JP5806004B2 - Sweetness test method and sensor film for sweetness test - Google Patents

Sweetness test method and sensor film for sweetness test Download PDF

Info

Publication number
JP5806004B2
JP5806004B2 JP2011123659A JP2011123659A JP5806004B2 JP 5806004 B2 JP5806004 B2 JP 5806004B2 JP 2011123659 A JP2011123659 A JP 2011123659A JP 2011123659 A JP2011123659 A JP 2011123659A JP 5806004 B2 JP5806004 B2 JP 5806004B2
Authority
JP
Japan
Prior art keywords
membrane
sweetness
weakly acidic
sensor
membrane sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011123659A
Other languages
Japanese (ja)
Other versions
JP2012251832A (en
Inventor
健太郎 豊田
健太郎 豊田
紅 崔
紅 崔
憲太郎 阿部
憲太郎 阿部
正秋 羽原
正秋 羽原
池崎 秀和
秀和 池崎
潔 都甲
潔 都甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2011123659A priority Critical patent/JP5806004B2/en
Publication of JP2012251832A publication Critical patent/JP2012251832A/en
Application granted granted Critical
Publication of JP5806004B2 publication Critical patent/JP5806004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、味物質に対するセンサ膜の電位変化に基づいて味物質の検査を行う技術に関し、特に、甘味に対する検査を高感度に且つ選択的に行うための技術に関する。   The present invention relates to a technique for inspecting a tastant based on a change in potential of a sensor film with respect to a tastant, and more particularly to a technique for performing a test for sweetness with high sensitivity and selectivity.

味物質に対する検査を行う技術として、脂質を含む膜センサが味物質に応答してその膜電位が変化することを利用した方法が知られている。   As a technique for inspecting a tastant, a method is known that utilizes a membrane sensor containing lipid to change its membrane potential in response to a tastant.

膜センサは、センサの母体となる例えばPVCのような高分子材と、可塑剤と、味物質に対する応答を示す脂質とを所定の割合で混合して膜状にしたものであり、その膜電位を電極を介して出力する構造を有しており、脂質や可塑剤の材質、混合比などを選ぶことにより、味物質に対する応答が異なる特性の膜センサを構成することができる。   The membrane sensor is a membrane formed by mixing a polymer material such as PVC, which is the base of the sensor, a plasticizer, and a lipid that exhibits a response to a taste substance at a predetermined ratio, and has a membrane potential. Can be output via the electrode, and by selecting the material of the lipid or plasticizer, the mixing ratio, etc., it is possible to construct a membrane sensor having a different response to taste substances.

味物質には、基本的に塩味、酸味、苦味、旨味、甘味を呈するものに分類されるが、これまで膜センサを用いた検査では、他の基本味物質に比べて甘味物質の感度と選択性が十分とは言えず、この甘味物質に対する感度と選択性の向上が要望されている。   Taste substances are basically classified into those showing salty taste, sour taste, bitter taste, umami taste, and sweet taste. However, in the examination using a membrane sensor so far, the sensitivity and selection of sweet taste substances compared to other basic taste substances. However, the improvement in sensitivity and selectivity for this sweet substance is desired.

その一つの解決手段として、本願出願人は、高分子材、可塑剤、脂質からなる膜本体部を、多価フェノール酸や加水分解型タンニン酸などの多価フェノールによって表面修飾することで、甘味物質に対する感度と選択性が得られることを見出し、この知見に基づいて甘味物質の検査を行う方法を次の特許文献1において提案している。   As one solution to this problem, the applicant of the present invention modified the surface of a membrane main body made of a polymer material, a plasticizer, and a lipid with a polyhydric phenol such as polyhydric phenolic acid or hydrolyzable tannic acid, The following Patent Document 1 proposes a method for inspecting a sweet substance based on the finding that sensitivity and selectivity to a substance can be obtained.

特開2007−217630号公報JP 2007-217630 A

しかしながら、上記特許文献1において、膜本体部を多価フェノールによって表面修飾することで甘味物質に対する感度と選択性が得られることに対する論理づけが十分とはいえず、発明を利用する際の条件が限定的で応用性という点で不十分であった。   However, in the above-mentioned Patent Document 1, it cannot be said that the reasoning that sensitivity and selectivity for sweet substances can be obtained by surface modification of the membrane main body with polyhydric phenol, the conditions for using the invention are Limited and insufficient in terms of applicability.

本発明は、種々の実験に基づいて甘味物質に対する感度と選択性を向上させるための構造原理を論理的に導き、その原理に広く対応した甘味検査方法および甘味検査用膜センサを提供することを目的としている。   The present invention logically derives the structural principle for improving the sensitivity and selectivity for sweet substances based on various experiments, and provides a sweetness test method and a sweetness test membrane sensor that are widely applicable to the principle. It is aimed.

前記目的を達成するために、本発明の甘味検査方法は、
高分子材と、可塑剤と、カルボキシル基またはリン酸基を有し且つ疎水性部分を持つ弱酸性物質とが混合されてなる膜センサを、金属カチオンを含むアルカリ性の前処理液に浸漬して、該金属カチオンを前記膜センサの前記弱酸性物質との相互作用により膜表面に吸着させる段階と、
前記金属カチオンが吸着された前記膜センサを糖物質が含まれる被測定液に浸漬して、前記金属カチオンを前記糖物質との相互作用により膜表面から離反させ、膜電位を負方向に変化させる段階とを含むことを特徴としている。
In order to achieve the above object, the sweetness test method of the present invention comprises:
A membrane sensor comprising a polymer material, a plasticizer, and a weakly acidic substance having a carboxyl group or a phosphate group and having a hydrophobic portion is immersed in an alkaline pretreatment liquid containing a metal cation. Adsorbing the metal cations on the membrane surface by interaction with the weakly acidic substance of the membrane sensor;
The membrane sensor to which the metal cation is adsorbed is immersed in a liquid to be measured containing a sugar substance, and the metal cation is separated from the membrane surface by interaction with the sugar substance, thereby changing the membrane potential in the negative direction. It is characterized by including a stage.

また、本発明の請求項2の甘味検査用膜センサは、
高分子材と、可塑剤と、カルボキシル基またはリン酸基を有し且つ疎水性部分を持つ弱酸性物質とが混合されて膜状に形成され、さらに、金属カチオンが前記弱酸性物質との相互作用により膜表面に吸着されていることを特徴とする。
Moreover, the film | membrane sensor for sweetness inspection of Claim 2 of this invention is the following.
A polymer material, a plasticizer, and a weakly acidic substance having a carboxyl group or a phosphate group and having a hydrophobic portion are mixed to form a film , and a metal cation interacts with the weakly acidic substance. It is characterized in that it is adsorbed on the film surface by action .

また、本発明の請求項3の甘味検査用膜センサは、請求項2記載の甘味検査用膜センサにおいて、
高分子材PVC800mg、可塑剤DOPP1ml、弱酸性物質トリメリット酸30〜120mgの割合で含まれていることを特徴とする。
A sweetness test membrane sensor according to claim 3 of the present invention is the sweet taste test membrane sensor according to claim 2,
It is characterized by being contained in a ratio of 800 mg of polymer material PVC, 1 ml of plasticizer DOPP, and 30 to 120 mg of weakly acidic substance trimellitic acid .

また、本発明の請求項の甘味検査用膜センサは、請求項3記載の甘味検査用膜センサにおいて、
脂質TDABが1mg以下の割合で含まれていることを特徴とする。
The sweetness test membrane sensor according to claim 4 of the present invention is the sweet taste test membrane sensor according to claim 3,
Lipid TDAB is contained at a ratio of 1 mg or less .

本発明の甘味検査方法は、高分子材と、可塑剤と、カルボキシル基またはリン酸基を有し且つ疎水性部分を持つ弱酸性物質とが混合されてなる膜センサを、金属カチオンを含むアルカリ性の前処理液に浸漬して、その金属カチオンを膜センサの弱酸性物質との相互作用により膜表面に吸着させ、さらに、その膜センサを糖物質が含まれる被測定液に浸漬して、金属カチオンを糖物質との相互作用により膜表面から離反させて、膜電位を負方向に変化させるようにしているので、従来より高感度に且つ高い選択性をもって甘味の検出が行える。   The sweetness test method of the present invention comprises a membrane sensor formed by mixing a polymer material, a plasticizer, and a weakly acidic substance having a carboxyl group or a phosphate group and having a hydrophobic portion, and an alkaline substance containing a metal cation. In the pretreatment liquid, the metal cation is adsorbed on the surface of the film by the interaction with the weakly acidic substance of the membrane sensor. Since the cations are separated from the membrane surface by the interaction with the sugar substance and the membrane potential is changed in the negative direction, sweetness can be detected with higher sensitivity and higher selectivity than in the past.

また、本発明の甘味検査用膜センサは、高分子材と、可塑剤と、カルボキシル基またはリン酸基を有し且つ疎水性部分を持つ弱酸性物質とを混合して膜状に形成され、さらに、その膜表面に金属カチオンが吸着されているので、その膜センサを糖物質が含まれる被測定液に浸漬して、金属カチオンを糖物質との相互作用により膜表面から離反させて、膜電位を負方向に変化させることで、従来より高感度に且つ高い選択性をもって甘味の検出が行える。 The sweetness test film sensor of the present invention is formed into a film by mixing a polymer material, a plasticizer, and a weakly acidic substance having a carboxyl group or a phosphate group and having a hydrophobic portion , Further, since metal cations are adsorbed on the membrane surface, the membrane sensor is immersed in a liquid to be measured containing a sugar substance, and the metal cations are separated from the membrane surface by interaction with the sugar substance, and the membrane in the Turkey changing the potential in the negative direction, it can be performed sweetness detection with and higher selectivity to higher sensitivity conventionally.

本発明の甘味検出原理を説明するための図The figure for demonstrating the sweetness detection principle of this invention 甘味検出のための膜センサの構造例とシステム図Structure example and system diagram of membrane sensor for sweetness detection 膜センサに含有させる弱酸性物質(甘味応答物質)の種類、含有量および測定結果を示す図The figure which shows the kind of weakly acidic substance (sweet responsive substance) to be contained in the membrane sensor, the content and the measurement result 弱酸性物質(甘味応答物質)としてトリメリット酸を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipid when trimellitic acid is used as a weakly acidic substance (sweet responsive substance) 図4の測定結果を3次元グラフで示した図A diagram showing the measurement results of FIG. 4 in a three-dimensional graph 基本味に対する従来センサと実施例センサとの応答の違いを示す図The figure which shows the difference in the response of the conventional sensor and the example sensor to basic taste 甘味度既知の糖溶液に対する実施形態の膜センサの応答と甘味度との相関を表す図The figure showing the correlation of the response of the film | membrane sensor of embodiment with respect to the sugar solution of known sweetness degree, and sweetness degree 蔗糖溶液に対する測定結果Measurement results for sucrose solution ぶどう糖溶液に対する測定結果Measurement results for glucose solution 果糖溶液に対する測定結果Measurement results for fructose solution ラフィノース溶液に対する測定結果Measurement results for raffinose solution イソマルトオリゴ糖溶液に対する測定結果Measurement results for isomaltoligosaccharide solution 人口甘味料溶液に対する測定結果Measurement results for artificial sweetener solution 脂質をTOMAに変えた時の蔗糖溶液に対する測定結果Measurement results for sucrose solution when lipid is changed to TOMA 糖の水酸基の数と応答電位の関係を示す図Figure showing the relationship between the number of sugar hydroxyl groups and the response potential 糖の水酸基の数と応答電位の関係を示す図Figure showing the relationship between the number of sugar hydroxyl groups and the response potential 前処理液の成分と応答電位の関係を示す図Diagram showing the relationship between the components of the pretreatment liquid and the response potential 前処理液の塩化物の有無による応答電位の関係を示す図Diagram showing the relationship of response potential depending on the presence or absence of chloride in the pretreatment liquid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid トリメリット酸以外の弱酸性物質(甘味応答物質)を用いた場合の脂質との含有比に対する応答の違いを示す図The figure which shows the difference in the response to the content ratio with lipids when using weakly acidic substances (sweet responsive substances) other than trimellitic acid

始めに、本発明の甘味検査方法の原理について説明する。
本願発明者は、従来の味検査用の膜センサの基本的な含有成分を構成する高分子材(PVC)、可塑剤(DOPP)、脂質(TDBA)(脂質無しの場合も含む)だけでなく、カルボキシル基あるいはリン酸基を有する弱酸性物質を混合して形成した膜センサを用い、前処理段階で金属カチオンを有するアルカリ性の前処理液に漬けてから被測定液の検査をすることで、前記特許文献1に開示の膜センサを用いた場合よりも高い感度と選択性をを以て甘味検査ができることを見出した。
First, the principle of the sweetness test method of the present invention will be described.
The inventor of the present application is not only a polymer material (PVC), a plasticizer (DOPP), a lipid (TDBA) (including a case where no lipid is included) constituting basic components of a conventional taste sensor film sensor. By using a membrane sensor formed by mixing a weakly acidic substance having a carboxyl group or a phosphate group, and immersing it in an alkaline pretreatment liquid having a metal cation at the pretreatment stage, It has been found that a sweetness test can be performed with higher sensitivity and selectivity than when the membrane sensor disclosed in Patent Document 1 is used.

その実験データについては後述するが、その実験データから、甘味を高感度に且つ選択的に検出できることの根拠が明確となった。以下、それについて説明する。   Although the experimental data will be described later, the basis for the ability to selectively detect sweetness with high sensitivity has become clear from the experimental data. This will be described below.

図1は、本発明の甘味検査方法の原理を模式的に示すものであり、始めに、PVC等の高分子材と、DOPP等の可塑剤と、トリメリット酸等のようにカルボキシル基(またはリン酸基)を有し且つ疎水性部分を持つ弱酸性物質とが所定の混合比で混合されてなる膜センサを用意する。   FIG. 1 schematically shows the principle of the sweetness test method of the present invention. First, a polymer material such as PVC, a plasticizer such as DOPP, a carboxyl group (or trimellitic acid, etc.) A membrane sensor is prepared in which a weakly acidic substance having a phosphate group and a hydrophobic portion is mixed at a predetermined mixing ratio.

ここで、後述するように脂質自体は甘味に対する応答にほとんど関与していないので、主たる甘味応答物質である弱酸性物質(図1でR-COOと記す)に関して説明する。 Since the lipid itself, as will be described later hardly involved in the response to sweetness, which is a main sweetness responsive material weakly acidic material (in FIG. 1 R-COO - hereinafter) will be described.

弱酸性物質を含有した膜センサを、K(カリウム)やNa(ナトリウム)等の金属カチオンを含むアルカリ性の前処理液に数分間浸漬すると、金属カチオン(K)と膜センサの弱酸性物質との相互作用により、金属カチオン(K)が膜表面に吸着する(a)。 When a membrane sensor containing a weakly acidic substance is immersed in an alkaline pretreatment liquid containing a metal cation such as K (potassium) or Na (sodium) for several minutes, the metal cation (K + ) and the weakly acidic substance of the membrane sensor As a result of this interaction, metal cations (K + ) are adsorbed on the membrane surface (a).

そして、この金属カチオンが吸着された膜センサを軽く洗浄して、余分な前処理液を除いて、糖物質が含まれる被測定液に浸漬する(b)。   Then, the membrane sensor to which the metal cation has been adsorbed is lightly washed, and the excess pretreatment liquid is removed, and the membrane sensor is immersed in a liquid to be measured containing a sugar substance (b).

このとき、膜表面に吸着していた金属カチオンと糖物質の水酸基と相互作用により、金属カチオンが膜表面から離反し、膜センサの電位を負方向に変化させる(c)。   At this time, due to the interaction between the metal cation adsorbed on the membrane surface and the hydroxyl group of the sugar substance, the metal cation is separated from the membrane surface, and the potential of the membrane sensor is changed in the negative direction (c).

上記原理が妥当性を有していることは、後述するように、膜センサに含有する弱酸性物質の材質や含有比を種々変えても甘味に対する高い応答性が得られること、金属カチオンの元になる塩化物、ヨウ化物、臭化物について、金属カチオンの違いによる応答の変化はあるが、アニオン側(塩素、ヨウ素、臭素)の種類が変わっても応答の変化はほとんど確認できないこと等から明らかである。以下、その実験結果について説明する。   The reason why the above principle is valid is that, as will be described later, high responsiveness to sweetness can be obtained even if the material and content ratio of weakly acidic substances contained in the membrane sensor are variously changed. As for chloride, iodide and bromide, there are changes in response due to differences in metal cations, but it is clear from the fact that the change in response can hardly be confirmed even if the type of anion side (chlorine, iodine, bromine) changes. is there. Hereinafter, the experimental result will be described.

まず、膜センサの組成に関しては、高分子材としてPVC800mg、可塑剤としてDOPP1mlに、後述の図3に示した弱酸性物質(甘味応答物質)と脂質TDAB(テトラドデシルアンモニウムブロミド)を混合して、従来方法、即ち、溶剤として10mlのTHF(テトラヒドロフラン)を用いて溶解し、ガラスプレートの上に膜状に拡げて溶剤を揮発させて厚さ200μmの膜本体を形成する。   First, regarding the composition of the membrane sensor, a weakly acidic substance (sweet responsive substance) and lipid TDAB (tetradodecyl ammonium bromide) shown in FIG. A conventional method, that is, using 10 ml of THF (tetrahydrofuran) as a solvent, is dissolved in a film on a glass plate, and the solvent is volatilized to form a film body having a thickness of 200 μm.

図2は、実際の膜センサ100、参照電極200の構造例および測定システムを示すものであり、膜センサ100は、ガラスのような絶縁体の筒体101の側面に設けられた穴を塞ぐように外表部に膜本体102を固定し、筒体101内部に、電解質KCl、AgClの混合液を寒天で固めた緩衝層103と、導電体Ag/AgClからなる電極104を設け、膜本体102の裏面の一部が緩衝層103に接する構造とし、膜本体102の電位を緩衝層103および電極104を介して外部へ出力できるようにしている。なお、膜センサの構造は前記特許文献1の図7、図8に示されているように、筒型のもの以外に、基板上の電極の上に膜本体が重なる構造であってもよい。   FIG. 2 shows an example of the structure of the actual membrane sensor 100 and the reference electrode 200 and a measurement system. The membrane sensor 100 covers a hole provided on the side surface of an insulating cylinder 101 such as glass. A membrane body 102 is fixed to the outer surface, a buffer layer 103 in which a mixed solution of electrolyte KCl and AgCl is solidified with agar, and an electrode 104 made of a conductor Ag / AgCl are provided inside the cylinder 101. A part of the back surface is in contact with the buffer layer 103 so that the potential of the film body 102 can be output to the outside through the buffer layer 103 and the electrode 104. As shown in FIGS. 7 and 8 of Patent Document 1, the structure of the film sensor may be a structure in which the film main body overlaps the electrode on the substrate in addition to the cylindrical type.

また、参照電極200は、膜センサ100の電位の基準値Vaを出力するためのものであり、膜センサ100と参照電極200とを一定間隔で、測定対象液の入った容器300に浸漬し、参照電極200の出力Vaを膜センサ100の出力Vbとともに電圧検出回路301に与え、Vb−Vaの電圧をサンプル液に対する膜センサ100の応答電圧Vxとして得て、A/D変換器302によりデジタル値に変換してコンピュータからなる演算処理装置303に与え、電圧の演算処理や記憶処理などを行わせている。なお、実際の測定結果は、基準液の測定値に対する被測定液の測定値との差(相対値)である。   The reference electrode 200 is for outputting a reference value Va of the potential of the membrane sensor 100. The membrane sensor 100 and the reference electrode 200 are immersed in a container 300 containing a liquid to be measured at regular intervals. The output Va of the reference electrode 200 is supplied to the voltage detection circuit 301 together with the output Vb of the membrane sensor 100, and the voltage Vb−Va is obtained as the response voltage Vx of the membrane sensor 100 with respect to the sample liquid. Is converted into a computer and given to an arithmetic processing unit 303 formed of a computer to perform voltage arithmetic processing, storage processing, and the like. The actual measurement result is the difference (relative value) between the measured value of the liquid to be measured and the measured value of the reference liquid.

参照電極200は、膜センサ100から、筒体101、膜本体102を除いた構造、即ち、電解質KCl、AgClの混合液を寒天で固めた緩衝層203と、導電体Ag/AgClからなる電極204を有し、緩衝層203の表面の電位を電極204を介して出力する。   The reference electrode 200 has a structure in which the cylindrical body 101 and the membrane body 102 are removed from the membrane sensor 100, that is, a buffer layer 203 in which a mixed solution of electrolytes KCl and AgCl is hardened with agar, and an electrode 204 made of a conductor Ag / AgCl. The surface potential of the buffer layer 203 is output via the electrode 204.

図3の測定結果は、上記構造の膜センサと参照電極を用いるとともに、被測定溶液を濃度300mM、1Mの蔗糖溶液とし、金属カチオンを含むアルカリ性の前処理液を、100mMのKCl、10mMのKOH、30%エタノールからなるpH12.5の混合液とし、この前処理液に浸漬する前に、基準液(1mM KCl)に浸漬し、そのときの測定値Vx1と、被測定溶液に浸漬した時の測定値Vx2との差Vx2−Vr1を被測定溶液に対する膜センサの応答電位としている。なお、被測定溶液には、支持電解質として30mMのKClと、pH調整のための0.3mMの酒石酸が含まれ、pHは約3.4に調整されている。   The measurement results in FIG. 3 use the membrane sensor having the above structure and a reference electrode, make the solution to be measured a 300 mM concentration and a 1M sucrose solution, and use an alkaline pretreatment solution containing a metal cation as 100 mM KCl, 10 mM KOH. , A mixed solution of 30% ethanol with a pH of 12.5, and before immersing in this pretreatment solution, immerse in a reference solution (1 mM KCl), and the measured value Vx1 at that time and when immersing in the solution to be measured The difference Vx2-Vr1 from the measured value Vx2 is used as the response potential of the membrane sensor for the solution to be measured. The solution to be measured contains 30 mM KCl as a supporting electrolyte and 0.3 mM tartaric acid for pH adjustment, and the pH is adjusted to about 3.4.

図3のNo.2〜5の甘味応答物質は、カルボキシル基を有し、疎水性部を有する弱酸性物質であるが、特許文献1において膜本体部に測定前に修飾する際に用いられた多価フェノールに分類されるものである。また、No.1のトリメリット酸、No.6〜29の各甘味応答物質は非多価フェノールであり、カルボキシル基を有し、且つ疎水性部を有する弱酸性物質である。   No. 3 in FIG. The sweetness-responsive substances 2 to 5 are weakly acidic substances having a carboxyl group and having a hydrophobic part, but are classified into polyhydric phenols used when modifying the membrane body part before measurement in Patent Document 1. It is what is done. No. No. 1 trimellitic acid, No. 1 Each of the sweet responsive substances 6 to 29 is a non-polyhydric phenol, a weakly acidic substance having a carboxyl group and having a hydrophobic part.

また、No.30、31の甘味応答物質は、リン酸基を有し、且つ疎水性部を有する弱酸性物質である。   No. The sweet responsive substances 30, 31 are weakly acidic substances having a phosphate group and having a hydrophobic part.

この図3に示した甘味応答物質が混合された膜センサで、上記方法を用いて測定した結果を見れば明らかなように、30mM濃度の蔗糖溶液と1M濃度の蔗糖溶液の応答電圧(mV)の絶対値は、濃度の大小に正しく相関していることがわかる。   As is apparent from the results of measurement using the above method with the membrane sensor mixed with the sweet taste responsive substance shown in FIG. 3, the response voltage (mV) of the 30 mM sucrose solution and the 1 M sucrose solution. It can be seen that the absolute value of is correlated correctly with the magnitude of the concentration.

この結果から、少なくとも、非多価フェノールで、カルボキシル基またはリン酸基を有し、疎水性部を有する弱酸性物質を含む膜センサを用いて上記方法で甘味検査を行うことで高感度な測定ができると言える。   From this result, a highly sensitive measurement is performed by performing a sweetness test by the above method using a membrane sensor containing at least a non-polyhydric phenol, a carboxyl group or a phosphate group, and a weakly acidic substance having a hydrophobic portion. Can be said.

また、No.2〜5の多価フェノールの弱酸性物質を含む膜センサの場合も、膜本体部を表面修飾したものと、これらの弱酸性物質を混合して一体的に製造された膜センサとは甘味検出の原理の同一性は証明されないので、新規性、進歩性を有している。   No. In the case of a membrane sensor containing a weakly acidic substance of 2 to 5 polyhydric phenols, a membrane sensor whose surface is modified and a membrane sensor that is integrally manufactured by mixing these weakly acidic substances are detected with sweetness. Since the identity of the principle is not proved, it has novelty and inventive step.

次に、上記した弱酸性物質(甘味応答物質)としてトリメリット酸を用いた場合のより詳細な特性について説明する。   Next, more detailed characteristics when trimellitic acid is used as the weakly acidic substance (sweet responsive substance) will be described.

トリメリット酸と脂質TDABの含有量を変化させた場合の蔗糖溶液に対する応答電位の測定結果を図4、図5に示す。なお、図4は測定結果を数値で示しており、図5はその結果を3次元グラフで表示したものである。   FIG. 4 and FIG. 5 show the measurement results of the response potential with respect to the sucrose solution when the contents of trimellitic acid and lipid TDAB are changed. FIG. 4 shows the measurement results numerically, and FIG. 5 shows the results as a three-dimensional graph.

この結果から、傾向的に、脂質TDABの含有量が少ない領域(ゼロも含む)で高い応答電位が得られ、トリメリット酸については100mg前後で高い応答電圧が得られることがわかる。   From this result, it can be seen that a high response potential is obtained in a region where the lipid TDAB content is low (including zero), and that a high response voltage is obtained at around 100 mg for trimellitic acid.

また、図4、図5に示した広い範囲で実用的な感度は得られているが、この範囲の中で、特に、脂質TDAB1.0mg以下(0も含む)、トリメリット酸80〜120mgの範囲で含有する膜センサの応答性は高く、より高感度な検査が行える。   Moreover, although the practical sensitivity is acquired in the wide range shown in FIG. 4, FIG. 5, in this range, especially lipid TDAB 1.0mg or less (including 0), trimellitic acid 80-120mg. The responsiveness of the film sensor contained in the range is high, and more sensitive inspection can be performed.

次に、上記範囲のうち、トリメリット酸100mg、脂質TDAB1mgを含有する膜センサの各味に対する応答を測定した結果を図6のグラフに示す。なお図6において、「GL1」はトリメリット酸100mg、脂質TDAB1mgを含有する上記実施形態の膜センサの特性であり、「GL0」は、特許文献1で開示した没食子酸で膜本体を表面修飾した場合の膜センサの特性である。   Next, the result of having measured the response with respect to each taste of the film | membrane sensor containing 100 mg of trimellitic acid and 1 mg of lipid TDAB among the said range is shown in the graph of FIG. In FIG. 6, “GL1” is a characteristic of the membrane sensor of the above embodiment containing trimellitic acid 100 mg and lipid TDAB 1 mg, and “GL0” is a surface modification of the membrane body with gallic acid disclosed in Patent Document 1. This is a characteristic of the film sensor.

図6の測定結果から明らかなように、実施形態の「GL1」の膜センサでは、薄い蔗糖溶液に対する応答電位が従来の「GL0」の膜センサより格段に大きく、従来甘味との区別が困難な旨味に対する感度が非常に小さくなっている。   As is apparent from the measurement results of FIG. 6, the membrane sensor “GL1” of the embodiment has a significantly higher response potential to the thin sucrose solution than the conventional membrane sensor “GL0”, and is difficult to distinguish from the conventional sweet taste. Sensitivity to umami is very small.

なお、塩味、酸味については従来の「GL0」の膜センサより応答電位が高くなっているが、塩味や酸味に関してはそれぞれ選択性の高い膜センサによる検査が可能であるから、その識別がより困難な旨味に対する選択性が高いことが大きなメリットとなる。   Although the response potential is higher for salty and sour taste than the conventional “GL0” membrane sensor, it is more difficult to distinguish between salty and sour because each can be inspected by a highly selective membrane sensor. It is a great merit that the selectivity to nasty taste is high.

図7は、既知の甘味度の種々の糖物質溶液に対する上記実施形態の「GL1」の膜センサの応答値の対比(a)と、その相関性を調べたグラフ(b)を示している。   FIG. 7 shows a comparison (a) of the response values of the membrane sensor “GL1” of the above-described embodiment with respect to various sugar substance solutions of known sweetness, and a graph (b) in which the correlation is examined.

この図7から、この実施形態の膜センサは既知の甘味度と高い相関性を有していることがわかる。   FIG. 7 shows that the membrane sensor of this embodiment has a high correlation with the known sweetness level.

また、図8〜図12は、異なる種類の糖溶液の濃度に対する上記実施形態の膜センサの応答を測定したものであり、図8は蔗糖(スクロース)、図9はぶどう糖(グルコース)、図10は果糖(フルクトース)、図11はラフィノース(オリゴ糖)、図12はイソマルトオリゴ糖を、純水または基準液(30mM KCl+0.3mM 酒石酸 pH3.5)に溶かしたサンプル液を用いている(濃度は重量パーセントである)。   8 to 12 show the responses of the membrane sensor of the above embodiment to the concentrations of different types of sugar solutions. FIG. 8 shows sucrose, FIG. 9 shows glucose (glucose), and FIG. Is a sample solution in which raffinose (oligosaccharide) is dissolved in pure water or a reference solution (30 mM KCl + 0.3 mM tartaric acid pH 3.5). Weight percent).

この測定結果から、実施形態の膜センサは、いずれの糖溶液に対しても、その濃度に応じた応答電圧が得られることがわかる。   From this measurement result, it can be seen that the membrane sensor of the embodiment can obtain a response voltage corresponding to the concentration of any sugar solution.

図13は、人口甘味料であるアセスルファムカリウム(甘味度200)とサッカリンナトリウム(甘味度500)を前記基準液に溶かしたサンプル液の濃度を、10パーセント蔗糖、30%蔗糖の溶液と同じ甘さとなるように調整して測定した結果を示すものであり、蔗糖溶液とほぼ等しい測定結果が得られているので、実施形態の膜センサは、人口甘味料に対する甘味検出も行えることがわかる。   FIG. 13 shows that the concentration of a sample solution obtained by dissolving acesulfame potassium (sweetness level 200) and sodium saccharin (sweetness level 500), which are artificial sweeteners, in the reference solution is the same sweetness as a 10% sucrose and 30% sucrose solution. Thus, the measurement result is shown, and a measurement result almost equal to that of the sucrose solution is obtained. Therefore, it can be seen that the membrane sensor of the embodiment can also detect sweetness for the artificial sweetener.

なお、膜センサに含ませる脂質の材質については上記TDABに限定されない。従来から膜センサに用いる脂質として知られているTOMA(トリオクチルメチルアンモニウムクロリド)を用いた測定結果を図14に示す。   Note that the material of the lipid included in the membrane sensor is not limited to the TDAB. FIG. 14 shows the results of measurement using TOMA (trioctylmethylammonium chloride), which has been conventionally known as a lipid used in membrane sensors.

この測定結果から、膜センサに含ませる脂質としてTOMAを用いた場合でも、十分高い応答電位が得られることがわかる。   From this measurement result, it can be seen that a sufficiently high response potential can be obtained even when TOMA is used as the lipid contained in the membrane sensor.

次に、上記した測定原理の妥当性を検証するための測定結果を示す。
まず始めに、上記原理では、膜センサに吸着していた金属カチオンと被測定液の糖の水酸基とが作用して応答電位が得られるとしているから、糖の水酸基数によって感度が変わる筈である。
Next, measurement results for verifying the validity of the above-described measurement principle will be shown.
First of all, according to the above principle, the response potential is obtained by the action of the metal cation adsorbed on the membrane sensor and the hydroxyl group of the sugar of the liquid to be measured, so the sensitivity should change depending on the number of hydroxyl groups of the sugar. .

図15、図16はそれを如実に示す測定結果であり、図15は、水酸基の数が1〜6までの以下の糖物質、
番号1 エタノール(水酸基数1)
番号2 エチレングリコール(水酸基数2)
番号3 グリセロール(水酸基数3)
番号4 エリスリトール(糖アルコール)(水酸基数4)
番号5 キシリトール(糖アルコール)(水酸基数5)
番号6 ソルビトール(糖アルコール)(水酸基数6)
の30mM溶液を実施形態の膜センサで測定した結果である。
FIG. 15 and FIG. 16 are measurement results that clearly show this, and FIG. 15 shows the following sugar substances having 1 to 6 hydroxyl groups,
Number 1 Ethanol (Hydroxyl group number 1)
Number 2 Ethylene glycol (2 hydroxyl groups)
Number 3 Glycerol (3 hydroxyl groups)
Number 4 Erythritol (sugar alcohol) (number of hydroxyl groups 4)
No. 5 Xylitol (sugar alcohol) (5 hydroxyl groups)
No. 6 Sorbitol (sugar alcohol) (6 hydroxyl groups)
It is the result of having measured the 30 mM solution of this with the film | membrane sensor of embodiment.

また、図16は、水酸基が5、8、11の以下の糖物質、
番号1 フルクトース(単糖類 水酸基数5)
番号2 グルコース(単糖類 水酸基数5)
番号3 ラクトース(二糖類 水酸基数8)
番号4 マルトース(二糖類 水酸基数8)
番号5 蔗糖(二糖類 水酸基数8)
番号6 トレハロース(二糖類 水酸基数8)
番号7 ラフィノース(三糖類 水酸基数11)
の30mM溶液を実施形態の膜センサで測定した結果である。
In addition, FIG. 16 shows the following sugar substances having hydroxyl groups of 5, 8, and 11;
Number 1 Fructose (Monosaccharide, hydroxyl number 5)
Number 2 Glucose (Monosaccharide, Hydroxyl group number 5)
No. 3 Lactose (disaccharide, hydroxyl number 8)
Number 4 Maltose (disaccharide, hydroxyl number 8)
No. 5 Sucrose (disaccharide, hydroxyl number 8)
Number 6 Trehalose (disaccharide, hydroxyl number 8)
No. 7 Raffinose (trisaccharide, hydroxyl number 11)
It is the result of having measured the 30 mM solution of this with the film | membrane sensor of embodiment.

これらの図から明らかなように、糖物質の水酸基数に対応して応答電位が大きくなっていることが明確にわかる。また、図示しないが、2−デオキシグルコース、キシロース、ガラクトース、2−デオキシガラクトース、マンノース、リキソース等の糖物質についても同様の測定結果を得ている。   As is clear from these figures, it can be clearly seen that the response potential increases in accordance with the number of hydroxyl groups of the sugar substance. Although not shown, the same measurement results are obtained for sugar substances such as 2-deoxyglucose, xylose, galactose, 2-deoxygalactose, mannose, and lyxose.

次に、アルカリ性の前処理液について、上記例では、10mMのKOH、100mMのKCl、30%エタノールからなるpH12.5の混合液としていたが、他の成分でも実用的な感度が得られることを確認している。   Next, with regard to the alkaline pretreatment liquid, in the above example, a mixed liquid having a pH of 12.5 consisting of 10 mM KOH, 100 mM KCl, and 30% ethanol was used, but practical sensitivity can be obtained with other components. I have confirmed.

図17は、前処理液の成分とその測定結果を示すものであり、番号1は前記した10mMのKOH、100mMのKClの組合せ、番号2は10mMのLiOHと100mMのLiClの組合せ、番号3は10mMのNaOHと100mMのNaClの組合せ、番号4は10mMのCa(OH)と100mMのCaClの組合せ、番号5は1%のTMAH(水酸化テトラメチルアンモニウム)と100mMのKClの組合せである。 FIG. 17 shows the components of the pretreatment liquid and the measurement results. Number 1 is the combination of 10 mM KOH and 100 mM KCl, number 2 is the combination of 10 mM LiOH and 100 mM LiCl, and number 3 is Combination of 10 mM NaOH and 100 mM NaCl, number 4 is a combination of 10 mM Ca (OH) 2 and 100 mM CaCl 2 , and number 5 is a combination of 1% TMAH (tetramethylammonium hydroxide) and 100 mM KCl .

この測定結果から明らかなように、金属カチオンを含むアルカリ性の前処理液を用いることで甘味に対する応答が得られ、特に、上記番号1以外に、番号3のNaOHとNaClを組合せたものや、番号5のTMAHとKClを組合せたものは高感度が得られている。   As is apparent from the measurement results, a response to sweetness can be obtained by using an alkaline pretreatment liquid containing a metal cation. In particular, in addition to the above number 1, a combination of number 3 NaOH and NaCl, A combination of 5 TMAH and KCl has a high sensitivity.

なお、上記検出原理から明らかなように、KCl、NaCl等の塩化物を含まない(つまり電離によって発生するK、Na等の金属カチオン)液体を、前処理液に用いても甘味に対する感度が得られないことを確認している。 As is apparent from the above detection principle, even if a liquid not containing chlorides such as KCl and NaCl (that is, metal cations such as K + and Na + generated by ionization) is used as a pretreatment liquid, the sensitivity to sweetness It is confirmed that is not obtained.

図18は、上記応答性が高いと思われる3種類の前処理液と、それから塩(塩化物)を省いた前処理液を用いた場合の測定結果を示している。   FIG. 18 shows the measurement results in the case of using the three types of pretreatment liquid that seems to have high responsiveness and the pretreatment liquid from which the salt (chloride) was omitted.

この測定結果から、前処理液の塩化物が含まれない前処理液で実用的な感度が得られず、この塩化物が甘味の応答に大きく関与していることがわかる。   From this measurement result, it is understood that practical sensitivity cannot be obtained with the pretreatment liquid containing no chloride in the pretreatment liquid, and that this chloride is greatly involved in the sweetness response.

また、測定結果は省略するが、上記塩化物以外の例えばヨウ化物(KI、NaI)や臭化物(KBr、KI、NaBr)であっても、金属カチオンを持つ化合物であれば前処理液としていずれも甘味検出に十分な応答が得られており、塩素、ヨウ素、臭素等のアニオンの種類に甘味応答は影響を受けないことが確かめられている。   In addition, although the measurement results are omitted, for example, iodides (KI, NaI) and bromides (KBr, KI, NaBr) other than the above-mentioned chlorides can be used as pretreatment liquids as long as they have a metal cation. A sufficient response for sweetness detection has been obtained, and it has been confirmed that the sweetness response is not affected by the types of anions such as chlorine, iodine and bromine.

このような実験結果から、前記検出原理の通り、糖物質の水酸基と、前処理液の金属カチオンとの作用により甘味応答が得られることが裏付けられている。   From these experimental results, it is confirmed that a sweetness response can be obtained by the action of the hydroxyl group of the sugar substance and the metal cation of the pretreatment liquid as described above.

上記実施形態の膜センサは、甘味応答に大きく関与している弱酸性物質としてトリメリット酸を用いていたが、図3に示した明記した測定結果から、トリメリット酸以外に少なくとも図3に提示したカルボキシル基あるいはリン酸基を有する弱酸性物質を含有する膜センサについても、甘味に対する高い感度と選択性が認められる。   The membrane sensor of the above embodiment uses trimellitic acid as a weakly acidic substance that is largely involved in the sweetness response. From the specified measurement results shown in FIG. 3, at least the trimellitic acid is presented in FIG. High sensitivity and selectivity with respect to sweetness are also observed for membrane sensors containing weakly acidic substances having carboxyl groups or phosphate groups.

この点について図3では、含有比の代表値のみを記載しているが、実際にはさらに多くの含有比で実験を行っており、図3の含有比に限定されない範囲で、甘味に対する高感度と選択性が認められている。   In this regard, FIG. 3 shows only representative values of the content ratio. However, in actuality, experiments were performed with a larger content ratio, and the sensitivity to sweetness was not limited to the content ratio shown in FIG. And selectivity is recognized.

その一部の測定結果を図19〜図35に示す。これらの測定結果は、脂質TDABと弱酸性物質(甘味応答物質)の含有量を変えたときの蔗糖300mM溶液に対する膜センサの応答であり、いずれの場合も図3に示した含有比だけでなくその近傍でも十分高い応答が得られていることがわかる。   Some measurement results are shown in FIGS. These measurement results are responses of the membrane sensor to the 300 mM sucrose solution when the contents of lipid TDAB and weakly acidic substance (sweet responsive substance) are changed. In each case, not only the content ratio shown in FIG. It can be seen that a sufficiently high response is obtained even in the vicinity thereof.

このように、カルボキシル基あるいはリン酸基をもち且つ疎水性を有する弱酸性物質の多くのものにおいて低濃度の甘味に対する高い感度と選択性(特に旨味に対する高い識別性)が得られ、しかもその応答原理も明らかであるから、図3に示した弱酸性物質以外であっても、カルボキシル基あるいはリン酸基をもち且つ疎水性を有するものであれば、本発明の甘味検出に用いる膜センサに有効である。   In this way, high sensitivity and selectivity for low-concentration sweetness (especially high discrimination for umami) can be obtained and response in many of weakly acidic substances having a carboxyl group or a phosphate group and having hydrophobicity. Since the principle is also clear, it is effective for the membrane sensor used for sweetness detection of the present invention as long as it has a carboxyl group or a phosphate group and is hydrophobic even if it is other than the weakly acidic substance shown in FIG. It is.

100……膜センサ、101……筒体、102……膜本体、103……緩衝層、104……電極、200……参照電極、203……緩衝層、204……電極、300……容器、301……電圧検出回路、302……A/D変換器、303……演算処理装置   DESCRIPTION OF SYMBOLS 100 ... Membrane sensor, 101 ... Tube, 102 ... Membrane body, 103 ... Buffer layer, 104 ... Electrode, 200 ... Reference electrode, 203 ... Buffer layer, 204 ... Electrode, 300 ... Container , 301... Voltage detection circuit, 302... A / D converter, 303.

Claims (4)

高分子材と、可塑剤と、カルボキシル基またはリン酸基を有し且つ疎水性部分を持つ弱酸性物質とが混合されてなる膜センサを、金属カチオンを含むアルカリ性の前処理液に浸漬して、該金属カチオンを前記膜センサの前記弱酸性物質との相互作用により膜表面に吸着させる段階と、
前記金属カチオンが吸着された前記膜センサを糖物質が含まれる被測定液に浸漬して、前記金属カチオンを前記糖物質との相互作用により膜表面から離反させ、膜電位を負方向に変化させる段階とを含むことを特徴とする甘味検査方法。
A membrane sensor comprising a polymer material, a plasticizer, and a weakly acidic substance having a carboxyl group or a phosphate group and having a hydrophobic portion is immersed in an alkaline pretreatment liquid containing a metal cation. Adsorbing the metal cations on the membrane surface by interaction with the weakly acidic substance of the membrane sensor;
The membrane sensor to which the metal cation is adsorbed is immersed in a liquid to be measured containing a sugar substance, and the metal cation is separated from the membrane surface by interaction with the sugar substance, thereby changing the membrane potential in the negative direction. A sweetness test method comprising the steps of:
高分子材と、可塑剤と、カルボキシル基またはリン酸基を有し且つ疎水性部分を持つ弱酸性物質とが混合されて膜状に形成され、さらに、金属カチオンが前記弱酸性物質との相互作用により膜表面に吸着されていることを特徴する甘味検査用膜センサ。 A polymer material, a plasticizer, and a weakly acidic substance having a carboxyl group or a phosphate group and having a hydrophobic portion are mixed to form a film , and a metal cation interacts with the weakly acidic substance. A film sensor for sweetness testing, wherein the film sensor is adsorbed on the film surface by an action . 高分子材PVC800mg、可塑剤DOPP1ml、弱酸性物質トリメリット酸30〜120mgの割合で含まれていることを特徴する請求項2記載の甘味検査用膜センサ。 3. The membrane sensor for sweetness testing according to claim 2 , wherein the polymer material is contained in a ratio of 800 mg of a polymer material PVC, 1 ml of a plasticizer DOPP, and 30 to 120 mg of a weakly acidic substance trimellitic acid . 脂質TDABが1mg以下の割合で含まれていることを特徴とする請求項3記載の甘味検査用膜センサ。 The membrane sensor for sweetness testing according to claim 3, wherein lipid TDAB is contained at a ratio of 1 mg or less .
JP2011123659A 2011-06-01 2011-06-01 Sweetness test method and sensor film for sweetness test Active JP5806004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011123659A JP5806004B2 (en) 2011-06-01 2011-06-01 Sweetness test method and sensor film for sweetness test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123659A JP5806004B2 (en) 2011-06-01 2011-06-01 Sweetness test method and sensor film for sweetness test

Publications (2)

Publication Number Publication Date
JP2012251832A JP2012251832A (en) 2012-12-20
JP5806004B2 true JP5806004B2 (en) 2015-11-10

Family

ID=47524780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123659A Active JP5806004B2 (en) 2011-06-01 2011-06-01 Sweetness test method and sensor film for sweetness test

Country Status (1)

Country Link
JP (1) JP5806004B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7191302B2 (en) * 2018-10-04 2022-12-19 島根県 Taste sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2578370B2 (en) * 1989-07-24 1997-02-05 アンリツ株式会社 Taste sensor and manufacturing method thereof
JP3356507B2 (en) * 1993-09-30 2002-12-16 アンリツ株式会社 Taste sensor
JP4602599B2 (en) * 2001-06-18 2010-12-22 株式会社インテリジェントセンサーテクノロジー Lipid membrane

Also Published As

Publication number Publication date
JP2012251832A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
US9851325B2 (en) Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection
Lisak et al. Textile-based sampling for potentiometric determination of ions
Suherman et al. Electrochemical Hg 2+ detection at tannic acid-gold nanoparticle modified electrodes by square wave voltammetry
Ding et al. based microfluidic sampling and separation of analytes for potentiometric ion sensing
US9696189B2 (en) Device and method for determining fluid streaming potential
JP2017532571A (en) Polymer electrode membrane
WO1996030753A1 (en) Method of determining taste with gustatory sensor made from molecular membrane
Rudnicki et al. Determination of quinine in tonic water at the miniaturized and polarized liquid–liquid interface
JPH06229977A (en) Potentiometry ion determining method using asymmetrical ion-selecting film electrode, whose selectivity is reinforced
Zhao et al. “One-drop-of-blood” electroanalysis of lead levels in blood using a foam-like mesoporous polymer of melamine–formaldehyde and disposable screen-printed electrodes
JP5806004B2 (en) Sweetness test method and sensor film for sweetness test
Cha et al. Asymmetric cellulose acetate membrane-based carbonate-and chloride-selective electrodes
Khaled et al. Novel calixarene/carbon nanotubes based screen printed sensors for flow injection potentiometric determination of naproxen
Lin et al. Electrochemical detection of lead ion based on a peptide modified electrode
Jiang et al. Ion-transfer voltammetric determination of folic acid at meso-liquid–liquid interface arrays
Ertürün et al. A calix [4] arene derivative-doped perchlorate-selective membrane electrodes with/without multi-walled carbon nanotubes
Masadome et al. Effect of plasticizer on the performance of the surfactant-selective electrode based on a poly (vinyl chloride) membrane with no added ion-exchanger
Gemene et al. Selectivity enhancement of anion-responsive electrodes by pulsed chronopotentiometry
Żubrowska et al. The effect of lipophilic salts on surface charge in polymeric ion-selective electrodes
JP5205583B2 (en) A chemical sensor that detects sensitive and selective taste-free non-ionized substances.
Ping et al. Screen-printed potentiometric strip for calcium ion determination in water and milk
Wakida et al. Additive-salt effect on low detection limit and slope sensitivity in response of potassium-and sodium-selective neutral carrier based electrodes and their liquid-membrane based ion-sensitive field-effect transistor
Wang et al. Primary-ion-conditioned polymeric membrane electrodes for sensitive detection of polyions
Shvedene et al. A potentiometric multisensor system of anion-selective electrodes based on ionic liquids
Amayreh et al. Voltammetric Determination of Paracetamol in Pharmaceutical Formulations at Iodine-Coated Polycrystalline Platinum Electrode.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5806004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250