21 Nisshin Steel Co Ltd Method for controlling atmosphere in electrolytic aluminizing tank
JPH01132791A (en) 1987-11-19 1989-05-25 Nisshin Steel Co Ltd Aluminium electroplating apparatus of parts
JP3034635B2 (en) 1991-05-21 2000-04-17 ディップソール株式会社 Electric aluminum plating bath
JPH05126122A (en) * 1991-10-30 1993-05-21 Nisshin Steel Co Ltd Fastener excellent in electrolytic corrosion resistance
AT408353B (en) * 1998-06-19 2001-11-26 Andritz Ag Maschf METHOD AND SYSTEM FOR APPLYING AND ADDING AN ELECTROLYTE
GB0920590D0 (en) * 2009-11-25 2010-01-06 Univ Leicester New ionic liquids
DE102011055911B3 (en) * 2011-12-01 2012-11-29 Volkmar, Prof. Dr. Neubert Process for the electrodeposition of at least one metal or semiconductor

Also Published As

Publication number Publication date
EP2891730A1 (en) 2015-07-08
EP2891730A4 (en) 2016-05-18
JPWO2014033890A1 (en) 2016-08-08
WO2014033890A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
Liu et al. Electrodeposition of zinc films from ionic liquids and ionic liquid/water mixtures
Protsenko et al. Effect of water content on physicochemical properties and electrochemical behavior of ionic liquids containing choline chloride, ethylene glycol and hydrated nickel chloride
JPWO2012043129A1 (en) Electric aluminum plating solution
BR112016025251B1 (en) Method for coating a moving metal strip
US20160024683A1 (en) Apparatus and method for electrolytic deposition of metal layers on workpieces
Yue et al. A promising method for electrodeposition of aluminium on stainless steel in ionic liquid
JP5808866B2 (en) Non-aqueous electroplating method and non-aqueous electroplating apparatus
US8951401B2 (en) Method for electrochemically depositing carbon film on a substrate
Barrado et al. Electrodeposition of indium on W and Cu electrodes in the deep eutectic solvent choline chloride-ethylene glycol (1: 2)
TW201402875A (en) Method and regeneration apparatus for regenerating a plating composition
Giridhar et al. A comparative study on the electrodeposition of tin from two different ionic liquids: influence of the anion on the morphology of the tin deposits
CN108517544A (en) The method of Mg alloy surface processing il electrolyte and magnesium alloy before electroplating of aluminium
Elbasiony et al. Electrochemical synthesis of freestanding tin nanowires from ionic liquids
Liu et al. Influence of an additive on zinc electrodeposition in the ionic liquid 1‐ethyl‐3‐methylimidazolium trifluoromethylsulfonate
US4285784A (en) Process of electroplating a platinum-rhodium alloy coating
WO2012141136A1 (en) Aluminum electroplating solution
JP2006519312A (en) Electrodeposition of aluminum and refractory metals from non-aromatic organic solvents
Lei et al. Electrochemical mechanism of tin membrane electro‐deposition in chloride solutions
AU2018278343B2 (en) Methods and compositions for electrochemical deposition of metal rich layers in aqueous solutions
CN117396638A (en) Device and method for coating a component or a semifinished product with a chromium layer
WO2014148227A1 (en) Plating film, method for manufacturing same, and plated product
JP6500683B2 (en) Method of surface modification of titanium base material
Grishina et al. Properties of 1-n-butyl-3-methylimidazolium bromide–copper (II) bromide ionic liquid as electrolyte for electrochemical deposition of copper
TWI783968B (en) Aluminum plating at low temperature with high efficiency
Tang et al. The Effect of Water on the Tin Electrodeposition from [Bmim] HSO4 Ionic Liquid

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150909

R150 Certificate of patent or registration of utility model

Ref document number: 5808866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees