JP5803774B2 - Method for producing chromium catalyst for ethylene polymerization - Google Patents
Method for producing chromium catalyst for ethylene polymerization Download PDFInfo
- Publication number
- JP5803774B2 JP5803774B2 JP2012075338A JP2012075338A JP5803774B2 JP 5803774 B2 JP5803774 B2 JP 5803774B2 JP 2012075338 A JP2012075338 A JP 2012075338A JP 2012075338 A JP2012075338 A JP 2012075338A JP 5803774 B2 JP5803774 B2 JP 5803774B2
- Authority
- JP
- Japan
- Prior art keywords
- chromium
- catalyst
- ethylene polymerization
- temperature
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims description 138
- 229910052804 chromium Inorganic materials 0.000 title claims description 108
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title claims description 107
- 239000011651 chromium Substances 0.000 title claims description 107
- 238000006116 polymerization reaction Methods 0.000 title claims description 102
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 title claims description 77
- 239000005977 Ethylene Substances 0.000 title claims description 77
- 238000004519 manufacturing process Methods 0.000 title claims description 53
- -1 polyethylene Polymers 0.000 claims description 91
- 239000004698 Polyethylene Substances 0.000 claims description 87
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 87
- 239000001301 oxygen Substances 0.000 claims description 87
- 229910052760 oxygen Inorganic materials 0.000 claims description 87
- 229920000573 polyethylene Polymers 0.000 claims description 87
- 238000000034 method Methods 0.000 claims description 55
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 52
- 150000001845 chromium compounds Chemical class 0.000 claims description 35
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 28
- 239000012018 catalyst precursor Substances 0.000 claims description 26
- 229910052757 nitrogen Inorganic materials 0.000 claims description 26
- 150000002430 hydrocarbons Chemical class 0.000 claims description 25
- 239000004711 α-olefin Substances 0.000 claims description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 19
- 238000010304 firing Methods 0.000 claims description 19
- 239000001257 hydrogen Substances 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 19
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 10
- 239000011261 inert gas Substances 0.000 claims description 9
- 238000007334 copolymerization reaction Methods 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 230000004913 activation Effects 0.000 description 54
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 22
- 238000001354 calcination Methods 0.000 description 22
- 239000000047 product Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 20
- 229920003023 plastic Polymers 0.000 description 18
- 239000004033 plastic Substances 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 230000000704 physical effect Effects 0.000 description 11
- 239000002828 fuel tank Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 10
- 239000002685 polymerization catalyst Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 8
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 230000037048 polymerization activity Effects 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- 229940117975 chromium trioxide Drugs 0.000 description 6
- GAMDZJFZMJECOS-UHFFFAOYSA-N chromium(6+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+6] GAMDZJFZMJECOS-UHFFFAOYSA-N 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- WYYQVWLEPYFFLP-UHFFFAOYSA-K chromium(3+);triacetate Chemical compound [Cr+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WYYQVWLEPYFFLP-UHFFFAOYSA-K 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000001282 iso-butane Substances 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000000071 blow moulding Methods 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- XEHUIDSUOAGHBW-UHFFFAOYSA-N chromium;pentane-2,4-dione Chemical compound [Cr].CC(=O)CC(C)=O.CC(=O)CC(C)=O.CC(=O)CC(C)=O XEHUIDSUOAGHBW-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000012685 gas phase polymerization Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 125000005372 silanol group Chemical group 0.000 description 3
- WOZZOSDBXABUFO-UHFFFAOYSA-N tri(butan-2-yloxy)alumane Chemical compound [Al+3].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-] WOZZOSDBXABUFO-UHFFFAOYSA-N 0.000 description 3
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000011990 phillips catalyst Substances 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 150000003755 zirconium compounds Chemical class 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- QLOKJRIVRGCVIM-UHFFFAOYSA-N 1-[(4-methylsulfanylphenyl)methyl]piperazine Chemical compound C1=CC(SC)=CC=C1CN1CCNCC1 QLOKJRIVRGCVIM-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- PMJNEQWWZRSFCE-UHFFFAOYSA-N 3-ethoxy-3-oxo-2-(thiophen-2-ylmethyl)propanoic acid Chemical compound CCOC(=O)C(C(O)=O)CC1=CC=CS1 PMJNEQWWZRSFCE-UHFFFAOYSA-N 0.000 description 1
- PNWJTIFZRHJYLK-UHFFFAOYSA-N CC(C)(C)O[Cr](=O)(=O)OC(C)(C)C Chemical compound CC(C)(C)O[Cr](=O)(=O)OC(C)(C)C PNWJTIFZRHJYLK-UHFFFAOYSA-N 0.000 description 1
- 229910021556 Chromium(III) chloride Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 229940070337 ammonium silicofluoride Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 229960000359 chromic chloride Drugs 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical compound [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- WBKDDMYJLXVBNI-UHFFFAOYSA-K chromium(3+);2-ethylhexanoate Chemical compound [Cr+3].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O WBKDDMYJLXVBNI-UHFFFAOYSA-K 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- AHXGRMIPHCAXFP-UHFFFAOYSA-L chromyl dichloride Chemical compound Cl[Cr](Cl)(=O)=O AHXGRMIPHCAXFP-UHFFFAOYSA-L 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Polymerization Catalysts (AREA)
Description
本発明は、ポリエチレンを製造するためのエチレン重合用クロム触媒の製造方法に関し、さらに詳しくは、ポリエチレンの流動性、溶融張力を改善したクロム触媒の製造方法及び同触媒を用いたポリエチレンの製造方法に関する。 The present invention relates to a method for producing a chromium catalyst for ethylene polymerization for producing polyethylene, and more particularly relates to a method for producing a chromium catalyst with improved flowability and melt tension of polyethylene and a method for producing polyethylene using the catalyst. .
近年、各種産業分野において、プラスチック製のパイプ、フィルム、射出成型体、及び中空成形体が盛んに用いられるようになった。その中でも、中空成形体に目を向けると、燃料缶及びプラスチックボトルなどの容器にもプラスチックが用いられている。また、自動車部品において、ポリエチレンより作られる中空プラスチック成形品が燃料タンクとして使用され、従来の金属材料製の燃料タンクにとって変わりつつある。プラスチック製の容器および燃料タンクは、金属材料の場合と比べると、重量/体積比が小さいので軽量化の面で有利であり、また、錆などの腐食が起こりにくく、耐衝撃性が良好であるという特徴を有しているので、ますます広い用途を獲得しつつある。
ポリエチレンより得られるプラスチック燃料タンクにおいては、自動車の安全性を確保するための重要な保安部品とするために、特に高いレベルが要求されており、これらを十分に高いレベルに向上させるため、更なる材料開発が進められている。
In recent years, plastic pipes, films, injection molded articles, and hollow molded articles have been actively used in various industrial fields. Among them, when looking at the hollow molded body, plastic is also used for containers such as fuel cans and plastic bottles. In automobile parts, hollow plastic molded products made of polyethylene are used as fuel tanks, which are changing from conventional fuel tanks made of metal materials. Compared to metal materials, plastic containers and fuel tanks are advantageous in terms of weight reduction because of their small weight / volume ratio, and are less susceptible to corrosion such as rust and have good impact resistance. Because of this feature, it is gaining wider use.
In plastic fuel tanks obtained from polyethylene, a particularly high level is required in order to make it an important safety part for ensuring the safety of automobiles. Material development is underway.
一般に、ポリエチレンは、重合触媒を用いて、エチレンの単独重合あるいはエチレンとα−オレフィン等のコモノマーとの共重合によって製造される。用途に応じた適切な特性を有するポリエチレンを製造するために、様々な重合触媒が開発されている。現在、主要な重合触媒として、ラジカル重合触媒、チーグラー触媒、メタロセン触媒と並んで、フィリップス触媒が重用されている。
フィリップス触媒は、クロム化合物をシリカ、シリカ−アルミナ、シリカ−チタニア等の無機酸化物担体に担持させ、非還元性雰囲気で賦活することにより、担持されたクロム原子の少なくとも一部のクロム原子を6価としたクロム触媒である。フィリップス触媒は、比較的広い分子量分布と長鎖分岐構造に起因する、優れた溶融加工特性(成形性)を有するポリエチレンを生成できることから、特に中空成形体に用いるポリエチレン製造において重要な重合用触媒となっている。
In general, polyethylene is produced by homopolymerization of ethylene or copolymerization of ethylene and a comonomer such as an α-olefin using a polymerization catalyst. Various polymerization catalysts have been developed in order to produce polyethylene with suitable properties depending on the application. Currently, as a main polymerization catalyst, a Philips catalyst is used alongside a radical polymerization catalyst, a Ziegler catalyst, and a metallocene catalyst.
The Phillips catalyst supports a chromium compound on an inorganic oxide carrier such as silica, silica-alumina, silica-titania, etc., and activates it in a non-reducing atmosphere. Chromium catalyst with a valence. The Philips catalyst can produce polyethylene having excellent melt processing characteristics (moldability) resulting from a relatively wide molecular weight distribution and a long-chain branched structure. It has become.
性能が優れたブロー成形用ポリエチレンを製造するためのフィリップス触媒に関して、従来から以下に述べるような各種の検討がなされている。
例えば、特許文献1には、亜鉛化合物とクロム化合物を無機担体に担持させ、焼成することによって得られる触媒を用いてエチレン重合を行うことにより、高い耐破壊性、高いパリソン安定性および高い耐環境応力亀裂性をもつポリエチレンが得られることが開示されている。
特許文献2には、ジルコニウム化合物とクロム化合物を無機担体に担持させ、焼成することによって得られる触媒を用いてエチレン重合を行うことにより、耐環境応力亀裂性(ESCR)および衝撃引張強さが優れたポリエチレンが得られることが開示されている。
さらに、特許文献3には、クロム化合物、Mg、Ca、Sr、B、Al、Si、P、Bi、Sc、V、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Ru、Rh、Pd、Hf、Ta及びWの中から選ばれる金属の化合物の均一溶液を調製した後、無機担体と接触させて得られる固体触媒前駆体を焼成することにより得られるクロム触媒を用いてエチレン重合を行うことが開示されている。また特許文献3には、前記方法により、微細ポリマーダストの低排出化が得られ、改良した特性を有するポリマー製品、例えば、ポリマーフィルムにおいて改良したフィルム品質及びより低頻度でしか斑点が生じないフィルムが得られることが開示されている。
これらの特許文献1〜3は、クロム化合物と、他の金属化合物を含む無機担体を焼成してなる触媒の開示であるが、これらの焼成方法についての詳しい開示はなされていない。
従来、酸素存在下で炉内温度を上げると、無機担体に含まれるクロム化合物中の炭素及び水素による発熱がおこるために、炉内温度が急上昇して炉内温度をコントロールすることが難しくなっていた。この炭化水素の燃焼による炉内温度上昇は、無機担体がクロム化合物以外の金属含有炭化水素化合物を含むと、さらに顕著になる。しかしながら特許文献1〜3には、その焼成方法に関した改善方法を示唆する開示はない。
Various studies have been made on the Philips catalyst for producing blow-molding polyethylene having excellent performance as described below.
For example, Patent Document 1 discloses that by carrying out ethylene polymerization using a catalyst obtained by supporting a zinc compound and a chromium compound on an inorganic carrier and calcining, high destruction resistance, high parison stability, and high environmental resistance. It is disclosed that polyethylene with stress cracking properties can be obtained.
Patent Document 2 discloses that environmental stress crack resistance (ESCR) and impact tensile strength are excellent by carrying out ethylene polymerization using a catalyst obtained by supporting a zirconium compound and a chromium compound on an inorganic carrier and firing them. Is obtained.
Furthermore, Patent Document 3 includes a chromium compound, Mg, Ca, Sr, B, Al, Si, P, Bi, Sc, V, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru. Using a chromium catalyst obtained by calcining a solid catalyst precursor obtained by preparing a homogeneous solution of a metal compound selected from Rh, Pd, Hf, Ta and W and then contacting with an inorganic carrier Performing ethylene polymerization is disclosed. Further, in Patent Document 3, a low emission of fine polymer dust is obtained by the above-described method, and a polymer product having improved characteristics, for example, a film quality improved in a polymer film and a film in which spots occur only less frequently. Is disclosed.
Although these patent documents 1-3 are the disclosure of the catalyst formed by baking the inorganic support | carrier containing a chromium compound and another metal compound, the detailed disclosure about these baking methods is not made | formed.
Conventionally, when the furnace temperature is raised in the presence of oxygen, heat is generated due to carbon and hydrogen in the chromium compound contained in the inorganic carrier, so that the furnace temperature rises rapidly, making it difficult to control the furnace temperature. It was. This increase in the furnace temperature due to the combustion of hydrocarbons becomes even more pronounced when the inorganic carrier contains a metal-containing hydrocarbon compound other than the chromium compound. However, Patent Documents 1 to 3 do not disclose an improvement method related to the firing method.
特許文献4には、(a)触媒前駆体を、不活性雰囲気下、370℃〜540℃で加熱した後、(b)510℃を超えない炉内温度で酸素を導入し、(c)触媒焼成を完遂し、(d)触媒を得る、チタン化合物とクロム化合物を担持した担体の焼成方法が開示されている。しかし、この特許文献4には、300℃〜500℃の低賦活温度で触媒前駆体と酸素を接触させた触媒の製造方法の説明はなく、実施例も開示されていない。また特許文献4には、触媒前駆体を焼成する際、酸素の導入時に温度スパイクがおこらないようにするという開示はあるが、そのことがどのような効果を及ぼすかについて開示されていない。 In Patent Document 4, (a) a catalyst precursor is heated at 370 ° C. to 540 ° C. in an inert atmosphere, (b) oxygen is introduced at a furnace temperature not exceeding 510 ° C., and (c) a catalyst. A method for calcining a carrier carrying a titanium compound and a chromium compound, which completes calcining and obtains (d) a catalyst is disclosed. However, Patent Document 4 does not describe a method for producing a catalyst in which a catalyst precursor and oxygen are brought into contact at a low activation temperature of 300 ° C. to 500 ° C., and does not disclose an example. Further, Patent Document 4 discloses that when a catalyst precursor is calcined, temperature spikes are prevented from occurring when oxygen is introduced, but it does not disclose what kind of effect this has.
従来、低温度賦活により得られるフィリップス触媒を用いて重合を行うことにより得られるポリエチレンは広い分子量分布をもち、優れた剛性と耐久性のバランスを持つポリエチレンが得られることが知られていた。しかしながら、このポリエチレンは流動性、溶融張力の点で更なる改善が求められていた。 Conventionally, it has been known that polyethylene obtained by polymerization using a Philips catalyst obtained by low-temperature activation has a broad molecular weight distribution, and a polyethylene having an excellent balance between rigidity and durability can be obtained. However, this polyethylene has been required to be further improved in terms of fluidity and melt tension.
こうした状況下に、より性能が優れたブロー成形用ポリエチレンを製造することができるフィリップス触媒が求められている。 Under these circumstances, there is a need for a Phillips catalyst that can produce blow-molding polyethylene with better performance.
本発明の課題は、低温度賦活であるにもかかわらず、流動性と溶融張力が優れたポリエチレンを効率よく高い重合活性で製造するための触媒の製造方法を提供することにある。 The subject of this invention is providing the manufacturing method of the catalyst for manufacturing the polyethylene which was excellent in fluidity | liquidity and melt tension with high polymerization activity in spite of being low-temperature activation.
本発明者らは、上記課題を達成するために鋭意検討を重ねた結果、クロム化合物及びクロム以外の金属含有炭化水素化合物を担持した触媒前駆体を焼成する際、特定の接触温度とりわけ比較的低い温度で不活性雰囲気下にて加熱した後、特定の温度範囲内になるように酸素を導入する工程を経て得られるクロム触媒をエチレン重合用触媒として用いることで、流動性と溶融張力が優れたポリエチレンが得られることを見出し、これらの知見に基づき、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned problems, the inventors of the present invention have a specific contact temperature, especially a relatively low temperature, when firing a catalyst precursor supporting a chromium compound and a metal-containing hydrocarbon compound other than chromium. Chromium catalyst obtained through a process of introducing oxygen so as to be in a specific temperature range after heating in an inert atmosphere at a temperature is excellent in fluidity and melt tension. Based on these findings, the inventors have found that polyethylene can be obtained and have completed the present invention.
すなわち、本発明の第1の発明によれば、無機酸化物担体(a)にクロム化合物(b)及びクロム以外の金属含有炭化水素化合物(c)をそれぞれ担持して得られる触媒前駆体(d)を非還元性雰囲気で焼成するエチレン重合用クロム触媒の製造方法であって、前記触媒前駆体(d)の焼成工程は、不活性ガスを導入しながら接触温度を100〜360℃の範囲で、5分〜48時間保持する第1の工程と、その前記第1の工程の後、接触温度を200〜500℃の範囲に保つように、導入される酸素の濃度を連続的に増加又は段階的に上昇させて、最終的な酸素の濃度が15〜30体積%になるように調整しながら5分〜72時間焼成を行う第2の工程を含むことを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 That is, according to the first invention of the present invention, the catalyst precursor (d) obtained by supporting the chromium compound (b) and the metal-containing hydrocarbon compound (c) other than chromium on the inorganic oxide support (a), respectively. ) In a non-reducing atmosphere, wherein the catalyst precursor (d) is calcined in a temperature range of 100 to 360 ° C. while introducing an inert gas. A first step of holding for 5 minutes to 48 hours, and after the first step, the concentration of oxygen introduced is continuously increased or staged so as to keep the contact temperature in the range of 200-500 ° C. And a second step of firing for 5 minutes to 72 hours while adjusting the final oxygen concentration to 15 to 30% by volume . A manufacturing method is provided.
また、本発明の第2の発明によれば、第1の発明において、前記第2の工程にかかる酸素の導入を開始する時の導入される酸素の濃度は2体積%以下であることを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 According to the second invention of the present invention, in the first invention, the concentration of oxygen introduced when starting the introduction of oxygen in the second step is 2% by volume or less. A method for producing a chromium catalyst for ethylene polymerization is provided.
さらに、本発明の第3の発明によれば、第1又は2の発明において、前記第2の工程にかかる酸素の導入を開始する時の接触温度は200〜450℃であることを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 Furthermore, according to the third invention of the present invention, in the first or second invention, the contact temperature when starting the introduction of oxygen in the second step is 200 to 450 ° C. A method for producing a chromium catalyst for ethylene polymerization is provided.
また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、全クロム含量に対する6価クロム含量の割合が70〜100重量%であることを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the ratio of the hexavalent chromium content to the total chromium content is 70 to 100% by weight. A method for producing a chromium catalyst is provided.
さらに、本発明の第5の発明によれば、第1〜4のいずれかの発明において、前記無機酸化物担体(a)は、シリカであることを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 Furthermore, according to a fifth invention of the present invention, in any one of the first to fourth inventions, the inorganic oxide support (a) is silica, and the method for producing a chromium catalyst for ethylene polymerization Is provided.
さらに、本発明の第6の発明によれば、第1〜5のいずれかの発明において、前記触媒前駆体(d)は、クロム化合物(b)が0.5〜5.0重量%含まれることを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 Furthermore, according to the sixth invention of the present invention, in any one of the first to fifth inventions, the catalyst precursor (d) contains 0.5 to 5.0 wt% of the chromium compound (b). A method for producing a chromium catalyst for ethylene polymerization is provided.
また、本発明の第7の発明によれば、第1〜6のいずれかの発明において、金属含有炭化水素化合物(c)は、元素周期表の1族、2族、3族、13族から選ばれる金属元素を含有することを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 According to the seventh invention of the present invention, in any one of the first to sixth inventions, the metal-containing hydrocarbon compound (c) is selected from groups 1, 2, 3, and 13 of the periodic table. Provided is a method for producing a chromium catalyst for ethylene polymerization, which contains a selected metal element.
さらに、本発明の第8の発明によれば、第1〜7のいずれかの発明において、金属含有炭化水素化合物(c)に含まれる金属は、アルミニウムであることを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 Furthermore, according to an eighth invention of the present invention, in any one of the first to seventh inventions, the metal contained in the metal-containing hydrocarbon compound (c) is aluminum, and the chromium for ethylene polymerization A method for producing a catalyst is provided.
また、本発明の第9の発明によれば、第1〜8のいずれかの発明において、金属含有炭化水素化合物(c)は、各金属部分が触媒中に0.5〜5.0重量%含まれ、炭素と水素の総和量は触媒中に0.5〜20.0重量%となるように含有させることを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 According to the ninth invention of the present invention, in any one of the first to eighth inventions, the metal-containing hydrocarbon compound (c) is 0.5 to 5.0% by weight of each metal portion in the catalyst. A method for producing a chromium catalyst for ethylene polymerization is provided, characterized in that the total amount of carbon and hydrogen is 0.5 to 20.0 wt% in the catalyst.
また、本発明の第10の発明によれば、第1〜9のいずれかの発明において、金属含有炭化水素化合物(c)は、1分子中の炭素数が2〜30個、水素数が5〜100個であることを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 According to a tenth aspect of the present invention, in any one of the first to ninth aspects, the metal-containing hydrocarbon compound (c) has 2 to 30 carbon atoms and 5 hydrogen atoms in one molecule. There is provided a method for producing a chromium catalyst for ethylene polymerization, characterized in that the number is ˜100.
さらに、本発明の第11の発明によれば、第1〜10のいずれかの発明において、前記不活性ガスは窒素であることを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 Furthermore, according to an eleventh aspect of the present invention, there is provided the method for producing a chromium catalyst for ethylene polymerization according to any one of the first to tenth aspects, wherein the inert gas is nitrogen.
また、本発明の第12の発明によれば、第1〜11のいずれかの発明において、前記第2の工程で、導入される酸素の濃度を連続的に又は段階的に増加させることを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 According to a twelfth aspect of the present invention, in any one of the first to eleventh aspects, the concentration of oxygen to be introduced is increased continuously or stepwise in the second step. A method for producing a chromium catalyst for ethylene polymerization is provided.
また、本発明の第13の発明によれば、第1〜12のいずれかの発明において、前記第2の工程で、酸素の導入を一時的に中断することを含むことを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 According to a thirteenth aspect of the present invention, in any one of the first to twelfth aspects, the second step includes temporarily interrupting the introduction of oxygen. A method for producing a chromium catalyst is provided.
また、本発明の第14の発明によれば、第1〜13のいずれかの発明において、接触温度は250〜550℃の範囲で、一定の酸素濃度の酸素及び不活性ガス混合物を5分〜72時間かけて導入する第3の工程を含むことを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 According to the fourteenth invention of the present invention, in any one of the first to thirteenth inventions, the contact temperature is in the range of 250 to 550 ° C. A method for producing a chromium catalyst for ethylene polymerization is provided, which comprises a third step of introducing over 72 hours.
また、本発明の第15の発明によれば、第14の発明において、前記第3の工程で、接触温度は350℃〜420℃であることを特徴とするエチレン重合用クロム触媒の製造方法が提供される。 According to a fifteenth aspect of the present invention, there is provided the method for producing a chromium catalyst for ethylene polymerization according to the fourteenth aspect, wherein the contact temperature is 350 ° C. to 420 ° C. in the third step. Provided.
一方、本発明の第16の発明によれば、第1〜15のいずれかの発明に係るエチレン重合触媒を用いて、エチレン単独重合またはエチレンとα−オレフィンとの共重合を行うことにより得られるポリエチレンの製造方法が提供される。 On the other hand, according to the sixteenth invention of the present invention, it is obtained by performing ethylene homopolymerization or copolymerization of ethylene and α-olefin using the ethylene polymerization catalyst according to any one of the first to fifteenth inventions. A method for producing polyethylene is provided.
また、本発明の第17の発明によれば、第16の発明において、温度190℃、荷重21.6kgにおけるメルトフローレート(HLMFR)が1〜100g/10分、密度が0.935〜0.965g/cm3であることを特徴とするポリエチレンの製造方法が提供される。 According to the seventeenth aspect of the present invention, in the sixteenth aspect, the melt flow rate (HLMFR) at a temperature of 190 ° C. and a load of 21.6 kg is 1 to 100 g / 10 minutes, and the density is 0.935 to 0.00. A process for producing polyethylene is provided, characterized in that it is 965 g / cm 3 .
さらに、本発明の第18の発明によれば、第16又は17の発明において、HLMFRが1〜15/10分、密度が0.940〜0.960g/cm3であることを特徴とするポリエチレンの製造方法が提供される。 Furthermore, according to an eighteenth aspect of the present invention, in the sixteenth or seventeenth aspect, the polyethylene has a HLMFR of 1 to 15/10 minutes and a density of 0.940 to 0.960 g / cm 3. A manufacturing method is provided.
本発明のエチレン重合用触媒の製造方法を用いることにより、剛性と耐久性のバランスに優れ、かつ流動性が高く溶融張力が高いポリエチレンを効率よく高活性にて製造することができる。そして、そのポリエチレンは、その流動性と成形性から中空プラスチック製品に適し、その中空プラスチック製品は、剛性と耐久性のバランスに優れ、燃料タンク、特に自動車用燃料タンク等に好適に用いることができる。 By using the method for producing an ethylene polymerization catalyst of the present invention, it is possible to produce polyethylene having an excellent balance between rigidity and durability, high fluidity and high melt tension with high activity. The polyethylene is suitable for a hollow plastic product because of its fluidity and moldability, and the hollow plastic product has an excellent balance between rigidity and durability and can be suitably used for a fuel tank, particularly a fuel tank for automobiles. .
本発明のエチレン重合用触媒の製造方法は、クロム化合物及び他の金属含有炭化水素化合物クロム化合物を担持させた触媒前駆体を焼成させる際、特定の接触温度とりわけ比較的低い温度で不活性雰囲気下にて加熱した後、特定の温度範囲内に保つように導入酸素濃度を調整しながら焼成することを特徴とするものである。
また、本発明の方法で製造されたエチレン重合用触媒を使用することにより、流動性、溶融張力に優れたポリエチレンを高活性にて得られ、特に中空プラスチック成形品に適したポリエチレンを効率よく高活性にて製造することができる。
以下、本発明を、項目毎に具体的に説明する。
The process for producing an ethylene polymerization catalyst according to the present invention comprises an inert atmosphere at a specific contact temperature, particularly at a relatively low temperature, when a catalyst precursor supporting a chromium compound and another metal-containing hydrocarbon compound chromium compound is calcined. After heating at, firing is performed while adjusting the introduced oxygen concentration so as to keep within a specific temperature range.
In addition, by using the ethylene polymerization catalyst produced by the method of the present invention, polyethylene having excellent fluidity and melt tension can be obtained with high activity, and particularly suitable for hollow plastic molded products. It can be produced with activity.
Hereinafter, the present invention will be specifically described for each item.
[I] エチレン重合用触媒
本発明に用いられる触媒は、特定の無機酸化物担体(a)にクロム化合物(b)を担持し、非還元性雰囲気で焼成活性化することにより少なくとも一部のクロム原子が6価となるクロム触媒である。本発明の触媒は、フィリップス触媒として分類されるものである。
一般的なフィリップス触媒に関しては、例えば、以下の文献に記載されており、本発明は、これらの触媒の改良に関するものである。
(i)M.P.McDaniel著,Advances in Catalysis,Volume 33,47頁,1985年,Academic Press Inc.
(ii)M.P.McDaniel著,Handbook of Heterogeneous Catalysis,2400頁,1997年,VCH
(iii)M.B.Welchら著,Handbook of Polyolefins:Synthesis and Properties,21頁,1993年,Marcel Dekker
[I] Catalyst for ethylene polymerization The catalyst used in the present invention comprises at least a part of chromium by supporting a chromium compound (b) on a specific inorganic oxide carrier (a) and activating it by firing in a non-reducing atmosphere. It is a chromium catalyst whose atoms are hexavalent. The catalyst of the present invention is classified as a Philips catalyst.
General Philips catalysts are described in, for example, the following documents, and the present invention relates to improvements of these catalysts.
(I) M.M. P. McDaniel, Advances in Catalysis, Volume 33, 47, 1985, Academic Press Inc.
(Ii) M.M. P. McDaniel, Handbook of Heterogeneous Catalysis, 2400, 1997, VCH
(Iii) M.M. B. Welch et al., Handbook of Polyolefins: Synthesis and Properties, p. 21, 1993, Marcel Dekker.
1.無機酸化物担体(a)
本発明において、無機酸化物担体(a)としては、周期律表第2、4、13又は14族の金属の酸化物を用いることができる。具体的には、マグネシア、チタニア、ジルコニア、アルミナ、シリカ、トリア、シリカ−チタニア、シリカ−ジルコニア、シリカ−アルミナ又はこれらの混合物が挙げられる。
自動車用燃料タンク用途には、無機酸化物担体として、シリカのみのほうが好ましい。シリカ以外のものを担体として用いたとき、重合活性が低下し、ポリエチレンの低分子量成分の増加が原因であると考えられるが、耐衝撃性が低下する傾向にある。
これらのクロム触媒に適する担体の製法、物理的性質及び特徴は、例えば以下の文献に記載されている。
(i)C.E.Marsden著,Preparation of Catalysts,Volume V,215頁,1991年,Elsevier Science Publishers
(ii)C.E.Marsden著,Plastics,Rubber and Composites Processing and Applications,Volume 21,193頁,1994年
1. Inorganic oxide support (a)
In the present invention, as the inorganic oxide carrier (a), a metal oxide of Group 2, 4, 13 or 14 of the periodic table can be used. Specific examples include magnesia, titania, zirconia, alumina, silica, tria, silica-titania, silica-zirconia, silica-alumina, or mixtures thereof.
For automotive fuel tank applications, silica alone is preferred as the inorganic oxide support. When a material other than silica is used as the carrier, the polymerization activity is lowered, and it is thought that the cause is an increase in the low molecular weight component of polyethylene, but the impact resistance tends to be lowered.
The production method, physical properties and characteristics of the support suitable for these chromium catalysts are described, for example, in the following documents.
(I) C.I. E. Marsden, Preparation of Catalysts, Volume V, 215, 1991, Elsevier Science Publishers.
(Ii) C.I. E. Marsden, Plastics, Rubber and Composites Processing and Applications, Volume 21, 193, 1994.
本発明におけるエチレン系重合用触媒は、触媒粒子として高比表面積、高細孔体積を有し、特徴的な性状及び構造を有するものである。この特徴的な性状及び構造は、使用する無機酸化物担体の粒子構造及び粒子内細孔構造等を高度に制御することにより達成される。
本発明において、無機酸化物担体(a)は、比表面積が200〜1000m2/g、好ましくは350〜950m2/g、さらに好ましくは625〜900m2/gであるものを選択すればよい。比表面積が200m2/g未満の場合、賦活調製した触媒の重合活性が低下する。また、比表面積が1000m2/gを超える場合、当該担体の製造が難しくなる。
The ethylene-based polymerization catalyst in the present invention has a high specific surface area and a high pore volume as catalyst particles, and has a characteristic property and structure. This characteristic property and structure can be achieved by highly controlling the particle structure and intraparticle pore structure of the inorganic oxide support used.
In the present invention, the inorganic oxide support (a) has a specific surface area of 200~1000m 2 / g, preferably 350~950m 2 / g, more preferably may be selected those which are 625~900m 2 / g. When the specific surface area is less than 200 m 2 / g, the polymerization activity of the activated catalyst decreases. Moreover, when the specific surface area exceeds 1000 m 2 / g, it is difficult to produce the carrier.
本発明の無機酸化物担体(a)の細孔体積としては、1.0〜5.0cm3/g、好ましくは1.0〜3.0cm3/g、さらに好ましくは1.2〜2.5cm3/gの範囲である。細孔体積が1.0cm3/g未満の場合、重合時に重合ポリマーによって細孔が小さくなり、モノマーが拡散できなくなってしまい活性が低下する。細孔体積が5.0cm3/gを超える場合、当該担体の製造が難しくなる。
また、本発明の無機酸化物担体(a)の平均粒径としては、10〜200μm、好ましくは25〜180μm、さらに好ましくは35〜170μmの範囲のものが用いられる。上記範囲を外れると、ポリエチレンの耐久性及び耐衝撃性のバランスがとりにくくなる。
The pore volume of the inorganic oxide support (a) of the present invention is 1.0 to 5.0 cm 3 / g, preferably 1.0 to 3.0 cm 3 / g, more preferably 1.2 to 2. The range is 5 cm 3 / g. When the pore volume is less than 1.0 cm 3 / g, the pores become small due to the polymer during polymerization, and the monomer cannot be diffused, resulting in a decrease in activity. When the pore volume exceeds 5.0 cm 3 / g, it is difficult to produce the carrier.
The average particle size of the inorganic oxide carrier (a) of the present invention is 10 to 200 μm, preferably 25 to 180 μm, more preferably 35 to 170 μm. Outside the above range, it becomes difficult to balance the durability and impact resistance of polyethylene.
2.クロム化合物(b)
本発明においては、上記無機酸化物担体(a)にクロム化合物(b)を担持させる。クロム化合物(b)としては、担持後に非還元性雰囲気で焼成活性化することにより少なくとも一部のクロム原子が6価となる化合物であればよい。クロム化合物(b)としては、例えば、酸化クロム、クロムのハロゲン化物、オキシハロゲン化物、クロム酸塩、重クロム酸塩、硝酸塩、カルボン酸塩、硫酸塩、クロム−1,3−ジケト化合物、クロム酸エステル等が挙げられる。
具体的には、三酸化クロム、三塩化クロム、塩化クロミル、クロム酸カリウム、クロム酸アンモニウム、重クロム酸カリウム、硝酸クロム、硫酸クロム、酢酸クロム、トリス(2−エチルヘキサノエート)クロム、クロムアセチルアセトネート、ビス(tert−ブチル)クロメート等が挙げられる。なかでも三酸化クロム、酢酸クロム、クロムアセチルアセトネートが好ましい。酢酸クロム、クロムアセチルアセトネートのような有機基を有するクロム化合物を用いた場合でも、後に述べる非還元性雰囲気での焼成活性化によって有機基部分は燃焼し、最終的には三酸化クロムを用いた場合と同様に、無機酸化物担体表面の水酸基と反応し、少なくとも一部のクロム原子は6価となってクロム酸エステルの構造で固定化される。このことは、例えば以下の文献に記載されている。
(i)V.J.Ruddickら著,J.Phys.Chem.,Volume 100,11062頁,1996年
(ii)S.M.Augustineら著,J.Catal.,Volume 161,641頁,1996年
無機酸化物担体(a)へのクロム化合物(b)の担持は、含浸、溶媒留去、昇華等の公知の方法によって行うことができ、使用するクロム化合物の種類によって適当な方法を用いればよい。その際、担持するクロム化合物(b)の量は、クロム原子として担体に対して、好ましくは0.5〜5.0重量%、より好ましくは0.6〜4.0重量%、さらに好ましくは0.7〜3.0重量%である。
2. Chromium compound (b)
In the present invention, the chromium compound (b) is supported on the inorganic oxide support (a). As a chromium compound (b), what is necessary is just a compound in which at least one chromium atom becomes hexavalent by carrying out baking activation in non-reducing atmosphere after carrying | supporting. Examples of the chromium compound (b) include chromium oxide, chromium halide, oxyhalide, chromate, dichromate, nitrate, carboxylate, sulfate, chromium-1,3-diketo compound, chromium. Acid ester etc. are mentioned.
Specifically, chromium trioxide, chromium trichloride, chromyl chloride, potassium chromate, ammonium chromate, potassium dichromate, chromium nitrate, chromium sulfate, chromium acetate, tris (2-ethylhexanoate) chromium, chromium Examples thereof include acetylacetonate and bis (tert-butyl) chromate. Of these, chromium trioxide, chromium acetate, and chromium acetylacetonate are preferable. Even when a chromium compound having an organic group such as chromium acetate or chromium acetylacetonate is used, the organic group part burns by firing activation in a non-reducing atmosphere described later, and finally chromium trioxide is used. As in the case of the above, it reacts with the hydroxyl group on the surface of the inorganic oxide carrier, and at least some of the chromium atoms become hexavalent and are fixed in a chromate ester structure. This is described, for example, in the following document.
(I) V. J. et al. Ruddick et al. Phys. Chem. ,
3.クロム以外の金属含有炭化水素化合物(c)
本発明に係るポリエチレンの製造に際しては、エチレン重合活性、α−オレフィンとの共重合性や得られるポリエチレンの分子量、分子量分布を調節するために、クロム化合物担持前、又はクロム化合物担持後、あるいはクロム化合物と同時に、クロム以外の金属含有炭化水素化合物(c)を担持させる。金属元素として、元素周期表の1族、2族、3族、13族であるものが選ばれる。これらの金属元素の中でもアルミニウムが最も好まれる。金属含有炭化水素化合物1分子中に含まれる炭素の数は2〜30個であり、また水素の数は5〜100個である。
クロム以外の金属含有炭化水素化合物(c)の具体例としては、例えば、アルミニウムトリsec−ブトキシドのようなアルミニウム化合物、チタンテトライソプロポキシドのようなチタン化合物、ジルコニウムテトラブトキシドのようなジルコニウム化合物、ジアルキルマグネシウムのようなマグネシウム化合物が挙げられるが、α−オレフィンとの共重合性や得られるポリエチレンの分子量、分子量分布を調節するために、好ましく用いられるのはアルミニウムトリsec−ブトキシドである。
これらの方法は、例えば、以下の文献に記載されている。
(i)C.E.Marsden著,Plastics,Rubber and Composites Processing and Applications,Volume 21,193頁,1994年
(ii)T.Pullukatら著,J.Polym.Sci.,Polym.Chem.Ed.,Volume 18, 2857頁,1980年
(iii)M.P.McDanielら著,J.Catal.,Volume 82,118頁,1983年
触媒中に含まれるクロム以外の金属含有炭化水素化合物中の各金属は、好ましくは0.5〜5.0重量%、より好ましくは0.7〜4.5重量%、さらに好ましくは0.9〜4.0重量%である。また、触媒中に含まれる炭素と水素の総和量は、好ましくは0.5〜20.0重量%、より好ましくは0.5〜15.0重量%である。
3. Metal-containing hydrocarbon compounds other than chromium (c)
In the production of the polyethylene according to the present invention, in order to adjust the ethylene polymerization activity, the copolymerization with α-olefin, the molecular weight of the obtained polyethylene, and the molecular weight distribution, the chromium compound is loaded before or after the chromium compound is loaded. Simultaneously with the compound, a metal-containing hydrocarbon compound (c) other than chromium is supported. As the metal element, those belonging to Group 1, 2, 3, or 13 of the periodic table are selected. Of these metal elements, aluminum is most preferred. The number of carbons contained in one molecule of the metal-containing hydrocarbon compound is 2 to 30, and the number of hydrogen is 5 to 100.
Specific examples of the metal-containing hydrocarbon compound (c) other than chromium include, for example, an aluminum compound such as aluminum trisec-butoxide, a titanium compound such as titanium tetraisopropoxide, and a zirconium compound such as zirconium tetrabutoxide, A magnesium compound such as dialkylmagnesium may be mentioned, but aluminum trisec-butoxide is preferably used to adjust the copolymerizability with an α-olefin and the molecular weight and molecular weight distribution of the obtained polyethylene.
These methods are described in the following documents, for example.
(I) C.I. E. Marsden, Plastics, Rubber and Composites Processing and Applications, Volume 21, 193, 1994 (ii) T. et al. Pulukat et al. Polym. Sci. , Polym. Chem. Ed. , Volume 18, 2857, 1980 (iii) M .; P. McDaniel et al. Catal. , Volume 82, p. 118, 1983. Each metal in the metal-containing hydrocarbon compound other than chromium contained in the catalyst is preferably 0.5 to 5.0% by weight, more preferably 0.7 to 4.5. % By weight, more preferably 0.9 to 4.0% by weight. The total amount of carbon and hydrogen contained in the catalyst is preferably 0.5 to 20.0% by weight, more preferably 0.5 to 15.0% by weight.
また本発明に際しては、エチレン重合活性、α−オレフィンとの共重合性や得られるポリエチレンの分子量、分子量分布を調節するためにケイフッ化アンモニウムのようなフッ素含有塩類等をクロム化合物担持前、又はクロム化合物担持後、あるいはクロム化合物と同時に担持してもよい。 In the present invention, fluorine-containing salts such as ammonium silicofluoride may be added before the chromium compound is loaded, in order to adjust the ethylene polymerization activity, the copolymerization with α-olefin, the molecular weight of the resulting polyethylene, and the molecular weight distribution. It may be supported after the compound is loaded or simultaneously with the chromium compound.
4.焼成活性化(賦活)方法
本発明においては、クロム化合物/クロム以外の金属含有炭化水素化合物の担持後、焼成活性化は、水分を実質的に含まない非還元性雰囲気下、例えば、酸素又は空気下で行うことができる。この際、不活性ガスを共存させてもよい。好ましくは、モレキュラーシーブス等を流通させ十分に乾燥したガスを用い、流動状態下で行う。
焼成活性化では、好ましくは、モレキュラーシーブス等を流通させ十分に乾燥した空気を用い、流動状態下で行う。文献(M.P.McDaniel著,Advances in Catalysis,Volume 33,47頁,1985年,Academic Press Inc.)中のFIG.9.に示されているように、500℃以上の賦活温度で触媒活性が発現することが一般的に知られている。特にこの図において、800〜900℃の賦活温度で高活性になることが示されており、当業者にとって、このような賦活条件が技術常識となっている。
4). Firing activation (activation) method In the present invention, after supporting the chromium compound / metal-containing hydrocarbon compound other than chromium, the firing activation is performed in a non-reducing atmosphere substantially free of moisture, for example, oxygen or air. Can be done below. At this time, an inert gas may coexist. Preferably, it is carried out in a fluidized state using a gas that is sufficiently dried by circulating molecular sieves or the like.
The firing activation is preferably performed in a fluidized state using sufficiently dried air in which molecular sieves or the like are circulated. In the literature (MP McDaniel, Advances in Catalysis, Volume 33, 47, 1985, Academic Press Inc.). 9. It is generally known that catalytic activity is exhibited at an activation temperature of 500 ° C. or higher as shown in FIG. In particular, in this figure, it is shown that it becomes highly active at an activation temperature of 800 to 900 ° C., and such activation conditions are technical common sense for those skilled in the art.
焼成活性化を行う反応器については、米国特許出願公開第2005/0255987号明細書の実施例に、ベンチ/プラントスケールでのクロム触媒の活性化の方法が開示されている。またH.Schonfelderら著,Reaction Kinetics and the Development of Catalytic Processes,Volume 122,255頁には、プラントスケールの賦活反応器の形状、大きさの例が開示されている。 For reactors that carry out calcination activation, US 2005/0255987 discloses an example method for the activation of a chromium catalyst on a bench / plant scale. H. Schonfelder et al., Reaction Kinetics and the Development of Catalytic Processes, Volume 122, page 255, disclose examples of the shape and size of plant scale activation reactors.
従来、クロム化合物を含む無機酸化物担体の焼成活性化は、非還元性雰囲気下あるいは、不活性ガス雰囲気下で室温から炉内の温度を上げることによって行う。無機酸化物担体に含まれている物理吸着水を除去するために、不活性ガス化で室温から接触温度を上げ、目的の接触温度に達する途中の温度で、非還元性雰囲気下に切り替える方法が好まれる。接触温度が上昇した状態で酸素が存在した時、クロム化合物中の炭素及び水素による燃焼による発熱がおこるために、接触温度が急上昇し接触温度をコントロールすることが難しくなる。この炭化水素燃焼による接触温度上昇の効果はクロム化合物以外の金属含有化合物を含むと、さらに顕著になる。 Conventionally, firing activation of an inorganic oxide support containing a chromium compound is performed by raising the temperature in the furnace from room temperature in a non-reducing atmosphere or in an inert gas atmosphere. In order to remove the physically adsorbed water contained in the inorganic oxide support, there is a method of raising the contact temperature from room temperature by inert gasification and switching to a non-reducing atmosphere at a temperature in the middle of reaching the target contact temperature. Liked. When oxygen is present in a state where the contact temperature is increased, heat is generated by combustion of carbon and hydrogen in the chromium compound, so that the contact temperature rises rapidly and it becomes difficult to control the contact temperature. The effect of increasing the contact temperature due to hydrocarbon combustion becomes more remarkable when a metal-containing compound other than the chromium compound is included.
ここで述べる「接触温度」とは、この触媒流動層を測定した温度であり、触媒がこの温度でガスと接触していることを表す。この触媒流動層の温度分布は一定であるので、触媒流動層のどの点を測定してもかまわないが、触媒流動層の中心の温度を採用するのが好ましい。 The “contact temperature” described here is a temperature obtained by measuring the catalyst fluidized bed, and indicates that the catalyst is in contact with the gas at this temperature. Since the temperature distribution of the catalyst fluidized bed is constant, any point in the catalyst fluidized bed may be measured, but it is preferable to adopt the temperature at the center of the catalyst fluidized bed.
本発明において、クロム化合物を担持させた触媒前駆体(d)の焼成を、接触温度を200〜500℃に保つように、導入される酸素の濃度を調整しながら行う工程を含むものである。酸素濃度を調整することにより、触媒中に含まれる炭化水素部分の燃焼による接触温度上昇を抑えることができ、接触温度を上記範囲に保つ。この方法によって得られた触媒をエチレン重合することにより、低い焼成温度であっても良い流動性と溶融張力をもつポリエチレンを製造できる。 In this invention, the process of performing baking of the catalyst precursor (d) which carry | supported the chromium compound is performed, adjusting the density | concentration of the oxygen introduce | transduced so that a contact temperature may be maintained at 200-500 degreeC. By adjusting the oxygen concentration, an increase in contact temperature due to combustion of the hydrocarbon portion contained in the catalyst can be suppressed, and the contact temperature is maintained in the above range. By polymerizing the catalyst obtained by this method with ethylene, polyethylene having fluidity and melt tension which may be at a low calcination temperature can be produced.
次に、エチレン重合用クロム触媒の製造方法(賦活方法)について具体的に説明する。(1)第1の工程:不活性雰囲気下での焼成工程
第1の工程は、不活性雰囲気下中で焼成を行う工程である。不活性雰囲気中、室温にて昇温を開始する。接触温度を100〜360℃の任意の温度まで上昇させる。この接触温度は120〜320℃が好ましく、140〜250℃がさらに好ましい。このとき接触温度は連続的に上昇させても、ある温度でホールドさせ段階的に上昇させてもよいし、又は一時的に接触温度を下げても良い。この接触温度上昇の方法には特に制約はない。不活性雰囲気下中で100〜360℃で連続的に保持する時間は5分〜48時間、好ましくは30分〜36時間、特に好ましくは1時間〜24時間である。また、接触温度を上昇させる際の昇温速度に関しては、特に制約を設けないが1〜200℃/h、好ましくは5〜150℃/h、さらに好ましくは10〜100℃/hであることが望ましい。
Next, the production method (activation method) of the ethylene polymerization chromium catalyst will be specifically described. (1) 1st process: The baking process in inert atmosphere The 1st process is a process of baking in inert atmosphere. Start heating at room temperature in an inert atmosphere. The contact temperature is raised to any temperature between 100 and 360 ° C. This contact temperature is preferably 120 to 320 ° C, more preferably 140 to 250 ° C. At this time, the contact temperature may be continuously increased, held at a certain temperature and gradually increased, or the contact temperature may be temporarily decreased. There is no particular limitation on the method for increasing the contact temperature. The time for continuously holding at 100 to 360 ° C. in an inert atmosphere is 5 minutes to 48 hours, preferably 30 minutes to 36 hours, and particularly preferably 1 hour to 24 hours. In addition, the heating rate at the time of raising the contact temperature is not particularly limited, but is 1 to 200 ° C./h, preferably 5 to 150 ° C./h, more preferably 10 to 100 ° C./h. desirable.
(2)第2の工程:酸素濃度を調整しながら焼成を行う工程 (2) Second step: A step of firing while adjusting the oxygen concentration.
第2の工程は、酸素濃度を調整しながら焼成を行う工程である。酸素導入開始から酸素濃度調整終了までを第2工程とする。不活性雰囲気で加熱した活性前触媒に酸素を導入すると、触媒が酸素燃焼され接触温度が上昇するが、その接触温度が200〜500℃、好ましくは250〜480℃、さらに好ましくは280〜430℃の範囲になるように酸素を導入する。後述するように、接触温度が500℃を超えると、6価クロム含有量が減り、本発明で所望の効果が出ない。酸素導入開始時の酸素濃度は2%以下であることが好ましく、1%以下であることがさらに好ましい。また、酸素導入開始時の接触温度は200〜450℃、好ましくは250〜420℃、さらに好ましくは300〜400℃である。
酸素を上昇させ、この工程の最終時は酸素濃度が5〜50%、好ましくは10〜40%、さらに好ましくは15〜30%であることが望ましい。具体的には、この工程の最終時は空気を導入していることが最も好ましい。
酸素濃度を調整しながら焼成を行うこの工程は、5〜72時間であることが好ましい。導入酸素濃度を上げる際、酸素濃度を連続的に増加させてもよいし、段階的に上昇させてもよいし、あるいは、一時的に酸素濃度を下げても良い。またガス流動を中断と開始を繰り返し(断続的に)行っても良い。また、接触温度に関しても、常にある温度でホールドさせても良いし、多段階的に上昇させても良い。また、接触温度を上昇させる際の昇温速度に関しては、特に制約を設けないが1〜200℃/h、好ましくは5〜150℃/h、さらに好ましくは10〜100℃/hであることが望ましい。酸素及び不活性ガス混合物の酸素濃度と接触温度の間には特に制約を設けない。
The second step is a step of performing baking while adjusting the oxygen concentration. The period from the start of oxygen introduction to the end of oxygen concentration adjustment is the second step. When oxygen is introduced into the pre-activated catalyst heated in an inert atmosphere, the catalyst is burned with oxygen and the contact temperature rises, but the contact temperature is 200 to 500 ° C, preferably 250 to 480 ° C, more preferably 280 to 430 ° C. Oxygen is introduced so that As will be described later, when the contact temperature exceeds 500 ° C., the hexavalent chromium content decreases, and the desired effect is not obtained in the present invention. The oxygen concentration at the start of oxygen introduction is preferably 2% or less, and more preferably 1% or less. The contact temperature at the start of oxygen introduction is 200 to 450 ° C., preferably 250 to 420 ° C., more preferably 300 to 400 ° C.
Oxygen is raised, and at the end of this step, the oxygen concentration is desirably 5 to 50%, preferably 10 to 40%, and more preferably 15 to 30%. Specifically, it is most preferable that air is introduced at the end of this step.
This step of firing while adjusting the oxygen concentration is preferably 5 to 72 hours. When increasing the introduced oxygen concentration, the oxygen concentration may be continuously increased, may be increased stepwise, or the oxygen concentration may be temporarily decreased. The gas flow may be interrupted and started repeatedly (intermittently). Further, the contact temperature may always be held at a certain temperature or may be raised in multiple steps. In addition, the heating rate at the time of raising the contact temperature is not particularly limited, but is 1 to 200 ° C./h, preferably 5 to 150 ° C./h, more preferably 10 to 100 ° C./h. desirable. There is no particular restriction between the oxygen concentration of the oxygen and inert gas mixture and the contact temperature.
この第2の工程の具体的な接触温度と導入酸素濃度の具体的な調節方法としては以下のようなものがあげられる。
1.低温ホールドで酸素濃度を徐々に段階的に上げる。例えば、250℃〜370℃の所望の接触温度でホールドした状態で、酸素濃度を段階的に(例えば1%ずつ)上げる。
2.低温ホールドで酸素濃度を徐々に連続的に上げる。例えば、250℃〜370℃の所望の接触温度でホールドした状態で、酸素濃度を連続的に(例えば1%/hの昇温速度で)上げる。
3.低温ホールドを2段階に分け、各段で酸素濃度を徐々に上げる。例えば、250℃〜320℃の所望の接触温度でホールドした状態で、酸素濃度を段階的に(例えば1%ずつ)上げる。その後、320℃〜370℃の所望の接触温度まで昇温しその温度でホールドした状態で、さらに酸素濃度を段階的に(例えば1%ずつ)上げる。
4.低温ホールドを多段階に細かく分け、低酸素濃度で温度を徐々に上げる。例えば、250℃〜300℃の所望の接触温度でホールドした状態で、酸素濃度を段階的に(例えば0.5%ずつ)上げる。その後、300℃〜350℃の所望の接触温度まで昇温しその温度でホールドした状態で、さらに酸素濃度を段階的に(例えば0.5%ずつ)上げる。その後、350℃〜375℃の所望の接触温度まで昇温しその温度でホールドした状態で、さらに酸素濃度を段階的に(例えば0.5%ずつ)上げる。その後、375℃〜400℃の所望の接触温度まで昇温しその温度でホールドした状態で、さらに酸素濃度を段階的に(例えば0.5%ずつ)上げる。
Specific methods for adjusting the contact temperature and the introduced oxygen concentration in the second step include the following.
1. Gradually increase the oxygen concentration in low temperature hold. For example, the oxygen concentration is increased stepwise (for example, by 1%) while being held at a desired contact temperature of 250 ° C. to 370 ° C.
2. Increase the oxygen concentration gradually and continuously with the low temperature hold. For example, the oxygen concentration is continuously increased (for example, at a rate of temperature increase of 1% / h) while being held at a desired contact temperature of 250 ° C. to 370 ° C.
3. The low temperature hold is divided into two stages, and the oxygen concentration is gradually increased at each stage. For example, the oxygen concentration is increased stepwise (for example, by 1%) while being held at a desired contact temperature of 250 ° C. to 320 ° C. Thereafter, the temperature is raised to a desired contact temperature of 320 ° C. to 370 ° C. and held at that temperature, and the oxygen concentration is further increased stepwise (for example, by 1%).
4). Divide the low temperature hold into multiple stages and gradually raise the temperature with low oxygen concentration. For example, the oxygen concentration is increased stepwise (for example, by 0.5%) while being held at a desired contact temperature of 250 ° C. to 300 ° C. Thereafter, the temperature is raised to a desired contact temperature of 300 ° C. to 350 ° C. and held at that temperature, and the oxygen concentration is further increased stepwise (for example, by 0.5%). Thereafter, the temperature is raised to a desired contact temperature of 350 ° C. to 375 ° C. and held at that temperature, and the oxygen concentration is further increased stepwise (for example, by 0.5%). Thereafter, the temperature is raised to a desired contact temperature of 375 ° C. to 400 ° C. and held at that temperature, and the oxygen concentration is further increased stepwise (for example, by 0.5%).
クロム化合物として三酸化クロムを用いたとき、賦活操作によっておこる反応を以下に示す。 The reaction performed by the activation operation when chromium trioxide is used as the chromium compound is shown below.
シリカ表面のシラノール基と三酸化クロムが反応しクロム酸エステル構造となり、さらに高温での賦活によってシラノール基の脱水を起こす。クロム化合物として、酢酸クロムやトリス(アセチルアセトナート)クロムなどのクロム化合物を用いた場合でも、酸素存在下の賦活によってカルボキシル基やアセチルアセトナート基のような有機基の部分は燃焼してしまい、最終的には三酸化クロムの場合と同様のクロムエステル構造になる。このクロムエステル構造がエチレン重合を行う際における活性前駆体として考えられている。しかしながら、このエステル構造は水と反応して加水分解することによりCrO3となり、CrO3→Cr2O3+3/2O2の反応が起こって不活性な酸化クロム(III)Cr2O3になる。そこで、賦活を行う際には流通ガスの水分管理には十分に注意しなければならない(流通ガスの露点は−80℃以下であることが望ましい)。 Silanol groups on the silica surface and chromium trioxide react to form a chromic ester structure, and dehydration of the silanol groups is caused by activation at high temperatures. Even when a chromium compound such as chromium acetate or tris (acetylacetonate) chromium is used as the chromium compound, organic groups such as carboxyl groups and acetylacetonate groups are burned by activation in the presence of oxygen, The end result is a chromium ester structure similar to that of chromium trioxide. This chromium ester structure is considered as an active precursor in conducting ethylene polymerization. However, this ester structure reacts with water to hydrolyze to become CrO 3 , and a reaction of CrO 3 → Cr 2 O 3 + 3 / 2O 2 occurs to become inactive chromium (III) Cr 2 O 3 . . Therefore, when performing activation, sufficient attention must be paid to the moisture management of the circulation gas (the dew point of the circulation gas is desirably -80 ° C. or lower).
本発明は、クロム触媒の賦活を250℃〜550℃の低温度で行う際、触媒中に含まれる炭化水素部分の燃焼によって過度の接触温度上昇スパイクが起こらないように酸素濃度を調整することで流動性、成形性が改善したポリエチレンが得られることを見出したものである。賦活後に得られたクロム触媒についてクロムの価数を分析してみると、接触温度上昇スパイクをした触媒は、温度スパイクを起していない触媒に比べて、6価クロムの割合が小さいことがわかった。この原因として以下のように考えられる。賦活の際、先に示したようにシラノール基の脱水反応が起こっているが、接触温度上昇により脱水反応が急激に進行し、流通ガスによる水分除去能力を超える水分量が触媒系中に残ってしまう。その結果、クロム酸エステル構造の脱水反応が引き起こされている。この触媒の性質の違いが重合した際に得られるポリエチレンの特性の違いを生み出しているものと考えられる。本発明において、6価クロムの含量は好ましくは70%〜100%、より好ましくは75%〜100%である。 In the present invention, when the activation of the chromium catalyst is performed at a low temperature of 250 ° C. to 550 ° C., the oxygen concentration is adjusted so that an excessive spike in contact temperature does not occur due to combustion of the hydrocarbon portion contained in the catalyst. It has been found that polyethylene having improved fluidity and moldability can be obtained. Analysis of the chromium valence of the chromium catalyst obtained after activation shows that the catalyst with spiked contact temperature has a smaller proportion of hexavalent chromium than the catalyst without temperature spike. It was. This is considered as follows. At the time of activation, the dehydration reaction of silanol groups has occurred as described above, but the dehydration reaction proceeds rapidly due to the contact temperature rise, and the amount of water exceeding the water removal capability by the flow gas remains in the catalyst system. End up. As a result, a dehydration reaction of the chromate structure is caused. This difference in the properties of the catalyst is thought to produce a difference in the properties of polyethylene obtained when polymerized. In the present invention, the content of hexavalent chromium is preferably 70% to 100%, more preferably 75% to 100%.
(3)第3の工程:一定の酸素濃度下での焼成活性化
第2の工程の後、導入酸素濃度を一定にした状態で、250〜550℃の接触温度で、5分〜72時間、好ましくは30分〜54時間、さらに好ましくは1時間〜36時間行うことが好ましい。この工程の接触温度は、好ましくは300〜500℃、より好ましくは320〜450℃、さらに好ましくは350〜420℃である。この焼成活性化により、無機酸化物担体に担持されたクロム化合物のクロム原子が少なくとも一部は6価に酸化されて担体上に化学的に固定される。550℃を超えて賦活を行うと、本発明の流動性改善、溶融張力の改善効果があらわれない。250℃を下回ると、触媒活性が十分にでない。また、接触温度を上昇させる際の昇温速度に関しては、特に制約を設けないが1〜200℃/h、好ましくは5〜150℃/h、さらに好ましくは10〜100℃/hであることが望ましい。
(3) Third step: calcination activation under a constant oxygen concentration After the second step, at a contact temperature of 250 to 550 ° C. for 5 minutes to 72 hours with the introduced oxygen concentration kept constant. It is preferably performed for 30 minutes to 54 hours, more preferably for 1 hour to 36 hours. The contact temperature in this step is preferably 300 to 500 ° C, more preferably 320 to 450 ° C, and further preferably 350 to 420 ° C. By this firing activation, at least a part of the chromium atoms of the chromium compound supported on the inorganic oxide support is oxidized to be hexavalent and chemically fixed on the support. When activation is performed at a temperature exceeding 550 ° C., the fluidity improvement and melt tension improvement effects of the present invention do not appear. Below 250 ° C, the catalytic activity is not sufficient. In addition, the heating rate at the time of raising the contact temperature is not particularly limited, but is 1 to 200 ° C./h, preferably 5 to 150 ° C./h, more preferably 10 to 100 ° C./h. desirable.
本発明で得られるクロム担持触媒は、上記したように、焼成終了後のクロムの価数について、全クロム含量に対する6価クロムの割合が70%〜100%である。このときのクロム含量はICP測定で得られるものである。 As described above, in the chromium-supported catalyst obtained in the present invention, the ratio of hexavalent chromium to the total chromium content is 70% to 100% with respect to the chromium valence after the completion of calcination. The chromium content at this time is obtained by ICP measurement.
[II] ポリエチレンの製造方法
本発明においては、前記のように特定の接触温度とりわけ比較的低い温度で不活性雰囲気下にて加熱した後、特定の温度範囲内に保つように導入酸素濃度を調整しながら、焼成して得られたクロム触媒が用いて、エチレン単独重合またはエチレンとα−オレフィンとの共重合を行ってポリエチレンを製造する。
[II] Production method of polyethylene In the present invention, as described above, the oxygen concentration is adjusted so as to keep within a specific temperature range after heating in an inert atmosphere at a specific contact temperature, particularly at a relatively low temperature. However, the chromium catalyst obtained by firing is used to carry out ethylene homopolymerization or copolymerization of ethylene and α-olefin to produce polyethylene.
ポリエチレン製造を行うに際しては、スラリー重合、溶液重合のような液相重合法あるいは気相重合法など、いずれの方法を採用することができる。
液相重合法は、通常炭化水素溶媒中で行う。炭化水素溶媒としては、例えば、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン、ベンゼン、トルエン、キシレンなどの不活性炭化水素の単独又は混合物が用いられる。
また、気相重合法は、不活性ガス共存下にて、流動床、撹拌床等の通常知られる重合法を採用でき、場合により重合熱除去の媒体を共存させる、いわゆるコンデンシングモードを採用することもできる。
In producing polyethylene, any method such as a liquid phase polymerization method such as slurry polymerization or solution polymerization, or a gas phase polymerization method can be employed.
The liquid phase polymerization method is usually performed in a hydrocarbon solvent. As the hydrocarbon solvent, for example, an inert hydrocarbon such as propane, n-butane, isobutane, n-pentane, isopentane, hexane, heptane, octane, decane, cyclohexane, benzene, toluene, xylene or the like is used alone or as a mixture. .
In addition, the vapor phase polymerization method can adopt a commonly known polymerization method such as a fluidized bed and a stirring bed in the presence of an inert gas, and in some cases, a so-called condensing mode in which a medium for removing the heat of polymerization coexists. You can also.
液相又は気相重合法における重合温度は、一般的には0〜300℃であり、実用的には20〜200℃、好ましくは50〜180℃、さらに好ましくは70〜150℃である。反応器中の触媒濃度及びエチレン濃度は、重合を進行させるのに十分な任意の濃度でよい。例えば、触媒濃度は、液相重合の場合、反応器内容物の質量を基準にして、約0.0001〜約5質量%の範囲とすることができる。同様にエチレン濃度は、気相重合の場合、全圧として0.1〜10MPaの範囲とすることができる。 The polymerization temperature in the liquid phase or gas phase polymerization method is generally 0 to 300 ° C, practically 20 to 200 ° C, preferably 50 to 180 ° C, and more preferably 70 to 150 ° C. The catalyst concentration and ethylene concentration in the reactor may be any concentration sufficient to allow the polymerization to proceed. For example, the catalyst concentration can range from about 0.0001 to about 5% by weight based on the weight of the reactor contents in the case of liquid phase polymerization. Similarly, in the case of gas phase polymerization, the ethylene concentration can be in the range of 0.1 to 10 MPa as the total pressure.
エチレンと共存させる水素とエチレンの濃度比又は分圧比は、水素とエチレンの濃度又は分圧を変えることによって、容易に調整することができる。水素は、連鎖移動剤としての働きも有するので、Hc/ETc又はHp/ETpを変えた場合、同一HLMFRの製品を得るためには、重合温度も変えなければならない。すなわち、Hc/ETc又はHp/ETpを上げた場合には、重合温度を下げ、Hc/ETcまたはHp/ETpを下げた場合には、重合温度を上げなければならない。ただし、水素濃度又は分圧の絶対値によるので同一HLMFRの製品を得るためには、必ず重合温度を変える必要があるわけではない。 The concentration ratio or partial pressure ratio of hydrogen and ethylene coexisting with ethylene can be easily adjusted by changing the concentration or partial pressure of hydrogen and ethylene. Since hydrogen also acts as a chain transfer agent, when Hc / ETc or Hp / ETp is changed, the polymerization temperature must also be changed in order to obtain the same HLMFR product. That is, when Hc / ETc or Hp / ETp is raised, the polymerization temperature must be lowered, and when Hc / ETc or Hp / ETp is lowered, the polymerization temperature must be raised. However, since it depends on the absolute value of the hydrogen concentration or partial pressure, it is not always necessary to change the polymerization temperature in order to obtain the same HLMFR product.
本発明の方法により、エチレンの重合を行うに際し、コモノマーとして、α−オレフィンを共重合することが好ましい。α−オレフィンとしては、例えば、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテンなどを単独又は2種類以上反応器に導入して共重合を行う。好ましくは1−ブテン、1−ヘキセン、さらに好ましくは1−ヘキセンがコモノマーとして好適に用いられる。得られるポリエチレン中のα−オレフィン含量は、15mol%以下、好ましくは10mol%以下が望ましい。 When ethylene is polymerized by the method of the present invention, it is preferable to copolymerize an α-olefin as a comonomer. As the α-olefin, for example, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene or the like is introduced alone or in two or more kinds into a reactor to carry out copolymerization. Preferably 1-butene, 1-hexene, more preferably 1-hexene is suitably used as a comonomer. The α-olefin content in the obtained polyethylene is 15 mol% or less, preferably 10 mol% or less.
[III] ポリエチレンとその用途
本発明の製造方法により得られるポリエチレンは、上記の製造方法によって製造される。
該ポリエチレンは、エチレン単独重合体の場合もあるし、コモノマーとしてプロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテンなどのα−オレフィンを1種類以上含むエチレン・α−オレフィン共重合体の場合もあり、このとき得られるエチレン・α−オレフィン共重合体中のα−オレフィン含量は15mol%以下、好ましくは10mol%以下が望ましい。α―オレフィンとしては、好ましくは1−ブテン、1−ヘキセン、さらに好ましくは1−ヘキセンが好適に用いられる。また上述のように少量のジエン類やスチレン類等の改質用モノマーを含有することもできる。
[III] Polyethylene and its use Polyethylene obtained by the production method of the present invention is produced by the production method described above.
The polyethylene may be an ethylene homopolymer, or ethylene / α containing at least one α-olefin such as propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene as a comonomer. In some cases, it may be an olefin copolymer, and the α-olefin content in the ethylene / α-olefin copolymer obtained at this time is 15 mol% or less, preferably 10 mol% or less. As the α-olefin, 1-butene, 1-hexene, more preferably 1-hexene is preferably used. Further, as described above, a small amount of a modifying monomer such as dienes or styrenes may be contained.
本発明のポリエチレンは、温度190℃、荷重21.6kgにて測定されるハイロードメルトフローレート(以下、「HLMFR」と略す)が1〜100g/10分、密度が0.935〜0.965g/cm3である。該ポリエチレンは、耐衝撃性と耐久性がともに高くバランスに優れるので、特にブロー成形製品、なかんずく大型ブロー成形製品で大きな効果を発揮する。ブロー成形製品用のポリエチレンのHLMFRは、1〜100g/10分、特に大型ブロー成形製品用のポリエチレンは、1〜15g/10分である。ブロー成形製品用のポリエチレンの密度は、0.935〜0.965g/cm3、特に大型ブロー成形製品用のポリエチレンは、0.940〜0.960g/cm3である。得られたポリエチレンは、混練することも好ましい。混練は単軸又は二軸の押出機又は連続式混練機を用いて行うことができる。また、得られるポリエチレンは、常法によりブロー成形することができる。 The polyethylene of the present invention has a high load melt flow rate (hereinafter abbreviated as “HLMFR”) measured at a temperature of 190 ° C. and a load of 21.6 kg of 1 to 100 g / 10 minutes, and a density of 0.935 to 0.965 g. / Cm 3 . Since the polyethylene has both high impact resistance and durability and is excellent in balance, it is particularly effective in blow molded products, especially large blow molded products. The HLMFR of polyethylene for blow molded products is 1 to 100 g / 10 min, and particularly the polyethylene for large blow molded products is 1 to 15 g / 10 min. The density of polyethylene for blow molded products is 0.935 to 0.965 g / cm 3 , especially for polyethylene for large blow molded products is 0.940 to 0.960 g / cm 3 . It is also preferable to knead the obtained polyethylene. Kneading can be performed using a single or twin screw extruder or a continuous kneader. Moreover, the obtained polyethylene can be blow-molded by a conventional method.
ポリエチレンは、HLMFRが1g/10分未満であると、パリソン(ブロー成形において、成形器の口金から押し出されたパイプ状の溶融ポリマー;金型内で空気圧により膨張させる以前の状態)の押出成形時に押出量が不足し、成形不安定な状態となり実用的でないし、また、100g/10分を越えてもパリソンの形成が溶融粘度及び溶融張力の不足のため不安定となり実用的でない。ここでHLMFRは、JIS K−7210に準拠し、温度190℃、荷重21.6kgの条件で測定したものである。 When polyethylene has an HLMFR of less than 1 g / 10 min, during extrusion of a parison (in blow molding, a pipe-shaped molten polymer extruded from the die of the molding machine; the state before being expanded by air pressure in the mold) The extrusion amount is insufficient and the molding becomes unstable, which is impractical, and even if it exceeds 100 g / 10 minutes, the formation of the parison becomes unstable due to insufficient melt viscosity and melt tension, which is not practical. Here, HLMFR is measured under conditions of a temperature of 190 ° C. and a load of 21.6 kg in accordance with JIS K-7210.
ポリエチレンは、密度が0.935g/cm3未満であると、中空プラスチック成形品の剛性が不足し、0.965g/cm3を越えると中空プラスチック成形品の耐久性が不足する。密度は、α−オレフィンの種類や含有量の制御などの方法で調整することができる。例えば、ポリエチレン中のα−オレフィン含有量を低くする(重合時のα−オレフィン添加量を低くする)、又は、同じ含有量であれば炭素数の小さいα−オレフィンを用いることにより、密度を高くすることができる。密度は、JIS K−7112に準拠し、ペレットを温度160℃の熱圧縮成形機により溶融後25℃/分の速度で降温し、厚み2mmtのシートを成形し、このシートを温度23℃の室内で48時間状態調節した後、密度勾配管に入れ測定したものである。 When the density of polyethylene is less than 0.935 g / cm 3 , the rigidity of the hollow plastic molded product is insufficient, and when it exceeds 0.965 g / cm 3 , the durability of the hollow plastic molded product is insufficient. The density can be adjusted by a method such as control of the type and content of α-olefin. For example, the density is increased by reducing the α-olefin content in polyethylene (lowering the α-olefin addition amount during polymerization) or by using an α-olefin having a small carbon number if the content is the same. can do. The density is in accordance with JIS K-7112. After the pellets are melted by a hot compression molding machine having a temperature of 160 ° C., the temperature is lowered at a rate of 25 ° C./minute to form a sheet having a thickness of 2 mmt. After conditioned for 48 hours, it was measured in a density gradient tube.
本発明は、触媒を300℃〜500℃の低温度で焼成活性化する際、酸素と触媒前駆体を接触させる時に、温度上昇スパイクが起こらないように酸素を徐々に導入することを特徴する。得られた触媒を用いてエチレン重合することで、溶融張力(MT)が良好なポリエチレンが得られる。ここで溶融張力はポリエチレンに含まれる長鎖分岐の数に大きく依存し、それはクロム触媒の性質に関係していることが知られている。それゆえ、酸素の導入方法に関わる触媒焼成方法によって、触媒の性質が変わることを示している。低温度賦活で得られるクロム触媒からは、溶融張力が低いポリエチレンが得られることが知られているため、低温度賦活触媒で溶融張力が改善されるという点で本発明は有用である。 The present invention is characterized in that oxygen is gradually introduced so as not to cause a temperature rise spike when the catalyst is activated by firing at a low temperature of 300 ° C. to 500 ° C. when oxygen is brought into contact with the catalyst precursor. By carrying out ethylene polymerization using the obtained catalyst, polyethylene having a good melt tension (MT) can be obtained. Here, it is known that the melt tension greatly depends on the number of long chain branches contained in polyethylene, which is related to the properties of the chromium catalyst. Therefore, it is shown that the properties of the catalyst change depending on the catalyst firing method related to the oxygen introduction method. Since it is known that polyethylene having a low melt tension can be obtained from a chromium catalyst obtained by low temperature activation, the present invention is useful in that the melt tension is improved by the low temperature activation catalyst.
得られたポリエチレンは、次いで混練することができる。単軸又は二軸の押出機又は連続式混練機を用いて行われる。上記の方法により製造されたポリエチレンは、1種類でも複数種類を混合して使用してもよく、常法に従い、ペレタイザーやホモジナイザー等による機械的な溶融混合によりペレット化した後、各種成形機により成形を行って所望の成形品とすることができるが、本発明で製造されるポリエチレン粒子は、そのきわめて良好な粉体粒子性状を活用することにより、ペレット化を経ることなく、直接各種成形機に供給して成形を行って所望の成形品とすることも可能であり、ペレット化の工程を省略することが可能であるので省エネルギー化の観点で非常に好ましい。 The resulting polyethylene can then be kneaded. It is carried out using a single or twin screw extruder or a continuous kneader. The polyethylene produced by the above method may be used alone or in combination of a plurality of types, and after being pelletized by mechanical melt mixing with a pelletizer or homogenizer, etc. according to a conventional method, it is molded by various molding machines. However, the polyethylene particles produced in the present invention can be directly applied to various molding machines without being pelletized by taking advantage of their very good powder particle properties. It is possible to supply and form a desired molded product, and since the step of pelletizing can be omitted, it is very preferable from the viewpoint of energy saving.
本発明の方法によって得られるポリエチレンの粒子とは、上述のエチレン重合用触媒を使用してポリエチレンの製造を重合反応槽内で行った直後の重合粒子形態を保持したままの状態をいい、重合反応終了後に溶媒等を乾燥留去させる程度に必要な150℃程度の温度、好ましくは130℃程度の温度、更に好ましくは110℃程度の温度より高温で処理されることの無い状態のポリエチレン粒子のことをいう。
本発明のポリエチレンの粒子は、嵩密度が0.20〜0.60g/cm3、好ましくは0.22〜0.55g/cm3、更に好ましくは0.25〜0.50g/cm3である。目開き177μmの篩を通過する粒子は、全体の0.8重量%以下、好ましくは0.5重量%以下、更に好ましくは0.3重量%以下である。下限は0重量%であることはいうまでもない。目開き40μmの篩を通過する粒子が全体の0.8重量%より多くなると、気流輸送時の微粉拡散による汚染が問題となり、また静電気による器壁への付着が酷くなるので好ましくない。
The polyethylene particles obtained by the method of the present invention refer to the state in which the shape of the polymer particles is maintained just after the production of polyethylene in the polymerization reaction tank using the above-mentioned catalyst for ethylene polymerization. Polyethylene particles that are not treated at a temperature of about 150 ° C., preferably about 130 ° C., and more preferably higher than about 110 ° C., which is necessary to dry out the solvent after completion. Say.
The polyethylene particles of the present invention have a bulk density of 0.20 to 0.60 g / cm 3 , preferably 0.22 to 0.55 g / cm 3 , more preferably 0.25 to 0.50 g / cm 3 . . The particles passing through the sieve having a mesh opening of 177 μm are 0.8% by weight or less, preferably 0.5% by weight or less, and more preferably 0.3% by weight or less. Needless to say, the lower limit is 0% by weight. When the amount of particles passing through a sieve having a mesh opening of 40 μm exceeds 0.8% by weight, contamination due to fine powder diffusion during air flow transportation becomes a problem, and adhesion to a vessel wall due to static electricity becomes unfavorable.
本発明の方法によって得られるポリエチレン及びポリエチレン粒子には、必要に応じて、常法に従い、他のポリエチレンやゴム等のほか、酸化防止剤、紫外線吸収剤、光安定剤、滑剤、帯電防止剤、防曇剤、ブロッキング防止剤、加工助剤、着色顔料、パール顔料、偏光パール顔料、架橋剤、発泡剤、中和剤、熱安定剤、結晶核剤、無機又は有機充填剤、難燃剤等の公知の添加剤を配合することができる。 In the polyethylene and polyethylene particles obtained by the method of the present invention, if necessary, in addition to other polyethylene and rubber, etc., an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant, an antistatic agent, Anti-fogging agent, anti-blocking agent, processing aid, coloring pigment, pearl pigment, polarizing pearl pigment, crosslinking agent, foaming agent, neutralizing agent, heat stabilizer, crystal nucleating agent, inorganic or organic filler, flame retardant, etc. Known additives can be blended.
本発明に係る重合方法によれば、高活性で重合が行われ、同一規格の成形品を安定的に連続生産することができる。従って、本発明のポリエチレンの重合方法は、一定品質のポリエチレンを連続生産するのに好適な優れた方法である。 According to the polymerization method according to the present invention, polymerization is performed with high activity, and a molded product of the same standard can be stably and continuously produced. Therefore, the polyethylene polymerization method of the present invention is an excellent method suitable for continuously producing polyethylene of a certain quality.
本発明に係る重合方法としては、反応器を一つ用いてポリエチレンを製造する単段重合だけでなく、分子量分布を広げるために少なくとも二つの反応器を連結させて多段重合を行うこともできる。多段重合の場合、二つの反応器を連結させ、第一段の反応器で重合して得られた反応混合物を続いて第二段の反応器に連続して供給する二段重合が好ましい。 As a polymerization method according to the present invention, not only single-stage polymerization in which polyethylene is produced using one reactor, but also multistage polymerization can be performed by connecting at least two reactors in order to widen the molecular weight distribution. In the case of multi-stage polymerization, two-stage polymerization is preferred in which two reactors are connected and the reaction mixture obtained by polymerization in the first-stage reactor is continuously fed to the second-stage reactor.
第一段反応器で高分子量成分、第二段反応器で低分子量成分を、又は第一段反応器で低分子量成分、第二段反応器で高分子量成分を、それぞれ製造するいずれの方法でもよいが、第一段反応器で高分子量成分、第二段反応器で低分子量成分を製造する方が、第一段から第二段への移行にあたり中間の水素のフラッシュタンクを必要としないため、生産性の面で、より好ましい。 Any method for producing a high molecular weight component in the first stage reactor, a low molecular weight component in the second stage reactor, a low molecular weight component in the first stage reactor, and a high molecular weight component in the second stage reactor, respectively. Although it is better to produce a high molecular weight component in the first stage reactor and a low molecular weight component in the second stage reactor, it does not require an intermediate hydrogen flash tank for the transition from the first stage to the second stage. More preferable in terms of productivity.
第一段においては、エチレン単独又は必要に応じてα−オレフィンとの共重合を、水素濃度のエチレン濃度に対する質量比又は分圧比(Hc/ETc又はHp/ETp)、重合温度又は両者により分子量を調節しながら、またα−オレフィン濃度のエチレン濃度に対する質量比又は分圧比により密度を調節しながら、重合反応を行う。 In the first stage, copolymerization of ethylene alone or optionally with α-olefin is carried out by adjusting the molecular weight by mass ratio or partial pressure ratio of hydrogen concentration to ethylene concentration (Hc / ETc or Hp / ETp), polymerization temperature or both. While adjusting, the polymerization reaction is carried out while adjusting the density by the mass ratio or partial pressure ratio of the α-olefin concentration to the ethylene concentration.
第二段においては、第一段から流れ込む反応混合物中の水素及び同じく流れ込むα−オレフィンがあるが、必要に応じて、それぞれ新たな水素、α−オレフィンを加えることができる。したがって、第二段においても、水素濃度のエチレン濃度に対する質量比もしくは分圧比(Hc/ETcもしくはHp/ETp)、重合温度又は両者により分子量を調節しながら、またα−オレフィン濃度のエチレン濃度に対する質量比又は分圧比により密度を調節しながら重合反応を行うことができる。 In the second stage, there are hydrogen in the reaction mixture that flows from the first stage and α-olefin that also flows in, but if necessary, new hydrogen and α-olefin can be added respectively. Therefore, in the second stage, the mass ratio of the hydrogen concentration to the ethylene concentration or the partial pressure ratio (Hc / ETc or Hp / ETp), the polymerization temperature or the molecular weight is adjusted by both, and the mass of the α-olefin concentration to the ethylene concentration. The polymerization reaction can be carried out while adjusting the density by the ratio or the partial pressure ratio.
本発明で得られるポリエチレンは以下の点で有用である。
成形時、押出機の負荷を低くするためにはポリエチレンを高流動化しておく必要があるが、クロム触媒で得られるポリエチレンの流動性(ハイロードメルトフロー)を上げるためには通常、重合中における重合温度と水素濃度を上げる操作を行う。しかしながら、重合温度を上げると、得られるポリエチレンの分子量分布が狭くなってしまい剛性と耐久性のバランスが悪くなる。また重合時の水素濃度によるハイロードメルトフローのコントロールは、重合温度に比較してその効果は小さく、水素を導入することによる高分子量成分の減少のためポリエチレンの成形性が悪くなる。本発明で開示されているポリエチレンは、重合温度、水素濃度に関係なく、触媒の焼成方法だけによって、流動性が改善されている。
したがって、本発明で得られるポリエチレンは、流動性(ハイロードメルトフロー)と成形性(溶融張力)が改善されるだけではなく、剛性と耐久性のバランスも改善することにもつながっている。
The polyethylene obtained by the present invention is useful in the following points.
In order to reduce the load on the extruder during molding, it is necessary to make the polyethylene highly fluidized, but in order to increase the fluidity (high load melt flow) of the polyethylene obtained with the chromium catalyst, it is usually during polymerization. The operation of raising the polymerization temperature and hydrogen concentration is performed. However, when the polymerization temperature is raised, the molecular weight distribution of the obtained polyethylene becomes narrow, and the balance between rigidity and durability is deteriorated. In addition, the control of the high load melt flow by the hydrogen concentration during polymerization is less effective than the polymerization temperature, and the moldability of polyethylene deteriorates due to a decrease in the high molecular weight component by introducing hydrogen. The polyethylene disclosed in the present invention has improved fluidity only by the method of calcining the catalyst regardless of the polymerization temperature and the hydrogen concentration.
Therefore, the polyethylene obtained by the present invention not only improves flowability (high load melt flow) and moldability (melt tension), but also improves the balance between rigidity and durability.
本発明で製造されたポリエチレンは、流動性、成形性、且つ剛性と耐久性のバランスに優れており、特に中空プラスチック成形品に適している。その用途としては、例えば、自動車用燃料タンク、灯油缶、ドラム缶、薬品用容器、農薬用容器、溶剤用容器、又はプラスチックボトルといった中空プラスチック成形品が挙げられる。 The polyethylene produced by the present invention is excellent in fluidity, moldability, and balance between rigidity and durability, and is particularly suitable for hollow plastic molded products. Examples of the use include hollow plastic molded articles such as automobile fuel tanks, kerosene cans, drum cans, chemical containers, agricultural chemical containers, solvent containers, and plastic bottles.
以下においては、実施例及び比較例を挙げて本発明をさらに詳細に説明し、本発明の卓越性と本発明の構成における優位性を実証するが、本発明はこれらの実施例によって限定されるものではない。 In the following, the present invention will be described in more detail with reference to examples and comparative examples, and the superiority of the present invention and the superiority in the structure of the present invention will be demonstrated, but the present invention is limited by these examples. It is not a thing.
(1)6価クロム含量測定
触媒試料0.2gを秤量して100mlビーカーに入れ、超純水50mlにて30分温水抽出を行った。冷却後、ろ過操作を行いろ液を100mlに定容し、その液を検体として、ICP装置にて定量を行った。
(2)ハイロードメルトフローレート(HLMFR)
物性測定のためのポリマー前処理として、サンプルに添加剤としてチバガイギー社製B225を0.2重量%添加し、単軸押出機にて混練しペレタイズした。JIS K−7210(2004年版)の附属書A表1−条件Gに従い、試験温度190℃、公称荷重21.60kgにおける測定値をHLMFRとして示した。
(3)密度
物性測定のためのポリマー前処理として、サンプルに添加剤としてチバガイギー社製B225を0.2重量%添加し、単軸押出機にて混練しペレタイズした。JIS K−7112(2004年版)に従い測定した。
(4)溶融張力(MT)
東洋精機製作所製キャピログラフ1Bを用い、温度190℃(実施例2は230℃測定も実施)、オリフィス径2.095mm、オリフィス長さ8.0mm、押出速度15mm/分の条件で溶融樹脂を押出し、巻取り機にて6.5m/分の速度で巻き取った時の荷重で、単位はmNである。
(1) Hexavalent chromium content measurement 0.2 g of a catalyst sample was weighed and placed in a 100 ml beaker, and hot water extraction was performed with 50 ml of ultrapure water for 30 minutes. After cooling, a filtration operation was performed, the filtrate was made up to a constant volume of 100 ml, and the liquid was used as a sample for quantification with an ICP apparatus.
(2) High load melt flow rate (HLMFR)
As a polymer pretreatment for measuring physical properties, 0.2% by weight of B225 manufactured by Ciba Geigy Co. was added to the sample as an additive, kneaded with a single screw extruder and pelletized. According to JIS K-7210 (2004 edition), Annex A, Table 1-Condition G, the measured value at a test temperature of 190 ° C. and a nominal load of 21.60 kg was shown as HLMFR.
(3) Density As a polymer pretreatment for measuring physical properties, 0.2% by weight of B225 manufactured by Ciba Geigy Co. was added to the sample as an additive, kneaded with a single screw extruder, and pelletized. It measured according to JIS K-7112 (2004 edition).
(4) Melt tension (MT)
Using a Capillograph 1B manufactured by Toyo Seiki Seisakusho, extruding the molten resin under the conditions of a temperature of 190 ° C. (Example 2 also measures 230 ° C.), an orifice diameter of 2.095 mm, an orifice length of 8.0 mm, and an extrusion speed of 15 mm / min. It is a load when winding at a speed of 6.5 m / min with a winder, and the unit is mN.
[実施例1]
(1)クロム触媒前駆体の調製
米国特許第5232883号明細書に準拠して担体(シリカゲル)を調製した。この担体は、比表面積800m2/g、細孔体積2.0cm3/g、平均粒径100μmを有していた。
さらに、米国特許第4119773号明細書のEXAMPLES I.Catalyst Preparation Procedureに準拠した方法により、Cr、Alの含量がそれぞれ1重量%、2重量%になるように、酢酸クロム(III)、アルミニウムsec−ブトキシドのジクロロメタン溶液とシリカゲルを反応させ乾燥させることにより、緑白色を呈した流動性のよいクロム触媒前駆体粒子を得た。
[Example 1]
(1) Preparation of chromium catalyst precursor A carrier (silica gel) was prepared in accordance with US Pat. No. 5,232,883. This support had a specific surface area of 800 m 2 / g, a pore volume of 2.0 cm 3 / g, and an average particle size of 100 μm.
Further, EXAMPLES I.I. of U.S. Pat. No. 4,119,773. By a method in accordance with the Catalyst Preparation Procedure, chromium (III) acetate and a solution of aluminum sec-butoxide in dichloromethane and silica gel were dried so that the Cr and Al contents would be 1% by weight and 2% by weight, respectively. Thus, chromium catalyst precursor particles exhibiting greenish white color and good fluidity were obtained.
(2)クロム触媒の焼成活性化
上記(1)で得たクロム触媒の前駆体粒子180kgを用いて、内径75cm、高さ8mの円筒型の賦活炉で賦活を行った。賦活方法を表3に示す。また、図1に、目的の接触温度、導入酸素濃度を時系列パターンを示す。
クロム触媒前駆体粒子を投入した炉内で、線速6cm/sの乾燥窒素にて触媒を流動化させ、昇温速度60℃/hで150℃まで昇温させた。接触温度を150℃に保ったまま、3時間、乾燥窒素で流動を続けた。再び、昇温速度60℃/hで300℃まで昇温させ、1時間ホールドした。300℃に保ったまま、1%の酸素を含む乾燥窒素を線速6cm/sにて導入開始し30分保った後、2%の酸素を含む乾燥窒素を30分導入した。以下、酸素濃度を3%→4%→5%と段階的にあげた乾燥窒素を2時間ずつ導入した後、乾燥空気に切り替えた。それと同時に昇温速度60℃/hで昇温を開始した。その後、接触温度を400℃に保って12時間焼成を続けた。焼成終了後、接触温度をさげ、酸素を全く含まない乾燥窒素に戻し、室温まで接触温度が下がったところでクロム触媒を乾燥窒素中で抜きだした。6価クロムの含量を測定したところ、80%であった。
(2) Calcination activation of chromium catalyst Using 180 kg of the chromium catalyst precursor particles obtained in (1) above, activation was performed in a cylindrical activation furnace having an inner diameter of 75 cm and a height of 8 m. Table 3 shows the activation method. FIG. 1 shows a time-series pattern of target contact temperature and introduced oxygen concentration.
In the furnace containing the chromium catalyst precursor particles, the catalyst was fluidized with dry nitrogen at a linear speed of 6 cm / s, and the temperature was increased to 150 ° C. at a temperature increase rate of 60 ° C./h. While maintaining the contact temperature at 150 ° C., the flow was continued with dry nitrogen for 3 hours. Again, the temperature was raised to 300 ° C. at a heating rate of 60 ° C./h, and held for 1 hour. While maintaining at 300 ° C., introduction of dry nitrogen containing 1% oxygen at a linear velocity of 6 cm / s was started and maintained for 30 minutes, and then dry nitrogen containing 2% oxygen was introduced for 30 minutes. Thereafter, dry nitrogen having an oxygen concentration stepwise increased from 3% → 4% → 5% was introduced for 2 hours and then switched to dry air. At the same time, heating was started at a heating rate of 60 ° C./h. Thereafter, baking was continued for 12 hours while maintaining the contact temperature at 400 ° C. After the calcination, the contact temperature was lowered to return to dry nitrogen containing no oxygen. When the contact temperature dropped to room temperature, the chromium catalyst was extracted in dry nitrogen. The hexavalent chromium content was measured and found to be 80%.
(3)ベンチ重合
充分に窒素置換した2.0Lのオートクレーブに上記(2)で得られたクロム触媒100mgおよびイソブタン0.8Lを仕込み、内温を98℃まで昇温した。1−ヘキセン7.0gをエチレンで加圧導入し、エチレン分圧を1.4MPaとなるように保ちながら、触媒生産性が3000g−ポリマー/g−触媒となるように重合を行った。ついで内容ガスを系外に放出することにより重合を終結した。重合結果、物性(HLMFR、密度)の測定結果等を表1に示す。
(3) Bench polymerization A 2.0 L autoclave sufficiently purged with nitrogen was charged with 100 mg of the chromium catalyst obtained in (2) above and 0.8 L of isobutane, and the internal temperature was raised to 98 ° C. 7.0 g of 1-hexene was introduced under pressure with ethylene, and polymerization was carried out so that the catalyst productivity was 3000 g-polymer / g-catalyst while maintaining the ethylene partial pressure at 1.4 MPa. Subsequently, the polymerization was terminated by releasing the content gas out of the system. Table 1 shows the polymerization results, the measurement results of physical properties (HLMFR, density), and the like.
[実施例2]
(1)クロム触媒の焼成活性化
上記実施例1の(1)で得たクロム触媒180kgを用いて、内径75cm、高さ8mの円筒型の賦活炉で賦活を行った。賦活方法を表4に示す。
クロム触媒前駆体粒子を投入した炉内を、線速6cm/sの乾燥窒素にて触媒を流動化させ、昇温速度60℃/hで150℃まで昇温させた。接触温度を150℃に保ったまま、3時間、乾燥窒素で流動を続けた。再び、昇温速度60℃/hで300℃まで昇温させ、1時間ホールドした。接触温度を300℃に保って、1%/hの濃度上昇速度で酸素濃度を0→10%に連続的に変化させた乾燥窒素を導入した。その後、接触温度を400℃に昇温し、400℃に保って12時間焼成を続けた。焼成終了後、接触温度をさげ、酸素を全く含まない乾燥窒素に戻し、室温まで接触温度が下がったところでクロム触媒を乾燥窒素中で抜きだした。6価クロムの含量を測定したところ、85%であった。
[Example 2]
(1) Activation of calcination of chromium catalyst Using 180 kg of the chromium catalyst obtained in (1) of Example 1 above, activation was performed in a cylindrical activation furnace having an inner diameter of 75 cm and a height of 8 m. Table 4 shows the activation method.
In the furnace in which the chromium catalyst precursor particles were charged, the catalyst was fluidized with dry nitrogen having a linear speed of 6 cm / s, and the temperature was increased to 150 ° C. at a temperature increase rate of 60 ° C./h. While maintaining the contact temperature at 150 ° C., the flow was continued with dry nitrogen for 3 hours. Again, the temperature was raised to 300 ° C. at a heating rate of 60 ° C./h, and held for 1 hour. Dry nitrogen in which the oxygen concentration was continuously changed from 0 to 10% at a concentration increasing rate of 1% / h was introduced while maintaining the contact temperature at 300 ° C. Thereafter, the contact temperature was raised to 400 ° C., and the firing was continued for 12 hours while maintaining the contact temperature at 400 ° C. After the calcination, the contact temperature was lowered to return to dry nitrogen containing no oxygen. When the contact temperature dropped to room temperature, the chromium catalyst was extracted in dry nitrogen. The hexavalent chromium content was measured and found to be 85%.
(2)ベンチ重合
上記(1)で得られたクロム触媒を用いて、実施例1(3)と同様の重合操作を行うことにより、ポリエチレンを得た。重合結果、物性(HLMFR、密度)の測定結果等を表1に示す。
(2) Bench polymerization Polyethylene was obtained by performing the same polymerization operation as in Example 1 (3) using the chromium catalyst obtained in (1) above. Table 1 shows the polymerization results, the measurement results of physical properties (HLMFR, density), and the like.
[実施例3]
(1)クロム触媒の焼成活性化
上記実施例1の(1)で得たクロム触媒180kgを用いて、内径75cm、高さ8mの円筒型の賦活炉で賦活を行った。賦活方法を表5に示す。
クロム触媒前駆体粒子を投入した炉内を、線速6cm/sの乾燥窒素にて触媒を流動化させ、昇温速度60℃/hで150℃まで昇温させた。接触温度を150℃に保ったまま、3時間、乾燥窒素で流動を続けた。再び、昇温速度60℃/hで300℃まで昇温させ、1時間ホールドした。300℃に保ったまま、2%/hの濃度上昇速度で酸素濃度を0%から5%に連続的に変化させた酸素と窒素の混合物を導入した。導入混合物の酸素濃度を5%に保ったまま、昇温速度60℃/hで350℃まで昇温させた。接触温度を350℃に保って、2%/hの濃度上昇速度で酸素濃度を5→21%に連続的に変化させた乾燥窒素を導入した。その後、昇温速度60℃/hで400℃まで昇温させ、接触温度を400℃に保って12時間焼成を続けた。焼成終了後、接触温度をさげ、酸素を全く含まない乾燥窒素に戻し、室温まで接触温度が下がったところでクロム触媒を乾燥窒素中で抜きだした。6価クロムの含量を測定したところ、85%であった。
[Example 3]
(1) Activation of calcination of chromium catalyst Using 180 kg of the chromium catalyst obtained in (1) of Example 1 above, activation was performed in a cylindrical activation furnace having an inner diameter of 75 cm and a height of 8 m. Table 5 shows the activation method.
In the furnace in which the chromium catalyst precursor particles were charged, the catalyst was fluidized with dry nitrogen having a linear speed of 6 cm / s, and the temperature was increased to 150 ° C. at a temperature increase rate of 60 ° C./h. While maintaining the contact temperature at 150 ° C., the flow was continued with dry nitrogen for 3 hours. Again, the temperature was raised to 300 ° C. at a heating rate of 60 ° C./h, and held for 1 hour. While maintaining the temperature at 300 ° C., a mixture of oxygen and nitrogen in which the oxygen concentration was continuously changed from 0% to 5% at a concentration increasing rate of 2% / h was introduced. While maintaining the oxygen concentration of the introduced mixture at 5%, the temperature was increased to 350 ° C. at a temperature increase rate of 60 ° C./h. Dry nitrogen was introduced in which the contact temperature was maintained at 350 ° C. and the oxygen concentration was continuously changed from 5 to 21% at a concentration increase rate of 2% / h. Thereafter, the temperature was raised to 400 ° C. at a temperature raising rate of 60 ° C./h, and baking was continued for 12 hours while maintaining the contact temperature at 400 ° C. After the calcination, the contact temperature was lowered to return to dry nitrogen containing no oxygen. When the contact temperature dropped to room temperature, the chromium catalyst was extracted in dry nitrogen. The hexavalent chromium content was measured and found to be 85%.
(2)ベンチ重合
上記(1)で得られたクロム触媒を用いて、実施例1(3)と同様の重合操作を行うことにより、ポリエチレンを得た。重合結果、物性(HLMFR、密度)の測定結果等を表1に示す。
(2) Bench polymerization Polyethylene was obtained by performing the same polymerization operation as in Example 1 (3) using the chromium catalyst obtained in (1) above. Table 1 shows the polymerization results, the measurement results of physical properties (HLMFR, density), and the like.
[実施例4]
(プラント重合)
内容積200Lのパイプループ型反応器にイソブタンを120L/h、実施例1(2)で得られたクロム触媒を5g/hの速度で連続的に供給し、反応器内容物を所要速度で排出しながら、100.5℃において液相中の1−ヘキセン濃度のエチレン濃度に対する質量比を0.10に保つようにエチレン、1−ヘキセンを供給し、全圧4.0MPa、平均滞留時間1.5hの条件で、液充満の状態で連続的に重合を行った。触媒生産性=3000g−ポリマー/g−触媒となり、平均重合活性は2000g−ポリマー/g−触媒/hであった。物性(HLMFR、密度、MT)の測定結果を表2に示す。
[Example 4]
(Plant polymerization)
Isobutane is supplied to a pipe loop reactor having an internal volume of 200 L at a rate of 120 L / h and the chromium catalyst obtained in Example 1 (2) is continuously supplied at a rate of 5 g / h, and the reactor contents are discharged at a required rate. However, at 100.5 ° C., ethylene and 1-hexene were supplied so that the mass ratio of the 1-hexene concentration in the liquid phase to the ethylene concentration was maintained at 0.10, the total pressure was 4.0 MPa, and the average residence time was 1. Polymerization was continuously performed in a liquid-filled state under the condition of 5 h. The catalyst productivity was 3000 g-polymer / g-catalyst, and the average polymerization activity was 2000 g-polymer / g-catalyst / h. The measurement results of physical properties (HLMFR, density, MT) are shown in Table 2.
[比較例1]
(1)クロム触媒の焼成活性化
実施例1の(1)で得たクロム触媒前駆体180kgを用いて、内径75cm、高さ8mの円筒型の賦活炉で賦活を行った。賦活方法を表6に示す。
クロム触媒前駆体粒子を投入した炉内を、線速6cm/sの乾燥窒素にて触媒を流動化させ、昇温速度60℃/hで150℃まで昇温させた。接触温度を150℃に保ったまま、3時間、乾燥窒素で流動を続けた。その後、導入気体を乾燥窒素から乾燥空気に切り替え、昇温速度60℃/hで400℃まで昇温させた。しかし、乾燥空気の導入を開始したとき、触媒が酸素燃焼され接触温度が上昇し、接触温度が530℃まで一時的に上昇した。接触温度が400℃になったところで、その温度を保ったまま、12時間焼成を続けた。焼成終了後、接触温度をさげ、炉内に酸素を全く含まない乾燥窒素に戻し、室温まで接触温度が下がったところでクロム触媒を乾燥窒素中で抜きだした。6価クロムの含量を測定したところ、55%であった。
(2)ベンチ重合
上記(1)で得られたクロム触媒を用いて実施例1の(3)と同様の重合操作を行うことにより、ポリエチレンを得た。重合結果、物性(HLMFR、密度)の測定結果等を表1に示す。
[Comparative Example 1]
(1) Activation of calcination of chromium catalyst Using 180 kg of the chromium catalyst precursor obtained in (1) of Example 1, activation was performed in a cylindrical activation furnace having an inner diameter of 75 cm and a height of 8 m. Table 6 shows the activation method.
In the furnace in which the chromium catalyst precursor particles were charged, the catalyst was fluidized with dry nitrogen having a linear speed of 6 cm / s, and the temperature was increased to 150 ° C. at a temperature increase rate of 60 ° C./h. While maintaining the contact temperature at 150 ° C., the flow was continued with dry nitrogen for 3 hours. Thereafter, the introduced gas was switched from dry nitrogen to dry air, and the temperature was increased to 400 ° C. at a temperature increase rate of 60 ° C./h. However, when the introduction of dry air was started, the catalyst was burned with oxygen and the contact temperature increased, and the contact temperature temporarily increased to 530 ° C. When the contact temperature reached 400 ° C., baking was continued for 12 hours while maintaining the temperature. After completion of the calcination, the contact temperature was reduced, and the furnace was returned to dry nitrogen containing no oxygen. When the contact temperature decreased to room temperature, the chromium catalyst was extracted in dry nitrogen. The hexavalent chromium content was measured and found to be 55%.
(2) Bench polymerization Polyethylene was obtained by performing the same polymerization operation as (3) of Example 1 using the chromium catalyst obtained in (1) above. Table 1 shows the polymerization results, the measurement results of physical properties (HLMFR, density), and the like.
[比較例2]
(1)クロム触媒の焼成活性化
実施例1の(1)で得たクロム触媒前駆体粒子180kgを用いて、内径75cm、高さ8mの円筒型の賦活炉で賦活を行った。賦活方法を表7に示す。
クロム触媒前駆体を投入した炉内を、線速6cm/sの乾燥空気にて触媒を流動化させ、昇温速度60℃/hで150℃まで昇温させた。接触温度を150℃に保ったまま、3時間、乾燥空気で流動を続けた。その後、昇温速度60℃/hで200℃まで昇温させ、さらに3時間、乾燥空気で流動を続けた。60℃/hで昇温を開始し同時に線速6cm/sにて乾燥空気の導入を開始した。接触温度が340℃のとき、触媒が酸素燃焼され接触温度が急上昇し、接触温度が520℃まで一時的に上昇した。接触温度が400℃になったところで、その温度を保ったまま、12時間焼成を続けた。焼成終了後、接触温度をさげ、炉内を酸素を含まない乾燥窒素に戻し、室温まで接触温度が下がったところでクロム触媒を乾燥窒素中で抜きだした。6価クロムの含量を測定したところ、60%であった。
(2)ベンチ重合
上記(1)で得られたクロム触媒を用いて実施例1の(3)と同様の重合操作を行うことにより、ポリエチレンを得た。重合結果、物性(HLMFR、密度)の測定結果等を表1に示す。
[Comparative Example 2]
(1) Activation of calcination of chromium catalyst Using 180 kg of the chromium catalyst precursor particles obtained in (1) of Example 1, activation was performed in a cylindrical activation furnace having an inner diameter of 75 cm and a height of 8 m. Table 7 shows the activation method.
In the furnace in which the chromium catalyst precursor was charged, the catalyst was fluidized with dry air having a linear velocity of 6 cm / s, and the temperature was increased to 150 ° C. at a temperature increase rate of 60 ° C./h. While maintaining the contact temperature at 150 ° C., the flow was continued with dry air for 3 hours. Thereafter, the temperature was raised to 200 ° C. at a heating rate of 60 ° C./h, and the flow was continued with dry air for another 3 hours. Temperature increase was started at 60 ° C./h, and introduction of dry air was started at a linear speed of 6 cm / s. When the contact temperature was 340 ° C., the catalyst was burned with oxygen, the contact temperature rose rapidly, and the contact temperature temporarily increased to 520 ° C. When the contact temperature reached 400 ° C., baking was continued for 12 hours while maintaining the temperature. After the calcination, the contact temperature was lowered, the inside of the furnace was returned to dry nitrogen containing no oxygen, and the chromium catalyst was extracted in dry nitrogen when the contact temperature decreased to room temperature. The content of hexavalent chromium was measured and found to be 60%.
(2) Bench polymerization Polyethylene was obtained by performing the same polymerization operation as (3) of Example 1 using the chromium catalyst obtained in (1) above. Table 1 shows the polymerization results, the measurement results of physical properties (HLMFR, density), and the like.
[比較例3]
(1)クロム触媒の焼成活性化
実施例1の(1)で得たクロム触媒前駆体180kgを用いて、内径75cm、高さ8mの円筒型の賦活炉で賦活を行った。賦活方法を表8に示す。
クロム触媒前駆体を投入した炉内を、線速6cm/sの乾燥窒素にて触媒を流動化させ、昇温速度60℃/hで150℃まで昇温させた。接触温度を150℃に保ったまま、3時間、乾燥窒素で流動を続けた。再び、昇温速度60℃/hで400℃まで昇温させ、1時間ホールドした。1%の酸素を含む乾燥窒素を線速6cm/sにて導入開始し30分保った後、2%の酸素を含む乾燥窒素を30分導入した。以下、酸素濃度を3%→4%→5%と段階的にあげた乾燥窒素を2時間ずつ導入した。さらに、2%/hの濃度上昇速度で酸素濃度を5→21%に連続的に変化させた乾燥窒素を導入した。触媒が酸素燃焼され、最も接触温度が上昇し接触温度が550℃まで一時的に上昇したが、その後、接触温度を400℃に保ったまま、12時間焼成を続けた。焼成終了後、接触温度をさげ、炉内に酸素を全く含まない乾燥窒素に戻し、室温まで接触温度が下がったところでクロム触媒を乾燥窒素中で抜きだした。6価クロムの含量を測定したところ、60%であった。
(2)ベンチ重合
上記(1)で得られたクロム触媒を用いて実施例1の(3)と同様の重合操作を行うことにより、ポリエチレンを得た。重合結果、物性(HLMFR、密度)の測定結果等を表1に示す。
[Comparative Example 3]
(1) Activation of calcination of chromium catalyst Using 180 kg of the chromium catalyst precursor obtained in (1) of Example 1, activation was performed in a cylindrical activation furnace having an inner diameter of 75 cm and a height of 8 m. Table 8 shows the activation method.
The inside of the furnace containing the chromium catalyst precursor was fluidized with dry nitrogen at a linear speed of 6 cm / s, and the temperature was raised to 150 ° C. at a temperature rising rate of 60 ° C./h. While maintaining the contact temperature at 150 ° C., the flow was continued with dry nitrogen for 3 hours. Again, the temperature was raised to 400 ° C. at a heating rate of 60 ° C./h, and held for 1 hour. After introducing dry nitrogen containing 1% oxygen at a linear velocity of 6 cm / s and maintaining for 30 minutes, dry nitrogen containing 2% oxygen was introduced for 30 minutes. Thereafter, dry nitrogen whose oxygen concentration was gradually increased from 3% → 4% → 5% was introduced every 2 hours. Further, dry nitrogen was introduced in which the oxygen concentration was continuously changed from 5 to 21% at a concentration increase rate of 2% / h. The catalyst was burned with oxygen, the contact temperature rose the highest, and the contact temperature rose temporarily to 550 ° C. Thereafter, the calcination was continued for 12 hours while maintaining the contact temperature at 400 ° C. After completion of the calcination, the contact temperature was reduced, and the furnace was returned to dry nitrogen containing no oxygen. When the contact temperature decreased to room temperature, the chromium catalyst was extracted in dry nitrogen. The content of hexavalent chromium was measured and found to be 60%.
(2) Bench polymerization Polyethylene was obtained by performing the same polymerization operation as (3) of Example 1 using the chromium catalyst obtained in (1) above. Table 1 shows the polymerization results, the measurement results of physical properties (HLMFR, density), and the like.
[比較例4]
(プラント重合)
実施例3と同じ内容積200Lのパイプループ型反応器にイソブタンを120L/h、比較例2(1)で得られたクロム触媒を5g/hの速度で連続的に供給し、反応器内容物を所要速度で排出しながら、102.5℃において液相中の1−ヘキセン濃度のエチレン濃度に対する質量比を0.10に保つようにエチレン、1−ヘキセンを供給し、全圧4.0MPa、平均滞留時間1.5hの条件で、液充満の状態で連続的に重合を行った。触媒生産性=2900g−ポリマー/g−触媒となり、平均重合活性は1900g−ポリマー/g−触媒/hであった。物性(HLMFR、密度、MT)の測定結果を表2に示す。
[Comparative Example 4]
(Plant polymerization)
To the pipe loop reactor having the same internal volume of 200 L as in Example 3, isobutane was continuously supplied at 120 L / h, and the chromium catalyst obtained in Comparative Example 2 (1) was continuously supplied at a rate of 5 g / h. At 102.5 ° C., ethylene and 1-hexene were supplied so that the mass ratio of the 1-hexene concentration in the liquid phase to the ethylene concentration was maintained at 0.10, and the total pressure was 4.0 MPa. Polymerization was continuously performed in a liquid-filled state under the condition of an average residence time of 1.5 h. The catalyst productivity was 2900 g-polymer / g-catalyst, and the average polymerization activity was 1900 g-polymer / g-catalyst / h. The measurement results of physical properties (HLMFR, density, MT) are shown in Table 2.
以上の結果からわかるように、同条件下でベンチ重合を行ったとき(実施例1と比較例1)、実施例1で得られたポリマーで流動性(HLMFR)が高いポリエチレンが得られた。また、プラントスケールで重合を行った時、同じHLMFRのポリエチレンを得るために、比較例4では実施例4よりも重合温度を2℃高くする必要があったことがわかる。また実施例4で得られたポリエチレンは比較例4で得られたポリエチレンよりも溶融張力が高かった。 As can be seen from the above results, when bench polymerization was performed under the same conditions (Example 1 and Comparative Example 1), the polymer obtained in Example 1 and polyethylene having high fluidity (HLMFR) were obtained. Further, it can be seen that, when polymerization was carried out at the plant scale, the polymerization temperature in Comparative Example 4 had to be 2 ° C. higher than that in Example 4 in order to obtain the same HLMFR polyethylene. Further, the polyethylene obtained in Example 4 had a higher melt tension than the polyethylene obtained in Comparative Example 4.
本発明で提供されるエチレン重合用触媒の製造方法を用いることにより、成形性、耐衝撃性に優れ、且つ耐久性及び剛性のバランスに優れたポリエチレンを高活性にて得られ、特に中空プラスチック成形品に適した、特に流動性と溶融張力が共に高いポリエチレンを効率よく高活性にて製造することができる。そして、そのポリエチレンは、中空プラスチック製品に適し、その中空プラスチック製品は、成形性、耐久性、バリアー性に優れ、且つ耐衝撃性及び剛性のバランスに優れ、燃料タンク、特に自動車用燃料タンク等に好適に用いることができる。 By using the method for producing an ethylene polymerization catalyst provided by the present invention, polyethylene having excellent moldability and impact resistance and excellent balance between durability and rigidity can be obtained with high activity, particularly hollow plastic molding. Polyethylene that is suitable for products, and particularly has high fluidity and melt tension, can be produced efficiently and with high activity. The polyethylene is suitable for hollow plastic products, and the hollow plastic products have excellent moldability, durability, barrier properties, and excellent balance of impact resistance and rigidity, and are suitable for fuel tanks, particularly automobile fuel tanks. It can be used suitably.
Claims (18)
前記触媒前駆体(d)の焼成工程は、不活性ガスを導入しながら接触温度を100〜360℃の範囲で、5分〜48時間保持する第1の工程と、その前記第1の工程の後、接触温度を200〜500℃に保つように、導入される酸素の濃度を連続的に増加又は段階的に上昇させて、最終的な酸素の濃度が15〜30体積%になるように調整しながら5分〜72時間焼成を行う第2の工程を含むエチレン重合用クロム触媒の製造方法。 Chromium for ethylene polymerization in which a catalyst precursor (d) obtained by supporting a chromium compound (b) and a metal-containing hydrocarbon compound (c) other than chromium on the inorganic oxide support (a) is calcined in a non-reducing atmosphere. A method for producing a catalyst, comprising:
The catalyst precursor (d) firing step includes a first step of maintaining a contact temperature in the range of 100 to 360 ° C. for 5 minutes to 48 hours while introducing an inert gas, and the first step. Thereafter, the concentration of introduced oxygen is continuously increased or increased stepwise so as to keep the contact temperature at 200 to 500 ° C., and the final oxygen concentration is adjusted to 15 to 30% by volume. The manufacturing method of the chromium catalyst for ethylene polymerization including the 2nd process of baking for 5 minutes-72 hours, doing it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012075338A JP5803774B2 (en) | 2012-03-29 | 2012-03-29 | Method for producing chromium catalyst for ethylene polymerization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012075338A JP5803774B2 (en) | 2012-03-29 | 2012-03-29 | Method for producing chromium catalyst for ethylene polymerization |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013203916A JP2013203916A (en) | 2013-10-07 |
JP5803774B2 true JP5803774B2 (en) | 2015-11-04 |
Family
ID=49523374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012075338A Active JP5803774B2 (en) | 2012-03-29 | 2012-03-29 | Method for producing chromium catalyst for ethylene polymerization |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5803774B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4053437A (en) * | 1976-03-04 | 1977-10-11 | Chemplex Company | Polyolefin catalyst and method for its preparation |
US4184979A (en) * | 1978-07-17 | 1980-01-22 | Chemplex Company | Catalyst and process of preparing the catalyst |
EP0882742A1 (en) * | 1997-06-06 | 1998-12-09 | Fina Research S.A. | Production of polyethylene for blow moulding |
JP5175802B2 (en) * | 2009-06-26 | 2013-04-03 | 日本ポリエチレン株式会社 | Method for producing ethylene polymer using chromium catalyst |
-
2012
- 2012-03-29 JP JP2012075338A patent/JP5803774B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013203916A (en) | 2013-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5821746B2 (en) | Process for producing ethylene polymer and ethylene polymer obtained therefrom | |
TWI449718B (en) | Modified chromium-based catalysts and polymerization processes for using the same | |
JP5337484B2 (en) | Blow molded polyethylene resin | |
US7691955B2 (en) | Catalyst activation and resins therefrom | |
KR101524330B1 (en) | Fast activating catalyst | |
EP2560998B1 (en) | Formation of ziegler-natta catalyst using non-blended components | |
KR101709798B1 (en) | Polyethylene film having improved barrier properties and methods of making same | |
JP5216566B2 (en) | Polyethylene resin, hollow plastic molded product using the same, and use thereof | |
JP4610130B2 (en) | Ethylene polymer and process for producing the same | |
JP5358556B2 (en) | Catalyst for ethylene polymerization and method for producing ethylene polymer using the same | |
JP5175802B2 (en) | Method for producing ethylene polymer using chromium catalyst | |
WO2012086780A1 (en) | Polyethylene having improved branching degree distribution | |
JP5803774B2 (en) | Method for producing chromium catalyst for ethylene polymerization | |
JP3786624B2 (en) | Process for producing ethylene polymer and ethylene polymer | |
JP4653881B2 (en) | Ethylene polymer and process for producing the same | |
JP5581305B2 (en) | Catalyst for ethylene polymerization, method for producing polyethylene using the same, polyethylene for blow molded products, and polyethylene for large blow molded products | |
US20050119426A1 (en) | High molecular weight HDPE resins | |
JP5891901B2 (en) | Polyethylene and method for producing the same | |
JP6862997B2 (en) | Method for producing ethylene polymerization catalyst | |
JP2002241424A (en) | Method for producing ethylene polymer | |
JP2003313239A (en) | Polyethylene resin for large hollow molding and large hollow molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150107 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150817 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5803774 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |