JP5804479B2 - Manufacturing method of resin-encapsulated semiconductor device and resin-encapsulated semiconductor device - Google Patents
Manufacturing method of resin-encapsulated semiconductor device and resin-encapsulated semiconductor device Download PDFInfo
- Publication number
- JP5804479B2 JP5804479B2 JP2013001005A JP2013001005A JP5804479B2 JP 5804479 B2 JP5804479 B2 JP 5804479B2 JP 2013001005 A JP2013001005 A JP 2013001005A JP 2013001005 A JP2013001005 A JP 2013001005A JP 5804479 B2 JP5804479 B2 JP 5804479B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- semiconductor device
- resin
- type epoxy
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/921—Connecting a surface with connectors of different types
- H01L2224/9212—Sequential connecting processes
- H01L2224/92122—Sequential connecting processes the first connecting process involving a bump connector
- H01L2224/92125—Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1301—Thyristor
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Wire Bonding (AREA)
Description
本発明は、狭い隙間への含浸性が優れ、充填剤の沈降及びボイドの発生が少ない液状エポキシ樹脂組成物及びこの樹脂組成物を用いた電子部品装置に関する。 The present invention relates to a liquid epoxy resin composition that is excellent in impregnation into a narrow gap and has little sedimentation and void generation of a filler, and an electronic component device using this resin composition.
半導体は素子を外部環境から保護して各種信頼性を確保すると同時に基板への実装を容易にするためパッケージが必要である。パッケージには種々の形態があるが、一般的には金属製リードフレームに形成されたタブに素子を固着し、素子表面の電極とインナーリード間を金ワイヤで電気的に接続し、素子、金ワイヤ及びリードフレームの一部をエポキシ樹脂組成物を用い低圧トランスファ成形法で封止したパッケージが広く実用に供されている。このような樹脂封止型半導体装置は、素子サイズに比べてパッケージの外形がかなり大きく、高密度実装の観点からは極めて非効率的である。そのため、パッケージ形態はピン挿入型から表面実装型に移行するとともに小型・薄型化が積極的に行われた。しかし、金属製リードフレームに素子を搭載し、ワイヤボンディングしたものを樹脂封止する構造を採用する以上、実装効率を高めるには限界があった。そこで、COB(Chip on Board)、ハイブリッドIC、モジュール、カードなどの分野では、一部の素子を高密度実装するためベアチップをバンプを介して基板にフェースダウンで実装するいわゆるフリップチップ実装を採用してきた。最近は素子の高集積化、高機能化、多ピン化、システム化、高速化、低コスト化などに対応するためCSP(Chip Size/Scale Package)と呼ばれる種々の小型パッケージが開発され、パッケージ用基板に素子を搭載する方法として、実装効率のほか電気特性、多ピン化対応に優れるフリップチップ実装の採用が増えている。また、最近の表面実装型パッケージやCSPは、端子がエリアアレイ状に配置されたものが多く、この種のパッケージの実装形態はフリップチップ実装と同じである。 A semiconductor needs a package in order to protect the element from the external environment and ensure various reliability, and at the same time facilitate mounting on a substrate. There are various types of packages, but in general, an element is fixed to a tab formed on a metal lead frame, and an electrode on the element surface and an inner lead are electrically connected by a gold wire, and the element, gold A package in which a part of a wire and a lead frame is sealed by a low-pressure transfer molding method using an epoxy resin composition is widely used. Such a resin-encapsulated semiconductor device has a considerably larger package outer shape than the element size, and is extremely inefficient from the viewpoint of high-density mounting. For this reason, the package form has shifted from the pin insertion type to the surface mount type, and has been actively reduced in size and thickness. However, as long as a structure in which an element is mounted on a metal lead frame and a wire-bonded structure is sealed with resin is employed, there is a limit to increasing the mounting efficiency. Therefore, in the fields of COB (Chip on Board), hybrid ICs, modules, cards, etc., so-called flip chip mounting has been adopted in which a bare chip is mounted face-down on a substrate via bumps in order to mount some elements at high density. It was. Recently, various small packages called CSP (Chip Size / Scale Package) have been developed to cope with high integration, high functionality, high pin count, systemization, high speed, and low cost of devices. As a method for mounting an element on a substrate, flip chip mounting which is excellent in mounting efficiency, electrical characteristics, and high pin count is increasing. Also, many recent surface mount packages and CSPs have terminals arranged in an area array, and the mounting form of this type of package is the same as flip chip mounting.
ところで、フリップチップ実装を行う場合、素子と基板あるいはCSPはそれぞれ熱膨張係数が異なるため接合部に熱応力が発生し接続信頼性の確保が重要な課題である。また、ベアチップは回路形成面が充分に保護されていないため、水分やイオン性不純物が浸入し易く耐湿信頼性の確保も重要な課題である。その対策として、通常素子と基板の間隙にアンダーフィル材としてエポキシ樹脂組成物を充填して介在させ、接合部の補強及び素子の保護を行っている。樹脂組成物を介在させる方法には種々の方式があるが、一般的には液状のエポキシ樹脂組成物を素子の周辺に滴下し、毛細管現象により素子と基板の隙間にしみ込ませる(含浸)方法が採用されている(特許文献1参照。)。 By the way, when flip chip mounting is performed, the thermal expansion coefficient is different between the element and the substrate or the CSP, so that thermal stress is generated at the joint and it is important to ensure connection reliability. In addition, since the circuit forming surface of the bare chip is not sufficiently protected, moisture and ionic impurities are liable to enter, and ensuring moisture resistance reliability is also an important issue. As a countermeasure, an epoxy resin composition as an underfill material is usually filled in the gap between the element and the substrate to interpose the reinforcing portion and protect the element. There are various methods for interposing a resin composition. Generally, there is a method of dripping a liquid epoxy resin composition around the element and soaking it in the gap between the element and the substrate by capillary action (impregnation). It is adopted (see Patent Document 1).
アンダーフィル材として用いるエポキシ樹脂組成物を、毛細管現象を利用して素子と基板の隙間に含浸させる場合、生産性の観点から含浸時間はできるだけ短くする必要がある。この場合の含浸速度(t)は次式(1)によって表される。
t=3ηL2/hγ ・・・(1)
ここで、η:アンダーフィル材の粘度、L:含浸長さ、h:ギャップ、γ:アンダーフィル材の表面張力である。式(1)から明らかなように、含浸速度を短くするためには樹脂組成物の粘度は低い程有利である。ところが、粘度を低くするとエポキシ樹脂組成物に含まれる充填剤の沈降が問題になる。充填剤の沈降速度(V)は次式(2)で示される。
V=g(ρs−ρ)d2/18η ・・・(2)
ここで、g:重力加速度(cm/s2)、ρs:充填剤密度(g/cm3)、ρ:樹脂組成物密度(g/cm3)、d:充填剤の直径(cm)、η:樹脂組成物粘度である。式(2)から、樹脂組成物粘度を変えずに充填剤の沈降を抑制するには、充填剤の粒径を細かくする必要があることが分かる。ところが、アンダーフィル用エポキシ樹脂組成物は、接合部の信頼性を確保するため線膨張係数をバンプ材と同程度にする必要があり、それには充填剤を高充填する必要がある。しかし、充填剤を高充填したり、沈降を抑制するために粒径を細かくしたりするとエポキシ樹脂組成物の粘度が上昇し含浸性が低下するという問題がある。そこで、アンダーフィル用エポキシ樹脂組成物においては、含浸速度を早めるための低粘度化、充填剤の沈降を防止するための充填剤の細粒化、低熱膨張化のための充填剤の高充填といった課題を同時に解決する必要があった。
さらに、このようなアンダーフィル用エポキシ樹脂組成物は無加圧状態で素子と基板の隙間に含浸させ加熱硬化するため、素子、基板及びバンプとの界面あるいは組成物内部にボイドが残存(または発生)し、熱ストレスが加わると界面剥離やクラックが発生することがあり、ボイドの低減も重要な課題になっている。最近は、素子の高集積度化、多機能化などによってチップサイズが大型化する一方、多ピン化によってバンプの小径化、狭ピッチ化が行われ、結果的にチップと基板の隙間が狭まる方向にあり、上記課題の解決がますます難しくなっていた。
When the epoxy resin composition used as the underfill material is impregnated in the gap between the element and the substrate using the capillary phenomenon, the impregnation time needs to be as short as possible from the viewpoint of productivity. The impregnation rate (t) in this case is expressed by the following equation (1).
t = 3ηL 2 / hγ (1)
Here, η: viscosity of the underfill material, L: impregnation length, h: gap, γ: surface tension of the underfill material. As apparent from the formula (1), the lower the viscosity of the resin composition, the more advantageous in order to shorten the impregnation rate. However, when the viscosity is lowered, sedimentation of the filler contained in the epoxy resin composition becomes a problem. The settling velocity (V) of the filler is expressed by the following equation (2).
V = g (ρ s −ρ) d 2 / 18η (2)
Where, g: acceleration of gravity (cm / s 2 ), ρ s : filler density (g / cm 3 ), ρ: resin composition density (g / cm 3 ), d: diameter of filler (cm), η: Resin composition viscosity. From formula (2), it can be seen that in order to suppress sedimentation of the filler without changing the viscosity of the resin composition, it is necessary to make the particle size of the filler fine. However, the epoxy resin composition for underfill needs to have the same linear expansion coefficient as that of the bump material in order to ensure the reliability of the joint portion, and it is necessary to highly fill the filler. However, if the filler is highly filled or if the particle size is made fine in order to suppress sedimentation, there is a problem that the viscosity of the epoxy resin composition increases and the impregnation property decreases. Therefore, in the epoxy resin composition for underfill, the viscosity is lowered to increase the impregnation rate, the filler is finely divided to prevent the filler from being settled, and the filler is filled to reduce the thermal expansion. It was necessary to solve the problem at the same time.
Furthermore, since such an epoxy resin composition for underfill is impregnated into the gap between the element and the substrate under heat and cured by heating, voids remain (or occur) at the interface between the element, the substrate and the bump or inside the composition. However, when thermal stress is applied, interface peeling and cracks may occur, and the reduction of voids is also an important issue. In recent years, the chip size has been increased due to higher integration and multi-functionality of elements, while the bump diameter has been reduced and the pitch has been reduced by increasing the number of pins, resulting in a narrower gap between the chip and the substrate. Therefore, it has become more difficult to solve the above problems.
本発明はかかる状況を鑑みなされたもので、広い面積、狭い隙間への含浸性が優れ、充填剤の沈降及びボイドの発生が少ない液状エポキシ樹脂組成物及び該樹脂組成物を用いた信頼性に優れる半導体装置等の電子部品装置を提供しようとするものである。 The present invention has been made in view of such a situation, and has a liquid epoxy resin composition excellent in impregnation into a large area and a narrow gap, and less likely to cause sedimentation and voiding of a filler, and reliability using the resin composition. An object of the present invention is to provide an excellent electronic component device such as a semiconductor device.
本発明者は上記の課題を解決するために鋭意検討を重ねた結果、エポキシ樹脂、硬化剤、無機充填剤を必須成分とし、必要に応じて硬化促進剤を含有する液状エポキシ樹脂組成物において、回転式粘度計の回転数n1及びn2(n1/n2<0.5)で測定した粘度比η1/η2(以下、チキソトロピック指数という。)を0.8より小さく、換言すると、液状エポキシ樹脂組成物にダイラタンシー(Dilatancy)を付与し、液状エポキシ樹脂組成物が素子と基板の隙間に毛細管現象で含浸する極低剪断速度領域における粘度を低くすることにより、
また、好ましくは、無機充填剤の平均粒径を0.3〜5μmの範囲内とすることにより、
上記の目的を達成しうることを見出し、本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the present inventor has an epoxy resin, a curing agent, an inorganic filler as essential components, and a liquid accelerator resin composition containing a curing accelerator as necessary. Viscosity ratio η 1 / η 2 (hereinafter referred to as thixotropic index) measured at rotational speeds n 1 and n 2 (n 1 / n 2 <0.5) of the rotary viscometer is smaller than 0.8, in other words Then, by adding dilatancy to the liquid epoxy resin composition, by reducing the viscosity in the extremely low shear rate region where the liquid epoxy resin composition impregnates the gap between the element and the substrate by capillary action,
Further, preferably, by setting the average particle size of the inorganic filler within the range of 0.3 to 5 μm,
The inventors have found that the above object can be achieved and have completed the present invention.
すなわち、本発明は、
(1)(A)エポキシ樹脂、(B)硬化剤及び(C)無機充填剤を必須成分とする無溶剤型液状エポキシ樹脂組成物であってチキソトロピック指数が0.8より小さいことを特徴する液状エポキシ樹脂組成物に関する。
また、本発明は、(2)(C)無機充填剤の平均粒径が0.3〜5μmの範囲内にある上記(1)記載の液状エポキシ樹脂組成物に関する。
That is, the present invention
(1) A solvent-free liquid epoxy resin composition comprising (A) an epoxy resin, (B) a curing agent and (C) an inorganic filler as essential components, and having a thixotropic index of less than 0.8 The present invention relates to a liquid epoxy resin composition.
Moreover, this invention relates to the liquid epoxy resin composition of the said (1) description whose average particle diameter of (2) (C) inorganic filler exists in the range of 0.3-5 micrometers.
また、本発明は、(3)(D)硬化促進剤をさらに含有する上記(1)または(2)記載の液状エポキシ樹脂組成物、
(4)(A)エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、水添加ビスフェノールA型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、アミノグリシジルエーテル型エポキシ樹脂から選ばれる少なくとも1種類の液状エポキシ樹脂を含む上記(1)〜(3)のいずれかに記載の液状エポキシ樹脂組成物、
(5)(B)硬化剤が、液状酸無水物、液状フェノール樹脂、液状芳香族アミンから選ばれる少なくとも1種類の化合物を含む上記(1)〜(4)のいずれかに記載の液状エポキシ樹脂組成物に関する。
The present invention also provides (3) the liquid epoxy resin composition according to the above (1) or (2), further containing (D) a curing accelerator,
(4) (A) Epoxy resin is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, water-added bisphenol A type epoxy resin, naphthalenediol type epoxy resin, aminoglycidyl The liquid epoxy resin composition according to any one of the above (1) to (3), comprising at least one liquid epoxy resin selected from ether type epoxy resins,
(5) The liquid epoxy resin according to any one of the above (1) to (4), wherein the (B) curing agent contains at least one compound selected from a liquid acid anhydride, a liquid phenol resin, and a liquid aromatic amine. Relates to the composition.
また、本発明は、(6)(C)無機充填剤が球状の溶融シリカであり、組成物全体に対する配合量(容積%)が充填剤単体の最密充填分率よりも少なく最密充填分率×0.6よりも多い量である上記(1)〜(5)のいずれかに記載の液状エポキシ樹脂組成物、
(7)該溶融シリカの99重量%以上が粒径が0.1μmから16μmの範囲内にある上記(6)記載の液状エポキシ樹脂組成物に関する。
In the present invention, (6) (C) the inorganic filler is spherical fused silica, and the blending amount (volume%) with respect to the whole composition is less than the closest packing fraction of the filler alone. The liquid epoxy resin composition according to any one of the above (1) to (5), wherein the liquid epoxy resin composition is in an amount greater than the ratio x 0.6
(7) The liquid epoxy resin composition according to (6), wherein 99% by weight or more of the fused silica has a particle size in the range of 0.1 μm to 16 μm.
また、本発明は、(8)エポキシ樹脂が液状ビスフェノールF型エポキシ樹脂及びアミノグリシジルエーテル型エポキシ樹脂の少なくとも一方を含み、硬化剤が液状芳香族アミンである上記(1)〜(7)のいずれかに液状エポキシ樹脂組成物に関する。
また、本発明は、(9)素子の回路形成面と無機または有機基板の回路形成面とが対向し、前記素子の電極と前記基板の回路とがバンプを介して電気的に接続され、前記素子と前記基板との隙間に上記(1)〜(8)のいずれかに記載の液状エポキシ樹脂組成物が充填されていることを特徴とする電子部品装置に関する。
Moreover, this invention is (8) any one of said (1)-(7) whose epoxy resin contains at least one of a liquid bisphenol F type epoxy resin and an aminoglycidyl ether type epoxy resin, and a hardening | curing agent is a liquid aromatic amine. The present invention relates to a crab liquid epoxy resin composition.
In the present invention, (9) the circuit formation surface of the element and the circuit formation surface of the inorganic or organic substrate face each other, and the electrode of the element and the circuit of the substrate are electrically connected via a bump, It is related with the electronic component apparatus characterized by filling the liquid epoxy resin composition in any one of said (1)-(8) in the clearance gap between an element and the said board | substrate.
本発明の液状エポキシ樹脂組成物は狭い隙間への含浸性が優れ、充填剤の沈降及びボイドの発生が少ない。この液状エポキシ樹脂組成物を素子の封止に用いた電子部品装置は、成形性に優れ、また耐リフロー性、耐温度サイクル性、耐湿性などの信頼性が良好であり、特にフリップチップ実装型半導体装置に好適に用いられる。 The liquid epoxy resin composition of the present invention is excellent in impregnation into narrow gaps, and causes little settling of filler and generation of voids. An electronic component device using this liquid epoxy resin composition for sealing an element has excellent moldability and good reliability such as reflow resistance, temperature cycle resistance, and moisture resistance, especially flip chip mounting type. It is suitably used for a semiconductor device.
本発明に用いる(A)エポキシ樹脂は、特に制限はなく、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、ナフタレンジオール、水添ビスフェノールA等とエピクロルヒドリンの反応により得られるグリシジルエーテル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類とを縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるアミノグリシジルエーテル型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、及び脂環族エポキシ樹脂などを用いることができる。特に、本発明では、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、アミノグリシジルエーテル型エポキシ樹脂から選ばれる少なくとも1種類の液状エポキシ樹脂を含むことが望ましく、液状ビスフェノールF型エポキシ樹脂及びアミノグリシジルエーテル型エポキシ樹脂の少なくとも一方を用いるのがさらに好ましい。
これらは単独で用いても2種以上を組み合わせて用いてもよい。
The (A) epoxy resin used in the present invention is not particularly limited. For example, glycidyl ether type epoxy resin obtained by reaction of bisphenol A, bisphenol F, bisphenol AD, bisphenol S, naphthalene diol, hydrogenated bisphenol A and the like with epichlorohydrin. , Epoxidized novolak resin obtained by condensation or cocondensation of phenols and aldehydes including orthocresol novolac type epoxy resin, obtained by reaction of polybasic acids such as phthalic acid and dimer acid with epichlorohydrin Glycidyl ester epoxy resin, diaminodiphenylmethane, isocyanuric acid and other polyamines and epichlorohydrin obtained by reaction of epichlorohydrin, olefinic bonds such as peracetic acid A linear aliphatic epoxy resin obtained by oxidation with alicyclic, an alicyclic epoxy resin, or the like can be used. In particular, in the present invention, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, naphthalene diol type epoxy resin, hydrogenated bisphenol A type epoxy resin, aminoglycidyl ether type epoxy resin It is desirable to include at least one liquid epoxy resin selected from the group consisting of at least one of liquid bisphenol F type epoxy resin and aminoglycidyl ether type epoxy resin.
These may be used alone or in combination of two or more.
また、発明の目的を損なわない範囲であれば固形のエポキシ樹脂を用いても良い。さらには粘度調整のためエポキシ基を有する反応性希釈剤を混合しても良い。エポキシ基を有する反応性希釈剤としては例えばn-ブチルグリシジルエーテル、バーサティック酸グリシジルエーテル、スチレンオキサイド、エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、ブチルフェニルグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテルが挙げられ、これらの内の1種類あるいは複数種と併用しても良い。
これらのエポキシ樹脂は、十分に精製されたもので、イオン性不純物が少ないものが好ましい。例えば、遊離Naイオン、遊離Clイオンは500ppm以下であることが好ましい。
Further, a solid epoxy resin may be used as long as the object of the invention is not impaired. Furthermore, you may mix the reactive diluent which has an epoxy group for viscosity adjustment. Examples of the reactive diluent having an epoxy group include n-butyl glycidyl ether, versatic acid glycidyl ether, styrene oxide, ethylhexyl glycidyl ether, phenyl glycidyl ether, butyl phenyl glycidyl ether, 1,6-hexanediol diglycidyl ether, neodymium Examples include pentyl glycol diglycidyl ether, diethylene glycol diglycidyl ether, and trimethylolpropane triglycidyl ether, and one or more of these may be used in combination.
These epoxy resins are sufficiently purified and preferably have little ionic impurities. For example, free Na ions and free Cl ions are preferably 500 ppm or less.
本発明に用いる(B)硬化剤は、特に制限はなく、エポキシ樹脂の硬化剤として一般に使用されている酸無水物、フェノール樹脂、芳香族アミン、各種イミダゾール誘導体などを用いることができるが、低粘度化の観点からは酸無水物、保存安定性の観点からはフェノール樹脂及びイミダゾール誘導体、耐湿接着性の観点からは芳香族アミンがより好ましい。これらのうち、液状酸無水物、液状フェノール樹脂、液状芳香族アミンから選ばれる少なくとも1種類の化合物を含むことが特に好ましく、さらに好ましくは液状芳香族アミンである。
なお、組成物が液状であれば硬化剤は固形の化合物を使用しても良いし、液状及び固形の化合物を併用しても良い。
The (B) curing agent used in the present invention is not particularly limited, and acid anhydrides, phenol resins, aromatic amines, various imidazole derivatives and the like that are generally used as curing agents for epoxy resins can be used. From the viewpoint of viscosity increase, an acid anhydride, a phenol resin and an imidazole derivative from the viewpoint of storage stability, and an aromatic amine are more preferable from the viewpoint of moisture-resistant adhesion. Among these, it is particularly preferable to include at least one compound selected from a liquid acid anhydride, a liquid phenol resin, and a liquid aromatic amine, and a liquid aromatic amine is more preferable.
If the composition is liquid, the curing agent may be a solid compound, or a liquid and a solid compound may be used in combination.
酸無水物としては例えば、無水フタル酸、テトラヒドロ無水フタル酸、3−メチルテトラヒドロ無水フタル酸、無水ハイミック酸、無水コハク酸、無水トリメリット酸、無水ピロメリット酸等が挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。 Examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, hymic anhydride, succinic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. You may use it, or may use it in combination of 2 or more types.
フェノール樹脂としては、分子中に2個以上のフェノール性水酸基を有するものであれば特に制限はなく、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化ナフタレンジオール、フェノールノボラック、フェノール等のフェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノール・アラルキル樹脂、ナフトール・アラルキル樹脂などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。 The phenol resin is not particularly limited as long as it has two or more phenolic hydroxyl groups in the molecule. For example, phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol, etc. And / or a novolak-type phenol resin obtained by condensation or co-condensation of naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene and the like and a compound having an aldehyde group such as formaldehyde under an acidic catalyst, and allylated bisphenol A Phenol synthesized from phenols such as allylated bisphenol F, allylated naphthalene diol, phenol novolac, phenol, and / or naphthol and dimethoxyparaxylene or bis (methoxymethyl) biphenyl Examples thereof include a nor-aralkyl resin and a naphthol-aralkyl resin. These may be used alone or in combination of two or more.
芳香族アミンとしては、例えば、エピキュアW、エピキュアZ(いずれもジャパンエポキシレジン株式会社製商品名)、カヤハードA−A、カヤハードA−B、カヤハードA−S(いずれも日本化薬株式会社製商品名)、トートアミンHM−205(東都化成株式会社製商品名)、アデカハードナーEH−101(旭電化工業株式会社製商品名)、エポミックQ−640、エポミックQ−643(いずれも三井化学株式会社製商品名)、DETDA80(Lonza社製商品名)等が挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。 As an aromatic amine, for example, EpiCure W, EpiCure Z (all trade names manufactured by Japan Epoxy Resin Co., Ltd.), Kayahard A-A, Kayahard AB, Kayahard AS (all manufactured by Nippon Kayaku Co., Ltd.) Name), Totoamine HM-205 (trade name, manufactured by Toto Kasei Co., Ltd.), Adeka Hardener EH-101 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.), Epomic Q-640, Epomic Q-643 (all of which are Mitsui Chemicals, Inc.) Product name), DETDA80 (product name made by Lonza), and the like. These may be used alone or in combination of two or more.
イミダゾール誘導体としては、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1-シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−フェノルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾリウムトリメリテイト、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2´−メチルイミダゾリル−(1´)] −エチル−sトリアジン、2,4−ジアミノ−6−(2´−ウンデシルイミダゾリル)−エチル−s−トリアジン、2,4−ジアミノ−6−[2´−エチル−4−メチルイミダゾリル−(1´)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2´−メチルイミダゾリル−(1´)]−エチル-s−トリアジン イソシアヌル酸付加物、2−フェニルイミダゾール イソシアヌル酸付加物、2−メチルイミダゾール イソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシジメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、1−シアノエチル−2−フェニル−4,5−ジ(2−シアノエトキシ)メチルイミダゾールなどが挙げられ、これらは2種以上併用しても良い。 Examples of imidazole derivatives include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methyl. Imidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-pheno Ruimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazolium trimellitate, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4 -Zia Mino-6- [2'-methylimidazolyl- (1 ')]-ethyl-striazine, 2,4-diamino-6- (2'-undecylimidazolyl) -ethyl-s-triazine, 2,4-diamino -6- [2'-ethyl-4-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s -Triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxydimethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole 1-cyanoethyl-2-phenyl-4,5-di (2-cyanoethoxy) methylimidazole, and the like, May be used.
(A)エポキシ樹脂と(B)硬化剤との当量比は特に制限はないが、それぞれの未反応分を少なくするため、エポキシ樹脂に対して硬化剤を0.6〜1.6当量の範囲に設定することが好ましく、0.7〜1.4当量がより好ましく、0.8〜1.2当量がさらに好ましい。0.6.〜1.6当量の範囲からはずれた場合、未反応分が多くなり信頼性が低下する傾向がある。 The equivalent ratio of (A) epoxy resin and (B) curing agent is not particularly limited, but in order to reduce each unreacted component, the curing agent is in the range of 0.6 to 1.6 equivalents relative to the epoxy resin. Is preferably set to 0.7 to 1.4 equivalents, and more preferably 0.8 to 1.2 equivalents. 0.6. When deviating from the range of ˜1.6 equivalents, there is a tendency that unreacted components increase and reliability decreases.
ここで、フェノール樹脂の当量はエポキシ基1個に対しフェノール性水酸基1個が反応するものとして計算され、芳香族アミンの当量はエポキシ基1個に対しアミノ基の活性水素1個が反応するものとして計算され、酸無水物の当量はエポキシ基1個に対し酸無水物基1個が反応するものとして計算される。イミダゾール誘導体はエポキシ樹脂の重合触媒として働くため配合量は組成物の硬化速度及びポットライフを考慮して決められる。 Here, the equivalent of phenol resin is calculated as one phenolic hydroxyl group reacts with one epoxy group, and the equivalent of aromatic amine is one amino group active hydrogen reacts with one epoxy group The equivalent of acid anhydride is calculated as one acid anhydride group reacts with one epoxy group. Since the imidazole derivative acts as a polymerization catalyst for the epoxy resin, the amount of the imidazole derivative is determined in consideration of the curing speed and pot life of the composition.
本発明の液状エポキシ樹脂組成物の特徴は、チキソトロピック指数が0.8よりも小さい、すなわち、ダイラタンシー(Dilatancy)を有することである。なお、本発明では、チキソトロピック指数とは、回転式粘度計の回転数n1及びn2(n1/n2<0.5)で測定した粘度比η1/η2を示す。
エポキシ樹脂組成物にこのような性質を付与するうえで重要な役割を果たすのが無機充填剤であり、本発明の液状エポキシ樹脂組成物には、(C)無機充填剤を配合することが必要である。無機充填剤は、エポキシ樹脂組成物の低熱膨張化、剛性、熱伝導性の付与などを目的に配合するものであり、通常溶融シリカ、結晶性シリカ、アルミナ、窒化けい素、窒化ボロン、炭化けい素などを用いることができるが、特に、本発明においては球状の溶融シリカを用いることが好ましい。
球状の溶融シリカとしては、天然または合成シリカを溶射法等で加熱処理して製造される実質的に球状の溶融シリカを用いることが好ましい。ここで、実質的に球状とは以下を意味する。すなわち、天然または合成シリカを加熱処理して球状化する場合、完全に溶融しなかった粒子は形状が真球状にならない場合がある。また、溶融した粒子同士が複数融着したものが混在する場合がある。さらに、蒸発したシリカ蒸気がほかの粒子表面に付着、固化し、結果的に微粒子が付着した球状シリカ粒子が得られる場合がある。実質的に球状とはこのような形状の粒子の混在を許容するものであるが、例えば、粒子の球形度をワーデルの球形度[(粒子の投影面積に等しい円の直径)/(粒子の投影像に外接する最小円の直径)]で表したとき、この値が0.9以上の粒子が無機充填剤全体の90重量%以上であることが望ましい。
無機充填剤の特性とエポキシ樹脂組成物のダイラタンシーとの関係は必ずしも明確ではないが、本発明のエポキシ樹脂組成物は極低剪断領域では充填剤粒子間に樹脂成分が介在し充填剤粒子同士の接触を起こしにくいために低い粘性を示し、外力が作用する高剪断領域では充填剤の充填形態が変化し、充填剤粒子同士が直接接触し易くなり高い粘性を示すため発現するものと考えられる。
回転式粘度計には、E型、B型等の種類が挙げられ、特に制限されない。
粘度計の回転数n1及びn2については、n1/n2<0.5であれば特に制限はないが、好ましくは、n1が0.5〜5rpm、n2が10〜50rpmである。
A feature of the liquid epoxy resin composition of the present invention is that the thixotropic index is less than 0.8, that is, it has a dilatancy. In the present invention, the thixotropic index indicates the viscosity ratio η 1 / η 2 measured at the rotational speeds n 1 and n 2 (n 1 / n 2 <0.5) of the rotary viscometer.
An inorganic filler plays an important role in imparting such properties to the epoxy resin composition, and the liquid epoxy resin composition of the present invention must contain (C) an inorganic filler. It is. Inorganic fillers are blended for the purpose of lowering the thermal expansion, imparting rigidity and thermal conductivity of the epoxy resin composition, and are usually fused silica, crystalline silica, alumina, silicon nitride, boron nitride, silicon carbide. In particular, it is preferable to use spherical fused silica in the present invention.
As the spherical fused silica, it is preferable to use substantially spherical fused silica produced by heat-treating natural or synthetic silica by a thermal spraying method or the like. Here, substantially spherical means the following. That is, when natural or synthetic silica is spheroidized by heat treatment, particles that are not completely melted may not be spherical. Further, there may be a case where a plurality of fused particles are fused. Furthermore, the evaporated silica vapor may adhere and solidify on the surface of other particles, and as a result, spherical silica particles having fine particles attached may be obtained. The term “substantially spherical” allows the mixture of particles having such a shape. For example, the sphericity of a particle is expressed by the Wadel sphericity [(diameter of a circle equal to the projected area of the particle) / (projection of particle)]. The diameter of the smallest circle circumscribing the image)] is preferably 90% by weight or more of the total inorganic filler.
Although the relationship between the properties of the inorganic filler and the dilatancy of the epoxy resin composition is not necessarily clear, the epoxy resin composition of the present invention has a resin component between the filler particles in an extremely low shear region, and the filler particles It is considered that the low-viscosity is exhibited because it is difficult to cause contact, and the filling form of the filler is changed in a high shear region where an external force acts, and the filler particles are easily brought into direct contact with each other to exhibit high viscosity.
Examples of the rotary viscometer include E type and B type, and are not particularly limited.
The rotation speeds n 1 and n 2 of the viscometer are not particularly limited as long as n 1 / n 2 <0.5, but preferably n 1 is 0.5 to 5 rpm and n 2 is 10 to 50 rpm. is there.
本発明の液状エポキシ樹脂組成物に用いられる無機充填剤の平均粒径は、0.3μm〜5μmの範囲内であるのが好ましい。その理由は、平均粒径が小さ過ぎると充填剤の比表面積の増大によってエポキシ樹脂組成物の粘度上昇やチキソトロピック性の発現が起こり、充填剤の増量やダイラタンシーの付与ができなくなるためである。また、平均粒径が大きすぎると狭い隙間への含浸性が悪化したり、充填剤沈降の問題が発生するためである。 The average particle size of the inorganic filler used in the liquid epoxy resin composition of the present invention is preferably in the range of 0.3 μm to 5 μm. The reason is that if the average particle size is too small, the increase in the specific surface area of the filler causes an increase in the viscosity of the epoxy resin composition and the development of thixotropic properties, making it impossible to increase the amount of filler and to provide dilatancy. Further, if the average particle size is too large, the impregnation property into a narrow gap is deteriorated, or a problem of sedimentation of the filler occurs.
本発明の液状エポキシ樹脂組成物において、無機充填剤の組成物全体に対する配合量(容積%)を、充填剤単体の最密充填分率よりも少なく、かつ、最密充填分率×0.6よりも多い量とすることが好ましい。その理由は以下による。無機充填剤の配合割合が充填剤単体の最密充填分率と同等以上になると、エポキシ樹脂組成物中で充填剤粒子同士が常に接触状態にあり、組成物の粘度が急激に高くなり本発明の目的に適さなくなるためである。また、無機充填剤の配合割合が最密充填分率×0.6以下ではエポキシ樹脂組成物に外力を加えても充填剤粒子同士の接触が起こらずダイラタンシーが発現しないためである。
ここで、充填剤単体の最密充填分率とは、充填剤単体を圧力5〜10MPaで圧縮成形したとき、成形体に占める充填剤の容積分率をいう。
In the liquid epoxy resin composition of the present invention, the blending amount (volume%) of the inorganic filler with respect to the entire composition is smaller than the closest packing fraction of the filler alone, and the closest packing fraction × 0.6. It is preferable that the amount be larger than that. The reason is as follows. When the blending ratio of the inorganic filler is equal to or greater than the close-packed fraction of the filler alone, the filler particles are always in contact with each other in the epoxy resin composition, and the viscosity of the composition rapidly increases. This is because it is not suitable for the purpose. Moreover, when the blending ratio of the inorganic filler is the closest packing fraction × 0.6 or less, even when an external force is applied to the epoxy resin composition, contact between the filler particles does not occur and dilatancy does not appear.
Here, the close-packed fraction of the single filler means the volume fraction of the filler occupying the molded body when the single filler is compression molded at a pressure of 5 to 10 MPa.
本発明の液状エポキシ樹脂組成物において、無機充填剤の99重量%以上が粒径0.1μmから16μmの範囲内とすることが好ましい。その理由は、粒径0.1μm未満の成分が多くなるとエポキシ樹脂組成物の粘度が増大し、ダイラタンシーとは逆のチキソトロピック性が現れるためであり、粒径16μm超の成分が多いと狭い隙間への含浸性が低下するためである。溶射法で製造する球状溶融シリカには、溶射工程で気化した原料が冷却、固化して生成する0.1μm未満の超微粒子成分が多量に混入することがある。このような超微粒子成分が多い球状溶融シリカはエポキシ樹脂組成物の粘度及びチキソトロピック性を高めるため好ましくない。充填剤の粒度分布は99重量%以上が0.1μmから16μmの範囲内にあれば特に制限はないが、充填剤の配合量を増やしてしかも低粘度のエポキシ樹脂組成物を得るためには0.1μmから16μmの粒径範囲内で、できるだけ広い粒度分布を有する充填剤を使用することが望ましい。これは粒度分布を広げることによって、粒子と粒子の隙間に別の粒子が存在するため充填剤自体の最密充填分率が大きくなり、充填剤粒子同士の接触が起こりにくくなるためと考えられる。 In the liquid epoxy resin composition of the present invention, it is preferable that 99% by weight or more of the inorganic filler is in the range of 0.1 μm to 16 μm in particle size. This is because the viscosity of the epoxy resin composition increases as the number of components having a particle size of less than 0.1 μm increases, and the thixotropic property opposite to that of dilatancy appears. This is because the impregnation property into the water is reduced. The spherical fused silica produced by the thermal spraying method may contain a large amount of ultrafine particle components of less than 0.1 μm produced by cooling and solidifying the raw material vaporized in the thermal spraying process. Such spherical fused silica with many ultrafine particle components is not preferable because it increases the viscosity and thixotropic properties of the epoxy resin composition. The particle size distribution of the filler is not particularly limited as long as 99% by weight or more is in the range of 0.1 μm to 16 μm. However, in order to obtain a low-viscosity epoxy resin composition by increasing the blending amount of the filler, it is 0. It is desirable to use a filler having a particle size distribution as wide as possible within a particle size range of 1 μm to 16 μm. This is presumably because by expanding the particle size distribution, there is another particle in the gap between the particles, so that the close-packed fraction of the filler itself increases and contact between the filler particles hardly occurs.
本発明の樹脂組成物には必要に応じて、(D)硬化促進剤を用いることができる。また、カップリング剤、可撓化剤、着色剤などを用いることができる。
(D)硬化促進剤としては、エポキシ樹脂組成物で一般に使用されている、(A)エポキシ樹脂と(B)硬化剤との硬化反応を促進するものであれば、特に制限はなく、各種アミン系化合物、2−エチル−4−メチルイミダゾール等のイミダゾール系化合物、オルガノホスフィン系化合物、四級アンモニウムまたはホスホニウム系化合物などを使用することができる。たとえば、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、1,5−ジアザビシクロ[4.3.0]ノネン−5、5,6−ジブチルアミノ−1,8−ジアザビシクロ[5.4.0]ウンデセン−7等のシクロアミジン化合物及びこれらの化合物に無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン類及びこれらの誘導体、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール等のイミダゾール類及びこれらの誘導体、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類などのホスフィン化合物、及びこれらのホスフィン化合物に上記キノン化合物、無水マレイン酸、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムエチルトリフェニルボレート、テトラブチルホスホニウムテトラブチルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2−エチル−4−メチルイミダゾール・テトラフェニルボレート、N−メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体などが挙げられ、これらの1種を単独で用いても2種以上組み合わせて用いてもよい。
カップリング剤は無機充填剤と樹脂の濡れ、被着体との接着性改善効果があり、具体的には、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルジメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アニリノプロピルトリメトキシシラン、γ−ウレイドトリメトキシシラン、γ−ジブチルアミノプロピルトリメトキシシラン、イミダゾールシランなどを用いることができる。可撓化剤としてはシリコーン及びポリオレフィン系エラストマーあるいはその粉末、着色剤としてはカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラなどを用いることができる。
If necessary, (D) a curing accelerator can be used in the resin composition of the present invention. In addition, a coupling agent, a flexing agent, a coloring agent, and the like can be used.
The (D) curing accelerator is not particularly limited as long as it accelerates the curing reaction between the (A) epoxy resin and the (B) curing agent, which is generally used in epoxy resin compositions. An imidazole compound such as 2-ethyl-4-methylimidazole, an organophosphine compound, a quaternary ammonium, or a phosphonium compound can be used. For example, 1,8-diazabicyclo [5.4.0] undecene-7,1,5-diazabicyclo [4.3.0] nonene-5,5,6-dibutylamino-1,8-diazabicyclo [5.4 .0] cycloamidine compounds such as undecene-7 and these compounds to maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethyl Quinones such as benzoquinone, 2,3-dimethoxy-5-methyl-1,4benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, π such as diazophenylmethane, phenol resin, etc. Compound with intramolecular polarization formed by adding a compound with bond, benzyldimethylamine, triethanolamine, dimethylamine Tertiary amines such as ethanol and tris (dimethylaminomethyl) phenol and their derivatives, imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole and the like Derivatives thereof, phosphine compounds such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, phenylphosphine, and other organic phosphines, and the quinone compounds and anhydrous maleic compounds. Phosphorus compounds with intramolecular polarization formed by adding compounds with π bonds such as acid, diazophenylmethane, phenol resin, tetraphenylphosphonium tetraphenylborate, tetraphenyl Tetraphenyl boron salts such as tetra-substituted phosphonium / tetra-substituted borate such as ruphosphonium ethyl triphenyl borate, tetrabutyl phosphonium tetrabutyl borate, 2-ethyl-4-methylimidazole / tetraphenyl borate, N-methylmorpholine / tetraphenyl borate And derivatives thereof. One of these may be used alone, or two or more thereof may be used in combination.
The coupling agent has an effect of improving the adhesion between the inorganic filler and the resin and the adherend. Specifically, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) ) Aminopropyldimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-anilinopropyltrimethoxysilane, γ-ureidotrimethoxysilane, γ-dibutylaminopropyltrimethoxysilane, imidazole Silane or the like can be used. Silicone and polyolefin-based elastomers or powders thereof can be used as the flexibilizing agent, and carbon black, organic dyes, organic pigments, titanium oxide, red lead, bengara, etc. can be used as the colorant.
本発明で得られる液状エポキシ樹脂組成物は、セラミックス、ガラス/エポキシ、ポリイミドなどの基板に樹脂封止されたLSI、トランジスタ、ダイオード、サイリスタなどの能動素子、コンデンサ、抵抗、コイルなどの受動素子などとともにベアの半導体チップをフリップチップ実装するCOB(Chip on Board)、モジュール、カードなどのベアチップと基板の隙間に含浸するアンダーフィル材として用いるのが好ましい。また、パッケージレベルでフリップチップ実装を行うFC−BGA(Flip chip Ball Grid Array)、EBGA(Enhanced BGA)、ABGA(Advanced BGA)、Stacked−BGA、SIP(System in Package)などのベアチップと基板の隙間に含浸するアンダーフィル材として用いるのが好ましい。特に、最近はチップサイズの大型化、ギャップの狭間隙化が進んでおり、本発明の液状エポキシ樹脂組成物は、チップサイズ15×15mm以上、ギャップ80μm以下の場合に優れた効果を発揮する。
なお、BGA、CSP(Chip Size/Scale Package)、WL-CSP(Wafer Level CSP)などの最新のパッケージは、端子がエリアアレイ構造になっており、基板への実装形態はフリップチップ実装と同じである。特に携帯電話のようなモバイル型の電子機器においては接合部の耐衝撃性が厳しく要求されており、接続信頼性を確保するためパッケージと基板の隙間に補強用の樹脂組成物を含浸することがある。本発明の液状エポキシ樹脂組成物はこのような用途にも用いることができる。また、従来から液状エポキシ樹脂組成物によって封止が行われていた、キャリアテープにバンプを介して半導体チップを接合したTCP(Tape Carrier Package)、セラミックス、ガラス/エポキシ、ポリイミド基板などにベアチップをワイヤボンディング法で搭載したCOB、モジュール、カード、BGA、CSPなどの樹脂封止にも用いることができる。
特に、素子の回路形成面と無機または有機基板の回路形成面とが対向し、前記素子の電極と前記基板の回路とがバンプを介して電気的に接続されているフリップチップ実装型で、前記素子と前記基板との隙間に液状エポキシ樹脂組成物が充填されているものが特に好ましい。
また、プリント回路板にも本発明の液状エポキシ樹脂組成物は有効に使用できる。
The liquid epoxy resin composition obtained by the present invention includes LSIs, transistors, diodes, thyristors, and other active elements resin-sealed with ceramics, glass / epoxy, polyimide and other substrates, capacitors, resistors, passive elements such as coils, etc. At the same time, it is preferably used as an underfill material that impregnates a gap between a bare chip and a substrate such as a COB (Chip on Board), a module, or a card for flip chip mounting a bare semiconductor chip. Also, the gap between bare chip and board such as FC-BGA (Flip chip Ball Grid Array), EBGA (Enhanced BGA), ABGA (Advanced BGA), Stacked-BGA, SIP (System in Package) etc. It is preferable to use it as an underfill material to be impregnated. In particular, the chip size has recently been increased and the gap has been narrowed. The liquid epoxy resin composition of the present invention exhibits excellent effects when the chip size is 15 × 15 mm or more and the gap is 80 μm or less.
The latest packages such as BGA, CSP (Chip Size / Scale Package), and WL-CSP (Wafer Level CSP) have an area array structure, and the mounting form on the board is the same as flip chip mounting. is there. In particular, in mobile electronic devices such as mobile phones, the impact resistance of joints is strictly required, and a resin composition for reinforcement is impregnated in the gap between the package and the substrate in order to ensure connection reliability. is there. The liquid epoxy resin composition of the present invention can also be used for such applications. In addition, bare chips are wire-bonded to TCP (Tape Carrier Package), ceramics, glass / epoxy, polyimide substrates, etc., which have been conventionally sealed with liquid epoxy resin compositions and bonded to semiconductor tape via bumps. It can also be used for resin sealing of COB, module, card, BGA, CSP and the like mounted by the bonding method.
In particular, the flip chip mounting type in which the circuit forming surface of the element and the circuit forming surface of the inorganic or organic substrate are opposed to each other, and the electrode of the element and the circuit of the substrate are electrically connected via bumps, It is particularly preferred that the liquid epoxy resin composition is filled in the gap between the element and the substrate.
The liquid epoxy resin composition of the present invention can also be used effectively for printed circuit boards.
本発明の液状エポキシ樹脂組成物の製造方法は特に限定されないが、上記各種成分を均一に分散混合できる方法であれば良い。一般的な方法としては、三本ロール、らいかい機、プラネタリミキサー等による分散混練を挙げることができる。混合の間、必要に応じて減圧しても良い。
図1は、本発明の液状エポキシ樹脂組成物をアンダーフィル材に用いたフリップチップ実装型半導体装置の一例の縦断面模式図を示す。図2は、フリップチップ実装型半導体装置の素子と基板の隙間に液状エポキシ樹脂組成物を含浸する方法の一例を示す縦断面模式図である。
本発明の液状エポキシ樹脂組成物による半導体素子の樹脂封止は通常ディスペンス方式によって行われる。例えば、図2のように、半導体チップ1の回路形成面がはんだボール等のバンプ2を介して基板3の回路形成面と対向するようにフリップチップ実装した半導体装置を用意する。液状エポキシ樹脂組成物であるアンダーフィル材4を、デイスペンサーのシリンジ5から、ホットプレート6上で予熱した半導体装置のチップ1の側面の一辺に滴下する。アンダーフィル材4は、毛細管現象により、チップ1の対向する側面の辺ヘ向けて図2の矢印の方向に含浸される。これによりチップ1と基板3の隙間がアンダーフィル材4で充填される。含浸終了後、半導体装置を高温槽中で加熱することにより樹脂組成物を硬化させて目的とする樹脂封止型半導体装置(図1参照。)を得ることができる。
Although the manufacturing method of the liquid epoxy resin composition of this invention is not specifically limited, What is necessary is just the method which can disperse-mix the said various components uniformly. As a general method, dispersion kneading with a three-roll, a raking machine, a planetary mixer or the like can be mentioned. During mixing, the pressure may be reduced as necessary.
FIG. 1 is a schematic longitudinal sectional view of an example of a flip chip mounting type semiconductor device using the liquid epoxy resin composition of the present invention as an underfill material. FIG. 2 is a schematic longitudinal sectional view showing an example of a method for impregnating a liquid epoxy resin composition into a gap between an element of a flip chip mounting type semiconductor device and a substrate.
Resin sealing of a semiconductor element with the liquid epoxy resin composition of the present invention is usually performed by a dispensing method. For example, as shown in FIG. 2, a semiconductor device is prepared which is flip-chip mounted so that the circuit formation surface of the
次に実施例により本発明をさらに説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
[実施例1〜7、比較例1〜5]
(A)エポキシ樹脂として、液状の、ビスF型エポキシ樹脂(エポキシ樹脂1:エポキシ当量160、[東都化成株式会社製商品名YDF-8170C])、アミノグリシジルエーテル型エポキシ樹脂(エポキシ樹脂2:エポキシ当量95、[ジャパンエポキシレジン株式会社製商品名EP-630])、及び反応性希釈剤(エポキシ当量128、[坂本薬品工業株式会社製商品名SR-16HL])を用意した。
(B)硬化剤として、液状芳香族アミン(硬化剤1:活性水素当量45、[ジャパンエポキシレジン株式会社製商品名エピキュアW])、液状酸無水物(硬化剤2:無水酸当量168、[日立化成工業株式会社製商品名HN5500])を用意した。
(C)無機充填剤として、表1に示す特性で、組成および形状が実質的に球状の溶融シリカである無機充填剤1〜6を用意した。なお、0.1μm未満の粒子、16μmより大きい粒子の各含有量はHORIBA(株式会社堀場製作所)製レーザ回折/散乱式粒度分布測定装置(型番LA−920)により求めた。
(D)硬化促進剤として、2−エチル−4−メチルイミダゾール(以下、2E4MZという。)を用意した。
カップリング剤としてエポキシシラン(γ-グリシドキシプロピルトリメトキシシラン)を、着色剤としてカーボンブラック[三菱化学株式会社製商品名MA-600]を用意した。
EXAMPLES Next, although an Example demonstrates this invention further, the scope of the present invention is not limited to these Examples.
[Examples 1-7, Comparative Examples 1-5]
(A) As the epoxy resin, liquid bis-F type epoxy resin (epoxy resin 1: epoxy equivalent 160, [trade name YDF-8170C manufactured by Toto Kasei Co., Ltd.]), aminoglycidyl ether type epoxy resin (epoxy resin 2: epoxy) Equivalent 95, [trade name EP-630 manufactured by Japan Epoxy Resin Co., Ltd.), and a reactive diluent (epoxy equivalent 128, trade name SR-16HL manufactured by Sakamoto Pharmaceutical Co., Ltd.) were prepared.
(B) As a curing agent, liquid aromatic amine (curing agent 1: active hydrogen equivalent 45, [trade name Epicure W] manufactured by Japan Epoxy Resin Co., Ltd.), liquid acid anhydride (curing agent 2: acid equivalent 168, [ Hitachi Chemical Co., Ltd. product name HN5500]) was prepared.
(C) As the inorganic filler,
(D) 2-Ethyl-4-methylimidazole (hereinafter referred to as 2E4MZ) was prepared as a curing accelerator.
Epoxysilane (γ-glycidoxypropyltrimethoxysilane) was prepared as a coupling agent, and carbon black [trade name MA-600 manufactured by Mitsubishi Chemical Corporation] was prepared as a colorant.
[実施例1〜7]
これら各素材を表2に示す配合割合で計量し、真空擂潰機に入れ、5torrに減圧しながら約20分間混練して目的とする7種類の液状エポキシ樹脂組成物を得た。
次に、チップを実装した半導体装置を80℃に予熱したホットプレート上に置き、デイスペンサーを用いて上記液状エポキシ樹脂組成物を半導体装置のチップの側面の一辺に滴下してチップと基板の隙間に含浸させた。含浸終了後半導体装置を150℃に加熱した高温槽中で3時間加熱し樹脂を硬化させて目的とする樹脂封止型半導体装置を得た。
得られた液状エポキシ樹脂組成物の特性、半導体装置の成形性、信頼性の評価を次のように行った。評価結果を表2に纏めて併記する。
[Examples 1-7]
These raw materials were weighed at the blending ratios shown in Table 2, put into a vacuum crusher, and kneaded for about 20 minutes while reducing the pressure to 5 torr to obtain 7 types of target liquid epoxy resin compositions.
Next, the semiconductor device on which the chip is mounted is placed on a hot plate preheated to 80 ° C., and the liquid epoxy resin composition is dropped onto one side surface of the chip of the semiconductor device using a dispenser, and the gap between the chip and the substrate is dropped. Was impregnated. After completion of the impregnation, the semiconductor device was heated in a high-temperature bath heated to 150 ° C. for 3 hours to cure the resin, thereby obtaining a desired resin-encapsulated semiconductor device.
The characteristics of the obtained liquid epoxy resin composition, the moldability of the semiconductor device, and the reliability were evaluated as follows. The evaluation results are summarized in Table 2 and written together.
使用した無機充填剤の最密充填分率の測定、得られた液状エポキシ樹脂組成物の諸特性各種、半導体装置の信頼性の評価は、以下(1)〜(8)の方法及び条件で行った。使用した半導体装置の諸元は、チップサイズ10×10×0.55tmm(回路はアルミのジグザグ配線、パッシベーション:ポリイミド膜)、バンプ:はんだボール(Φ80μm、916pin、)、バンプピッチ:250μm、基板:FR−5(40×40×0.8tmm)、チップ/基板間のギャップ:60μmである。なお、成形性はより厳しい条件下で評価するため、下記評価(5)〜(7)では、上記チップ4個分を1チップとする20.5×20.5×0.55tmmの大型チップを使用した。 Measurement of the closest packing fraction of the used inorganic filler, various characteristics of the obtained liquid epoxy resin composition, and evaluation of the reliability of the semiconductor device are performed by the following methods and conditions (1) to (8). It was. The specifications of the used semiconductor device are: chip size 10 × 10 × 0.55 tmm (circuit is aluminum zigzag wiring, passivation: polyimide film), bump: solder ball (Φ80 μm, 916pin), bump pitch: 250 μm, substrate: FR-5 (40 × 40 × 0.8 tmm), chip / substrate gap: 60 μm. In addition, in order to evaluate moldability under more severe conditions, in the following evaluations (5) to (7), a large chip of 20.5 × 20.5 × 0.55 tmm in which the four chips are one chip is used. used.
(1)無機充填剤の最密充填分率
10mmφ×50mmLの金型へ無機充填剤約3gを充填し7MPaの圧力で単軸加圧による圧縮成形を行い円筒状の成形体を作製した。この成形体の重量及び容積(面積×高さ)を求めた。最密充填分率(%)は下式(3)
最密充填分率(%)={(W/D)/V}×100 ・・・(3)
から求めた。ここで、Wは成形体の重量、Dは無機充填剤の密度(溶融シリカは2.21とした。)、Vは成形体の容積である。
なお、得られた成形体を解砕して圧縮成形後の無機充填剤の平均粒径を測定したところ、成形前の無機充填剤の平均粒径と同じであったことから、この圧力では圧縮成形時に無機充填剤の破砕は生じていないことを確認した。また、本発明において、平均粒径は前出のHORIBA製レーザ回折/散乱式粒度分布測定装置(LA−920)により求めた。
(1) Close-packed fraction of inorganic filler
A cylindrical molded body was manufactured by filling a 10 mmφ × 50 mmL mold with about 3 g of an inorganic filler and compression molding by uniaxial pressing at a pressure of 7 MPa. The weight and volume (area × height) of this molded body were determined. The closest packing fraction (%) is the following formula (3)
Closest packing fraction (%) = {(W / D) / V} × 100 (3)
I asked for it. Here, W is the weight of the molded body, D is the density of the inorganic filler (fused silica is 2.21), and V is the volume of the molded body.
The obtained compact was crushed and the average particle size of the inorganic filler after compression molding was measured. The average particle size of the inorganic filler before molding was the same as the average particle size of the inorganic filler before molding. It was confirmed that the inorganic filler was not crushed during molding. In the present invention, the average particle diameter was determined by the above-mentioned laser diffraction / scattering particle size distribution measuring apparatus (LA-920) manufactured by HORIBA.
(2)粘度及びチキソトロピック指数
E型粘度計(株式会社東京計器製)を用いて、液状エポキシ樹脂組成物の25℃の粘度(Pa・s)をロータ回転数 10rpmで測定した。チキソトロピック指数はロータ回転数2.5rpmで測定した粘度と10rpmで測定した粘度の比で表した。
(2) Viscosity and thixotropic index Using an E-type viscometer (manufactured by Tokyo Keiki Co., Ltd.), the viscosity (Pa · s) at 25 ° C. of the liquid epoxy resin composition was measured at a rotor rotation speed of 10 rpm. The thixotropic index was expressed as the ratio of the viscosity measured at 2.5 rpm of the rotor and the viscosity measured at 10 rpm.
(3)ガラス転移温度及び線膨張係数
液状エポキシ樹脂組成物を直径4mm、長さ20mmの円柱状に150℃3時間加熱成形し、熱機械分析装置TMA8140(理学電気株式会社製商品名)を用い、昇温速度3℃/min、測定温度範囲−120〜250℃で熱膨張量を測定し、低温側の直線の接線と高温側の直線の接線との交点をガラス転移温度とし、低温側の直線の勾配を線膨張係数として表した。
(4)弾性率
液状エポキシ樹脂組成物を厚さ0.4mmのシート状に150℃3時間加熱成形し、このシートを5mm×30mmの短冊状に切り取ったものを試験片とし、動的粘弾性測定装置DVE型(株式会社レオロジ製)を用いて昇温速度3℃/min、測定温度−120〜250℃、周波数10Hzで動的粘弾性特性を測定し、25℃の弾性率(GPa)を読取った。
(3) Glass transition temperature and linear expansion coefficient The liquid epoxy resin composition was heat-molded into a cylindrical shape having a diameter of 4 mm and a length of 20 mm at 150 ° C. for 3 hours, and a thermomechanical analyzer TMA8140 (trade name, manufactured by Rigaku Corporation) was used. The amount of thermal expansion was measured at a heating rate of 3 ° C./min and a measurement temperature range of −120 to 250 ° C., and the intersection of the tangent of the straight line on the low temperature side and the tangent line of the high temperature side was taken as the glass transition temperature. The slope of the straight line was expressed as the linear expansion coefficient.
(4) Elastic modulus The liquid epoxy resin composition was heat-molded into a 0.4 mm thick sheet at 150 ° C. for 3 hours, and this sheet was cut into a 5 mm × 30 mm strip to obtain a dynamic viscoelasticity. Using a measuring device DVE type (manufactured by Rheology Co., Ltd.), the dynamic viscoelastic property was measured at a temperature rising rate of 3 ° C./min, a measurement temperature of −120 to 250 ° C., and a frequency of 10 Hz, and an elastic modulus (GPa) at 25 ° C. Read.
(5)含浸時間
図2に示すように、チップ(20.5×20.5×0.55tmm)が実装された半導体装置を80℃に加熱したホットプレート上に置き、デイスペンサーを用いて液状エポキシ樹脂組成物の所定量をチップの側面(1辺)に滴下し、エポキシ樹脂組成物がチップと基板との間をアンダーフィルして対向する側面に浸透するまでの時間を測定した。
(5) Impregnation time As shown in FIG. 2, the semiconductor device on which the chip (20.5 × 20.5 × 0.55 tmm) is mounted is placed on a hot plate heated to 80 ° C., and is liquid using a dispenser. A predetermined amount of the epoxy resin composition was dropped on the side surface (one side) of the chip, and the time required for the epoxy resin composition to underfill between the chip and the substrate and penetrate into the opposing side surface was measured.
(6)充填剤沈降観察
樹脂封止型半導体装置の中央部をダイヤモンドカッターで縦方向に切断し、切断面を平滑に研磨した後、マイクロスコープVH6110(株式会社キーエンス製商品名)で観察し、充填剤の沈降の有無を調べた。
(6) Filler sedimentation observation The central part of the resin-encapsulated semiconductor device was cut in the longitudinal direction with a diamond cutter and the cut surface was polished smoothly, and then observed with a microscope VH6110 (trade name, manufactured by Keyence Corporation). The presence or absence of sedimentation of the filler was examined.
(7)ボイド観察
樹脂封止型半導体装置の内部を超音波探傷装置AT−5500(株式会社日立建機製商品名)で観察し、ボイドの有無を調べた。
(7) Void Observation The inside of the resin-encapsulated semiconductor device was observed with an ultrasonic flaw detector AT-5500 (trade name, manufactured by Hitachi Construction Machinery Co., Ltd.) to examine the presence or absence of voids.
(8)信頼性評価
(1) 耐リフロー性
樹脂封止型半導体装置を120℃/12時間加熱乾燥した後、85℃、60%RH下で168時間吸湿させ、遠赤外線加熱方式のリフロー炉(245℃加熱時間10秒)中を3回通した後、内部を超音波探傷装置で観察し、液状エポキシ樹脂組成物とチップ及び基板との剥離、エポキシ樹脂組成物のクラックの有無を調べた。
(8) Reliability evaluation
(1) Reflow resistance After the resin-encapsulated semiconductor device is heated and dried at 120 ° C. for 12 hours, the resin-encapsulated semiconductor device is moisture-absorbed for 168 hours at 85 ° C. and 60% RH. ) After passing through the inside three times, the inside was observed with an ultrasonic flaw detector, and the presence or absence of peeling of the liquid epoxy resin composition from the chip and the substrate and cracking of the epoxy resin composition were examined.
(2) 耐温度サイクル性
樹脂封止型半導体装置を−50℃〜150℃、各30分のヒートサイクルで1000サイクル処理し、導通試験を行いアルミ配線の断線不良を調べ、不良パッケージ数/評価パッケージ数で評価した。
(2) Thermal cycle resistance Resin-encapsulated semiconductor devices are processed for 1000 cycles with a heat cycle of -50 ° C to 150 ° C for 30 minutes each, continuity tests are conducted to check for disconnection defects in aluminum wiring, and the number of defective packages / evaluation Evaluated by the number of packages.
(3) 耐湿信頼性
樹脂封止型半導体装置を121℃、2atm、100%RHのPCT条件で240h処理後、アルミ配線及びパッドの断線有無を導通試験より確認し、不良パッケージ数/評価パッケージ数で評価した。
(3) Moisture resistance reliability After processing the resin-encapsulated semiconductor device for 240 hours under PCT conditions of 121 ° C, 2 atm, 100% RH, the presence or absence of disconnection of the aluminum wiring and pads is confirmed by continuity test, and the number of defective packages / number of evaluation packages It was evaluated with.
[比較例1〜5]
表3に示す配合割合で計量した各素材を用いた以外は上記実施例と同様にして5種類の液状エポキシ樹脂組成物を作製し、各種特性、半導体装置の成形性、信頼性を評価した。結果を表3に纏めて併記する。
[Comparative Examples 1-5]
Five types of liquid epoxy resin compositions were prepared in the same manner as in the above example except that each material weighed at the blending ratio shown in Table 3 was used, and various characteristics, moldability and reliability of the semiconductor device were evaluated. The results are summarized in Table 3 and shown together.
表2及び表3から明らかなように、本発明の液状エポキシ樹脂組成物は狭い隙間への含浸性が優れ、充填剤の沈降及びボイドの発生が少ない。 As is clear from Tables 2 and 3, the liquid epoxy resin composition of the present invention is excellent in impregnation into narrow gaps, and the sedimentation of the filler and the generation of voids are small.
1 チップ
2 バンプ(はんだボール)
3 基板
4 アンダーフィル材
5 シリンジ
6 ホットプレート
1
3 Substrate 4 Underfill material 5
Claims (7)
前記半導体装置を予熱する工程、
前記半導体チップと前記基板との隙間にアンダーフィル材を毛細管現象により含浸させる工程、及び
前記半導体装置を高温槽中で加熱することによりアンダーフィル材を硬化させる工程を有する樹脂封止型半導体装置の製造方法であり、
前記アンダーフィル材が(A)エポキシ樹脂、(B)硬化剤(含フッ素芳香族ジアミンおよびその誘導体を除く。)及び(C)無機充填剤を含み、チキソトロピック指数が0.8より小さい液状エポキシ樹脂組成物であって、前記(C)無機充填剤の99重量%以上が、粒径が0.1μmから16μmの範囲内である、樹脂封止型半導体装置の製造方法。
Preparing a semiconductor device flip-chip mounted so that the circuit formation surface of the semiconductor chip faces the circuit formation surface of the substrate via bumps;
Preheating the semiconductor device;
A resin-encapsulated semiconductor device comprising: a step of impregnating an underfill material into a gap between the semiconductor chip and the substrate by capillary action; and a step of curing the underfill material by heating the semiconductor device in a high-temperature bath. Manufacturing method,
The underfill material contains (A) an epoxy resin, (B) a curing agent (excluding a fluorine-containing aromatic diamine and its derivative) and (C) an inorganic filler, and a liquid epoxy having a thixotropic index of less than 0.8 A method for producing a resin-encapsulated semiconductor device, which is a resin composition, wherein 99% by weight or more of the inorganic filler (C) has a particle size in the range of 0.1 μm to 16 μm.
A resin-encapsulated semiconductor device obtained by the manufacturing method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013001005A JP5804479B2 (en) | 2013-01-08 | 2013-01-08 | Manufacturing method of resin-encapsulated semiconductor device and resin-encapsulated semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013001005A JP5804479B2 (en) | 2013-01-08 | 2013-01-08 | Manufacturing method of resin-encapsulated semiconductor device and resin-encapsulated semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008305947A Division JP2009057575A (en) | 2008-12-01 | 2008-12-01 | Liquid epoxy resin composition and electronic component device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015036675A Division JP2015110803A (en) | 2015-02-26 | 2015-02-26 | Liquid epoxy resin composition and electronic part device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013067814A JP2013067814A (en) | 2013-04-18 |
JP5804479B2 true JP5804479B2 (en) | 2015-11-04 |
Family
ID=48473847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013001005A Expired - Fee Related JP5804479B2 (en) | 2013-01-08 | 2013-01-08 | Manufacturing method of resin-encapsulated semiconductor device and resin-encapsulated semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5804479B2 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3093621B2 (en) * | 1995-01-30 | 2000-10-03 | 松下電器産業株式会社 | Semiconductor device mounting method |
JPH09223720A (en) * | 1996-02-15 | 1997-08-26 | Toshiba Corp | Semiconductor package device and manufacturing method thereof |
JP3729225B2 (en) * | 1996-08-29 | 2005-12-21 | 信越化学工業株式会社 | Semiconductor device |
JP2967080B1 (en) * | 1998-05-14 | 1999-10-25 | 松下電器産業株式会社 | Method of manufacturing semiconductor device package |
JP2001127215A (en) * | 1999-10-28 | 2001-05-11 | Sumitomo Bakelite Co Ltd | Liquid resin composition and semiconductor device using the composition |
JP3723461B2 (en) * | 2000-06-08 | 2005-12-07 | 日本電気株式会社 | Electronic component equipment |
JP2002284849A (en) * | 2001-03-26 | 2002-10-03 | Sumitomo Bakelite Co Ltd | Liquid resin composition and semiconductor device |
JP2003026771A (en) * | 2001-07-23 | 2003-01-29 | Fujitsu Ltd | Epoxy resin composition |
JP2003238141A (en) * | 2002-02-07 | 2003-08-27 | Mitsubishi Rayon Co Ltd | Surface modified spherical silica, its production method, and resin composition for semiconductor sealing |
-
2013
- 2013-01-08 JP JP2013001005A patent/JP5804479B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013067814A (en) | 2013-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4892164B2 (en) | Liquid epoxy resin composition and electronic component device | |
JP6233441B2 (en) | Liquid epoxy resin composition and electronic component device | |
JP2015193851A (en) | Liquid epoxy resin composition and electronic part device | |
JP6789495B2 (en) | Resin composition for underfill, electronic component device and manufacturing method of electronic component device | |
JP7375541B2 (en) | Epoxy resin composition and electronic component equipment | |
JP6315170B2 (en) | Epoxy resin composition for semiconductor encapsulation, semiconductor packaging structure, and method for producing the same | |
JP3794349B2 (en) | Liquid epoxy resin composition for sealing and semiconductor device | |
TW201809126A (en) | Epoxy resin composition for semiconductor encapsulation and method for producing semiconductor device | |
JP2009091510A (en) | Liquid epoxy resin composition and semiconductor device using the composition | |
JP2024096265A (en) | Resin composition and electronic component device | |
JP2009057575A (en) | Liquid epoxy resin composition and electronic component device | |
JP3925803B2 (en) | Flip chip mounting side fill material and semiconductor device | |
JP5708666B2 (en) | Liquid epoxy resin composition and electronic component device | |
JP2005105243A (en) | Side filling material for flip chip mounting, and semiconductor device | |
JP2016040393A (en) | Liquid epoxy resin composition, and electronic component device | |
JP2015180760A (en) | Liquid epoxy resin composition and electronic part device | |
JP2015110803A (en) | Liquid epoxy resin composition and electronic part device | |
JP5924443B2 (en) | Liquid epoxy resin composition and electronic component device | |
JP5929977B2 (en) | Liquid epoxy resin composition and electronic component device | |
JPWO2019146617A1 (en) | Resin composition for sealing | |
JP2015054952A (en) | Epoxy resin composition, electronic part device and production method of electronic part device | |
JP6388228B2 (en) | Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device using the same | |
WO2021049645A1 (en) | Encapsulating material for compression molding and electronic part and device | |
JP5804479B2 (en) | Manufacturing method of resin-encapsulated semiconductor device and resin-encapsulated semiconductor device | |
JP2021161213A (en) | Resin composition for sealing and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130205 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140318 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150818 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150825 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5804479 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |