JP5807946B2 - Crystal diffraction measurement method and diffraction measurement apparatus therefor - Google Patents

Crystal diffraction measurement method and diffraction measurement apparatus therefor Download PDF

Info

Publication number
JP5807946B2
JP5807946B2 JP2010289042A JP2010289042A JP5807946B2 JP 5807946 B2 JP5807946 B2 JP 5807946B2 JP 2010289042 A JP2010289042 A JP 2010289042A JP 2010289042 A JP2010289042 A JP 2010289042A JP 5807946 B2 JP5807946 B2 JP 5807946B2
Authority
JP
Japan
Prior art keywords
crystal
water
diffraction measurement
crystals
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010289042A
Other languages
Japanese (ja)
Other versions
JP2012137346A (en
Inventor
熊坂 崇
崇 熊坂
清喜 馬場
清喜 馬場
武司 星野
武司 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Synchrotron Radiation Research Institute
Original Assignee
Japan Synchrotron Radiation Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synchrotron Radiation Research Institute filed Critical Japan Synchrotron Radiation Research Institute
Priority to JP2010289042A priority Critical patent/JP5807946B2/en
Publication of JP2012137346A publication Critical patent/JP2012137346A/en
Application granted granted Critical
Publication of JP5807946B2 publication Critical patent/JP5807946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は結晶の回折測定方法に関し、特に室温及び凍結時における含水結晶の回折測定方法及びそのための回折測定装置に関する。   The present invention relates to a method for measuring diffraction of crystals, and more particularly to a method for measuring diffraction of hydrous crystals at room temperature and during freezing, and a diffraction measurement apparatus therefor.

多くの蛋白質や一部の有機低分子などの結晶は、その結晶構造の一部として体積の半分程度におよぶ多くの水(溶媒水)を含んでおり、乾燥による結晶中の水分の喪失で、これらの単結晶の結晶性を損なってしまう。単結晶X線回折測定実験などの分析測定においては、試料(蛋白質や有機低分子などの結晶を含む単結晶等)は測定装置に固定する取付具(マウント具)に一旦収められる(マウントされる)必要がある。乾燥防止等のため、その取付具に乾燥を抑制するためのさまざまな工夫が凝らされている。   Crystals such as many proteins and some small organic molecules contain about half the volume of water (solvent water) as part of their crystal structure. The crystallinity of these single crystals is impaired. In analytical measurements such as single-crystal X-ray diffraction measurement experiments, a sample (such as a single crystal containing a protein or a small organic molecule) is temporarily stored (mounted) in a fixture that is fixed to the measuring device. )There is a need. In order to prevent drying and the like, various contrivances for suppressing drying are made on the fixture.

その乾燥抑制方法は、大きく二つに分類することができる。一つは容器に収納する封入法であり、もう一つは試料を100K以下の極低温に凍結し保持する凍結法である(非特許文献1)。
封入法では、一般的にガラス製の細管(キャピラリー)を取付具として結晶と溶媒とを封入して結晶中の溶媒水の蒸散を抑え、結晶を乾燥から保護する(非特許文献2)。この方法は、室温での測定に適しているが、単結晶を急速に凍結してX線等による回折実験を行う凍結実験には不向きである。それは、凍結実験では試料への低温ガス吹き付けによる急速冷却法が用いられるが、結晶の周囲に密閉された空気の層とキャピラリーガラス層とが存在し、試料の熱交換が遅くなるため急速冷却ができないからである。
The drying control method can be roughly classified into two. One is a sealing method in which the sample is stored in a container, and the other is a freezing method in which a sample is frozen and held at an extremely low temperature of 100K or less (Non-patent Document 1).
In the enclosing method, generally, a crystal and a solvent are enclosed with a glass capillary (capillary) as a fixture to suppress the evaporation of solvent water in the crystal and protect the crystal from drying (Non-patent Document 2). This method is suitable for measurement at room temperature, but is not suitable for a freezing experiment in which a single crystal is rapidly frozen and a diffraction experiment using X-rays or the like is performed. In the freezing experiment, a rapid cooling method by blowing a low temperature gas onto the sample is used, but there is an air layer and a capillary glass layer that are sealed around the crystal, and the heat exchange of the sample is slowed down. It is not possible.

また、凍結法では、キャピラリーを用いずに、結晶のサイズと同等の径をもつ高分子製の環状の取付具(ループ)に、結晶試料を周りの溶媒ごとすくい取り、低温ガスの吹き付けによる急速凍結を行う(非特許文献3)。また、近年、高精度データ測定のために、X線回折実験は高輝度放射光により行うことが一般的だが、その際には蛋白質等の試料の放射線損傷が深刻な問題となっている。当該凍結法はその損傷を抑制する方法として有用で、広く用いられている。
しかしながら、この凍結法では、溶媒水の凍結がしばしば問題となる。溶媒水が六方晶の氷(氷晶)を形成するとき、体積膨張を起こし蛋白質結晶に損傷を与えてしまう。この現象は試料(単結晶)周囲の溶媒水だけでなく、試料内部に含まれる同質な溶媒水(結晶水)でも起こりうる。
In the freezing method, the crystal sample is scooped together with the surrounding solvent into a polymer ring-shaped fixture (loop) having a diameter equivalent to the size of the crystal without using a capillary, and a rapid gas spray is applied. Freezing is performed (Non-patent Document 3). In recent years, X-ray diffraction experiments are generally performed with high-intensity synchrotron radiation for high-accuracy data measurement. In such cases, radiation damage to samples such as proteins has become a serious problem. The freezing method is useful as a method for suppressing the damage and is widely used.
However, in this freezing method, freezing of solvent water is often a problem. When the solvent water forms hexagonal ice (ice crystal), it causes volume expansion and damages the protein crystal. This phenomenon can occur not only in the solvent water around the sample (single crystal) but also in the same solvent water (crystal water) contained in the sample.

このため、凍結法では、溶媒水が凍結の際に生じる氷晶形成を抑制するため、抗凍結剤と呼ばれる試薬が利用されている。この抗凍結剤は大まかに2種類に分類される。一つはミネラルオイル、シリコンオイルなどの油性抗凍結剤で、結晶の周りを覆ってその周囲の溶媒水を除去することを目的とする(非特許文献4)。この種の抗凍結剤は、結晶との接触によって結晶を破壊することがあるだけでなく、結晶水に由来する氷晶形成を防ぐのも難しい。   For this reason, in the freezing method, a reagent called an anti-freezing agent is used in order to suppress the formation of ice crystals generated when the solvent water is frozen. This cryoprotectant is roughly classified into two types. One is an oily anti-freezing agent such as mineral oil or silicone oil, which aims to cover the periphery of the crystal and remove the surrounding solvent water (Non-Patent Document 4). This type of anti-freezing agent not only breaks the crystal by contact with the crystal, but it is also difficult to prevent ice crystal formation derived from crystal water.

もう一つは糖、ポリオール(グリセロール等)などの水性抗凍結剤で、水酸基などの親水性基を有し、溶媒水の水素結合ネットワークを破壊することを目的とする(非特許文献5)。この種の抗凍結剤は結晶の内部に浸透するため、結晶の内部からも氷晶形成を抑制することができる。このような抗凍結剤の利用により、多くの試料が凍結法で処理できるようになった。   The other is an aqueous anti-freezing agent such as sugar and polyol (glycerol, etc.), which has a hydrophilic group such as a hydroxyl group, and aims to destroy the hydrogen bonding network of solvent water (Non-patent Document 5). Since this type of anti-freezing agent penetrates into the inside of the crystal, the formation of ice crystals can be suppressed also from the inside of the crystal. With the use of such anti-freezing agents, many samples can be processed by the freezing method.

しかしながら、水性抗凍結剤の効果を発揮させるには、結晶に対して数十体積パーセントの濃度にまで水性抗凍結剤を添加する必要がある。一般的に、少量(数体積パーセント)の水性抗凍結剤とタンパク質との相互作用は強くないが、このような高濃度条件ではタンパク質への結合も無視できず、場合によっては結晶の損傷も見られる。このため、水性抗凍結剤の種類や添加量が凍結法成功の主要な条件となり、煩雑な条件検討が必要である。   However, in order to exert the effect of the aqueous cryoprotectant, it is necessary to add the aqueous cryoprotectant to a concentration of several tens of volume percent with respect to the crystal. In general, the interaction of proteins with small amounts (several volume percent) of aqueous cryoprotectants is not strong, but binding to proteins is not negligible at such high concentration conditions, and in some cases, crystal damage is also observed. It is done. For this reason, the type and amount of the aqueous cryoprotectant are the main conditions for the success of the freezing method, and complicated conditions must be studied.

この解決策として、周囲の溶媒水を極力除去する方法が考えられる。一つは、湿度を調整した気流を結晶に吹き付けることによって乾燥を防止する方法である(非特許文献6)。この湿度調整ガス吹き付け法は、もともと試料周囲の湿度を調整することで結晶の含水率を変え、それによってもたらされる構造転移により結晶性(回折分解能など)を改善する手法として開発されてきた。しかしそれだけでなく、吹き付ける湿潤ガスを結晶の水蒸気圧と合わせることで結晶性を保持することにも利用可能である。この方法での試料の保持方法には、ループマウント法、結晶をメッシュ状の樹脂性取付具(メッシュループ)(MiTeGen, Ithaca, New York, USA, Molecular Dimensions, Newmarket,
England)上に載せる方法、もしくはマイクロピペットで結晶を吸い付けて結晶を保持する方法等が例として挙げられる。しかしながら、マウント操作時に湿度未調整の空気中に露出されている結晶は、結晶中の溶媒水が蒸散し、損傷を受けてしまうことが多いために、凍結の影響が生じない程度まで溶媒水を取り除くのは難しい。また、溶媒水を取り除くほど、取付具への固定が困難となり、安定な試料保持ができない。
As a solution to this, a method of removing surrounding solvent water as much as possible can be considered. One is a method of preventing drying by blowing an air stream with adjusted humidity on the crystal (Non-Patent Document 6). This humidity adjusting gas spraying method was originally developed as a method for improving the crystallinity (diffraction resolution, etc.) by changing the moisture content of the crystal by adjusting the humidity around the sample and by the structural transition caused thereby. However, it can also be used to maintain crystallinity by combining the wet gas to be blown with the water vapor pressure of the crystal. The sample holding method in this method includes a loop mount method, a crystal resin fitting (mesh loop) with a crystal (MiTeGen, Ithaca, New York, USA, Molecular Dimensions, Newmarket,
England) or a method of holding the crystal by sucking the crystal with a micropipette. However, crystals that are exposed to unadjusted air during the mount operation are often damaged by evaporation of the solvent water in the crystals. It is difficult to remove. Moreover, the more the solvent water is removed, the more difficult it is to fix to the fixture, and stable sample holding is not possible.

他方、マイクロピペットで結晶を吸い付けて結晶を保持する方法はその後発展し、湿度制御によらない方法も考案されている(特許文献1)。しかし、溶媒を除去した状態で試料を安定に保持するのは困難なために直ちに凍結させる必要があり、室温での実験は困難である。
試料のX線等による回折測定では、凍結による損傷を評価するために、室温及び低温の両方で行うことが望ましい。また、周囲の溶媒水の氷晶形成と結晶中の溶媒水の氷晶形成とは一般的に異なるが、とくに含水結晶周囲の溶媒水の影響が大きいため、この影響を抑制する手法が求められている。
On the other hand, a method of sucking crystals with a micropipette and holding the crystals has been developed since then, and a method not based on humidity control has been devised (Patent Document 1). However, since it is difficult to stably hold the sample in a state where the solvent is removed, it is necessary to immediately freeze the sample, and an experiment at room temperature is difficult.
In order to evaluate damage caused by freezing, it is desirable to perform diffraction measurement by X-ray or the like of a sample at both room temperature and low temperature. In addition, although the formation of ice crystals in the surrounding solvent water and the formation of ice crystals in the solvent water in the crystals are generally different, the influence of the solvent water around the hydrous crystals is particularly large, so a method to suppress this effect is required. ing.

特開2006−53085号公報JP 2006-53085 A

(Garman, E. F. & Schneider, T. R.(1997). J. Appl. Cryst. 30, 211-237.)(Garman, E. F. & Schneider, T. R. (1997). J. Appl. Cryst. 30, 211-237.) (Silfhout, R. G. & Hermes, C.(1995). Rev. Sci. Instrum.66, 1818-1820.)(Silfhout, R. G. & Hermes, C. (1995). Rev. Sci. Instrum. 66, 1818-1820.) (Teng, T. Y. (1990). J. Appl. Cryst. 23, 387-391.)(Teng, T. Y. (1990). J. Appl. Cryst. 23, 387-391.) (Hope, H. (1988). Acta Cryst. B44, 22-26.)(Hope, H. (1988). Acta Cryst. B44, 22-26.) (Petsko, G. A. (1975). J. Mol. Biol. 96, 381-392.)(Petsko, G. A. (1975). J. Mol. Biol. 96, 381-392.) (Reiner, K. et a., (2000). J. Appl. Cryst. 33, 1223-1230.,Sanchez-Weatherby, J. et al. (2009). Acta Cryst. D65, 1237-1246.)(Reiner, K. et a., (2000). J. Appl. Cryst. 33, 1223-1230., Sanchez-Weatherby, J. et al. (2009). Acta Cryst. D65, 1237-1246.)

本発明には、このような課題に鑑みてなされたものであり、X線等による回折測定時の含水結晶の乾燥を防ぎ、適切な試料凍結を行う方法及びそのための装置の提供を目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a method for preventing the drying of water-containing crystals during diffraction measurement by X-rays or the like and performing appropriate sample freezing, and an apparatus therefor. .

本発明者らは鋭意に検討した結果、結晶を水溶性ポリマーで包み込む工程を含む回折測定方法及びそのための装置、特に含水結晶を水溶性ポリマーで包み込む工程を含むX線回折測定方法及びそのための装置を見出した。   As a result of intensive studies, the present inventors have conducted a diffraction measurement method including a step of wrapping a crystal with a water-soluble polymer, and an apparatus therefor, in particular, an X-ray diffraction measurement method including a step of wrapping a water-containing crystal with a water-soluble polymer and a device therefor. I found.

本発明では、X線等による回折測定における蛋白質や有機低分子などの含水結晶を水溶性ポリマーで包み込むことで、当該結晶の含水量を任意に調整しうる環境(バッファゾーン)を提供する。水溶性ポリマーが適当な溶媒水を含むことで、当該結晶の構造に影響を与える乾燥を抑制するのみならず、急速凍結(100K以下に急速冷却)することにより、結晶性を損なわずにX線結晶解析などの分析測定に適した凍結試料の作成が可能となる。よって、適切な凍結試料を得るための抗凍結剤の濃度を必要最小限量に抑えることができ、場合によっては、抗凍結剤を用いないことも可能となる。
また、水溶性ポリマーは接着剤として試料固定に用いることができ、溶媒から試料を包み込んだ状態で取りだせるため、そのまま取付具にマウントすることができる。これによって、回折測定過程において、試料が直接に空気に晒されるのを防ぐことができる。
In the present invention, an environment (buffer zone) in which the water content of the crystal can be arbitrarily adjusted is provided by wrapping the water-containing crystal such as protein or small organic molecule in a diffraction measurement by X-ray or the like with a water-soluble polymer. When the water-soluble polymer contains an appropriate solvent water, it not only suppresses drying that affects the structure of the crystal, but also freeze-freeze (rapid cooling to 100K or less), so that the crystallinity is not impaired. A frozen sample suitable for analytical measurement such as crystal analysis can be created. Therefore, the concentration of the cryoprotectant for obtaining an appropriate frozen sample can be suppressed to the minimum necessary amount, and in some cases, the cryoprotectant can be omitted.
Further, the water-soluble polymer can be used as an adhesive for fixing the sample and can be taken out in a state where the sample is wrapped from the solvent, so that it can be mounted on the fixture as it is. This can prevent the sample from being directly exposed to air during the diffraction measurement process.

(a)水溶性ポリマーの一種であるポリビニルアルコール(polyvinyl alcohol、PVAL)で接着し、気流中に結晶をマウントした直後の様子である。 (b)(a)のマウントした結晶が湿度調整された後の様子である。(A) It is a state immediately after mounting a crystal in an air stream after bonding with polyvinyl alcohol (PVAL) which is a kind of water-soluble polymer. (B) A state after the humidity of the mounted crystal of (a) is adjusted. 湿度調整時の低温窒素ガス及び温度制御ガスの配置模式図である。It is an arrangement schematic diagram of low-temperature nitrogen gas and temperature control gas at the time of humidity adjustment. 急速凍結時の低温窒素ガス及び温度制御ガスの配置模式図である。It is an arrangement schematic diagram of low-temperature nitrogen gas and temperature control gas at the time of quick freezing. 重合度4500のPVAL 8%を用いてニワトリ卵白リゾチーム結晶をマウントし、湿度79.4%まで乾燥した後の、及び湿度79.4%付近で2時間保持した後のそれぞれの回折データである。These are diffraction data after mounting a chicken egg white lysozyme crystal using PVAL 8% having a polymerization degree of 4500 and drying to 79.4% humidity and after holding for 2 hours at around 79.4% humidity. (a)不凍液(Glycerol 30%)のみを用いてウシインスリン結晶を急速凍結した後の散乱結果である。 (b)重合度4500のPVAL 8%のみで包み込んだウシインスリン結晶を湿度90.4%で乾燥し、急速凍結した後の散乱結果である。(A) Scattering result after rapid freezing of bovine insulin crystals using only antifreeze (Glycerol 30%). (B) Scattering results after bovine insulin crystals wrapped only with 8% PVAL having a polymerization degree of 4500, dried at 90.4% humidity and rapidly frozen. 重合度4500のPVAL 13%を用いた、湿度73.9%で乾燥後のニワトリ卵白リゾチーム結晶の回折データである。It is the diffraction data of a chicken egg white lysozyme crystal after drying at 73.9% humidity using PVAL 13% with a polymerization degree of 4500. (a)Glycerol(グリセロール)20%を用いて急速凍結後のウシインスリン結晶の回折データである。 (b)Glycerol(グリセロール)30%を用いて急速凍結後のウシインスリン結晶の回折データである。 (c)重合度4500のPVAL 8%とGlycerol(グリセロール)5%を用いて湿度84.8%のウシインスリン結晶の回折データである。(A) Diffraction data of bovine insulin crystals after rapid freezing using 20% Glycerol (glycerol). (B) Diffraction data of bovine insulin crystals after quick freezing using Glycerol (glycerol) 30%. (C) Diffraction data of bovine insulin crystals at a humidity of 84.8% using 8% PVAL with a polymerization degree of 4500 and 5% Glycerol (glycerol).

以下、図面等を用いて本発明を実施するための形態について詳細に説明する。なお、個々に開示する実施形態は、本発明の結晶の回折測定方法及びそのための回折測定装置の例であり、これに限定されるものではない。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. The embodiments disclosed individually are examples of the crystal diffraction measurement method and the diffraction measurement apparatus therefor according to the present invention, and the present invention is not limited thereto.

(第一実施形態)
本発明の第一の実施形態である含水結晶のX線回折測定方法は、X線回折測定方法に含水結晶を水溶性ポリマーで包み込む工程を含むことを特徴とする。つまり、本発明は、X線回折測定方法において、含水結晶を水溶性ポリマーで包み込む工程を含むことを特徴とするが、それ以外のX線回折測定方法に必須の工程は、従来の工程と同じである。
ここでいう水溶性ポリマーとは、保水性を有する水溶性ポリマーであればよく、特に、結晶の接着剤として使用される水溶性ポリマーが好ましい。例えば、ポリビニルアルコール(polyvinyl alcohol、PVAL)、カルボキシメチルセルロース、ポリアリルアミン塩酸塩重合体、アリルアミン(フリー)重合体、アリルアミン酢酸塩・ジアリルアミン酢酸塩共重合体、ポリビニルピロリドン等あげられる。その中でも、本発明はPVALが最も好ましい。
本発明で好ましく使用するPVALは親水性が非常に強いポリマーであり、温水に可溶という特徴を持つ。一般的な利用法としては、事務用のり、洗濯のり、フィルムである。また、生物毒性を有しないため、微生物を固定化して発酵に利用する方法や、光学顕微鏡観察で生体試料を固定するための包埋剤にも使用されている。
本発明者らは鋭意に検討した結果、後述するように水溶性ポリマーに結晶が完全に包み込まれても、当該水溶性ポリマーが結晶のX線等による回折測定に影響を与えることはないことを発見した。
(First embodiment)
The X-ray diffraction measurement method for hydrous crystals according to the first embodiment of the present invention is characterized in that the X-ray diffraction measurement method includes a step of wrapping the hydrous crystals with a water-soluble polymer. That is, the present invention is characterized in that the X-ray diffraction measurement method includes a step of wrapping the water-containing crystal with a water-soluble polymer, but the other essential steps for the X-ray diffraction measurement method are the same as the conventional steps. It is.
The water-soluble polymer herein may be any water-soluble polymer having water retention, and a water-soluble polymer used as a crystal adhesive is particularly preferable. Examples include polyvinyl alcohol (PVAL), carboxymethyl cellulose, polyallylamine hydrochloride polymer, allylamine (free) polymer, allylamine acetate / diallylamine acetate copolymer, polyvinylpyrrolidone and the like. Among these, PVAL is most preferable in the present invention.
PVAL preferably used in the present invention is a polymer having a very strong hydrophilicity and is soluble in hot water. Common uses are office glue, laundry glue, and film. Moreover, since it does not have biotoxicity, it is used also for the method of fix | immobilizing microorganisms and utilizing for fermentation, and the embedding agent for fixing a biological sample by optical microscope observation.
As a result of intensive studies, the present inventors have found that even if the crystal is completely encapsulated in the water-soluble polymer as described later, the water-soluble polymer does not affect the diffraction measurement by X-ray or the like of the crystal. discovered.

本発明でいう結晶とは、蛋白質や有機低分子などの結晶をいい、また、蛋白質‐有機低分子複合体のような結晶も含む。本発明でいう含水結晶とは、結晶構造に水分子を含む結晶をいい、その水分子は、例えば、結晶が形成される際の溶媒水等が例として挙げられる。
本発明の回折測定方法は通常の結晶に適し、特に含水結晶に特に適している方法であればよく特に限定されない。また、X線回折に用いるX線は、前記蛋白質結晶等の回折実験に用いることができるものであればよく、例えば、対陰極として銅、モリブデン、タングステンなどの標的に、加速した電子ビーム(30 keV程度)を当てる、電子の励起準位の差によるもの、または、電子を対陰極で急激に制動させたり、磁場により運動方向を変更したりするなどの加速度運動エネルギーによるものが考えられる。また、本発明の方法で回折実験に用いられる量子ビームはX線に限られず、中性子線や電子線も同様に用いられる。
The crystal referred to in the present invention refers to a crystal such as a protein or a small organic molecule, and also includes a crystal such as a protein-organic small molecule complex. The water-containing crystal in the present invention refers to a crystal containing a water molecule in the crystal structure, and examples of the water molecule include solvent water when the crystal is formed.
The diffraction measurement method of the present invention is not particularly limited as long as it is suitable for ordinary crystals and particularly suitable for water-containing crystals. The X-ray used for X-ray diffraction may be any X-ray that can be used for a diffraction experiment of the protein crystal or the like. For example, an accelerated electron beam (30 It may be due to the difference in the excitation level of the electrons, or to the acceleration kinetic energy such as suddenly braking the electrons with the counter-cathode or changing the direction of motion by a magnetic field. Moreover, the quantum beam used for the diffraction experiment by the method of the present invention is not limited to X-rays, and neutron beams and electron beams are also used in the same manner.

本発明の方法に含まれる「結晶を水溶性ポリマーで包み込む」とは、結晶を水溶性ポリマーで完全に包み込んだ状態にすることをいう。接着剤としての機能を有する水溶性ポリマーは、元より結晶をマウントする際にも用いられるが、接着剤として使用される場合は、結晶の一部とのみ接触し、マウント具等と結晶とを接触させればよく、結晶の全体を包み込む必要はない。だが、本発明で用いられる水溶性ポリマーが結晶を完全に包みこむことにより、水分を含んでいる含水結晶は、水溶性ポリマーとのみに接触することで、空気と断絶される。含水結晶の水分は、空気ではなく、水溶性ポリマーの水分との間にのみ動的平衡をとることになり、水溶性ポリマーは含水結晶と空気との間のバッファゾーンを構成している。   “Wrapping the crystal with the water-soluble polymer” included in the method of the present invention means that the crystal is completely wrapped with the water-soluble polymer. A water-soluble polymer having a function as an adhesive is also used when mounting a crystal from the beginning, but when used as an adhesive, it contacts only a part of the crystal, and the mounting tool and the crystal are attached. It is only necessary to make contact, and it is not necessary to envelop the entire crystal. However, since the water-soluble polymer used in the present invention completely encloses the crystal, the water-containing crystal containing water is disconnected from the air by contacting only the water-soluble polymer. Moisture of the water-containing crystal is not in the air but only in dynamic equilibrium with the water-soluble polymer, and the water-soluble polymer constitutes a buffer zone between the water-containing crystal and air.

図1(a)に、PVALに包まれている結晶(11及び12)がそのままマウントされている様子を示し、図1(b)は、(a)のマウントされた結晶が湿度調整された後の様子であり、その結晶(13及び14)が依然PVALに包まれている。この様子からわかるように、本発明の方法では、X線回折測定における結晶の乾燥を防ぐため、溶媒から結晶を取り出してからX線回折測定の完了までの全過程において、結晶が水溶性ポリマーで包み込まれている状態にあり続けることができる。しかもその操作が極めて簡潔である。
なお、図1(a)及び(b)のそれぞれの写真の右下にある小さい写真は、90°回転して上方向から得た画像である。
FIG. 1 (a) shows the crystals (11 and 12) wrapped in PVAL mounted as they are, and FIG. 1 (b) shows the state after the mounted crystals of (a) are humidity-adjusted. The crystals (13 and 14) are still encased in PVAL. As can be seen from this state, in the method of the present invention, in order to prevent the crystal from drying in the X-ray diffraction measurement, the crystal is a water-soluble polymer in the entire process from the removal of the crystal from the solvent to the completion of the X-ray diffraction measurement. You can remain encased. Moreover, the operation is extremely simple.
In addition, the small photograph at the lower right of each photograph in FIGS. 1A and 1B is an image obtained by rotating 90 ° from above.

本発明の方法では、水溶性ポリマーと空気との間の水の平衡状態、及び、水溶性ポリマーと含水結晶との間の水の平衡状態が存在しているため含水結晶に含まれる水の量を調整することができる。例えば、結晶を湿潤条件にする必要がある場合、空気の湿度を高め、結晶の含水量を高めることができる。一方、含水結晶を凍結するために含水量を低めたいとき、空気の湿度を下げれば、含水結晶内の水分は水溶性ポリマーを経由して空気に蒸散し、含水結晶内の余分な水分を除くことができる。これにより、凍結による結晶への悪影響を防ぐことができる。
また、従来の凍結による弊害を防ぐために導入する抗凍結剤の量を最小限に抑えることができる。本発明の方法では、含水結晶の種類や性質にもよるが、凍結させる際には、抗凍結剤を10体積%以下に抑えることができ、もしくは5体積%以下に抑えることができる。さらに、抗凍結剤を必要としないこともできる。
In the method of the present invention, since there exists an equilibrium state of water between the water-soluble polymer and air and an equilibrium state of water between the water-soluble polymer and the water-containing crystal, the amount of water contained in the water-containing crystal Can be adjusted. For example, when the crystal needs to be in a wet condition, the humidity of the air can be increased and the water content of the crystal can be increased. On the other hand, if you want to lower the water content to freeze the water-containing crystals, if you reduce the humidity of the air, the water in the water-containing crystals will evaporate to the air via the water-soluble polymer and remove the excess water in the water-containing crystals be able to. Thereby, the bad influence to the crystal | crystallization by freezing can be prevented.
In addition, the amount of the cryoprotectant to be introduced in order to prevent the harmful effects of conventional freezing can be minimized. In the method of the present invention, depending on the type and properties of the hydrated crystals, when frozen, the cryoprotectant can be suppressed to 10% by volume or less, or 5% by volume or less. Furthermore, no cryoprotectant may be required.

(第二実施形態)
本発明の第二の実施形態は、湿度制御装置または凍結制御装置もしくはその両方を含む、含水結晶を水溶性ポリマーで包み込む工程を含むX線回折測定装置である。つまり、含水結晶を水溶性ポリマーで包み込んだ場合、当該含水結晶に含まれている水分を、含水結晶と空気との間にある水溶性ポリマーを介して調整するために、または、当該含水結晶を凍結するために、外部(含水結晶を水溶性ポリマーで包み込んだ場合その外の部分)に湿度制御装置または凍結制御装置もしくはその両方を含む実施形態である。当該X線回折測定装置には、従来X線回折測定のために必須の装置(例えば、放射光またはX線発生装置を光源として使用する回折計等)以外に、湿度制御装置または凍結制御装置もしくはその両方を含むことを特徴とする。
(Second embodiment)
The second embodiment of the present invention is an X-ray diffraction measurement device including a step of enclosing a water-containing crystal with a water-soluble polymer, including a humidity control device and / or a freezing control device. That is, when the water-containing crystal is wrapped with a water-soluble polymer, in order to adjust the moisture contained in the water-containing crystal through the water-soluble polymer between the water-containing crystal and air, or In order to freeze, it is an embodiment which includes a humidity control device and / or a freezing control device on the outside (the outside portion when the water-containing crystal is wrapped with a water-soluble polymer). The X-ray diffraction measurement device includes a humidity control device, a freezing control device, or a device other than a conventional device that is essential for X-ray diffraction measurement (for example, a diffractometer using a synchrotron radiation or X-ray generation device as a light source) It is characterized by including both.

本発明の湿度制御装置は、前記水の平衡状態を制御することができれば、任意の装置を用いることができる。
環境温度が一定であれば、図2のような簡便なガスによる湿度制御装置(22)を用いることができる。ただし、湿度とともに温度も制御可能な温湿度制御装置(図2に示さず)であれば、より精密な実験が可能となる。また、本発明の凍結制御装置(21)は含水結晶を凍結させることができれば、任意の装置を用いることができ、特に好ましくは、図3のようなガス(例えば、低温窒素ガス等)による凍結制御装置である。
本発明では、図3のように、ガスによる凍結制御装置で直接にゴニオメーター(24)に固定された(被測定)含水結晶(23)を凍結させることができる一方、図2のようにまず、ガスによる温度または湿度もしくはその両方の制御装置で含水結晶の水分を調整してから、ガスによる凍結制御装置で凍結を行うこともできる。
As the humidity control apparatus of the present invention, any apparatus can be used as long as the equilibrium state of the water can be controlled.
If the ambient temperature is constant, a simple gas humidity control device (22) as shown in FIG. 2 can be used. However, a temperature / humidity control device (not shown in FIG. 2) capable of controlling temperature as well as humidity enables more precise experiments. The freezing control device (21) of the present invention can be any device as long as it can freeze the water-containing crystals, and particularly preferably freezing with a gas (for example, low-temperature nitrogen gas) as shown in FIG. It is a control device.
In the present invention, as shown in FIG. 3, the water-containing crystal (23) fixed to the goniometer (24) can be frozen directly by the gas freezing control device, whereas first, as shown in FIG. It is also possible to adjust the moisture of the hydrated crystals with a control device for temperature and / or humidity with gas, and then freeze with a freezing control device with gas.

凍結による含水結晶のX線回折測定において、含水結晶に含まれている水分の調整及び凍結を図2及び図3のように行うことができる。水溶性ポリマーで接着した蛋白質や有機低分子などの含水結晶を、湿度を制御した気流中に設置し、湿度を変更して水溶性ポリマーが含む余剰な水分を蒸散させて含水結晶を適切な水分量に制御し、その後、低温ガス(窒素、ヘリウム)、液体窒素などを用いて、湿度を制御した気流中のまま結晶を急速に、例えば、100K以下まで凍結することができる。   In the X-ray diffraction measurement of the water-containing crystal by freezing, the water contained in the water-containing crystal can be adjusted and frozen as shown in FIGS. Place water-containing crystals such as proteins and small organic molecules bonded with water-soluble polymers in a controlled airflow, change the humidity to evaporate excess water contained in the water-soluble polymer, and make the water-containing crystals suitable water The amount of the crystal can be controlled, and then the crystal can be rapidly frozen to, for example, 100K or less while using a low-temperature gas (nitrogen, helium), liquid nitrogen, or the like while controlling the humidity.

本発明の含水結晶のX線回折測定のため装置の一具体例として以下のものがあげられる。
図3のように、湿度制御ガスの気流を下方から配置し、低温吹き付け窒素ガスの気流は上方に配置する。この配置とすることで、湿度制御ガス使用時には低温窒素ガスの気流を結晶の位置から外し、急速凍結する際にはシャッターで低温窒素ガスの気流を遮蔽しながら低温窒素ガスの気流を結晶の位置へ移動し、湿度制御ガスの気流の退避と同時に低温窒素ガスの遮蔽(シャッター)を取り除くことで急速凍結を可能とした。
Specific examples of the apparatus for X-ray diffraction measurement of the water-containing crystal of the present invention include the following.
As shown in FIG. 3, the air flow of the humidity control gas is arranged from below, and the air flow of the low temperature blowing nitrogen gas is arranged above. With this arrangement, the flow of low-temperature nitrogen gas is removed from the crystal position when humidity control gas is used. It was possible to quickly freeze by removing the shielding (shutter) of low-temperature nitrogen gas at the same time as the air flow of humidity control gas was retreated.

本発明の湿度制御装置は、図3のように新規な湿度制御可能な気流吹き付け装置であってもよく、Free Mount System(Reiner, K.ら(2000). J. Appl.
Cryst. 33, 1223-1230.)や、Humidity-control
Device(Sanchez-Weatherby, J.ら(2009). Acta Cryst. D65,1237-1246.)などの装置を用いてもよい。本発明のように、急速凍結の手法として、低温のガス(窒素、ヘリウム等)の気流を結晶が置かれる場所へ吹き付け、その気流を遮蔽しながら結晶を取り付けて遮蔽物を瞬時に取り除くことで凍結する急速凍結法があるが、バイアルなどの容器に液体窒素を満たして結晶を直接液体窒素に浸して凍結する方法(Cipriani, F.ら(2006). Acta Cryst. D62,
1251-1259)等も例として挙げられる。これらの装置で使用されている湿度制御方法または急速凍結方法は、本発明に用いることができる。
The humidity control apparatus of the present invention may be a novel humidity controllable airflow spraying apparatus as shown in FIG. 3, and may be a free mount system (Reiner, K. et al. (2000). J. Appl.
Cryst. 33, 1223-1230.) And Humidity-control
Devices such as Device (Sanchez-Weatherby, J. et al. (2009). Acta Cryst. D65, 1237-1246.) May be used. As in the present invention, as a method of quick freezing, an air stream of a low-temperature gas (nitrogen, helium, etc.) is blown to the place where the crystal is placed, and the shield is instantaneously removed by attaching the crystal while shielding the air stream. There is a quick freezing method that freezes, but a method such as filling a container such as a vial with liquid nitrogen and immersing the crystal directly in liquid nitrogen to freeze it (Cipriani, F. et al. (2006). Acta Cryst. D62,
1251-1259) etc. are also mentioned as an example. The humidity control method or rapid freezing method used in these devices can be used in the present invention.

以下に本発明の実施例を記述し、本発明の結晶の回折測定方法及びそのため回折測定装置について具体的に説明する。ただし、本発明の技術的範囲はこれらに限定されるものではない。   Examples of the present invention will be described below, and the crystal diffraction measurement method and the diffraction measurement apparatus of the present invention will be described specifically. However, the technical scope of the present invention is not limited to these.

(実験の方法)
低温吹き付けガス気流を試料位置から退避し、湿度制御気流のノズルを試料位置にセットする。ノズルの先端は試料位置から10mm以内で外気の影響を減らすためにもなるべく近いことが望ましい。今回の実験では、試料位置からノズルの出口先端までの距離を4mm程度とした。ノズルの径は直径10mmで作成した。
(Method of experiment)
The low temperature blowing gas stream is withdrawn from the sample position, and the nozzle of the humidity control stream is set at the sample position. It is desirable that the tip of the nozzle be as close as possible to reduce the influence of outside air within 10 mm from the sample position. In this experiment, the distance from the sample position to the tip of the nozzle outlet was about 4 mm. The nozzle diameter was 10 mm.

PVALをループやポリイミド膜の短冊に塗布し、結晶化溶液中から結晶を包み込んで取り出し、測定装置にマウントする。接着剤としても一般に用いられるPVALは結晶を接着し安定に保持することができるため、測定位置から動いたり落ちたりする心配がない。また、取り出す際、結晶をPVAL溶液の中に包埋させ、周りの溶媒を積極的にPVALに吸収させることも後の凍結において有効であった。
湿度の調整範囲は、水溶性ポリマーのみを湿度調整して急速凍結を行った時に六方晶氷によるX線回折が観測されない湿度条件を上限とし、それ以下の湿度に設定できる必要がある。PVALの場合、湿度92%が氷の回折が観測される湿度の下限であり、この湿度以下に調整して急速凍結を行う。ただし、急速凍結が可能な湿度条件は、結晶化条件、結晶の溶媒含有率などにも左右される。
Apply PVAL to a loop or a strip of polyimide film, wrap the crystal out of the crystallization solution, and mount it on the measuring device. PVAL, which is generally used as an adhesive, can adhere and stably hold crystals, so there is no fear of moving or dropping from the measurement position. In addition, it was also effective in the subsequent freezing to embed the crystals in a PVAL solution and to allow the surrounding solvent to be actively absorbed by PVAL.
The humidity adjustment range should be able to be set to a humidity lower than that, with the upper limit being a humidity condition in which X-ray diffraction by hexagonal ice is not observed when the humidity of only a water-soluble polymer is adjusted and quick freezing is performed. In the case of PVAL, the humidity is 92%, which is the lower limit of the humidity at which ice diffraction is observed. However, the humidity conditions enabling rapid freezing also depend on the crystallization conditions, the solvent content of the crystals, and the like.

結晶化した溶液から結晶をすくいとり、測定装置上にマウントする作業は、湿度を制御していない空気中に結晶を数秒〜数十秒間さらすことになるが、本実験では、結晶表面がPVALで覆われているため、結晶と大気層の直接の接触がなくなる、もしくは少なくなった。よって、マウントするまでの間にPVALと結晶と共に大気中で水分が奪われるが、PVALの存在で結晶は損傷を受けなかった。十分に水分を保持したPVALは、自身の飽和水蒸気圧が周りの蒸気圧と一致するまで乾燥濃縮するが、その間、結晶を乾燥から保護していると考えられる。また、この状態の結晶は、制御された湿度条件下において結晶性を2時間程度保持し続けることができた(図4)。この結果、室温で湿度を変えながら、結晶性をX線回折測定結果で確認することができた。
さらに、湿度を92%以下に保持しPVALの含水量を調節したとき、PVALおよび溶媒水に由来するX線散乱や回折は、不凍液(Glycerol 30%)を用いる従来法と同等の結果が得られることを確認できた(図5)。
The work of scooping the crystal from the crystallized solution and mounting it on the measuring device is to expose the crystal for several seconds to several tens of seconds in the air whose humidity is not controlled. In this experiment, the crystal surface is PVAL. Due to the covering, direct contact between the crystal and the atmospheric layer disappeared or decreased. Thus, moisture was taken away in the atmosphere with PVAL and crystals before mounting, but the crystals were not damaged by the presence of PVAL. Sufficiently retained PVAL will dry and concentrate until its saturated water vapor pressure matches the surrounding vapor pressure, while protecting the crystals from drying. In addition, the crystal in this state could keep the crystallinity for about 2 hours under the controlled humidity condition (FIG. 4). As a result, the crystallinity could be confirmed by the X-ray diffraction measurement result while changing the humidity at room temperature.
In addition, when the humidity is maintained at 92% or less and the water content of PVAL is adjusted, X-ray scattering and diffraction derived from PVAL and solvent water give results equivalent to the conventional method using antifreeze (Glycerol 30%). This was confirmed (FIG. 5).

湿度を徐々に調整しながらX線を照射し、結晶の状態を確認する。結晶の種類によって凍結できる湿度が異なるが、湿度を徐々に下げていくとき、結晶格子やモザイク幅、回折分解能などの結晶学的パラメータが変化する点がある。今回はこの変化する点を凍結の目安とした。
結晶の変化を確認できたら湿度を固定し、低温吹き付けガス気流を試料に当たらないようにシャッターで遮蔽しつつ試料位置(試料に吹き付ける最も適切な位置)に戻し、湿度制御気流のノズルを退避させてからすぐに低温吹き付けガス気流のシャッターを開けることで試料を凍結する。
Irradiate X-rays while gradually adjusting the humidity to check the crystal state. The humidity that can be frozen differs depending on the type of crystal, but when the humidity is gradually lowered, crystallographic parameters such as crystal lattice, mosaic width, and diffraction resolution change. This time, this changing point was used as a guide for freezing.
After confirming the change of the crystal, fix the humidity and return to the sample position (the most suitable position to spray the sample) while blocking the low-temperature sprayed gas stream against the sample with the shutter, and retract the nozzle of the humidity control air stream. Immediately after that, the sample is frozen by opening the shutter of the low temperature blowing gas stream.

(実施例1)
・ニワトリ卵白リゾチーム正方晶結晶での例
重合度4500のPVAL 13%を用いて結晶を包みマウントし、湿度を75%に調整した後、凍結して測定を行ったところ、抗凍結剤を添加することなく、結晶に損傷を与えることなく結晶を凍結できた(図6)。重合度3500のPVAL 15%,重合度2400のPVAL
18%を用いた場合にも同様の結果を得た(図に示さず)。
(Example 1)
・ Example with chicken egg white lysozyme tetragonal crystal Wrap the crystal with PVAL 13% with a polymerization degree of 4500, adjust the humidity to 75%, freeze and measure. Add anti-freezing agent The crystals could be frozen without damaging the crystals (FIG. 6). PVAL 15% polymerization degree 15%, PVAL polymerization degree 2400 PVAL
Similar results were obtained when 18% was used (not shown).

(実施例2)
・ウシインスリンでの例
通常のループマウントで急速凍結した場合、抗凍結剤のGlycerolの濃度が20%以下の条件では、結晶周りの溶媒水が凍結し、氷の回折(25)が観測され、結晶も凍結による損傷を受けていた(図7(a))。
しかし、Glycerol
5%を抗凍結剤とした溶液に浸漬した結晶を重合度4500のPVAL
8%を用いてマウントし、湿度を86%に調整した後、急速凍結して測定を行ったところ、結晶に損傷を与えることなく結晶を凍結できた(図7(c))。それは、不凍液(Glycerol 30%)を用いる従来法で得られる結果(図7(b))と同じであることを確認できた。
(Example 2)
-Example with bovine insulin When fast frozen with a normal loop mount, the solvent water around the crystal freezes and ice diffraction (25) is observed under the condition that the concentration of the cryoprotectant Glycerol is 20% or less. The crystals were also damaged by freezing (FIG. 7 (a)).
But Glycerol
Crystals immersed in a solution containing 5% anti-freezing agent were converted to PVAL with a polymerization degree of 4500.
After mounting with 8% and adjusting the humidity to 86%, quick freezing and measurement were performed, the crystals could be frozen without damaging the crystals (FIG. 7 (c)). It was confirmed that the result was the same as the result obtained by the conventional method using antifreeze (Glycerol 30%) (FIG. 7B).

PVALの使用は結晶周囲の余分な水分を奪い去り、さらに結晶周辺の湿度を制御することにより、試料全体の水分量を抑制できる。この状態で急速凍結を行うと結晶周辺の溶媒水による氷晶形成が抑制され、結晶性を損なわずに凍結することができた。
また、結晶水が凍結の際に損傷を与えるような場合でも、従来法では体積比で30体積%近い抗凍結剤の添加が必要としたが、本発明では5体積%の添加で結晶を凍結することが可能となった。このように、結晶の凍結に必要な最小限の抗凍結剤のみを使用することで、抗凍結剤の影響を低減して結晶を凍結することができた。
The use of PVAL can take away excess moisture around the crystal and control the humidity around the crystal, thereby suppressing the amount of moisture in the entire sample. When rapid freezing was performed in this state, the formation of ice crystals by the solvent water around the crystals was suppressed, and the crystals could be frozen without impairing the crystallinity.
In addition, even when water of crystallization is damaged during freezing, the conventional method requires the addition of an anti-freezing agent that is close to 30% by volume, but in the present invention, the crystal is frozen by addition of 5% by volume. It became possible to do. In this way, by using only the minimum cryoprotectant necessary for freezing the crystal, the effect of the cryoprotectant was reduced and the crystal could be frozen.

本発明は、含水結晶の水分を室温もしくは凍結時に有効的に保持することができるX線等による回折測定方法及びそのための装置を提供し、特に蛋白質結晶のX線回折測定に用いることができるため、蛋白質‐薬剤複合体の構造解析において、薬剤の結合を妨げる抗凍結剤の影響を抑えることにつながり、薬剤開発の促進につながると期待できる。   The present invention provides a diffraction measurement method using X-rays and the like and an apparatus therefor that can effectively retain the water content of water-containing crystals at room temperature or during freezing, and can be used particularly for X-ray diffraction measurement of protein crystals. In the structural analysis of protein-drug complexes, it can be expected to suppress the effects of anti-freezing agents that hinder the binding of drugs, and to promote drug development.

11、12:PVALに包まれている結晶
13、14:湿度調整後のPVALに包まれている結晶
21:凍結制御装置
22:湿度制御装置
23:(PVALに包まれている)非測定結晶
24:ゴニオメーター
25:氷の回折
11, 12: Crystals wrapped in PVAL 13, 14: Crystals wrapped in PVAL after humidity adjustment 21: Freezing control device 22: Humidity control device 23: Non-measurement crystal 24 (wrapped in PVAL) : Goniometer 25: Ice diffraction

Claims (5)

回折測定方法であって、結晶を水溶性ポリマーで包み込む工程とその状態のまま前記結晶の回折を測定する工程とを含む回折測定方法。 A diffraction measurement method comprising a step of wrapping a crystal with a water-soluble polymer and a step of measuring diffraction of the crystal in that state. 前記回折測定方法がX線回折測定方法であることを特徴とする請求項1に記載の回折測定方法。   The diffraction measurement method according to claim 1, wherein the diffraction measurement method is an X-ray diffraction measurement method. 抗凍結剤を10体積%以下とすることを特徴とする請求項1または請求項2に記載の回折測定方法 。   The diffraction measurement method according to claim 1 or 2, wherein the cryoprotectant is 10% by volume or less. 前記水溶性ポリマーがPVAL、カルボキシメチルセルロース、ポリアリルアミン塩酸塩重合体、アリルアミン(フリー)重合体、アリルアミン酢酸塩・ジアリルアミン酢酸塩共重合体、ポリビニルピロリドンの少なくとも1つであることを特徴とする請求項1乃至請求項3のいずれに記載の回折測定方法。   The water-soluble polymer is at least one of PVAL, carboxymethylcellulose, polyallylamine hydrochloride polymer, allylamine (free) polymer, allylamine acetate / diallylamine acetate copolymer, and polyvinylpyrrolidone. The diffraction measurement method according to any one of claims 1 to 3. X線回折測定装置であって、結晶を水溶性ポリマーで包み込む工程とその状態のまま前記結晶の回折を測定する工程とを含む回折測定に用いられ、温湿度制御装置または凍結制御装置もしくはその両方を含むX線回折測定装置。 An X-ray diffraction measurement device, which is used for diffraction measurement including a step of wrapping a crystal with a water-soluble polymer and a step of measuring diffraction of the crystal as it is, and a temperature / humidity control device and / or a freezing control device X-ray diffraction measurement device including
JP2010289042A 2010-12-26 2010-12-26 Crystal diffraction measurement method and diffraction measurement apparatus therefor Expired - Fee Related JP5807946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289042A JP5807946B2 (en) 2010-12-26 2010-12-26 Crystal diffraction measurement method and diffraction measurement apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289042A JP5807946B2 (en) 2010-12-26 2010-12-26 Crystal diffraction measurement method and diffraction measurement apparatus therefor

Publications (2)

Publication Number Publication Date
JP2012137346A JP2012137346A (en) 2012-07-19
JP5807946B2 true JP5807946B2 (en) 2015-11-10

Family

ID=46674888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289042A Expired - Fee Related JP5807946B2 (en) 2010-12-26 2010-12-26 Crystal diffraction measurement method and diffraction measurement apparatus therefor

Country Status (1)

Country Link
JP (1) JP5807946B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053085A (en) * 2004-08-13 2006-02-23 Hokkaido Univ Capillary having annular projection
JP2006199803A (en) * 2005-01-20 2006-08-03 Hokkaido Nippon Yushi Kk Liquid antifreezing agent
JP2006329775A (en) * 2005-05-25 2006-12-07 Institute Of Physical & Chemical Research Observation method of compound and coloring solution used therein
JP2010190457A (en) * 2009-02-17 2010-09-02 Rigaku Corp Method and device for freezing protein crystal

Also Published As

Publication number Publication date
JP2012137346A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
Abdelwahed et al. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage
Mielanczyk et al. Closer to the native state. Critical evaluation of cryo-techniques for Transmission Electron Microscopy: preparation of biological samples
CA1301465C (en) Apparatus and method for cryopreparing biological tissue for ultrastructural analysis
JP2013156218A (en) Capillary for minute sample
Jeffree et al. Ambient-and low-temperature scanning electron microscopy
Shelby et al. A fixed-target platform for serial femtosecond crystallography in a hydrated environment
JP2013164419A (en) Method of forming vitrified sample for electron microscopy
Boyde et al. Freeze‐drying shrinkage of glutaraldehyde fixed liver
Schubert et al. A multicrystal diffraction data-collection approach for studying structural dynamics with millisecond temporal resolution
JP5807946B2 (en) Crystal diffraction measurement method and diffraction measurement apparatus therefor
Kim et al. A high-pressure cryocooling method for protein crystals and biological samples with reduced background X-ray scatter
JP2022183085A (en) Method and device for preparing samples for imaging under cryogenic conditions or diffraction experiments under cryogenic conditions in electron microscope
Kalinin et al. A new sample mounting technique for room-temperature macromolecular crystallography
JP5060412B2 (en) Foreign object detection method, foreign object detection device, foreign object detection system, and storage medium
Grin et al. Electron microscopy techniques to study bacterial adhesion
Fleck Low-temperature electron microscopy: techniques and protocols
JP3053731B2 (en) Biological sample preparation method for scanning electron microscope and biological sample observation method
Warren et al. In vacuo X-ray data collection from graphene-wrapped protein crystals
JP2005148003A (en) Cross section working apparatus and cross section evaluating method
JP2007113952A (en) Sample preparing method for electron microscope observation, micro vessel for electron microscope observation, and electron microscope observation method
Colmenares et al. Oxidation of uranium studied by gravimetric and positron annihilation techniques
CN103728167B (en) A kind of method that light metal hydride metallographic specimen is preserved for a long time and observation procedure
Cole et al. A simple pneumatic device for plunge‐freezing cells grown on electron microscopy grids
JP2004347497A (en) Scanning probe microscope and its measuring method
Campbell et al. A simple ethanol‐based freeze‐substitution technique for marine invertebrate embryos which allows retention of antigenicity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5807946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees