JP5804693B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP5804693B2
JP5804693B2 JP2010264291A JP2010264291A JP5804693B2 JP 5804693 B2 JP5804693 B2 JP 5804693B2 JP 2010264291 A JP2010264291 A JP 2010264291A JP 2010264291 A JP2010264291 A JP 2010264291A JP 5804693 B2 JP5804693 B2 JP 5804693B2
Authority
JP
Japan
Prior art keywords
pixel
sensitivity
sensitivity pixel
signal
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010264291A
Other languages
Japanese (ja)
Other versions
JP2012113248A (en
Inventor
高岩 敢
敢 高岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010264291A priority Critical patent/JP5804693B2/en
Publication of JP2012113248A publication Critical patent/JP2012113248A/en
Application granted granted Critical
Publication of JP5804693B2 publication Critical patent/JP5804693B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Control For Cameras (AREA)
  • Focusing (AREA)
  • Stroboscope Apparatuses (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Description

本発明は、閃光補助光を用いて撮影を行う撮像装置に関する。   The present invention relates to an imaging apparatus that performs imaging using flash assist light.

従来の撮像装置において、閃光補助光を用いて被写体像を撮影する際には、撮影時の閃光発光量を決定するために撮影前に所謂プリ発光を行い、プリ発光時の被写体からの反射光を測光して撮影時の発光量を決定するシステムが多用されている。   In a conventional imaging device, when shooting a subject image using flash auxiliary light, so-called pre-flash is performed before shooting in order to determine the flash emission amount at the time of shooting, and the reflected light from the subject at the time of pre-flash Many systems are used to determine the amount of light emitted during photo shooting.

特許文献1に記載の電子スチルカメラでは、プリ発光時の被写体からの反射光を撮像素子とは別の測光素子で測光し、その値を用いて適切な発光量を決定している。また、特許文献2に記載の撮像装置では撮影レンズを透過したプリ発光時の被写体からの反射光を撮像素子で受光し、撮像素子の出力を用いて適切な発光量を決定している。また、プリ発光時に被写体が近距離にあって撮像素子の出力が所定の値を超える場合は撮影レンズの絞りを絞って再度プリ発光を行い、適切な撮像素子の出力から発光量を決定している。   In the electronic still camera described in Patent Document 1, the reflected light from the subject at the time of pre-emission is measured by a photometric element different from the image sensor, and an appropriate light emission amount is determined using the value. In the imaging apparatus described in Patent Document 2, reflected light from a subject at the time of pre-emission that has passed through a photographing lens is received by an imaging element, and an appropriate light emission amount is determined using the output of the imaging element. If the subject is at a short distance during pre-flash and the output of the image sensor exceeds a predetermined value, the pre-emission is performed again by reducing the aperture of the photographic lens, and the light emission amount is determined from the output of the appropriate image sensor. Yes.

特開2003−87652号公報JP 200387652 A 特開2001−21961号公報Japanese Patent Laid-Open No. 2001-21961

しかしながら上述した特許文献1に記載の電子スチルカメラでは被写体像を撮影するための撮像素子とは別に測光素子を設けているため、機構が複雑化し、コストも上昇する。また、撮像素子の出力に所定の処理を施して表示器に表示してフレーミングを行うシステムでは撮像光学系とは別の測光光学系を設けなければならないため、なお一層の機構の複雑化とコストアップを招く。さらに撮像光学系と測光光学系の視差による測光誤差が発生する。   However, in the electronic still camera described in Patent Document 1 described above, since the photometric element is provided separately from the imaging element for photographing the subject image, the mechanism becomes complicated and the cost increases. In addition, in a system that performs predetermined processing on the output of the image sensor and displays it on a display to perform framing, a photometric optical system that is different from the imaging optical system must be provided, which further increases the complexity and cost of the mechanism. Invite up. Further, a photometric error due to parallax between the imaging optical system and the photometric optical system occurs.

また、特許文献2に記載の撮像装置では撮像素子を用いてプリ発光時の測光を行うので特許文献1で生じた不具合は回避される。しかし、撮影条件によっては、絞り値を変更して複数回のプリ発光を必要とするため、シャッタータイムラグが大きくなってしまうという欠点を有していた。   In addition, since the image pickup apparatus described in Patent Document 2 performs photometry at the time of pre-emission using an image pickup element, the problems caused in Patent Document 1 are avoided. However, depending on the shooting conditions, since the aperture value is changed and multiple pre-flashes are required, the shutter time lag is increased.

本発明は上述した課題に鑑みてなされたものであり、その目的は、機構の複雑化を招くことなく、1回のプリ発光で、本発光時の発光光量を適切に決定できるようにすることである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to make it possible to appropriately determine the amount of light emitted at the time of main light emission by one pre-light emission without causing a complicated mechanism. It is.

本発明に係わる撮像装置は、撮影光学系により結像された被写体像を電気信号に変換するための撮像素子であって、所定の感度を有する画像取得用の通常感度画素と、前記通常感度画素の間に離散的に配置され、前記通常感度画素よりも開口を小さくして感度を低くした画像取得に用いない測光用の低感度画素とを備える撮像素子と、ストロボ補助光装置を用いて被写体を照明し、撮影を行う場合に、本撮影の前に前記ストロボ補助光装置をプリ発光させ、被写体からの反射光を前記撮像素子で電気信号に変換した結果に基づいて前記本撮影におけるストロボ補助光装置の発光量を制御する制御手段とを備え、前記制御手段は、前記ストロボ補助光装置をプリ発光させた場合に、前記通常感度画素の信号のレベルが所定のレベル以下の場合には、該通常感度画素の信号に基づいて前記本撮影におけるストロボ補助光装置の発光量を制御し、前記通常感度画素の信号のレベルが前記所定のレベルを超えた場合には、前記低感度画素の信号に前記通常感度画素との感度比を補う係数を乗じた信号に基づいて、前記本撮影におけるストロボ補助光装置の発光量を制御することを特徴とする。 An image pickup apparatus according to the present invention is an image pickup element for converting a subject image formed by a photographing optical system into an electric signal, and includes a normal sensitivity pixel for image acquisition having a predetermined sensitivity, and the normal sensitivity pixel. And an image sensor having low-sensitivity pixels for photometry that are not used for image acquisition, which are discretely arranged between them and have a smaller aperture and lower sensitivity than the normal sensitivity pixels, and an object using a strobe auxiliary light device When shooting, the strobe auxiliary light device is pre-flashed before the main shooting, and the strobe assist in the main shooting is based on the result of converting the reflected light from the subject into an electrical signal by the image sensor. Control means for controlling the amount of light emitted from the optical device, and the control means, when the strobe auxiliary light device is pre-lighted, when the signal level of the normal sensitivity pixel is equal to or lower than a predetermined level. The amount of light emitted by the strobe auxiliary light device in the main photographing is controlled based on the signal of the normal sensitivity pixel, and when the level of the signal of the normal sensitivity pixel exceeds the predetermined level, the low sensitivity pixel The light emission amount of the strobe auxiliary light device in the main photographing is controlled based on a signal obtained by multiplying a signal by a coefficient that compensates a sensitivity ratio with the normal sensitivity pixel.

本発明によれば、機構の複雑化を招くことなく、1回のプリ発光で、本発光時の発光光量を適切に決定することが可能となる。   According to the present invention, it is possible to appropriately determine the amount of light emitted at the time of the main light emission by one pre-light emission without causing a complicated mechanism.

本発明の第1の実施形態に係わる撮像装置の構成を示すブロック図。1 is a block diagram showing a configuration of an imaging apparatus according to a first embodiment of the present invention. 第1の実施形態の撮像素子の画素の配置を示す図。FIG. 3 is a diagram illustrating an arrangement of pixels of the image sensor according to the first embodiment. 通常感度画素と低感度画素の飽和特性を示す図。The figure which shows the saturation characteristic of a normal sensitivity pixel and a low sensitivity pixel. 第1の実施形態のプリ発光の動作を示すフローチャート。6 is a flowchart showing the pre-light emission operation of the first embodiment. 第1の実施形態の映像評価の動作を示すフローチャート。6 is a flowchart illustrating an image evaluation operation according to the first embodiment. 通常感度画素と低感度画素の飽和特性を示す図。The figure which shows the saturation characteristic of a normal sensitivity pixel and a low sensitivity pixel. 本発明の第2の実施形態に係わる撮像装置の構成を示すブロック図。The block diagram which shows the structure of the imaging device concerning the 2nd Embodiment of this invention. 第2の実施形態の撮像素子の画素の配置を示す図。The figure which shows arrangement | positioning of the pixel of the image pick-up element of 2nd Embodiment. 第2の実施形態の撮像素子の撮像用画素の平面図と断面図。The top view and sectional drawing of the pixel for an imaging of the image pick-up element of 2nd Embodiment. 第2の実施形態の撮像素子の焦点検出用画素の平面図と断面図。The top view and sectional drawing of the focus detection pixel of the image sensor of 2nd Embodiment.

以下、本発明の実施形態について、添付図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(第1の実施形態)
図1は本発明の第1の実施形態に係わる撮像装置の構成を示すブロック図である。図1において、101はレンズ、102はレンズ101に内蔵される絞り、103はCMOSセンサ等の撮像素子、104は信号処理回路、105は制御装置、106はシャッターボタンである。107はTFT等の液晶表示装置、108は着脱自在のメモリーカード、109はストロボ補助光装置である。
(First embodiment)
FIG. 1 is a block diagram showing a configuration of an imaging apparatus according to the first embodiment of the present invention. In FIG. 1, 101 is a lens, 102 is a diaphragm built in the lens 101, 103 is an image sensor such as a CMOS sensor, 104 is a signal processing circuit, 105 is a control device, and 106 is a shutter button. 107 is a liquid crystal display device such as a TFT, 108 is a removable memory card, and 109 is a strobe auxiliary light device.

以下、上記のように構成される撮像装置の動作について説明する。   Hereinafter, the operation of the imaging apparatus configured as described above will be described.

本実施形態では、ストロボのプリ発光時にはストロボ補助光装置109が所定の光量で発光し、不図示の被写体からの反射光がレンズ101によって撮像素子103上に結像され、電気信号に変換された後に読み出される。撮像素子103からは画像取得用の通常感度画素の信号とともに低感度画素の信号も同時に読み出され信号処理回路104に入力される。   In the present embodiment, the strobe auxiliary light device 109 emits light with a predetermined light amount during pre-flash of the strobe, and reflected light from a subject (not shown) is imaged on the image sensor 103 by the lens 101 and converted into an electric signal. It will be read later. From the image sensor 103, the signal of the low sensitivity pixel as well as the signal of the normal sensitivity pixel for image acquisition are simultaneously read out and input to the signal processing circuit 104.

信号処理回路104では画像取得用の通常感度画素と、低感度画素とで別々に所定の処理が施され、画面内の各領域の被写体からの反射光の強度の結果が求められる。制御装置105では信号処理回路104で求めたプリ発光時の反射光の強度から本撮影時のストロボ発光量を決定する。   The signal processing circuit 104 performs predetermined processing separately for the normal sensitivity pixel for image acquisition and the low sensitivity pixel, and obtains the result of the intensity of the reflected light from the subject in each area in the screen. The control device 105 determines the flash emission amount at the time of actual photographing from the intensity of the reflected light at the time of pre-emission obtained by the signal processing circuit 104.

本撮影時には、プリ発光時の反射光の強度から決定したストロボ発光量でストロボ補助光装置109を発光させ、ストロボ補助光によって照明された不図示の被写体像はレンズ101により撮像素子103上に結像され、電気信号に変換される。その際絞り102が撮影条件によって適切な開口寸法に設定され、撮像素子103上には画像撮影に適切な光量の光束が到達する。   At the time of actual photographing, the strobe auxiliary light device 109 emits light with a strobe emission amount determined from the intensity of reflected light at the time of pre-emission, and a subject image (not shown) illuminated by the strobe auxiliary light is connected to the image sensor 103 by the lens 101. Imaged and converted into an electrical signal. At this time, the aperture 102 is set to an appropriate aperture size according to the imaging conditions, and a light flux having an appropriate amount of light for image capturing reaches the image sensor 103.

撮像素子103からは光電変換された被写体像の画像信号が読み出される。この際、画像取得用の通常感度画素の信号とともに低感度画素の信号も同時に読み出され信号処理回路104に入力される。   An image signal of a subject image subjected to photoelectric conversion is read from the image sensor 103. At this time, the low-sensitivity pixel signal is simultaneously read out together with the normal-sensitivity pixel signal for image acquisition and is input to the signal processing circuit 104.

画像取得用の通常感度画素および低感度画素の信号には所定の処理が施され、画像データに変換された後にメモリーカード108に記録されるとともに液晶表示装置107に表示される。   The signals of the normal sensitivity pixel and the low sensitivity pixel for image acquisition are subjected to predetermined processing, converted into image data, recorded on the memory card 108 and displayed on the liquid crystal display device 107.

図2は、撮像素子103の画素の配置の様子を示した図である。図2において、画像取得用の通常感度画素201としては赤色光を透過させるRフィルターを積層したR画素201R、緑色光を透過させるGフィルターを積層したG画素201G、青色光を透過させるBフィルターを積層したB画素201Bが配置されている。また、通常感度画素201に加えて低感度画素202が配置されている。低感度画素202は、R画素201R、G画素201G、B画素201Bと比べて開口面積が小さく形成され、画素内の光電変換部に入射する光量が制限されるため、通常感度画素201と比べて感度が例えば1/10となっている。   FIG. 2 is a diagram illustrating a state of arrangement of pixels of the image sensor 103. In FIG. 2, as the normal sensitivity pixel 201 for image acquisition, an R pixel 201R in which an R filter that transmits red light is stacked, a G pixel 201G in which a G filter that transmits green light is stacked, and a B filter that transmits blue light. The stacked B pixel 201B is arranged. In addition to the normal sensitivity pixel 201, a low sensitivity pixel 202 is disposed. The low-sensitivity pixel 202 has a smaller opening area than the R pixel 201R, the G pixel 201G, and the B pixel 201B, and the amount of light incident on the photoelectric conversion unit in the pixel is limited. The sensitivity is, for example, 1/10.

図3は、撮像素子103を用いた撮像装置において、ストロボ撮影時の発光量を決定するためのプリ発光動作を行った際の、被写体距離に応じた通常感度画素201と低感度画素202の出力の様子を示したグラフである。ここで画素の飽和出力を1とし、被写体距離は不図示のオートフォーカス機構などが判断する主被写体の距離を1として正規化している。   FIG. 3 shows the output of the normal sensitivity pixel 201 and the low sensitivity pixel 202 according to the subject distance when a pre-flash operation for determining the light emission amount at the time of flash photography is performed in an imaging device using the image sensor 103. It is the graph which showed the mode of. Here, the pixel saturation output is normalized to 1, and the subject distance is normalized with the distance of the main subject determined by an autofocus mechanism (not shown) as 1.

プリ発光時には、上述した主被写体距離の位置に、被写体の平均反射率である18%反射率の物体がある場合に、通常感度画素201の画素出力が飽和電荷量の約1/10となるようにストロボ補助光装置109の発光量が制御される。被写体からの反射光の強度は、ストロボ発光部を備えるカメラと被写体との距離である被写体距離の2乗に反比例する。このため、18%反射率の物体であっても、主被写体距離の約0.32倍よりも近い場合(近距離の場合)には、通常感度画素201の出力が飽和する。また、反射率が90%の白色の物体では主被写体距離の0.71倍よりも近い場合には、通常感度画素201の出力が飽和する。   At the time of pre-emission, the pixel output of the normal sensitivity pixel 201 is about 1/10 of the saturation charge amount when there is an object with 18% reflectance that is the average reflectance of the subject at the position of the main subject distance described above. In addition, the light emission amount of the strobe auxiliary light device 109 is controlled. The intensity of reflected light from the subject is inversely proportional to the square of the subject distance, which is the distance between the camera equipped with the strobe light emitting unit and the subject. For this reason, even with an 18% reflectance object, the output of the normal sensitivity pixel 201 is saturated when it is closer than about 0.32 times the main subject distance (in the case of a short distance). Further, in the case of a white object having a reflectance of 90%, the output of the normal sensitivity pixel 201 is saturated when it is closer than 0.71 times the main subject distance.

一方、低感度画素202は、感度が通常画素の例えば1/10であるため、18%反射率の物体の反射光が飽和する距離は主被写体距離の約0.1倍であり、90%反射率であっても主被写体距離の0.22倍までは飽和しない画素出力を得ることが出来る。   On the other hand, since the sensitivity of the low-sensitivity pixel 202 is, for example, 1/10 of that of a normal pixel, the distance at which the reflected light of an object having 18% reflectance is saturated is approximately 0.1 times the main subject distance, and 90% reflection is performed. Even if the ratio is, the pixel output that is not saturated can be obtained up to 0.22 times the main subject distance.

図4は、本実施形態のプリ発光動作全体を説明するフローチャートである。プリ発光動作が開始されると(S401)オートフォーカス機構が判断する主被写体距離情報の取得(S402)およびプリ発光以前の周辺定常光による露出情報が取得される(S403)。   FIG. 4 is a flowchart for explaining the entire pre-light emission operation of the present embodiment. When the pre-flash operation is started (S401), acquisition of main subject distance information determined by the autofocus mechanism (S402) and exposure information by ambient stationary light before pre-flash is acquired (S403).

上記の主被写体距離情報および露出情報のうち、ISO感度設定および絞り値情報からプリ発光量が決定され(S404)、プリ発光が行われる(S405)。周辺定常光およびストロボプリ発光によって照明された被写体光は撮像素子103上に結像され、光電変換されて映像信号として読み出される(S406)。そして、読み出された映像信号は画面領域内を分割した状態で評価される(S407)。   Of the main subject distance information and exposure information, the pre-emission amount is determined from the ISO sensitivity setting and the aperture value information (S404), and pre-emission is performed (S405). The subject light illuminated by the ambient stationary light and the strobe pre-emission is imaged on the image sensor 103, photoelectrically converted and read out as a video signal (S406). Then, the read video signal is evaluated in a state where the screen area is divided (S407).

この際、周辺定常光によってのみ照明されたプリ発光以前の映像信号との比較が行われてプリ発光による反射光の強度が抽出され、周辺定常光の状態も加味して本発光の光量が決定され(S408)、プリ発光動作を終了する(S409)。   At this time, the intensity of the reflected light from the pre-emission is extracted by comparing with the pre-emission video signal illuminated only by the ambient steady-state light, and the amount of the main emission is determined in consideration of the state of the ambient steady-state light. (S408), and the pre-flash operation is terminated (S409).

図5は、上記のプリ発光動作中のステップS407をさらに詳しく説明したフローチャートである。映像評価が開始されると(S501)、画面内を分割した小領域ごとに映像信号の輝度レベルが評価される。この際、通常画素感度201の信号レベルが撮像素子の飽和レベル以下か否かが判定され(S502)、飽和レベル以下の場合(S502−YES)には分割された小領域内の通常感度画素201の信号に所定の処理を施して輝度信号を得る(S503)。   FIG. 5 is a flowchart illustrating in more detail step S407 during the pre-light emission operation. When the video evaluation is started (S501), the luminance level of the video signal is evaluated for each small area divided in the screen. At this time, it is determined whether or not the signal level of the normal pixel sensitivity 201 is equal to or lower than the saturation level of the image sensor (S502). If the signal level is equal to or lower than the saturation level (S502-YES), the normal sensitivity pixel 201 in the divided small area is determined. Is subjected to predetermined processing to obtain a luminance signal (S503).

一方、飽和レベルに達していた場合(S502−NO)には当該小領域内の低感度画素202の信号に、通常感度画素201と低感度画素202の感度比を補う係数を乗じて輝度信号を得る(S504)。通常感度画素201又は低感度画素202の信号レベルに応じて適切な輝度信号を得ることによって映像評価が完了する(S505)。   On the other hand, when the saturation level has been reached (S502-NO), the signal of the low sensitivity pixel 202 in the small region is multiplied by a coefficient that compensates for the sensitivity ratio of the normal sensitivity pixel 201 and the low sensitivity pixel 202 to obtain a luminance signal. Obtain (S504). The video evaluation is completed by obtaining an appropriate luminance signal according to the signal level of the normal sensitivity pixel 201 or the low sensitivity pixel 202 (S505).

図6は図5の手順にて抽出された輝度信号が被写体距離に応じてどのように変化するかを示した図である。横軸は図3と同じく主被写体距離で正規化された被写体距離、縦軸は低感度画素202の感度を補正した後の通常感度画素201および低感度画素202の輝度信号レベルである。図からも明らかなように被写体距離が近く通常感度画素201の出力が飽和する領域であっても低感度画素202の出力を用いることによって適切な信号を得ることができ、一度のプリ発光で本撮影時の適切なストロボ発光量を求めることが可能となる。   FIG. 6 is a diagram showing how the luminance signal extracted in the procedure of FIG. 5 changes according to the subject distance. The horizontal axis represents the subject distance normalized by the main subject distance as in FIG. 3, and the vertical axis represents the luminance signal levels of the normal sensitivity pixel 201 and the low sensitivity pixel 202 after the sensitivity of the low sensitivity pixel 202 is corrected. As is apparent from the figure, an appropriate signal can be obtained by using the output of the low sensitivity pixel 202 even in a region where the subject distance is short and the output of the normal sensitivity pixel 201 is saturated. It is possible to obtain an appropriate amount of flash emission at the time of shooting.

(第2の実施形態)
図7は本発明の第2の実施形態に係わる撮像装置の構成を示すブロック図であり、第1の実施形態と同様の部材には同一符号を付し説明を省略する。また703は位相差検出機能を有する撮像素子である。
(Second Embodiment)
FIG. 7 is a block diagram showing a configuration of an imaging apparatus according to the second embodiment of the present invention. The same members as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Reference numeral 703 denotes an image sensor having a phase difference detection function.

本発明の第2の実施形態においてもプリ発光時の基本的な動作は第1の実施形態と同様であるが、本実施形態においては低感度画素202に変えて位相差検出用画素(以下では焦点検出用画素とも呼ぶ)802が用いられる。   In the second embodiment of the present invention, the basic operation at the time of pre-emission is the same as that of the first embodiment. However, in the present embodiment, the low-sensitivity pixel 202 is replaced with a phase difference detection pixel (hereinafter, referred to as a phase difference detection pixel). 802) (also referred to as focus detection pixels) is used.

図8は撮像素子703の画素の配置の様子を示した図である。画像取得用の通常感度画素(以下では撮像用画素とも呼ぶ)801は第1の実施形態の通常感度画素201と同様である。さらに撮像素子703上には位相差検出用画素802が配置されている。位相差検出用画素802は画素領域内の左右にオフセットされた位置にスリット状に開口が形成されており、通常感度画素801と位相差検出用画素802の感度の比は、第1の実施形態における通常感度画素201と低感度画素202の感度の比と同様である。   FIG. 8 is a diagram illustrating a state of arrangement of pixels of the image sensor 703. A normal sensitivity pixel for image acquisition (hereinafter also referred to as an imaging pixel) 801 is the same as the normal sensitivity pixel 201 of the first embodiment. Further, a phase difference detection pixel 802 is disposed on the image sensor 703. The phase difference detection pixel 802 has a slit-like opening at a position offset left and right in the pixel region, and the sensitivity ratio between the normal sensitivity pixel 801 and the phase difference detection pixel 802 is the same as that of the first embodiment. The sensitivity ratio between the normal sensitivity pixel 201 and the low sensitivity pixel 202 in FIG.

図9及び図10は、撮像用画素(通常感度画素)と焦点検出用画素(位相差検出用画素)の構造を説明する図である。本実施形態では、撮影光学系の射出瞳の一部領域(一部が遮光された領域)を通る光を受光する焦点検出用画素が複数設けられている。本実施形態では、2行×2列(以降、行=X、列=Yとし、例えば2行×2列は2×2と表す。)の4画素のうち対角2画素にG(緑色)の分光感度を有する画素を配置し、他の2画素にR(赤色)とB(青色)の分光感度を有する画素を各1個配置したベイヤー配列を採用している。そして、ベイヤー配列の間に、後述する構造の焦点検出用画素を分散配置している。   9 and 10 are diagrams for explaining the structures of the imaging pixels (normal sensitivity pixels) and the focus detection pixels (phase difference detection pixels). In the present embodiment, a plurality of focus detection pixels that receive light passing through a partial region (a region where a part is shielded) of the exit pupil of the photographing optical system are provided. In the present embodiment, G (green) is applied to 2 diagonal pixels out of 4 pixels of 2 rows × 2 columns (hereinafter, row = X, column = Y, for example, 2 rows × 2 columns are represented as 2 × 2). A Bayer arrangement is employed in which pixels having a spectral sensitivity of 1 are arranged and one pixel having a spectral sensitivity of R (red) and B (blue) is arranged for each of the other two pixels. In addition, focus detection pixels having a structure to be described later are distributed between the Bayer arrays.

図9に撮像用画素の配置と構造を示す。図9(a)は2×2の撮像用画素の平面図である。周知のごとく、ベイヤー配列では対角方向にG画素が、他の2画素にRとBの画素が配置され、2×2の構造が繰り返し配置される。図9(b)は図9(a)のA−A断面図である。MLは各画素の最前面に配置されたオンチップマイクロレンズである。CFRはR(赤色)のカラーフィルターである。CFGはG(緑色)のカラーフィルターである。PD(PhotoDiode)はCMOSセンサの光電変換部を模式的に示したものである。CL(ContactLayer)はCMOSセンサ内の各種信号を伝達する信号線を形成するための配線層である。TL(TakingLens)は撮影光学系を模式的に示したものである。   FIG. 9 shows the arrangement and structure of the imaging pixels. FIG. 9A is a plan view of 2 × 2 imaging pixels. As is well known, in the Bayer array, G pixels are arranged diagonally, R and B pixels are arranged in the other two pixels, and a 2 × 2 structure is repeatedly arranged. FIG.9 (b) is AA sectional drawing of Fig.9 (a). ML is an on-chip microlens arranged on the forefront of each pixel. CFR is an R (red) color filter. CFG is a G (green) color filter. PD (PhotoDiode) schematically shows a photoelectric conversion unit of a CMOS sensor. CL (Contact Layer) is a wiring layer for forming signal lines for transmitting various signals in the CMOS sensor. TL (TakingLens) schematically shows a photographing optical system.

撮像用画素のオンチップマイクロレンズMLと光電変換部PDは、撮影光学系TLを通過した光束を可能な限り有効に取り込むように構成されている。撮影光学系TLの射出瞳EP(ExitPupil)と光電変換部PDは、オンチップマイクロレンズMLにより共役関係にあり、かつ光電変換部PDの有効面積は大面積に設計される。また、図9(b)ではR画素の入射光束について説明したが、G画素及びB(青色)画素も同一の構造となっている。従って、撮像用のRGB各画素に対応した射出瞳EPは大口径となり、被写体からの光束を効率よく取り込んで画像信号のS/Nを向上させている。このように、複数の撮像用画素は、射出瞳EPの全域を通る光を各々が受光して被写体の像を生成する。   The on-chip microlens ML and the photoelectric conversion unit PD of the imaging pixel are configured to capture the light beam that has passed through the photographing optical system TL as effectively as possible. The exit pupil EP (ExitPupil) of the photographing optical system TL and the photoelectric conversion unit PD are in a conjugate relationship by the on-chip microlens ML, and the effective area of the photoelectric conversion unit PD is designed to be large. In FIG. 9B, the incident light beam of the R pixel has been described, but the G pixel and the B (blue) pixel have the same structure. Accordingly, the exit pupil EP corresponding to each of the RGB pixels for imaging has a large aperture, and the light flux from the subject is efficiently taken in to improve the S / N of the image signal. As described above, each of the plurality of imaging pixels receives light passing through the entire area of the exit pupil EP and generates an image of the subject.

図10は、撮影光学系TLの水平方向(横方向)に瞳分割を行なうための焦点検出用画素の配置と構造を示す図である。ここで水平方向又は横方向とは、撮影光学系の光軸と撮影画面の長辺とが地面に平行となるように撮像装置を構えたとき、この光軸に直交し、かつ水平方向に伸びる直線に沿った方向をいう。また、図10における瞳分割方向は水平方向である。図10(a)は、焦点検出用画素を含む2行×2列の画素の平面図である。記録又は観賞のための画像信号を得る場合、G画素で輝度情報の主成分を取得する。そして人間の画像認識特性は輝度情報に敏感であるため、G画素が欠損すると画質劣化が認知されやすい。一方でR画素又はB画素は、色情報(色差情報)を取得する画素であるが、人間の視覚特性は色情報には鈍感であるため、色情報を取得する画素は多少の欠損が生じても画質劣化は認識され難い。そこで本実施形態においては、2行×2列の画素のうち、G画素は撮像用画素として残し、R画素とB画素を焦点検出用画素に置き換える。この焦点検出用画素を図10(a)においてSHA及びSHBと示す。   FIG. 10 is a diagram showing the arrangement and structure of focus detection pixels for performing pupil division in the horizontal direction (lateral direction) of the imaging optical system TL. Here, the horizontal direction or the horizontal direction is perpendicular to the optical axis and extends in the horizontal direction when the imaging apparatus is set so that the optical axis of the imaging optical system and the long side of the imaging screen are parallel to the ground. The direction along a straight line. Further, the pupil division direction in FIG. 10 is the horizontal direction. FIG. 10A is a plan view of pixels of 2 rows × 2 columns including focus detection pixels. When obtaining an image signal for recording or viewing, the main component of luminance information is acquired by G pixels. Since human image recognition characteristics are sensitive to luminance information, image quality degradation is easily recognized when G pixels are lost. On the other hand, the R pixel or the B pixel is a pixel that acquires color information (color difference information). However, since human visual characteristics are insensitive to color information, the pixel that acquires color information has some defects. However, image quality degradation is difficult to recognize. Therefore, in the present embodiment, among the pixels of 2 rows × 2 columns, the G pixel is left as an imaging pixel, and the R pixel and the B pixel are replaced with focus detection pixels. The focus detection pixels are denoted as SHA and SHB in FIG.

図10(a)におけるA−A断面図を図10(b)に示す。図10(b)においては、撮影光学系TLの射出瞳EPの径は、位相差検出可能な状態を示している。   FIG. 10B is a cross-sectional view taken along the line AA in FIG. In FIG. 10B, the diameter of the exit pupil EP of the photographic optical system TL indicates a state in which the phase difference can be detected.

マイクロレンズMLと、光電変換素子PDは、図9(b)に示した撮像用画素と同一構造である。本実施形態においては、焦点検出用画素の信号は画像生成には用いないため、色分離用カラーフィルタの代わりに透明膜CFW(白色)が配置される。また、撮像素子で瞳分割を行なうため、配線層CLの開口部はマイクロレンズMLの中心線に対して一方向に偏倚している。具体的には、画素SHAの開口部OPHAは右側に偏倚しているため、撮影光学系TLの左側の射出瞳EPHAを通過した光束を受光する。同様に、画素SHBの開口部OPHBは左側に偏倚しているため、撮影光学系TLの右側の射出瞳EPHBを通過した光束を受光する。よって、画素SHAを水平方向に規則的に配列し、これらの画素群で取得した被写体像をA像とする。また、画素SHBも水平方向に規則的に配列し、これらの画素群で取得した被写体像をB像とすると、A像とB像の相対位置を検出することで、被写体像のピントずれ量(デフォーカス量)が検出できる。   The microlens ML and the photoelectric conversion element PD have the same structure as the imaging pixel shown in FIG. In the present embodiment, since the signal of the focus detection pixel is not used for image generation, a transparent film CFW (white) is disposed instead of the color separation color filter. Moreover, since pupil division is performed by the image sensor, the opening of the wiring layer CL is biased in one direction with respect to the center line of the microlens ML. Specifically, since the opening OPHA of the pixel SHA is biased to the right side, the light beam that has passed through the left exit pupil EPHA of the imaging optical system TL is received. Similarly, since the opening OPHB of the pixel SHB is biased to the left side, the light beam that has passed through the right exit pupil EPHB of the imaging optical system TL is received. Therefore, the pixels SHA are regularly arranged in the horizontal direction, and the subject image acquired by these pixel groups is defined as an A image. In addition, the pixels SHB are also regularly arranged in the horizontal direction, and the subject image acquired by these pixel groups is a B image. By detecting the relative positions of the A image and the B image, the amount of focus shift ( Defocus amount) can be detected.

なお、上記の画素SHA及びSHBでは、撮影画面の横方向に輝度分布を有した被写体、例えば縦線に対しては焦点検出可能だが、縦方向に輝度分布を有する横線は焦点検出不能である。そこで本実施形態では、後者についても焦点状態を検出できるよう、撮影光学系の垂直方向(縦方向)にも瞳分割を行なう画素も備えるよう構成されている。   In the pixels SHA and SHB, focus detection is possible for an object having a luminance distribution in the horizontal direction of the shooting screen, for example, a vertical line, but focus detection is not possible for a horizontal line having a luminance distribution in the vertical direction. Therefore, in this embodiment, the latter is also provided with pixels that perform pupil division in the vertical direction (longitudinal direction) of the photographing optical system so that the focus state can be detected.

また、焦点検出用画素は、撮影画像上では欠損画素となるため、この焦点検出用画素の位置の画像信号は、周囲の撮像用画素の信号を用いて補間する。   Further, since the focus detection pixel is a defective pixel on the captured image, the image signal at the position of the focus detection pixel is interpolated using the signals of the surrounding imaging pixels.

本実施形態では、ストロボのプリ発光時には、撮像素子703より通常感度画素801の出力とともに位相差検出用画素802の出力を読み出し、適切な処置を施すことによって、第1の実施形態と同様に一度のプリ発光で適切なストロボ発光量を求めることが可能になる。また、プリ発光時の画面内の焦点情報も同時に得ることが可能となる。   In the present embodiment, when the strobe is pre-flashed, the output of the phase difference detection pixel 802 is read out together with the output of the normal sensitivity pixel 801 from the image sensor 703, and appropriate measures are taken to perform the same once as in the first embodiment. It is possible to obtain an appropriate amount of strobe light emission with the pre-flash. Also, it is possible to obtain focus information in the screen at the time of pre-emission at the same time.

Claims (3)

撮影光学系により結像された被写体像を電気信号に変換するための撮像素子であって、所定の感度を有する画像取得用の通常感度画素と、前記通常感度画素の間に離散的に配置され、前記通常感度画素よりも開口を小さくして感度を低くした画像取得に用いない測光用の低感度画素とを備える撮像素子と、
ストロボ補助光装置を用いて被写体を照明し、撮影を行う場合に、本撮影の前に前記ストロボ補助光装置をプリ発光させ、被写体からの反射光を前記撮像素子で電気信号に変換した結果に基づいて前記本撮影におけるストロボ補助光装置の発光量を制御する制御手段とを備え、
前記制御手段は、前記ストロボ補助光装置をプリ発光させた場合に、前記通常感度画素の信号のレベルが所定のレベル以下の場合には、該通常感度画素の信号に基づいて前記本撮影におけるストロボ補助光装置の発光量を制御し、前記通常感度画素の信号のレベルが前記所定のレベルを超えた場合には、前記低感度画素の信号に前記通常感度画素との感度比を補う係数を乗じた信号に基づいて、前記本撮影におけるストロボ補助光装置の発光量を制御することを特徴とする撮像装置。
An image sensor for converting a subject image formed by a photographing optical system into an electrical signal, and is discretely arranged between normal sensitivity pixels for image acquisition having a predetermined sensitivity and the normal sensitivity pixels. An image sensor comprising a low-sensitivity pixel for photometry that is not used for image acquisition with a smaller aperture and lower sensitivity than the normal sensitivity pixel;
When illuminating the subject using a strobe auxiliary light device and taking a picture, the strobe auxiliary light device is pre-flashed before the main photographing, and the reflected light from the subject is converted into an electrical signal by the image sensor. Control means for controlling the light emission amount of the strobe auxiliary light device in the main photographing based on,
When the strobe auxiliary light device pre-lights and the level of the signal of the normal sensitivity pixel is equal to or lower than a predetermined level, the control means is configured to use the strobe in the main photographing based on the signal of the normal sensitivity pixel. The amount of light emitted from the auxiliary light device is controlled, and when the signal level of the normal sensitivity pixel exceeds the predetermined level, the signal of the low sensitivity pixel is multiplied by a coefficient that compensates for the sensitivity ratio with the normal sensitivity pixel. An image pickup apparatus that controls a light emission amount of the strobe auxiliary light device in the main photographing based on the received signal.
前記通常感度画素よりも低い感度とは、前記通常感度画素の約1/10の感度であることを特徴とする請求項1に記載の撮像装置。   The imaging device according to claim 1, wherein the sensitivity lower than the normal sensitivity pixel is about 1/10 the sensitivity of the normal sensitivity pixel. 前記通常感度画素は、前記撮影光学系の射出瞳を通過した光束を受光する撮像用画素であり、前記低感度画素は、前記撮影光学系の射出瞳の一部が遮光された光束を受光する焦点検出用画素であることを特徴とする請求項1または2に記載の撮像装置。   The normal sensitivity pixel is an imaging pixel that receives a light beam that has passed through an exit pupil of the photographing optical system, and the low sensitivity pixel receives a light beam in which a part of the exit pupil of the photographing optical system is shielded. The imaging apparatus according to claim 1, wherein the imaging apparatus is a focus detection pixel.
JP2010264291A 2010-11-26 2010-11-26 Imaging device Expired - Fee Related JP5804693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010264291A JP5804693B2 (en) 2010-11-26 2010-11-26 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010264291A JP5804693B2 (en) 2010-11-26 2010-11-26 Imaging device

Publications (2)

Publication Number Publication Date
JP2012113248A JP2012113248A (en) 2012-06-14
JP5804693B2 true JP5804693B2 (en) 2015-11-04

Family

ID=46497482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010264291A Expired - Fee Related JP5804693B2 (en) 2010-11-26 2010-11-26 Imaging device

Country Status (1)

Country Link
JP (1) JP5804693B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6175748B2 (en) * 2012-08-29 2017-08-09 株式会社ニコン Imaging device
JP2017216711A (en) * 2017-07-13 2017-12-07 株式会社ニコン Imaging apparatus
JP7016712B2 (en) * 2018-02-02 2022-02-07 キヤノン株式会社 Image pickup device, control method of image pickup device, and program
JP7241511B2 (en) * 2018-11-16 2023-03-17 キヤノン株式会社 Imaging device and its control method
JP2021180459A (en) * 2020-05-15 2021-11-18 ソニーセミコンダクタソリューションズ株式会社 Imaging device and program

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601603B2 (en) * 1979-10-31 1985-01-16 株式会社リコー Camera distance metering device
JP3592147B2 (en) * 1998-08-20 2004-11-24 キヤノン株式会社 Solid-state imaging device
JP4119566B2 (en) * 1999-05-06 2008-07-16 オリンパス株式会社 Color imaging device and color imaging device
JP4421793B2 (en) * 2001-07-13 2010-02-24 富士フイルム株式会社 Digital camera
JP4264251B2 (en) * 2002-12-09 2009-05-13 富士フイルム株式会社 Solid-state imaging device and operation method thereof
JP4025207B2 (en) * 2003-01-17 2007-12-19 富士フイルム株式会社 Solid-state image sensor and digital camera
JP2008083243A (en) * 2006-09-26 2008-04-10 Fujifilm Corp Photographing device and exposure control method
JP2009303043A (en) * 2008-06-16 2009-12-24 Panasonic Corp Solid-state imaging device and signal processing method thereof
JP5251563B2 (en) * 2009-02-04 2013-07-31 日本テキサス・インスツルメンツ株式会社 Imaging device

Also Published As

Publication number Publication date
JP2012113248A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5947507B2 (en) Imaging apparatus and control method thereof
US9479688B2 (en) Image capture apparatus
JP5322561B2 (en) Imaging apparatus and control method thereof
US8730374B2 (en) Focus detection apparatus
US8049801B2 (en) Image sensor and imaging apparatus
US8611738B2 (en) Image capturing apparatus
EP2811340B1 (en) Image sensing apparatus, image sensing system and focus detection method
US8890988B2 (en) Image pickup device, including gain-setting of pixel arrays, image pickup apparatus, control method, and program
US8164642B2 (en) Image-capturing device with a destructive read-type image sensor
EP1975695B1 (en) Focus detection device, focusing state detection method and imaging apparatus
JP5180717B2 (en) Imaging device
US8063978B2 (en) Image pickup device, focus detection device, image pickup apparatus, method for manufacturing image pickup device, method for manufacturing focus detection device, and method for manufacturing image pickup apparatus
JP5276374B2 (en) Focus detection device
US9277150B2 (en) Image pickup apparatus and camera system capable of improving calculation accuracy of defocus amount
US9531939B2 (en) Detection apparatus, image pickup apparatus, image pickup system, and control method of the detection apparatus
CN102203655A (en) Image capturing apparatus
US9247122B2 (en) Focus adjustment apparatus and control method therefor
JP5804693B2 (en) Imaging device
JP2009063952A (en) Imaging device, focus detecting device and imaging apparatus
JP5609098B2 (en) Imaging device
JP2008176114A (en) Focus detecting device and imaging apparatus
JP2014165778A (en) Solid state image sensor, imaging device and focus detector
JP2014130231A (en) Imaging apparatus, method for controlling the same, and control program
JP5962830B2 (en) Focus detection device
JP5804104B2 (en) Focus adjustment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150901

R151 Written notification of patent or utility model registration

Ref document number: 5804693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees