JP5797783B2 - Porous carbon products and their use - Google Patents

Porous carbon products and their use Download PDF

Info

Publication number
JP5797783B2
JP5797783B2 JP2013556979A JP2013556979A JP5797783B2 JP 5797783 B2 JP5797783 B2 JP 5797783B2 JP 2013556979 A JP2013556979 A JP 2013556979A JP 2013556979 A JP2013556979 A JP 2013556979A JP 5797783 B2 JP5797783 B2 JP 5797783B2
Authority
JP
Japan
Prior art keywords
particles
template
precursor
carbon
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013556979A
Other languages
Japanese (ja)
Other versions
JP2014518534A (en
Inventor
クリスティアン ノイマン
ノイマン クリスティアン
ベッカー イェルク
ベッカー イェルク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Quarzglas GmbH and Co KG
Original Assignee
Heraeus Quarzglas GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Quarzglas GmbH and Co KG filed Critical Heraeus Quarzglas GmbH and Co KG
Publication of JP2014518534A publication Critical patent/JP2014518534A/en
Application granted granted Critical
Publication of JP5797783B2 publication Critical patent/JP5797783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0032Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors one of the precursor materials being a monolithic element having approximately the same dimensions as the final article, e.g. a paper sheet which after carbonisation will react with silicon to form a porous silicon carbide porous body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、多孔質炭素生成物を製造するための方法に関し、該方法は、以下、
(a)相互に連結した孔を含む無機テンプレート材料からなるテンプレートを提供する工程、
(b)炭素の前駆物質を提供する工程、
(c)テンプレートの孔を前駆物質で浸透させる工程、
(d)前駆物質を炭素化する工程、
(e)テンプレートを取り出して多孔質炭素生成物を形成する工程
を含む。
The present invention relates to a method for producing a porous carbon product, the method comprising:
(A) providing a template comprising an inorganic template material containing interconnected pores;
(B) providing a precursor of carbon;
(C) infiltrating the pores of the template with the precursor,
(D) a step of carbonizing the precursor;
(E) removing the template to form a porous carbon product.

さらに、本発明は、炭素生成物の適した使用に関する。   Furthermore, the invention relates to a suitable use of the carbon product.

炭素のモノリシック成形体は、例えば、燃料電池、スーパーキャパシタ及び電気アキュムレータ(二次電池)のための電極において使用され、かつ液体及びガスのための吸着体として、ガスのための貯蔵媒体として、クロマトグラフィー適用又は触媒加工におけるキャリヤー材料として、及び機械工学又は医用工学における材料として使用される。   Carbon monolithic compacts are used, for example, in electrodes for fuel cells, supercapacitors and electric accumulators (secondary batteries) and as chromatographs as adsorbents for liquids and gases, as storage media for gases. It is used as a carrier material in graphic applications or catalyst processing and as a material in mechanical engineering or medical engineering.

先行技術
充電式リチウム電池の電極のための使用は、可逆的に挿入することができ、かつ低い電荷の損失でリチウムを脱離することができる電極材料を要求する。同時に、電池のできるだけ短い充電時間及び高い充電容量を目的とする。このために、最大の多孔度(浸透性)が、同時にできるだけ小さい電極材料の表面と共に所望される。大きい表面を有する電極材料は、実質的にリチウムの第一の挿入時に可逆的な損失として現れる比較的高い電荷損失を呈する。
Prior art The use for rechargeable lithium battery electrodes requires electrode materials that can be reversibly inserted and that can desorb lithium with low charge loss. At the same time, it aims at the shortest possible charging time and high charging capacity of the battery. For this, a maximum porosity (permeability) is desired with the surface of the electrode material as small as possible at the same time. An electrode material having a large surface exhibits a relatively high charge loss that manifests itself as a reversible loss upon the first insertion of lithium.

DE 29 46 688号A1は、多孔質材料の一時的な予備成形物(いわゆるテンプレート)を使用することによって多孔質炭素を製造するための方法を開示している。炭素の前駆物質は、ここで、少なくとも1m2/gの表面を有する無機テンプレート材料のテンプレートの孔において堆積される。SiO2ゲル、多孔質ガラス、アルミナ又は他の多孔質耐熱酸化物は、テンプレートに適したテンプレート材料として挙げられている。テンプレート材料は、少なくとも40%の多孔度及び3nm〜2μmの範囲の平均孔サイズを有する。 DE 29 46 688 A1 discloses a method for producing porous carbon by using a temporary preform (so-called template) of a porous material. The carbon precursor is now deposited in the template pores of the inorganic template material having a surface of at least 1 m 2 / g. SiO 2 gel, porous glass, alumina or other porous refractory oxides are listed as suitable template materials for the template. The template material has a porosity of at least 40% and an average pore size in the range of 3 nm to 2 μm.

重合可能な有機材料、例えばフェノールとヘキサアミンとの混合物又はフェノール−ホルムアルデヒドレゾールは、炭素の前駆物質として推奨されている。この混合物は、液体として又はガスとしてテンプレートの孔中に導入され、かつ重合される。重合及び続く炭素化の後に、テンプレートの無機テンプレート材料は、例えばNaOH中での又はフッ化水素酸中での溶解によって取り除かれる。   Polymerizable organic materials such as mixtures of phenol and hexaamine or phenol-formaldehyde resols are recommended as precursors for carbon. This mixture is introduced as liquid or gas into the pores of the template and polymerized. After polymerization and subsequent carbonization, the template inorganic template material is removed, for example, by dissolution in NaOH or in hydrofluoric acid.

これは、ほぼテンプレートの材料分布に対応する孔構造を有し、かつ主にLi電池のための電極の製造のための出発材料として適している粒子状又はフレーク状の炭素生成物をもたらす。   This results in a particulate or flaky carbon product that has a pore structure that roughly corresponds to the material distribution of the template and that is suitable as a starting material for the manufacture of electrodes primarily for Li batteries.

内部表面への容易な接近は、高く急速な電荷容量のために重要である。本記載内容において、いわゆる"階層的多孔度"は、有利であることが判明している。大きい表面は、ナノメーター範囲での孔によって提供されうる。これらの孔への接近容易性を高めるために、それらは、理想的に、連続マクロ孔質輸送系によって連結される。   Easy access to the inner surface is important for high and rapid charge capacity. In the present description, the so-called “hierarchical porosity” has proven advantageous. Large surfaces can be provided by pores in the nanometer range. In order to increase the accessibility to these pores, they are ideally connected by a continuous macroporous transport system.

マクロ孔及びメソ孔のかかる階層的孔構造を有するモノリシック炭素生成物は、US 2005/0169829号A1において記載されている。階層的孔構造を製造するために、SiO2テンプレートは、直径800nm〜10μmのシリカビーズ及び重合可能な物質からなる分散液を、重合が、過剰な液体の除去後に乾燥し、完全に重合した多孔質シリカゲルをもたらすように鋳型中で加熱することで製造される。 Monolithic carbon products having such a hierarchical pore structure with macropores and mesopores are described in US 2005/0169829 A1. In order to produce a hierarchical pore structure, the SiO 2 template is a fully polymerized porous dispersion of a dispersion of silica beads having a diameter of 800 nm to 10 μm and a polymerizable material, the polymerization being dried after removal of excess liquid. It is manufactured by heating in a mold so as to yield a quality silica gel.

この方法で得られるSiO2テンプレートの孔を、続いて炭素の前駆物質で含浸させ、炭素前駆物質を炭素に炭素化し、そして続いてSiO2テンプレートをHF又はNaOH中での溶解によって取り除く。それによって得られた炭素生成物は、およそテンプレートの材料分布に一致する孔構造も呈する。テトラヒドロフラン(THF)中で溶解したフェノール樹脂が前駆物質として使用される。 The pores of the SiO 2 template obtained in this way are subsequently impregnated with a carbon precursor, the carbon precursor is carbonized to carbon, and the SiO 2 template is subsequently removed by dissolution in HF or NaOH. The resulting carbon product also exhibits a pore structure that approximately matches the material distribution of the template. A phenolic resin dissolved in tetrahydrofuran (THF) is used as a precursor.

技術課題
通常の浸透のために黒鉛化した炭素前駆体材料は、高い濃度で可溶性ではなく、かつ不溶性組成物量を含む。例えば、THFにおける中間層ピッチの溶解性は、10体積%未満であり、溶剤の蒸発後に、当初充填した孔体積の90%より多くが充填されていないままである。炭素前駆体材料の残っているコーティングの体積は、さらに、しかしわずかに、続く炭素化によって減少される。
TECHNICAL PROBLEMS Carbon precursor materials graphitized for normal infiltration are not soluble at high concentrations and contain insoluble composition amounts. For example, the solubility of the interlayer pitch in THF is less than 10% by volume, and after evaporation of the solvent, more than 90% of the initially filled pore volume remains unfilled. The remaining coating volume of the carbon precursor material is further but slightly reduced by subsequent carbonization.

反対に、炭水化物の形での代わりの炭素前駆体、例えば糖は、高い可溶性を示すが、しかし溶剤の蒸発後に残っている糖は、炭素化工程におけるその当初質量の約50%が失われており、その結果ここでは大きな孔体積が充填されないままである。   Conversely, alternative carbon precursors in the form of carbohydrates, such as sugars, are highly soluble, but sugars remaining after solvent evaporation lose about 50% of their initial mass in the carbonization process. As a result, a large pore volume remains unfilled here.

したがって、続く炭素化での浸透は、一般に薄い厚さの堆積した炭素層のみをもたらす。多孔質炭素構造の技術的に有用な壁厚を得るために、複数のかかる浸透及び炭素化プロセスは、したがって、概して次々と実施されなければならない。かかる多数プロセスは、しかしながら、製造費用を高め、かつそれらは、例えば浸透チャネルの段階的な目詰まりによって不均一に生じうる。   Thus, subsequent infiltration with carbonization generally results in only a thin layer of deposited carbon. In order to obtain a technically useful wall thickness of a porous carbon structure, a plurality of such infiltration and carbonization processes must therefore generally be performed one after the other. Such multiple processes, however, increase manufacturing costs and they can occur non-uniformly due to, for example, gradual clogging of the osmotic channels.

本発明の課題は、厚い壁厚も有する多孔質炭素構造の経済的な製造を可能にする方法を提供することである。   The object of the present invention is to provide a method that allows the economical production of porous carbon structures that also have a thick wall thickness.

さらに、本発明の課題は、本発明による炭素生成物の適した使用を示すことである。   Furthermore, the object of the present invention is to show a suitable use of the carbon product according to the invention.

発明の一般的な記載
前記方法に関して、前記タイプの方法から出発するこの課題は、可融性材料の前駆物質粒子及びテンプレート粒子を提供し、かつ粉末混合物を該粒子から製造し、該粉末混合物を方法工程(d)による炭素化前又は炭素化中に加熱して、前駆体材料溶融物をテンプレート粒子の孔中に浸透させる、本発明の方法によって達せられる。
General description of the invention With regard to the method, this task starting from a method of the type is to provide precursor particles and template particles of fusible material and to produce a powder mixture from the particles, It is achieved by the method of the present invention that is heated prior to or during carbonization by method step (d) to allow the precursor material melt to penetrate into the pores of the template particles.

本発明による方法において、炭素の前駆物質は、テンプレートと接触して加熱され、かつこのプロセスで軟化又は溶融され、その結果テンプレートの孔中に浸透できる。炭素前駆物質のための溶剤は省略できる。   In the process according to the invention, the carbon precursor is heated in contact with the template and is softened or melted in this process so that it can penetrate into the pores of the template. Solvents for the carbon precursor can be omitted.

しかしながら、テンプレート材料の良好な湿潤性の場合においてでさえ、液化した前駆物質を有するテンプレートのこの"直接浸透"は、テンプレートがモノリスとして存在する場合に所望される結果を生じない。特別な対策なしに、それは、溶融した前駆物質についての極端に小さい浸透の深さ及び孔における不規則な占有を得る。この問題を解決するために、予め多孔質テンプレート材料及び前駆物質の双方から製造された粉末を、本発明によって提供し、該粉末を、互いと均質に混合し、そして均質な粉末混合物を、前駆物質の粒子が溶融する程度まで加熱する。   However, even in the case of good wettability of the template material, this “direct penetration” of the template with the liquefied precursor does not produce the desired result when the template is present as a monolith. Without special measures, it obtains an extremely small penetration depth and irregular occupancy in the pores for the molten precursor. In order to solve this problem, a powder previously produced from both a porous template material and a precursor is provided by the present invention, the powder is intimately mixed with each other, and the homogeneous powder mixture is converted into a precursor. Heat to the extent that the particles of material melt.

この溶融物は、隣接したテンプレート粒子中に直接浸透できる。均質な粉末混合物は、溶融した前駆物質が、常にテンプレート粒子と密接に接触することを確実にし、その結果均一な分布及び占有を、浸透されるべきテンプレート材料の全体の孔体積にわたって得る。一般的な前駆物質の溶融中の高温は、テンプレートの表面の良好な湿潤性をもたらし、その結果一回の浸透の場合でさえ、孔体積の高い充填の程度が得られる。   This melt can penetrate directly into adjacent template particles. A homogeneous powder mixture ensures that the molten precursor is always in intimate contact with the template particles, so that a uniform distribution and occupancy is obtained over the entire pore volume of the template material to be permeated. The high temperatures during melting of common precursors result in good wettability of the template surface, resulting in a high degree of pore volume filling even in the case of a single penetration.

前駆物質の炭素化は、同時に、又はテンプレート粒子の孔の浸透に続いて実施する。溶剤の使用が省かれるため、前駆物質の収縮は、単に、炭素化中の分解及び蒸発プロセスによる。収縮の程度は、この点で、前駆物質の炭素含有率に依存する。   The carbonization of the precursor is carried out simultaneously or following the penetration of the pores of the template particles. Since the use of solvent is omitted, the shrinkage of the precursor is simply due to decomposition and evaporation processes during carbonization. The degree of shrinkage depends in this respect on the carbon content of the precursor.

無機テンプレート材料は、炭素前駆物質を堆積及びか焼するために機械的に及び熱的に安定な骨格としてのみ提供する。例えば化学溶解による除去後に、得られた炭素生成物は、実質的にテンプレート材料を有さない。   The inorganic template material provides only as a mechanically and thermally stable framework for depositing and calcining carbon precursors. For example, after removal by chemical dissolution, the resulting carbon product is substantially free of template material.

より細かく粉砕されたテンプレート粒子は、より速く、より効率的に、及びより均一であり、他の同一のプロセス条件下で浸透する。テンプレート粒子は、例えば、テンプレート材料から多孔質体を研磨することによって又はテンプレート材料から層を破砕することによって、テンプレート材料から粉末を加圧することによって又はゾルゲル法もしくは顆粒法によって製造される。例えば篩い分けによって得られた小さく、典型的に単分散の粒子サイズ分布は、本発明による方法のために有利である。   Finer ground template particles are faster, more efficient, and more uniform and penetrate under other identical process conditions. Template particles are produced, for example, by polishing a porous body from a template material or by crushing a layer from the template material, by pressing a powder from the template material, or by a sol-gel method or a granule method. A small, typically monodisperse particle size distribution, obtained for example by sieving, is advantageous for the process according to the invention.

前駆物質の粉末は、溶融物を研磨もしくは破砕によって、又は噴霧することによっても得られる。   The precursor powder can also be obtained by grinding or crushing the melt, or by spraying.

2つの粉末を互いに均質に混合した後に、その粉末混合物を、前駆物質が溶融され、テンプレート粉末の孔中に非常に湿って浸透する程度まで加熱する。ここで、前駆物質は、同時に又は後に炭素化されてよい。   After the two powders are intimately mixed with each other, the powder mixture is heated to such an extent that the precursor is melted and penetrates very wet into the pores of the template powder. Here, the precursors may be carbonized simultaneously or later.

炭素化後に、炭素化された前駆物質及びテンプレート材料を本質的に互いに混合した塊を得る。テンプレート材料は、前記塊からエッチングによって取り出され、その結果炭素化した前駆物質から炭素骨格が残る。   After carbonization, a mass is obtained in which the carbonized precursor and template material are essentially mixed together. The template material is removed from the mass by etching, resulting in a carbon skeleton remaining from the carbonized precursor.

供給原料を加水分解又は熱分解によってテンプレート材料粒子に変換し、該粒子をテンプレート材料から煤体(soot body)の形成で堆積表面上に堆積させ、かつ煤体をテンプレート粒子に破砕する煤の堆積プロセスをテンプレート粒子が含む場合に、特に有利であることが判明している。   Deposition of soot that converts the feedstock into template material particles by hydrolysis or pyrolysis, deposits the particles from the template material in the form of soot bodies on the deposition surface, and breaks the rods into template particles It has been found to be particularly advantageous when the process involves template particles.

本発明による方法のこの変法において、テンプレートの形成は煤の堆積プロセスを含む。このプロセスにおいて、液体又はガス状出発物質は、化学反応(加水分解又は熱分解)を受け、かつガス相から堆積表面上に固体成分として堆積される。反応域は、例えばバーナー炎又は電気アーク(プラズマ)である。かかるプラズマ又は例えばOVD、VAD、MCVD、PCVD又はFCVD法の名前で公知であるCVD堆積方法によって、合成石英ガラス、酸化スズ硝酸チタン及び他の合成材料が、工業規模で製造される。   In this variant of the method according to the invention, the formation of the template comprises a soot deposition process. In this process, the liquid or gaseous starting material undergoes a chemical reaction (hydrolysis or thermal decomposition) and is deposited as a solid component from the gas phase onto the deposition surface. The reaction zone is, for example, a burner flame or an electric arc (plasma). Synthetic quartz glass, tin oxide titanium nitrate and other synthetic materials are produced on an industrial scale by such plasma or CVD deposition methods known under the name of OVD, VAD, MCVD, PCVD or FCVD methods.

テンプレート材料が、多孔質の煤として、例えば容器、心棒、プレート又はフィルターであってよい堆積表面上で存在することは、テンプレートの製造のための堆積したテンプレート材料の条件のために必須である。これは、堆積表面の温度が、堆積したテンプレート材料の稠密な焼結を妨げるように低く保たれる。それによって熱的に固められるが多孔質である"煤体"は、中間生成物として得られる。   It is essential for the conditions of the deposited template material for the production of the template that the template material is present as a porous soot on the deposition surface, which can be, for example, a container, mandrel, plate or filter. This keeps the temperature of the deposition surface low so as to prevent dense sintering of the deposited template material. A “rod”, which is thermally solidified but porous, is obtained as an intermediate product.

"ゾル−ゲル法"による製造方法と比較して、煤の堆積プロセスは、工業規模でのテンプレートの経済的な製造を可能にする安価な方法である。   Compared to the “sol-gel” manufacturing method, the soot deposition process is an inexpensive method that allows the economical production of templates on an industrial scale.

この方法において得られた煤体に関しては、製造プロセスによる階層的な孔構造を有する異方性の質量分布を呈することが特に有利であることが判明している。その理由は、ガス相堆積は、反応域において、堆積表面にこの方法で凝集するナノメートル範囲での粒子サイズを有するテンプレート材料の一次粒子をもたらし、かつ堆積表面上で多少の球状アグロメレート又はアグリゲートの形成が存在する(これらは以下で"二次粒子"とも言われる)ことである。一次粒子内に及び二次粒子内に、すなわち一次粒子の間に、ナノメートル範囲の特に小さい空洞及び孔、すなわちメソ孔があるのに対し、大きい空洞又は孔は、個々の二次粒子間で形成される。   It has been found that it is particularly advantageous for the enclosure obtained in this way to exhibit an anisotropic mass distribution with a hierarchical pore structure according to the manufacturing process. The reason is that gas phase deposition results in primary particles of template material having a particle size in the nanometer range that agglomerates in this way on the deposition surface in the reaction zone, and some spherical agglomerates or aggregates on the deposition surface Are present (these are also referred to below as "secondary particles"). There are particularly small cavities and pores in the nanometer range, i.e. mesopores, in the primary particles and in the secondary particles, i.e. between the primary particles, whereas large cavities or pores are between individual secondary particles. It is formed.

破砕又は研磨によってそれらから得られたテンプレート粒子は、テンプレート材料において予め決められたオリゴマー状の孔サイズ分布を有する階層的な構造も呈する。   Template particles obtained from them by crushing or polishing also exhibit a hierarchical structure with a predetermined oligomeric pore size distribution in the template material.

煤の堆積プロセスにおいて、テンプレート材料は、テンプレート粒子中に顆粒、加圧、スラリー又は焼結プロセスにおいてさらに加工された煤粉末の形で製造されてもよい。顆粒又はフレークは、中間生成物として挙げられる。   In the soot deposition process, the template material may be manufactured in the form of soot powder that is further processed in a granule, pressure, slurry or sintering process into template particles. Granules or flakes are mentioned as intermediate products.

煤の堆積によって製造されたテンプレート材料の層は、少ない努力で破砕されることができ、小片状又はフレーク状の形態を有するテンプレート粒子をもたらす。   The layer of template material produced by soot deposition can be crushed with little effort, resulting in template particles having a crushed or flaky morphology.

球状でない形態によって特徴付けられるかかるテンプレート粒子は、本発明による方法における使用に特に有利である。   Such template particles characterized by a non-spherical morphology are particularly advantageous for use in the method according to the invention.

この理由は、球状の形態を有する粒子、すなわちボール状又はほぼボール状の形態を有する粒子が、それらの体積に関して少ない表面を有することである。対照的に、球状でない形態を有する粒子は、前駆物質での浸透を単純及び一様にする、表面と体積との大きな割合を示す。   The reason for this is that particles having a spherical morphology, ie particles having a ball-like or nearly ball-like morphology, have a small surface with respect to their volume. In contrast, particles having a non-spherical morphology exhibit a large surface to volume ratio that makes the penetration of the precursor simple and uniform.

少なくとも5、有利には少なくとも10の構造比を有する小片状又はロッド状であるテンプレート粒子は、この点で特に有利であることが判明している。   Template particles which are in the form of crumbs or rods having a structural ratio of at least 5, preferably at least 10, have been found to be particularly advantageous in this respect.

"構造比"は、ここで、粒子の最大構造幅とその厚さの比と解される。少なくとも5の構造比は、粒子の最大構造幅が、その厚さよりも少なくとも5倍大きいことを意味する。かかる粒子は、実質的に小片状又はロッド状の形を有し、かつ2つの実質的に平行に伸長した大きい表面によって特徴付けられ、溶融した前駆物質の浸透は、充填されるべき体積の緻密さが比較的小さいため、比較的急速に実施することができる。   “Structural ratio” is here understood as the ratio of the maximum structural width of a particle to its thickness. A structure ratio of at least 5 means that the maximum structure width of the particle is at least 5 times greater than its thickness. Such particles have a substantially flaky or rod-like shape and are characterized by two substantially parallel extended large surfaces, the penetration of the molten precursor being in the volume to be filled Since the density is relatively small, it can be carried out relatively quickly.

テンプレート粒子の厚さが小さくなれば、溶融した前駆物質での浸透はより単純でより均質になる。この点で、テンプレート粒子が、10〜500μmの範囲、有利には20〜100μmの範囲、特に50μm未満の平均の厚さを有する場合に有利であることが判明している。   As the template particle thickness decreases, the penetration with the molten precursor becomes simpler and more homogeneous. In this respect, it has been found advantageous if the template particles have an average thickness in the range of 10 to 500 μm, preferably in the range of 20 to 100 μm, in particular less than 50 μm.

10μm未満の厚さを有するテンプレート粒子は、弱い機械強度を有し、明白な階層的な孔構造の形成を悪化させる。500μmより大きい厚さでは、溶融した前駆物質での均質な浸透を確実にすることがより難しくなる。   Template particles having a thickness of less than 10 μm have weak mechanical strength and exacerbate the formation of a distinct hierarchical pore structure. At thicknesses greater than 500 μm, it becomes more difficult to ensure homogeneous penetration with the molten precursor.

テンプレート材料及び前駆材料からの粒子の均質な混合は、前駆物質粒子が球形であり、50μm未満、有利には20μm未満の平均粒径を有する場合に容易である。   Homogeneous mixing of the particles from the template material and the precursor material is easy when the precursor particles are spherical and have an average particle size of less than 50 μm, preferably less than 20 μm.

粒子の球形成のために、テンプレート材料からの球状でない粒子との混合が改良される。前駆物質からの粒子がわずかに前駆物質の粒子よりも小さい場合にこれも支持される。しかしながら1μm未満の粒径はほこりっぽくなる傾向があり、かつ好ましくない。   Due to the sphere formation of the particles, the mixing with non-spherical particles from the template material is improved. This is also supported when the particles from the precursor are slightly smaller than the particles of the precursor. However, particle sizes less than 1 μm tend to be dusty and are not preferred.

孔の充填の程度は、前駆物質とテンプレート材料との混合比によって設定される。有利には、前駆物質粒子及びテンプレート粒子は、0.05〜1.6の範囲の体積比で、有利には0.1〜0.8の範囲の体積比で混合される。   The degree of hole filling is set by the mixing ratio of the precursor and template material. Advantageously, the precursor particles and the template particles are mixed in a volume ratio in the range of 0.05 to 1.6, preferably in a volume ratio in the range of 0.1 to 0.8.

0.05の混合比で、テンプレート材料の内部表面は、一層の薄い厚さでのみ覆われており、スポンジ状の炭素だけが得られる。従って、さらに小さい混合比は好ましくない。反対に、1.6の混合比で、テンプレート材料の本来の孔体積に依存して、実質的に充填された孔構造を得る。   With a mixing ratio of 0.05, the inner surface of the template material is only covered with a thinner thickness, and only sponge-like carbon is obtained. Therefore, a smaller mixing ratio is not preferable. Conversely, with a mixing ratio of 1.6, depending on the original pore volume of the template material, a substantially filled pore structure is obtained.

有利には、テンプレート材料はSiO2である。 Advantageously, the template material is SiO 2.

合成SiO2は、比較的安い費用で、安価な出発物質を使用する煤の堆積プロセスによって工業規模で製造されうる。SiO2テンプレートは、か焼中に高温に耐える。温度の上限は、SiO2と炭素とのSiCへの反応(約1000℃で)の開始によって予め決められる。方法工程(e)による合成SiO2の形でのテンプレート材料の除去は、化学溶解によって実施する。 Synthetic SiO 2 can be produced on an industrial scale by a soot deposition process using relatively inexpensive starting materials and inexpensive starting materials. The SiO 2 template withstands high temperatures during calcination. The upper temperature limit is predetermined by the initiation of the reaction of SiO 2 and carbon with SiC (at about 1000 ° C.). Removal of the template material in the form of synthetic SiO 2 by process step (e) is carried out by chemical dissolution.

ピッチが、有利には炭素前駆物質として適している。   Pitch is advantageously suitable as a carbon precursor.

ピッチ、特に"中間相ピッチ"は、規則正しい液晶構造を有する炭素質材料である。炭素化後に、炭素構造の孔中に浸透したピッチ溶融物は、コア/シェル複合材のシェルを形成する炭素のグラファイト状の堆積を導き、それによって、層のスタック間の空洞の目詰まりなしに、炭素構造のミクロ孔を閉じる。   Pitch, especially “medium phase pitch”, is a carbonaceous material with a regular liquid crystal structure. After carbonization, the pitch melt that has penetrated into the pores of the carbon structure leads to a graphite-like deposition of carbon that forms the shell of the core / shell composite, thereby avoiding clogging of cavities between the stacks of layers. Close the carbon structure micropores.

代わりに、炭水化物が、炭素前駆物質として使用される。   Instead, carbohydrates are used as carbon precursors.

炭水化物、特に糖、特にサッカロース、フルクトース又はグルコースは、グラファイトではない炭素前駆物質である。   Carbohydrates, particularly sugars, especially saccharose, fructose or glucose, are carbon precursors that are not graphite.

有利には、炭素生成物は、多孔質粒子の微粉炭素に分けられる。   Advantageously, the carbon product is divided into fine particles of porous particles.

本発明による方法において、炭素生成物は、通常、モノリスとして、又は小片状もしくはフレーク状の形態で通常得られ、かつより小さい粒子に容易に分けられる。分配後に得られる粒子は、テンプレートの構造によって階層的な孔構造を有し、かつ例えばさらに標準のペースト又はスラリー法によって成形体又は層に加工される。   In the process according to the invention, the carbon product is usually obtained as a monolith or in the form of small pieces or flakes and is easily divided into smaller particles. The particles obtained after dispensing have a hierarchical pore structure depending on the template structure and are further processed into shaped bodies or layers, for example by standard paste or slurry methods.

炭素生成物の使用に関して、前記課題は、本発明によって達せられ、本発明による多孔質炭素生成物は、充電式リチウム電池のための電極を製造するために使用される。   With regard to the use of carbon products, the above object is achieved by the present invention, and the porous carbon product according to the present invention is used to produce electrodes for rechargeable lithium batteries.

充電式リチウム電池の電極は、1つの材料からの炭素層から構成される電極と、多数の材料から構成される複合電極との双方を含む。   Rechargeable lithium battery electrodes include both electrodes composed of carbon layers from one material and composite electrodes composed of multiple materials.

好ましい実施態様
本発明を実施形態及び図面を参照してより詳細に説明する。
Preferred Embodiments The present invention will be described in more detail with reference to embodiments and drawings.

SiO2煤体を製造するためのデバイスを図示する図。Diagram depicting a device for producing a SiO 2 soot body. 階層的な孔構造を有する本発明の方法によって得られる多孔質炭素生成物の第一の実施態様のSEM図を示す図。The figure which shows the SEM figure of the 1st embodiment of the porous carbon product obtained by the method of this invention which has hierarchical pore structure. 階層的な孔構造を有する本発明の方法によって得られる多孔質炭素生成物の第二の実施態様のSEM図を示す図。The figure which shows the SEM figure of the 2nd embodiment of the porous carbon product obtained by the method of this invention which has hierarchical pore structure. 酸素含有雰囲気中でピッチを浸透させたテンプレートの加熱中の熱重量分析の線図を示す図。The figure which shows the diagram of the thermogravimetric analysis during the heating of the template which penetrated pitch in oxygen-containing atmosphere.

図1において示されるデバイスは、SiO2煤体を製造するために提供する。一列に配置された多数の火炎加水分解バーナー2を、酸化アルミニウムのキャリヤー管1に沿って配列する。火炎加水分解バーナー2を、軸線4に関して動かない2つの転換点の間のキャリヤー管1の軸線4と平行に往復し、かつ矢印方向5及び6によって描かれるような、それらに垂直な方向で可動するジョイントバーナーブロック3に取り付ける。バーナー2は、石英ガラスからなる。それらの互いの距離は15cmである。 The device shown in FIG. 1 is provided for producing a SiO 2 enclosure. A number of flame hydrolysis burners 2 arranged in a row are arranged along an aluminum oxide carrier tube 1. The flame hydrolysis burner 2 reciprocates parallel to the axis 4 of the carrier tube 1 between two turning points which do not move with respect to the axis 4 and is movable in a direction perpendicular to them, as depicted by the arrow directions 5 and 6 Attach to the joint burner block 3. The burner 2 is made of quartz glass. Their mutual distance is 15 cm.

火炎加水分解バーナー2は、バーナー炎7に、キャリヤー管1の軸線4に垂直な主な成長方向を割り当てる。火炎加水分解バーナー2を使用して、SiO2粒子を、およそ軸線4を中心に回転するキャリヤー管1のシリンダージャケット表面上で堆積させ、多孔質SiO2ブランク8を、外径400mmを有する層によって層を形成する。個々のSiO2煤層は、平均で約50μmの厚さを有する。 The flame hydrolysis burner 2 assigns the burner flame 7 a main growth direction perpendicular to the axis 4 of the carrier tube 1. Using a flame hydrolysis burner 2, SiO 2 particles are deposited on the cylinder jacket surface of the carrier tube 1 rotating about an axis 4, and the porous SiO 2 blank 8 is formed by a layer having an outer diameter of 400 mm. Form a layer. Individual SiO 2 soot layers have an average thickness of about 50 μm.

火炎加水分解バーナー2に、SiO2粒子の形成のために、バーナーガスとしてそれぞれ酸素及び水素を、及び供給原料としてSiCl4を供給する。ここで、バーナーブロック3を、2つのバーナー距離(すなわち30cm)の幅で往復させる。堆積プロセス中に、約1200℃の平均温度を、ブランク表面9に対して設定する。 The flame hydrolysis burner 2 is supplied with oxygen and hydrogen as the burner gas and SiCl 4 as the feedstock for the formation of SiO 2 particles, respectively. Here, the burner block 3 is reciprocated at a width of two burner distances (ie, 30 cm). An average temperature of about 1200 ° C. is set for the blank surface 9 during the deposition process.

堆積プロセスの完了後に、多孔質SiO2煤の管(煤管)を、長さ3m、外径400mm及び内径50mmで得る。煤体の形成中の温度は比較的低く保たれ、その結果、SiO2煤材料は、(石英ガラス2.21g/cm3の密度に対して)22%の低い平均比重を有する。 After completion of the deposition process, a porous SiO 2 soot tube (soot tube) is obtained with a length of 3 m, an outer diameter of 400 mm and an inner diameter of 50 mm. The temperature during the formation of the enclosure is kept relatively low, so that the SiO 2 soot material has a low average specific gravity of 22% (for a density of quartz glass of 2.21 g / cm 3 ).

予備試験
(1)第一の試験において、中間層ピッチを、窒素の容器中で300℃まで加熱し、種々のピッチ浴をもたらした。SiO2煤体のモノリス試料を、ピッチ浴中に含浸し、そしてさらに30分後に取り出した。溶融したピッチが1mm未満の厚さにわたって煤体中にのみ浸透したことを見出した。
(2)そしてピッチ浴の温度を400℃まで上昇させた。中間層ピッチは、この温度で未だ粘性である。煤体中の浸透の程度5における著しい増加は達せられなかった。約500℃の温度で、ピッチは、コークスになり始め、かつ顕著に蒸発する。
Preliminary test (1) In the first test, the interlayer pitch was heated to 300 ° C. in a nitrogen vessel, resulting in various pitch baths. A monolith sample of SiO 2 enclosure was impregnated in the pitch bath and removed after another 30 minutes. It was found that the molten pitch penetrated only into the housing over a thickness of less than 1 mm.
(2) The pitch bath temperature was raised to 400 ° C. The interlayer pitch is still viscous at this temperature. No significant increase in the degree of penetration 5 in the rod was achieved. At a temperature of about 500 ° C., the pitch begins to coke and evaporates significantly.

第一の実施例
煤体の試料を研磨した。煤体を層ごとに積み重ねるため、他の上方に置かれた層は、高い機械的力の存在で削摩の傾向を示し、その結果、20μm〜50μmの範囲での厚さを有する球状でない粒子、小片状粒子又はフレーク状粒子が得られた。500μm〜1000μmの外側の長さを有する粒径群を、他の加工の目的のために篩い分けによって分けた。最大構造幅(平均値)及び平均の厚さの割合は約20である。
First Example A housing sample was polished. Because the enclosure is stacked layer by layer, other overlying layers show a tendency to wear in the presence of high mechanical forces, resulting in non-spherical particles having a thickness in the range of 20 μm to 50 μm Small particles or flaky particles were obtained. Particle size groups having an outer length of 500 μm to 1000 μm were separated by sieving for other processing purposes. The ratio of maximum structure width (average value) and average thickness is about 20.

実質的に粒径5μm〜20μmを有する球状粒子からなるピッチ粉末を、中間層ピッチを研磨することによって、及び篩い分けすることによって製造した。   Pitch powder consisting essentially of spherical particles having a particle size of 5 μm to 20 μm was produced by polishing the intermediate layer pitch and by sieving.

ピッチ粉末及び煤体粒子を、1.6:1の体積比で均質に混合し、そして粒子混合物を、300℃の温度まで加熱した。粘性のピッチは、小さいSiO2煤体粒子を覆い、そして孔中に浸透する。ピッチ及び煤体粒子の体積の比は、ピッチが孔を充填するように選択され、その結果有意な自由な孔体積はそれ以上残らず、かつここでほとんど完全に消費される。 The pitch powder and the enclosure particles were mixed homogeneously in a volume ratio of 1.6: 1 and the particle mixture was heated to a temperature of 300 ° C. The viscous pitch covers the small SiO 2 enclosure particles and penetrates into the pores. The ratio of the pitch and the volume of the enclosure particles is chosen so that the pitch fills the pores, so that no significant free pore volume remains and is almost completely consumed here.

30分の浸透時間後に、温度を、200℃まで上げ、それによってピッチを炭素化する。多孔質の複合材の塊を、黒鉛化できる炭素の層で、外側及び内側(すなわち孔の内壁)を満たした、球状でない多孔質SiO2粒子から形成する。 After a 30 minute infiltration time, the temperature is increased to 200 ° C., thereby carbonizing the pitch. A porous composite mass is formed from non-spherical porous SiO 2 particles filled with a layer of graphitizable carbon on the outside and inside (ie the inside wall of the pores).

続いてSiO2煤体粒子を、複合材の塊をフッ素酸浴中に導入する。SiO2粒子をエッチングした後に、多孔質炭素の前生成物を、実質的に本来のSiO2煤体粒子のネガコピーを示す構造で得られる。多数の比較的大きい孔チャネル(マクロ孔)が他の細かく裂けた表面構造によって拡大した逆テンプレートを、階層的孔構造によって区別する。 Subsequently, the SiO 2 rod particles are introduced into the fluoric acid bath as a lump of composite material. After etching the SiO 2 particles, a porous carbon pre-product is obtained with a structure that substantially represents a negative copy of the original SiO 2 enclosure particles. Inverse templates, in which a number of relatively large pore channels (macropores) are enlarged by other finely split surface structures, are distinguished by a hierarchical pore structure.

逆テンプレートを、取り出し、乾燥し、そして破砕し、それによって炭素フレークに分解する。図2によるSEM図は、多数の干渉性の孔及び種々のサイズの空洞を有する炭素構造を示す。大きいサイズの空洞は、チャネルによって微細に裂けた表面によって拡大する。BET法に従った特定の内部表面積の測定は、約25m2/gの測定値をもたらす。 The reverse template is removed, dried and crushed, thereby breaking it into carbon flakes. The SEM diagram according to FIG. 2 shows a carbon structure with a number of coherent holes and cavities of various sizes. Large sized cavities are enlarged by surfaces that are finely split by channels. Measurement of a specific internal surface area according to the BET method results in a measurement of about 25 m 2 / g.

第二の実施例
SiO2煤体粒子及び中間層ピッチの粒子を、実施例1に関して記載されたように製造した。ピッチ粉末及び煤体粒子を、0.4:1の体積比で互いに均質に混合し、そして粒子混合物を、300℃の温度まで加熱した。粘性のピッチは、小さいSiO2煤体粒子を覆い、そして孔中に浸透する。ピッチ及び煤体粒子の割合は、ピッチが完全に孔を充填するように選択される。
Second Example SiO 2 enclosure particles and interlayer pitch particles were prepared as described for Example 1. The pitch powder and the enclosure particles were mixed intimately with each other at a volume ratio of 0.4: 1 and the particle mixture was heated to a temperature of 300 ° C. The viscous pitch covers the small SiO 2 enclosure particles and penetrates into the pores. The pitch and the proportion of the enclosure particles are selected so that the pitch completely fills the pores.

実施例1に関して説明されているように浸透及び炭素化した後に、球状でない多孔質のSiO2煤体粒子が、黒炭化できる炭素の層で外側及び部分的に内側を満たしている、多孔質の複合材の塊を得た。そしてSiO2煤体粒子をフッ化水素酸中でのエッチングによって取り出し、本来の煤体粒子に由来し、かつ多数の比較的大きい孔チャネルが他の微細に裂けた表面構造によって拡大する薄い壁を有する微細な網として形成される構造の多孔質炭素の前生成物をもたらす。 After infiltration and carbonization as described with respect to Example 1, the non-spherical porous SiO 2 enclosure particles are filled with a layer of carbon that can be black carbonized on the outside and partly on the inside. A mass of composite material was obtained. Then, the SiO 2 enclosure particles are removed by etching in hydrofluoric acid, and a thin wall derived from the original enclosure particles and enlarged by a surface structure in which a number of relatively large pore channels are split apart by other fine structures. Resulting in a porous carbon pre-product with a structure formed as a fine network.

炭素生成物は、容易に炭素フレークに分解する。図3によるSEM画像はそれらの構造を示す。多数の干渉性孔及び種々のサイズの空洞は、微細に裂けた表面構造によってチャネルによって拡大する。BET法に従った特定の内部表面積の測定は、約50m2/gの測定値をもたらす。 Carbon products readily break down into carbon flakes. The SEM image according to FIG. 3 shows their structure. A large number of coherent holes and various sized cavities are enlarged by the channel due to the finely torn surface structure. A specific internal surface area measurement according to the BET method results in a measurement of about 50 m 2 / g.

図4は、炭素化前の実施例1によるピッチを含浸した煤体粒子の塊の試料の処理中の熱重量分析(DIN 51005及びDIN 51006による)の結果を示す。その試料を、純粋なアルゴン中で加熱し、そしてここで質量損失を測定する。初期質量に対する質量損失ΔG(%)を、y軸にプロットし、そしてx軸に処理温度T(℃)をプロットする。   FIG. 4 shows the results of a thermogravimetric analysis (according to DIN 51005 and DIN 51006) during the processing of a sample of the mass of rod particles impregnated with pitch according to Example 1 before carbonization. The sample is heated in pure argon and the mass loss is measured here. The mass loss ΔG (%) relative to the initial mass is plotted on the y-axis and the processing temperature T (° C.) is plotted on the x-axis.

そして、約300℃の温度から出発して、活性炭素中心の燃焼及び続く炭素化による最初の質量の減少を観察する。約600℃の温度までで、質量の減少は4.4%であり、そして純粋な炭素層の質量に相応する飽和状態で終了する。   Then, starting from a temperature of about 300 ° C., the initial mass reduction due to combustion of the activated carbon center and subsequent carbonization is observed. Up to a temperature of about 600 ° C., the mass loss is 4.4% and ends with a saturation corresponding to the mass of the pure carbon layer.

本発明の方法によって得られた炭素フレークは、階層的な構造を有する多孔質炭素からなる。該フレークは、特に充電式リチウム電池の電極層を製造するために、特に複合電極によく適している。   The carbon flakes obtained by the method of the present invention are composed of porous carbon having a hierarchical structure. The flakes are particularly well suited for composite electrodes, especially for producing electrode layers for rechargeable lithium batteries.

Claims (12)

以下、
(a)相互に連結した孔を含む無機テンプレート材料のテンプレートを提供する工程、
(b)炭素のための前駆物質を提供する工程、
(c)テンプレートの孔を前駆物質で浸潤する工程、
(d)前駆物質を炭素化する工程、
(e)テンプレートを取り出して多孔質炭素生成物を形成する工程
を含む、多孔質炭素生成物を製造するための方法であって、可融性材料の前駆物質粒子及びテンプレート粒子を提供し、粉末混合物を該粒子から形成し、かつ粉末混合物を工程(d)による炭素化の前又は炭素化中に加熱して、前駆物質溶融物をテンプレート粒子の孔中に浸透させ、前記テンプレート粒子の提供が、供給原料を加水分解又は熱分解によってテンプレート材料粒子に変換し、該粒子を堆積表面上に堆積してテンプレート材料から煤体を形成し、そして煤体をテンプレート粒子に破砕する煤の堆積方法を含むことを特徴とする、多孔質炭素生成物を製造するための方法。
Less than,
(A) providing a template of an inorganic template material comprising interconnected pores;
(B) providing a precursor for carbon;
(C) infiltrating the pores of the template with the precursor,
(D) a step of carbonizing the precursor;
(E) A method for producing a porous carbon product comprising the step of removing a template to form a porous carbon product, the method comprising providing fusible material precursor particles and template particles, A mixture is formed from the particles and the powder mixture is heated before or during carbonization according to step (d) to infiltrate the precursor melt into the pores of the template particles, providing said template particles Converting the feedstock into template material particles by hydrolysis or pyrolysis, depositing the particles on a deposition surface to form a housing from the template material, and crushing the housing into template particles. A process for producing a porous carbon product, characterized in that it comprises .
前記テンプレート粒子が、球状でない形態を有することを特徴とする、請求項1に記載の方法。 The method of claim 1, wherein the template particles have a non-spherical morphology. 前記テンプレート粒子が、少なくとも5の構造比を有する小片状又はロッド状の形状であることを特徴とする、請求項に記載の方法。 3. A method according to claim 2 , characterized in that the template particles are in the form of small pieces or rods having a structural ratio of at least 5 . 前記テンプレート粒子が、少なくとも10の構造比を有することを特徴とする、請求項3に記載の方法。The method according to claim 3, wherein the template particles have a structure ratio of at least 10. 前記テンプレート粒子が、10μm〜500μmの範囲の平均の厚さを有することを特徴とする、請求項1から4までのいずれか1項に記載の方法。 The template particles, and having an average thickness of the range of 10 m to 500 m, method according to any one of claims 1 to 4. 前記前駆物質粒子が球状に形成され、かつ50μm未満の平均粒径を有することを特徴とする、請求項1から5までのいずれか1項に記載の方法。 The precursor particles are formed in a spherical shape, and characterized as having an average particle size of 50μm less than The method according to any one of claims 1 to 5. 前記前駆物質粒子及びテンプレート粒子が、0.05〜1.6の範囲の体積比で混合されることを特徴とする、請求項1から6までのいずれか1項に記載の方法。 The precursor particles and the template particles, characterized by being engaged mixed at a volume ratio in the range of 0.05 to 1.6 A method according to any one of claims 1 to 6. 前記前駆物質粒子及びテンプレート粒子が、0.1〜0.8の範囲の体積比で混合されることを特徴とする、請求項7に記載の方法。8. The method of claim 7, wherein the precursor particles and template particles are mixed at a volume ratio in the range of 0.1 to 0.8. 前記テンプレート材料がSiO2であることを特徴とする、請求項1からまでのいずれか1項に記載の方法。 Wherein said template material is SiO 2, the method according to any one of claims 1 to 8. ピッチを炭素前駆物質として使用することを特徴とする、請求項1からまでのいずれか1項に記載の方法。 10. A method according to any one of claims 1 to 9 , characterized in that pitch is used as carbon precursor. 炭水化物を炭素前駆物質として使用することを特徴とする、請求項1から9までのいずれか1項に記載の方法。   10. A process according to any one of claims 1 to 9, characterized in that carbohydrates are used as carbon precursors. 前記炭素生成物を、多孔質粒子の微粉炭素に分けることを特徴とする、請求項1から11までのいずれか1項に記載の方法。 The carbon product, characterized in that divided into fine carbon in porous particles, the method according to any one of claims 1 to 11.
JP2013556979A 2011-03-04 2011-07-28 Porous carbon products and their use Active JP5797783B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102011013075.6 2011-03-04
DE102011013075.6A DE102011013075B4 (en) 2011-03-04 2011-03-04 Process for producing a porous carbon product
US201161512349P 2011-07-27 2011-07-27
US61/512,349 2011-07-27
PCT/EP2011/062987 WO2012119666A1 (en) 2011-03-04 2011-07-28 Porous carbon product and use thereof

Publications (2)

Publication Number Publication Date
JP2014518534A JP2014518534A (en) 2014-07-31
JP5797783B2 true JP5797783B2 (en) 2015-10-21

Family

ID=44514687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013556979A Active JP5797783B2 (en) 2011-03-04 2011-07-28 Porous carbon products and their use

Country Status (6)

Country Link
JP (1) JP5797783B2 (en)
KR (1) KR101924804B1 (en)
CN (1) CN103415492B (en)
DE (1) DE102011013075B4 (en)
TW (1) TWI455875B (en)
WO (1) WO2012119666A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212062B2 (en) 2011-07-27 2015-12-15 Heraeus Quarzglas Gmbh & Co. Kg Porous carbon product and method for producing an electrode for a rechargeable lithium battery
DE102012011946A1 (en) * 2012-06-18 2013-12-19 Heraeus Quarzglas Gmbh & Co. Kg Process for the production of carbon composite powder, and for a porous composite material for electrochemical electrodes produced using the composite powder
DE102012109720A1 (en) 2012-10-11 2014-04-30 Heraeus Quarzglas Gmbh & Co. Kg Composite of porous carbon and sulfur-containing active material and process for its preparation
CN103785355A (en) * 2012-11-02 2014-05-14 中国科学院上海硅酸盐研究所 Mesoporous/macropore hierarchical pore block bilirubin adsorbent material and preparation method thereof
CN103447003B (en) * 2013-08-16 2015-11-18 中国科学院上海硅酸盐研究所 Multi-stage porous carbon block is as the application of the organic absorption/salvage material of oil
DE102013110453A1 (en) * 2013-09-20 2015-03-26 Heraeus Quarzglas Gmbh & Co. Kg Process for producing a porous carbon product
DE102014009554A1 (en) * 2014-06-12 2015-12-17 Daimler Ag Electrode material for an electrochemical storage, method for producing an electrode material and electrochemical energy storage
WO2016018192A1 (en) 2014-07-29 2016-02-04 Agency For Science, Technology And Research Method of preparing a porous carbon material
EP3476815B1 (en) * 2017-10-27 2023-11-29 Heraeus Quarzglas GmbH & Co. KG Production of a porous product including post-adapting a pore structure
EP3476475B1 (en) * 2017-10-27 2022-04-06 Heraeus Battery Technology GmbH Production of a porous carbon product
TWI666441B (en) * 2017-12-07 2019-07-21 國立清華大學 Quantitative method of number surface area of graphene material
CN110304629B (en) * 2018-03-25 2021-03-02 北京金羽新能科技有限公司 Hierarchical porous carbon material and supercapacitor prepared from same
JP7333684B2 (en) * 2018-04-26 2023-08-25 三菱鉛筆株式会社 ultrasonic probe
CN110316715B (en) * 2019-06-28 2022-08-23 上海交通大学 Method for in-situ preparation of metal-derived carbon-based photonic crystal
CN111320161A (en) * 2020-03-08 2020-06-23 大连理工大学 Preparation method and application of asphalt-based carbon nanosheet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806570A (en) * 1972-03-30 1974-04-23 Corning Glass Works Method for producing high quality fused silica
US4263268A (en) 1978-11-21 1981-04-21 Shandon Southern Products Limited Preparation of porous carbon
CN1275850C (en) * 2003-11-25 2006-09-20 复旦大学 Preparation method of carbon material with highly ordered nanometer hole of graphite hole wall structure
US7449165B2 (en) 2004-02-03 2008-11-11 Ut-Battelle, Llc Robust carbon monolith having hierarchical porosity
KR100924214B1 (en) * 2006-12-08 2009-10-29 주식회사 엘지화학 Manufacturing method of mesoporous carbon structure with spray drying or spray pyrolysis and composition thereof
US20110082024A1 (en) 2008-06-10 2011-04-07 Hansan Liu Controllable Synthesis of Porous Carbon Spheres, and Electrochemical Applications Thereof
US20110312080A1 (en) * 2008-08-26 2011-12-22 President And Fellows Of Harvard College Porous films by a templating co-assembly process
US20120094173A1 (en) * 2009-06-25 2012-04-19 Nagasaki University Macro-porous graphite electrode material, process for production thereof, and lithium ion secondary battery

Also Published As

Publication number Publication date
DE102011013075A1 (en) 2012-09-06
CN103415492B (en) 2018-06-05
TWI455875B (en) 2014-10-11
DE102011013075B4 (en) 2019-03-28
CN103415492A (en) 2013-11-27
WO2012119666A1 (en) 2012-09-13
KR101924804B1 (en) 2018-12-05
TW201236969A (en) 2012-09-16
JP2014518534A (en) 2014-07-31
KR20140018909A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5797783B2 (en) Porous carbon products and their use
US9174878B2 (en) Porous carbon product and method for the production thereof
US9287556B2 (en) Porous carbon product, method for the production thereof, and use of the same
US10468712B2 (en) Porous carbon particles having a core/shell structure, and method for producing same
US9718690B2 (en) Method for producing a porous carbon product
US9960410B2 (en) Method for producing composite powder, and for a porous composite material for electrochemical electrodes that is produced using the composite powder
US9780364B2 (en) Method for producing a composite structure composed of porous carbon and electrochemical active material
JP6042404B2 (en) Method for producing porous granulated particles made of inorganic material
US9212062B2 (en) Porous carbon product and method for producing an electrode for a rechargeable lithium battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150819

R150 Certificate of patent or registration of utility model

Ref document number: 5797783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350