JP5797077B2 - Mushroom cultivation method - Google Patents

Mushroom cultivation method Download PDF

Info

Publication number
JP5797077B2
JP5797077B2 JP2011223632A JP2011223632A JP5797077B2 JP 5797077 B2 JP5797077 B2 JP 5797077B2 JP 2011223632 A JP2011223632 A JP 2011223632A JP 2011223632 A JP2011223632 A JP 2011223632A JP 5797077 B2 JP5797077 B2 JP 5797077B2
Authority
JP
Japan
Prior art keywords
discharge
high voltage
side electrode
culture substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011223632A
Other languages
Japanese (ja)
Other versions
JP2013081425A (en
Inventor
公好 永井
公好 永井
渡邉 博幸
博幸 渡邉
大賀 祥治
祥治 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUSING CO.,LTD.
Original Assignee
YUSING CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUSING CO.,LTD. filed Critical YUSING CO.,LTD.
Priority to JP2011223632A priority Critical patent/JP5797077B2/en
Publication of JP2013081425A publication Critical patent/JP2013081425A/en
Application granted granted Critical
Publication of JP5797077B2 publication Critical patent/JP5797077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、キノコの栽培方法に関し、より詳細には簡易迅速で有効な殺菌工程を含むキノコの人工栽培方法に関する。   The present invention relates to a method for cultivating mushrooms, and more particularly to an artificial method for cultivating mushrooms including a simple, quick and effective sterilization process.

近年、年間を通じて安定的に供給できる等の理由から、原木栽培に代えて菌床栽培が盛んである。菌床栽培は、木片、オガコ、コーンコブ、パルプ、紙等とコメヌカ、フスマ等の栄養剤を混合した培養基材に、シイタケ、ブナシメジ、エリンギ等のキノコの菌を植え付けたものをボトル、袋等の栽培容器に充填し、この栽培容器をハウス内で菌糸蔓延及び子実体発生に好適な条件下に置くことにより行われる。   In recent years, fungus bed cultivation has been popular instead of raw wood cultivation because it can be stably supplied throughout the year. Bacteria bed cultivation is made by planting mushroom fungi such as shiitake mushrooms, beech shimeji mushrooms, eringi, etc. on a culture substrate that is mixed with wood chips, sawdust, corn cob, pulp, paper, etc. and nutrients such as rice bran and bran. It is carried out by filling the cultivation container and placing the cultivation container under conditions suitable for the spread of mycelia and the fruiting body in the house.

培養基材には、通常、カビ、細菌等の雑菌が付着している。これらの雑菌は、図8の(A)に示すようにキノコの成育条件で繁殖しやすく、植え付けたキノコの菌の増殖を妨げる。キノコの栽培時に雑菌の繁殖を抑えて所望のキノコを繁殖させるためには、培養基材を予め殺菌処理しおくことが極めて重要である。この殺菌処理には、非特許文献1に示すように、加熱型殺菌、照射型殺菌、殺菌薬品、殺菌ガス等が利用される。   Usually, various bacteria such as molds and bacteria adhere to the culture substrate. As shown in FIG. 8 (A), these miscellaneous bacteria easily propagate under the growth conditions of mushrooms, and hinder the growth of the planted mushroom bacteria. It is extremely important to sterilize the culture substrate in advance in order to suppress the propagation of various bacteria during the mushroom cultivation and to propagate the desired mushroom. For this sterilization treatment, as shown in Non-Patent Document 1, heating-type sterilization, irradiation-type sterilization, sterilization chemicals, sterilization gas, and the like are used.

加熱型殺菌は、高圧又は常圧の高温蒸気(例えば100℃〜125℃)で30分〜6時間処理する加熱工程と、1日以上の放冷工程が必須であり、設備コストとエネルギーコストが多大かつ、労働作業時間が長い。また、加熱は、培養基材を変質させることがある、耐熱性菌には効果がない等の欠点もある。   Heating sterilization requires a heating process in which high-temperature or normal-pressure high-temperature steam (for example, 100 ° C. to 125 ° C.) is treated for 30 minutes to 6 hours, and a cooling process for one day or more, and equipment costs and energy costs are high. A lot of labor work hours. In addition, heating has the disadvantages that the culture substrate may be altered and that it is not effective for heat-resistant bacteria.

照射型殺菌は、紫外線や放射線を利用する。特許文献1は、放射線により処理した培養基材を用いてキノコを栽培することを提案している。特許文献2は、キノコ栽培用基材に使用する用水を放射線処理してからオガコ等に混入して培養基材を作製し、これを充填した栽培容器を加熱殺菌する際に、殺菌釜中においてキノコ栽培容器を放射線処理することを提案する。   Irradiation sterilization uses ultraviolet rays or radiation. Patent Document 1 proposes cultivating mushrooms using a culture substrate treated with radiation. In Patent Literature 2, when water used for a mushroom cultivation base material is subjected to radiation treatment, mixed with sawdust or the like to prepare a culture base material, and when the cultivation container filled with this is heat sterilized, It is proposed to treat the mushroom cultivation container with radiation.

照射型殺菌は、設備コストが高価な上に、放射線漏れ対策等の注意が必要である。照射面のみを殺菌でき、側面背面や奥まった部位は殺菌できない。特に、菌床の培地基材であるオガコ等のチップの集合体が、雑菌の付着した状態で菌床の内部にある場合、照射型の殺菌装置では有効な殺菌ができない。   Irradiation-type sterilization is expensive in equipment and requires attention such as measures against radiation leakage. Only the irradiated surface can be sterilized. In particular, when an aggregate of chips such as sawdust, which is a medium base material for the fungus bed, is inside the fungus bed with adhering bacteria, effective sterilization cannot be performed with an irradiation type sterilizer.

殺菌ガスの利用として、例えば特許文献3には、培養基材を充填した栽培容器を、殺菌釜内で加熱殺菌後、殺菌釜中にオゾン含有ガスを導入することを特徴とするキノコ培地の殺菌方法が提案される。   As for the use of sterilizing gas, for example, Patent Document 3 discloses sterilization of a mushroom medium characterized by introducing an ozone-containing gas into a sterilizing pot after heat-sterilizing a cultivation container filled with a culture substrate in the sterilizing pot. A method is proposed.

しかし、殺菌ガスや殺菌薬品は、処理に長時間要する、人体にも有害である、残留性があるため二次処理が必要である、耐性菌を発生させる恐れがある等の欠点がある。   However, the sterilizing gas and the sterilizing chemical have disadvantages that the treatment takes a long time, is harmful to the human body, has a persistence, requires a secondary treatment, and may generate resistant bacteria.

特開昭63−63312JP-A 63-63312 特開昭59−205910JP 59-205910 特開昭57−174086JP-A-57-174086

特許庁公開−標準技術集「キノコの栽培方法」http://www.jpo.go.jp/shiryou/s_sonota/hyoujun_gijutsu/kinoko/mokuji.htmPublished by the Japan Patent Office-Standard technology collection "Mushroom cultivation method" http: // www. jpo. go. jp / shiryou / s_sonota / hyoujun_gijutsu / kinoko / mokuji. htm 静電気ハンドブック17.4.2項「食物の殺菌」Electrostatic Handbook, Section 17.4.2 “Food Disinfection”

そこで、本発明の課題は、設備コストやエネルギーコストが低く、短時間の簡易な作業で有効な殺菌を行える工程を含むキノコの栽培方法を提供することである。   Then, the subject of this invention is low in equipment cost and energy cost, and is providing the cultivation method of a mushroom including the process which can perform effective sterilization by simple work for a short time.

本発明者は、上記課題を鋭意検討した結果、高電圧放電を培養基材に印加すると、従来の加熱型殺菌等の有する欠点を解消できることを見出だし、本発明を完成させた。すなわち、本発明は、キノコの栽培方法において、20kV〜120kVの高電圧放電を培養基材に印加することにより前記培養基材を殺菌する工程(以下、電気殺菌工程ということがある)を含むことを特徴とする、前記キノコの栽培方法を提供する。   As a result of intensive studies on the above problems, the present inventor has found that when a high-voltage discharge is applied to the culture substrate, the drawbacks of conventional heating-type sterilization and the like can be eliminated, and the present invention has been completed. That is, the present invention includes a step of sterilizing the culture substrate by applying a high voltage discharge of 20 kV to 120 kV to the culture substrate in the mushroom cultivation method (hereinafter sometimes referred to as an electrosterilization step). A method for cultivating the mushroom is provided.

非特許文献2に記載の殺菌事例には、キノコ栽培への使用例、特に培養基材の殺菌事例がない。また、キノコに電気刺激を与える従来技術として、特開昭63−98322には、シイタケのほだ木に対して電気的刺激を加えると、シイタケの成長が促進されることが記載されている。しかし、この文献には、高電圧放電で培養基材の殺菌に使用することは記載も示唆もない。   In the sterilization examples described in Non-Patent Document 2, there are no examples of use for mushroom cultivation, particularly sterilization examples of culture substrates. As a conventional technique for applying electrical stimulation to mushrooms, JP-A-63-98322 describes that growth of shiitake is promoted when electrical stimulation is applied to shiitake mushrooms. However, this document neither describes nor suggests that it is used for sterilization of a culture substrate by high voltage discharge.

前記培養基材への高圧放電の印加は、高電圧用放電電極と対極電極との間に前記培養基材を介在させ、前記放電電極と前記対極電極との間に高電圧をかけてストリーマ放電や火花放電を発生させることにより行われ、このとき、高電圧放電距離を10kVにつき3〜20mmとすることが好ましい。本明細書において、「高電圧放電距離」とは、放電電極と対極電極との間で高電圧放電が飛来する距離を意味し、具体的には放電電極と対極電極との間の距離からその間に介在する導電体の培養基材の厚みを差し引いたものである。   The high-voltage discharge is applied to the culture substrate by interposing the culture substrate between a high-voltage discharge electrode and a counter electrode, and applying a high voltage between the discharge electrode and the counter electrode. In this case, the high voltage discharge distance is preferably 3 to 20 mm per 10 kV. In the present specification, the “high voltage discharge distance” means a distance at which a high voltage discharge comes between the discharge electrode and the counter electrode, specifically, from the distance between the discharge electrode and the counter electrode. Is obtained by subtracting the thickness of the culture substrate of the conductor intervening.

前記高圧放電の印加時間は、例えば10秒〜60分間である。   The application time of the high-pressure discharge is, for example, 10 seconds to 60 minutes.

前記殺菌工程は、例えば前記培養基材を栽培容器へ充填後に行う。   The said sterilization process is performed after filling the said culture | cultivation base material in a cultivation container, for example.

前記殺菌工程は、例えば前記培養基材を栽培容器へ充填する際に行う。   The sterilization step is performed, for example, when the culture substrate is filled into a cultivation container.

前記高電圧放電は、高電圧発生部10と高電圧印加部30を有し、前記高電圧印加部は、前記高電圧発生部の出力端が接続される放電側電極35と、前記放電側電極35と放電ギャップを介して対向した接地側電極36と、前記接地側電極36と導通される印加側電極38とを備えた高電圧印加装置であって、前記高電圧印加部10の大部分が筒体31内に収容され、前記印加側電極38のみが露出することを特徴とする前記高電圧印加装置により行うことができる。   The high voltage discharge includes a high voltage generation unit 10 and a high voltage application unit 30, and the high voltage application unit includes a discharge side electrode 35 to which an output terminal of the high voltage generation unit is connected, and the discharge side electrode. 35, a high-voltage applying device including a ground-side electrode 36 opposed to the ground-side electrode 36 through a discharge gap, and an application-side electrode 38 that is electrically connected to the ground-side electrode 36, wherein the high-voltage applying unit 10 It can be carried out by the high voltage application device which is accommodated in the cylindrical body 31 and only the application side electrode 38 is exposed.

前記放電側電極35及び接地側電極36の形状が球状であることが好ましい。   The discharge side electrode 35 and the ground side electrode 36 are preferably spherical.

本発明はまた、20kV〜120kVの高電圧放電を培養基材に印加することにより前記培養基材を殺菌することを特徴とする、キノコの培養基材の処理方法を提供する。   The present invention also provides a method for treating a mushroom culture substrate, wherein the culture substrate is sterilized by applying a high voltage discharge of 20 kV to 120 kV to the culture substrate.

本発明のキノコの栽培方法では、20kV〜120kVの高電圧放電を培養基材に印加することにより、OHラジカル、紫外線、衝撃波等の放電生成物が発生し、この放電生成物が培養基材を殺菌する。これにより、栽培容器の培養基材沿面に付着している雑菌だけでなく、栽培容器深部に生息する雑菌まで殺菌することができる。本発明は、培養基材全体を短時間で手軽に殺菌可能である点で、チップ集合体である菌床の殺菌が必要なキノコの栽培に適した方法といえる。   In the method for cultivating mushrooms of the present invention, by applying a high voltage discharge of 20 kV to 120 kV to the culture substrate, discharge products such as OH radicals, ultraviolet rays, and shock waves are generated, and this discharge product serves as the culture substrate. Sterilize. Thereby, it is possible to sterilize not only the germs adhering to the surface of the culture substrate of the cultivation container but also the germs living in the deep part of the cultivation container. The present invention can be said to be a method suitable for cultivation of mushrooms that require sterilization of the fungal bed as a chip aggregate in that the entire culture substrate can be easily sterilized in a short time.

電気殺菌に要する時間は、栽培容器の形状や容量に依存するが、通常、30秒〜60分でよく、従来の殺菌方法に比べて著しく短くできる。作業性が改善される結果、本発明のキノコの栽培方法は、生産高の向上に寄与する。   The time required for electrosterilization depends on the shape and capacity of the cultivation container, but is usually 30 seconds to 60 minutes, and can be remarkably shortened as compared with conventional sterilization methods. As a result of improved workability, the mushroom cultivation method of the present invention contributes to an improvement in production.

本発明は、従来の加熱型殺菌とは異なり、常温で殺菌処理するため、加熱冷却の設備コストが不要であり、エネルギーコストも低廉である。また、薬剤やガスを使用しないため、安全性が高い。   Unlike the conventional heating-type sterilization, the present invention performs sterilization at room temperature, so that the equipment cost for heating and cooling is unnecessary, and the energy cost is low. In addition, since no drug or gas is used, safety is high.

前記培養基材を栽培容器へ充填後に殺菌工程を行う方法によれば、例えば縦横に多数平置した栽培容器の上方に、一定の間隔を開けて縦横方向や円周方向に移動可能な1又は数本の放電電極を設置することができ、これにより効率的な電気殺菌が可能となる。   According to the method of performing the sterilization step after filling the culture substrate into the cultivation container, for example, 1 or above which can be moved in the vertical and horizontal directions or the circumferential direction with a certain interval above the cultivation container placed in a large number in the vertical and horizontal directions Several discharge electrodes can be installed, which enables efficient electrosterilization.

前記培養基材を栽培容器へ充填する際に殺菌工程を行う方法によれば、例えば菌床栽培における、培養基材の培養袋又はビン詰め工程で培養基材を注入するためのノズルに放電電極を配置することができ、その結果、工程の大幅な削減が可能となる。   According to the method of performing the sterilization step when filling the culture substrate into the cultivation container, for example, in the fungus bed cultivation, the discharge electrode to the nozzle for injecting the culture substrate in the culture substrate culture bag or bottling step As a result, the number of processes can be greatly reduced.

前記高電圧発生装置は小型化することが容易である。この装置を本発明のキノコの栽培方法に用いることで、作業スペースを削減でき、また、対象の培養基材を移動することなく殺菌を行える。   The high voltage generator can be easily downsized. By using this apparatus for the mushroom cultivation method of the present invention, the work space can be reduced, and sterilization can be performed without moving the target culture substrate.

本発明のキノコの栽培方法の殺菌工程の一実施態様を示す概略図である。この実施態様では、培養基材を栽培容器へ充填後に電気殺菌を行う。培養基材は、放電電極及び対極電極から浮いている。培養基材は導体であるため、高電圧放電距離は、放電電極と培養基材表面との距離及び、培養基材表面と対極電極との合計となる。It is the schematic which shows one embodiment of the disinfection process of the cultivation method of the mushroom of this invention. In this embodiment, electrosterilization is performed after filling the culture substrate into the cultivation container. The culture substrate floats from the discharge electrode and the counter electrode. Since the culture substrate is a conductor, the high voltage discharge distance is the distance between the discharge electrode and the culture substrate surface and the sum of the culture substrate surface and the counter electrode. 図1の実施態様の変形であり、培養基材は対極電圧と導通している。高圧放電距離は、放電電極と培養基材表面との距離になる。A variation of the embodiment of FIG. 1, wherein the culture substrate is in conduction with a counter electrode voltage. The high-pressure discharge distance is the distance between the discharge electrode and the culture substrate surface. 図1の実施態様の別の変形であり、培養基材は放電電極と導通している。高圧放電距離は、対極電極と培養基材表面との距離になる。In another variation of the embodiment of FIG. 1, the culture substrate is in electrical communication with the discharge electrode. The high-pressure discharge distance is the distance between the counter electrode and the culture substrate surface. (1)板状の放電電極と板状の対極電極、(2)球状の放電電極と板状の対極電極、及び(3)針状の放電電極と針状の対極電極の3種類について、放電距離と放電開始電圧の関係を示すグラフである。(1) Plate-like discharge electrode and plate-like counter electrode, (2) Spherical discharge electrode and plate-like counter electrode, and (3) Needle-like discharge electrode and needle-like counter electrode. It is a graph which shows the relationship between distance and a discharge start voltage. 図2の実施態様の変形であり、複数の培養容器を1個の放電電極で電気殺菌する場合の概略図である。It is a modification of the embodiment of FIG. 2 and is a schematic view when a plurality of culture vessels are electrosterilized with one discharge electrode. 本発明のキノコの栽培方法の殺菌工程の別の一実施態様を示す概略図である。この実施態様では、培養基材を栽培容器へ充填時に電気殺菌を行う。高電圧放電距離は、放電電極〜対極電極の距離とほぼみなされる。It is the schematic which shows another one embodiment of the disinfection process of the cultivation method of the mushroom of this invention. In this embodiment, electrosterilization is performed when the culture substrate is filled into the cultivation container. The high voltage discharge distance is almost regarded as the distance from the discharge electrode to the counter electrode. 本発明のキノコの栽培方法に用いるのに好適な高電圧印加装置の概略図を示す。The schematic of the high voltage application apparatus suitable for using for the cultivation method of the mushroom of this invention is shown. (A)は比較例1において殺菌しない培養基材にキノコを植菌して、菌床の繁殖状態を観察した写真であり、(B)は、実施例4において殺菌した培養基材にキノコを植菌して、菌床の繁殖状態を観察した写真である。(A)では、菌床の大半を雑菌が繁殖している。一方、(B)では、水蒸気殺菌と同等の殺菌効果が認められ、キノコの菌糸が順調に生育している。(A) is the photograph which inoculated the mushroom to the culture base material which is not sterilized in the comparative example 1, and observed the breeding state of the fungus bed, (B) is a photograph which mushroom was applied to the culture base material sterilized in Example 4. It is the photograph which inoculated and observed the breeding state of the fungus bed. In (A), miscellaneous germs breed on most of the fungal beds. On the other hand, in (B), the bactericidal effect equivalent to steam sterilization is recognized, and the mushroom hyphae are growing smoothly. 寒天培地に雑菌を付着させ、保管後の寒天培地の雑菌の繁殖状態を示す写真である。A(コントロール)は、高電圧を印加していないコントロール培地、そしてB(100kV)は、本発明の処理方法により高電圧100kVを印加した培地である。(1)及び(2)は同じ条件での反復試験結果である。高電圧100kVを印加した培地では雑菌の繁殖が抑えられることがわかる。It is a photograph which shows the propagation state of various bacteria of an agar medium after making various bacteria adhere to an agar medium and storing. A (control) is a control medium to which no high voltage is applied, and B (100 kV) is a medium to which a high voltage of 100 kV is applied by the treatment method of the present invention. (1) and (2) are the results of repeated tests under the same conditions. It can be seen that the growth of miscellaneous bacteria is suppressed in the medium to which a high voltage of 100 kV is applied.

本発明のキノコの栽培方法は、殺菌工程以外は従来のキノコの栽培方法と同様であるので、以下に殺菌工程を詳述する。本発明のキノコの栽培方法は、20kV〜120kVの高電圧放電を培養基材に印加することにより前記培養基材を殺菌する工程を含むことを特徴とする。本発明のキノコの栽培方法は、従来の殺菌工程を電気殺菌工程で全部置換することもでき、あるいは一部置換することもできる。   The mushroom cultivation method of the present invention is the same as the conventional mushroom cultivation method except for the sterilization step. The mushroom cultivation method of the present invention includes a step of sterilizing the culture substrate by applying a high voltage discharge of 20 kV to 120 kV to the culture substrate. In the method for cultivating mushrooms of the present invention, the conventional sterilization process can be completely replaced by an electrosterilization process, or can be partially replaced.

図1は、培養基材を栽培容器に充填してから電気殺菌する実施態様の概略図である。まず、袋、ボトル等の市販の培養容器に、チップ、オガコ、コメヌカ、フスマ等に水を加え一定の含水率に調整した後、地基材を充填して密閉する。培養容器は、一般に、電気絶縁物で構成されるが、雑菌の胞子(大きさ3〜100μm)を通さずに空気や水分のみを通過させる通気フィルタの部分は、通電可能である。その理由は、放電電子が雑菌の胞子より遥かに小さく、通気フィルタを貫通できるためである。通気フィルタによる通電経路に代えて、培養袋や培養ビンの内面と外面に電気が通じる導体フィルムのような導体物を培養容器に設置してもよい。   FIG. 1 is a schematic view of an embodiment in which a culture substrate is filled in a cultivation container and then electrosterilized. First, in a commercially available culture container such as a bag or a bottle, water is added to chips, sawdust, rice bran, bran, etc. to adjust the water content to a certain level, and then the base material is filled and sealed. The culture container is generally composed of an electrical insulator, but the portion of the ventilation filter that allows only air and moisture to pass through without passing through spores of germs (size 3 to 100 μm) can be energized. The reason is that the discharge electrons are much smaller than the spores of various bacteria and can penetrate the ventilation filter. Instead of the energization path by the ventilation filter, a conductor such as a conductor film that conducts electricity between the inner surface and the outer surface of the culture bag or the culture bottle may be installed in the culture container.

上記培養基材を高電圧用放電電極と対極電極との間に介在させ、放電電極と対極電極との間で高周波高電圧や高電圧パルス(例えば、パルス幅10ns〜500μs、繰り返し周期1〜50Hz)を印加し、放電電極から対極電極に届くストリーマ放電や火花放電を発生させる。これらの放電により生成する放電生成物(OHラジカル、紫外線、衝撃波等)は、放電電極と対極電極との間にある培養基内を貫通する際に雑菌を死滅させる。殺菌の理由は、本発明を限定するものではないが、前記放電生成物が雑菌の細胞壁や細胞内DNAやRNAを破壊し、その結果、菌が死滅するためと推測される。   The culture substrate is interposed between a high-voltage discharge electrode and a counter electrode, and a high-frequency high voltage or a high-voltage pulse (for example, a pulse width of 10 ns to 500 μs, a repetition period of 1 to 50 Hz between the discharge electrode and the counter electrode. ) To generate a streamer discharge or a spark discharge that reaches the counter electrode from the discharge electrode. Discharge products (OH radicals, ultraviolet rays, shock waves, etc.) generated by these discharges kill germs when penetrating through the culture medium located between the discharge electrode and the counter electrode. The reason for the sterilization is not limited to the present invention, but it is presumed that the discharge product destroys the cell walls and intracellular DNA and RNA of various bacteria, and as a result, the bacteria are killed.

ストリーマ放電や火花放電を発生させるのに必要な放電開始電圧は、放電距離、放電電極の形状、電極材質、気圧、湿度等によって差異があるが、概ね図4の関係にある。図4は、(1)板状の放電電極と板状の対極電極、(2)球状の放電電極と板状の対極電極、及び(3)針状の放電電極と針状の対極電極の3種類について、放電距離と放電開始電圧の関係をグラフ化したものである。図4から、高電圧によって空間に絶縁破壊を起こさせるために、電極の形状の組合せに応じて、10kVにつき3〜20mmの距離が必要であることがわかる。例えば、高電圧放電電極を球状として、平面部と角部で構成される栽培容器を対極電圧に導通させた場合、(2)の関係によって、高圧放電距離を10kV/10mmの目安で設定し得る。   The discharge start voltage required to generate streamer discharge and spark discharge varies depending on the discharge distance, the shape of the discharge electrode, the electrode material, the atmospheric pressure, the humidity, and the like, but generally has the relationship shown in FIG. FIG. 4 shows (1) a plate-like discharge electrode and a plate-like counter electrode, (2) a spherical discharge electrode and a plate-like counter electrode, and (3) a needle-like discharge electrode and a needle-like counter electrode. The graph shows the relationship between the discharge distance and the discharge start voltage for each type. FIG. 4 shows that a distance of 3 to 20 mm per 10 kV is required in order to cause dielectric breakdown in the space by a high voltage, depending on the combination of electrode shapes. For example, when the high-voltage discharge electrode is made spherical and a cultivation container composed of a flat portion and a corner portion is made to conduct to the counter electrode voltage, the high-voltage discharge distance can be set with a standard of 10 kV / 10 mm according to the relationship (2). .

放電開始電圧が10kV以上であればコロナ放電によるストリーマ放電が発生するが、本発明では、有効な殺菌を行うために、放電開始電圧20〜120kVが必要であり、好ましくは30〜120kVであり、より好ましくは30〜80kVであり、さらに好ましくは60〜80kVである。高電圧放電が20kV未満であると、殺菌能力が不足する。逆に、140kVより高いと殺菌能力が飽和するだけでなく、培養基材を変質させ、その結果、殺菌後にキノコの植菌した菌糸の成長も抑制される、栽培容器や培養基材が燃焼する等の問題を生じる。   If the discharge start voltage is 10 kV or more, streamer discharge due to corona discharge occurs, but in the present invention, in order to perform effective sterilization, the discharge start voltage 20-120 kV is necessary, preferably 30-120 kV, More preferably, it is 30-80 kV, More preferably, it is 60-80 kV. If the high voltage discharge is less than 20 kV, the sterilizing ability is insufficient. On the contrary, if it is higher than 140 kV, not only the sterilizing ability is saturated, but also the culture base material is altered, and as a result, the growth of mycelia inoculated by mushrooms is suppressed after sterilization, and the cultivation container and the culture base material burn. This causes problems.

水分を含んだチップ等の培養基材は電気導体と見なされる。培養容器内のチップ同士は、接触しているので、その接触点全てが放電系路、すなわち電気導体となる。よって、高電圧放電は栽培容器の深部まで侵入するので、放電生成物を発生と同時に培養基材に付与することが可能である。   Culture substrates such as moisture-containing chips are considered electrical conductors. Since the chips in the culture vessel are in contact with each other, all of the contact points become discharge paths, that is, electric conductors. Therefore, since high voltage discharge penetrates to the deep part of a cultivation container, it is possible to give a discharge product to a culture substrate simultaneously with generation.

高電圧放電距離(放電ギャップともいう)は、放電電極及び/又は対極電極と培養基材との間の放電距離の合計であり、電気導体である培養基材と電極との関係に応じて変わる。例えば、図1は培養基材が放電電極及び対極電極から浮いている状態であり、この高電圧放電距離は放電電極〜培養基材表面間の距離及び培養基材表面〜対極電極間の距離の合計となる。図2では、培養基材が対極電圧と導通している状態であり、高圧放電距離は放電電極と培養基材表面との間の距離になる。図3では、培養基材が放電電極と導通している状態であり、高圧放電距離は対極電極と培養基材表面との間の距離になる。   The high voltage discharge distance (also referred to as discharge gap) is the sum of the discharge distances between the discharge electrode and / or the counter electrode and the culture substrate, and varies depending on the relationship between the culture substrate and the electrode, which is an electrical conductor. . For example, FIG. 1 shows a state in which the culture substrate is floating from the discharge electrode and the counter electrode, and this high voltage discharge distance is the distance between the discharge electrode and the culture substrate surface and the distance between the culture substrate surface and the counter electrode. Total. In FIG. 2, the culture substrate is in conduction with the counter electrode voltage, and the high-voltage discharge distance is the distance between the discharge electrode and the culture substrate surface. In FIG. 3, the culture substrate is in conduction with the discharge electrode, and the high-pressure discharge distance is the distance between the counter electrode and the culture substrate surface.

高電圧放電距離は、図4に示したように、放電電極や対極電極の形状、培養基材の設置状態、印加電圧等に応じて変わるが、通常、10〜300mmであり、好ましくは40〜150mmである。放電ギャップが10mmより短いと、培養基材に大電流が流れて基材や容器を損壊する場合があり、逆に、300mmより長いと、殺菌に有効なストリーマ放電や火花放電は発生しない。火花放電とストリーマ放電とが混在するような放電が好ましい。   As shown in FIG. 4, the high voltage discharge distance varies depending on the shape of the discharge electrode and the counter electrode, the installation state of the culture substrate, the applied voltage, etc., but is usually 10 to 300 mm, preferably 40 to 40 mm. 150 mm. If the discharge gap is shorter than 10 mm, a large current may flow through the culture substrate and damage the substrate or container. Conversely, if it is longer than 300 mm, streamer discharge and spark discharge effective for sterilization will not occur. A discharge in which spark discharge and streamer discharge are mixed is preferable.

本発明での殺菌のポイントは、火花放電を培養基材の中を万遍なく通過させ、火花放電に殺菌の機会を与えることである。放電生成物の寿命は1μS〜1msと非常に短い。また、主に水分に起因して培養基材を構成するチップ等の電気抵抗が微妙に異なるため、放電経路も異なる。そこで、火花放電を万遍なく通過させるために、ある程度の火花放電回数(印加時間)が必要となる。印加時間が長い程、栽培容器内の至るところに侵入する機会が増えるが、通常、10秒〜60分間でよく、好ましくは60秒〜10分間である。   The point of sterilization in the present invention is to allow the spark discharge to pass through the culture substrate evenly and to give the spark discharge an opportunity for sterilization. The lifetime of the discharge product is as short as 1 μS to 1 ms. In addition, since the electrical resistance of the chip or the like constituting the culture substrate is slightly different mainly due to moisture, the discharge path is also different. Therefore, in order to allow the spark discharge to pass through evenly, a certain number of spark discharges (application time) is required. The longer the application time, the greater the chance of entering everywhere in the cultivation container, but it is usually 10 seconds to 60 minutes, preferably 60 seconds to 10 minutes.

図5は、複数の培養容器の設置形態と放電電極の位置関係を示す。図5のように、支持部材上に、複数の栽培容器が縦横に一定の間隔で並置される。栽培容器毎に放電電極を用意してもよいが。図5のように、栽培容器の上方より、上記した放電ギャップを介して位置する高電圧印加装置の放電電極を、縦横方向や円弧に回転させることにより、1又は少数の電極で多数の栽培容器を電気殺菌することができる。   FIG. 5 shows the positional relationship between the installation form of a plurality of culture vessels and the discharge electrodes. As shown in FIG. 5, a plurality of cultivation containers are juxtaposed on the support member at regular intervals vertically and horizontally. A discharge electrode may be prepared for each cultivation container. As shown in FIG. 5, by rotating the discharge electrode of the high-voltage applying device located above the above-described discharge gap in the vertical and horizontal directions or in an arc from above the cultivation container, a large number of cultivation containers with one or a small number of electrodes are used. Can be sterilized.

図6は、殺菌工程を、前記培養基材を栽培容器へ充填する際に行う場合の概略である。培養基材(チップ)の充填系路に、放電電極と対極電極とで放電空間を設け、そこで殺菌を行う実施形態を示す。   FIG. 6 is an outline in the case where the sterilization step is performed when the culture substrate is filled into the cultivation container. An embodiment is shown in which a discharge space is provided by a discharge electrode and a counter electrode in a culture system (chip) filling system, and sterilization is performed there.

図7には、本発明のキノコの栽培方法に用いるのに好適な高電圧発生装置の一例を示す。この高電圧発生装置は、高電圧発生部10と高電圧印加部30を有する。高電圧印加部30は、高電圧発生部10の出力端が接続される放電側電極35と、放電側電極35と放電ギャップG1を介して対向した接地側電極36と、接地側電極36と導通される印加側電極38とを備える。高電圧印加部30の大部分が筒体31内に収容され、印加側電極38のみが露出する。   In FIG. 7, an example of the high voltage generator suitable for using for the cultivation method of the mushroom of this invention is shown. The high voltage generator includes a high voltage generator 10 and a high voltage application unit 30. The high voltage application unit 30 is electrically connected to the discharge side electrode 35 to which the output terminal of the high voltage generation unit 10 is connected, the ground side electrode 36 facing the discharge side electrode 35 via the discharge gap G1, and the ground side electrode 36. The application side electrode 38 is provided. Most of the high voltage application unit 30 is accommodated in the cylindrical body 31, and only the application side electrode 38 is exposed.

印加側電極38は、培養基材に導通させてもよいが、培養基材とは第二の放電ギャップG2を開けて対峙させてもよい。この場合、印加側電極38が放電電極となる。   The application side electrode 38 may be electrically connected to the culture substrate, but may be opposed to the culture substrate by opening the second discharge gap G2. In this case, the application side electrode 38 becomes a discharge electrode.

高電圧印加装置1は、図6に示すように、主に高電圧発生部10、コントローラ20、高電圧パルス印加部30とからなる。高電圧発生部10は、低電圧ケーブル11を介してコントローラ20と接続され、高電圧ケーブル12を介して高電圧パルス印加部30と接続されている。コントローラ20には、高電圧パルスの設定条件(出力電圧、出力電流、出力周期、昇圧時間、放電エネルギー、パルス極性、プラズマ印加時間等)を制御する回路が組み込まれる。その他に、過電流検知、過電圧検知、温度検知等の安全機能の回路も適宜組み込まれる。   As shown in FIG. 6, the high voltage application device 1 mainly includes a high voltage generation unit 10, a controller 20, and a high voltage pulse application unit 30. The high voltage generating unit 10 is connected to the controller 20 via the low voltage cable 11 and is connected to the high voltage pulse applying unit 30 via the high voltage cable 12. The controller 20 incorporates a circuit for controlling the setting conditions (output voltage, output current, output cycle, boost time, discharge energy, pulse polarity, plasma application time, etc.) of the high voltage pulse. In addition, circuits for safety functions such as overcurrent detection, overvoltage detection, and temperature detection are appropriately incorporated.

高電圧発生部10は、コッククロフトウォルトン回路、静電発電機、ウィムスハースト発電機、ヴァンデグラーフ発電機、圧電トランス高電圧発生装置等を利用可能である。   The high voltage generator 10 can use a Cockcroft-Walton circuit, an electrostatic generator, a Wimshurst generator, a van de Graaf generator, a piezoelectric transformer high voltage generator, or the like.

高電圧印加部30に位置する長筒状の筒体31は、3つの部材、すなわち、左方から手持ち部32、保護カバー33、及びこの保護カバーが着脱自在に連結した放電ギャップカバー34が連結されている。筒体31内に軸方向左端側から高電圧ケーブル12の他端側が引き込まれ、放電ギャップカバー34側まで延び、その先端に球状の放電側電極35が露出している。放電電極の材質は、イオン化し難いものが好ましく、例えば、ステンレス、純銅、金、銀、チタン、タングステン、炭素でできている。   A long cylindrical cylinder 31 located in the high voltage application unit 30 is connected to three members, that is, a handheld unit 32, a protective cover 33, and a discharge gap cover 34 to which the protective cover is detachably connected from the left. Has been. The other end side of the high voltage cable 12 is drawn into the cylindrical body 31 from the left end side in the axial direction, extends to the discharge gap cover 34 side, and the spherical discharge side electrode 35 is exposed at the tip thereof. The material of the discharge electrode is preferably difficult to ionize, and is made of, for example, stainless steel, pure copper, gold, silver, titanium, tungsten, or carbon.

放電側電極35に、放電ギャップG1を介して球状の接地側電極36が対向している。接地側電極の材質は、炭素でできている。   A spherical ground-side electrode 36 is opposed to the discharge-side electrode 35 via the discharge gap G1. The material of the ground side electrode is made of carbon.

放電側電極35と接地側電極36とが球状であると、針状の場合より放電し難くなっている。これにより、放電ギャップG1の間隔を、通常、20〜150mm、好ましくは50〜100mmへ狭めることができる。結果として、高電圧印加部30を小型化できる。   When the discharge side electrode 35 and the ground side electrode 36 are spherical, it is more difficult to discharge than in the case of a needle shape. Thereby, the space | interval of the discharge gap G1 can be narrowed to 20-150 mm normally, Preferably it is 50-100 mm. As a result, the high voltage application unit 30 can be reduced in size.

接地側電極36の反対側に、導電性の棒状連結部37を挟んで、印加側電極38(放電電極)が筒体31から露出している。すなわち、連結部67の接地側電極36は、放電ギャップカバー34内に引き込まれており、印加側電極38のみが露出している。印加側電極の材質は、炭素でできている。印加側電極の形状は、好ましくは球状である。   The application side electrode 38 (discharge electrode) is exposed from the cylindrical body 31 with the conductive rod-shaped connecting portion 37 sandwiched between the ground side electrode 36 and the opposite side. That is, the ground side electrode 36 of the connecting portion 67 is drawn into the discharge gap cover 34 and only the application side electrode 38 is exposed. The material of the application side electrode is made of carbon. The shape of the application side electrode is preferably spherical.

印加側電極38は、前記したとおり、培養基材に第二の放電ギャップG2を介して対峙させてもよい。G2は、通常、0〜100mmであり、好ましくは0〜50mmである。   As described above, the application-side electrode 38 may be opposed to the culture substrate via the second discharge gap G2. G2 is usually 0 to 100 mm, preferably 0 to 50 mm.

本発明の方法においてストリーマ放電や火花放電のために制御すべき間隔は、放電側電極〜接地側電極間の放電ギャップG1と、適宜の印加側電極(放電電極)〜培養基材表面間の第二の放電ギャップG2との合計となる。放電ギャップカバー34で包囲された放電側電極35〜接地側電極36間(G1)及び、印加側電極38(放電電極)〜培養基材間(G2)でストリーマ放電や火花放電が起こる。   In the method of the present invention, the interval to be controlled for streamer discharge and spark discharge is the discharge gap G1 between the discharge side electrode and the ground side electrode, and the number between the appropriate application side electrode (discharge electrode) and the culture substrate surface. This is the sum of the two discharge gaps G2. Streamer discharge and spark discharge occur between the discharge side electrode 35 and the ground side electrode 36 (G1) surrounded by the discharge gap cover 34 and between the application side electrode 38 (discharge electrode) and the culture substrate (G2).

手持ち部32は、導電材、例えば金属材で構成されており、アース線が接続されている。保護カバー33は、絶縁体、例えばPMMA、PVC、PE、PP、POM、PETP、PFA、PTFE等で構成される。放電ギャップカバー34は、透視可能であり、上記絶縁体や、10〜1010Ω程度の抵抗値を有する半導電体、例えばPMMA、PVC、PETP等でできている。放電ギャップカバーが、周囲の環境の湿気や汚損等による高電圧リークの発生を防止する。 The handheld part 32 is comprised with the electrically conductive material, for example, a metal material, and the earth wire is connected. The protective cover 33 is made of an insulator, such as PMMA, PVC, PE, PP, POM, PETP, PFA, PTFE, or the like. The discharge gap cover 34 can be seen through, and is made of the above-described insulator or a semiconductor having a resistance value of about 10 6 to 10 10 Ω, such as PMMA, PVC, PETP, or the like. The discharge gap cover prevents the occurrence of high voltage leakage due to moisture or contamination of the surrounding environment.

以下に、本発明の実施例と比較例を示して、本発明をより詳細に説明する。しかし、本発明は、以下の実施例に限定されるものではない。
〔実施例1〜6、比較例1〜3〕
培養基材(材質:コナラオガコ、水分約60%)を充填した容積3L(表面積1280cm×高さ12.5cm)の栽培容器((有)振興園製)を用意した。図7に示す高電圧印加装置を図2に示す態様で用いた。そして、栽培容器内の培養基材に高電圧放電を以下の条件で印加した。
放電側電極と設置側電極との放電ギャップ(G1):10kVにつき約10mm
印加側電極と培養基材との第二放電ギャップ(G2):5mm
高電圧:表1
高電圧印加時間:10分間
n数:10
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention. However, the present invention is not limited to the following examples.
[Examples 1-6, Comparative Examples 1-3]
A 3 L (surface area: 1280 cm 2 × height: 12.5 cm) cultivation container (manufactured by Shinkoen) was filled with a culture substrate (material: oak, 60% water). The high voltage applying device shown in FIG. 7 was used in the mode shown in FIG. And the high voltage discharge was applied to the culture base material in a cultivation container on condition of the following.
Discharge gap (G1) between the discharge side electrode and the installation side electrode: about 10 mm per 10 kV
Second discharge gap (G2) between the application side electrode and the culture substrate: 5 mm
High voltage: Table 1
High voltage application time: 10 minutes n number: 10

高電圧電気殺菌の効果を、同様の培養容器を用いた加熱殺菌(温度100℃定圧の水蒸気で4時間加熱)時の殺菌効果を100として相対的に評価した。結果を表1に示す。   The effect of high voltage electrosterilization was relatively evaluated with the sterilization effect at the time of heat sterilization using the same culture vessel (heated with steam at a constant temperature of 100 ° C. for 4 hours) as 100. The results are shown in Table 1.

*殺菌効果:加熱殺菌の効果を100%とした場合の高電圧電気殺菌の相対値
* Sterilization effect: Relative value of high-voltage electrosterilization when the effect of heat sterilization is 100%

表1に示すように、実施例1で20kVの高電圧放電を培養基材に印加することで、培養基材の殺菌効果が有意に現れた。実施例3〜6の60kV以上で、従来の水蒸気殺菌工程を全部置換できるほど殺菌効果を示した。しかし、比較例3の140kVの高電圧では、菌糸の成長を阻害した。したがって、雑菌の繁殖を抑えて菌糸の繁殖を促すためには、高電圧20〜120kVが必要であり、好ましくは30〜120kVであり、より好ましくは30〜80kVであり、さらに好ましくは60〜80kVであることが判明した。   As shown in Table 1, by applying a high-voltage discharge of 20 kV to the culture substrate in Example 1, the sterilization effect of the culture substrate appeared significantly. The sterilization effect was shown so that all the conventional steam sterilization processes could be substituted at 60 kV or more of Examples 3 to 6. However, the high voltage of 140 kV in Comparative Example 3 inhibited mycelial growth. Therefore, in order to suppress the propagation of germs and promote the growth of mycelia, a high voltage of 20 to 120 kV is required, preferably 30 to 120 kV, more preferably 30 to 80 kV, and even more preferably 60 to 80 kV. It turned out to be.

上記結果をさらに検証するため、以下の試験を行った。まず、寒天培地を敷いたペトリ皿(10cm)に、雑菌を付着させた後、図6の高電圧印加装置を用いて、100kVの高電圧を10分間、印加した。このとき、放電電極と培養基材との距離は100mmとした。比較のため、寒天培地を敷いたペトリ皿に雑菌を付着させた後、電圧を印加しないものを対照とした。高電圧印加の寒天培地と対照の寒天培地を、35℃、湿度80%RHで1日間、培養した。保管後の寒天培地の写真撮影を図9に示す。図9に示すとおり、高電圧を印加しない寒天培地は雑菌が繁殖したが、高電圧を印加したものは、雑菌の繁殖が著しく抑制された。高電圧を印加することで、雑菌の繁殖が抑制され、培地基材の加熱殺菌を行わずに、きのこ栽培が可能になることが証明された。 In order to further verify the above results, the following tests were conducted. First, after allowing various bacteria to adhere to a Petri dish (10 cm 2 ) on which an agar medium was spread, a high voltage of 100 kV was applied for 10 minutes using the high voltage application device of FIG. At this time, the distance between the discharge electrode and the culture substrate was 100 mm. For comparison, a control sample was prepared by attaching various bacteria to a Petri dish on which an agar medium was spread and then applying no voltage. A high-voltage agar medium and a control agar medium were cultured at 35 ° C. and a humidity of 80% RH for 1 day. A photograph of the agar medium after storage is shown in FIG. As shown in FIG. 9, miscellaneous bacteria propagated on the agar medium to which no high voltage was applied, but the propagation of miscellaneous bacteria was remarkably suppressed when the high voltage was applied. By applying a high voltage, it was proved that propagation of miscellaneous bacteria was suppressed, and mushroom cultivation was possible without performing heat sterilization of the medium substrate.

1・・・高電圧印加装置
10・・・高電圧発生部
11・・・低電圧ケーブル
12・・・高電圧ケーブル
20・・・コントローラ
30・・・高電圧パルス印加部
31・・・筒体
32・・・手持ち部
33・・・保護カバー
34・・・放電ギャップカバー
35・・・放電側電極
36・・・接地側電極
37・・・連絡部
38・・・印加側電極(放電電極)
G1・・・放電ギャップ
G2・・・第二放電ギャップ
X・・・栽培容器
Y・・・培養基材
DESCRIPTION OF SYMBOLS 1 ... High voltage application apparatus 10 ... High voltage generation part 11 ... Low voltage cable 12 ... High voltage cable 20 ... Controller 30 ... High voltage pulse application part 31 ... Cylindrical body 32 ... Hand-held part 33 ... Protective cover 34 ... Discharge gap cover 35 ... Discharge side electrode 36 ... Ground side electrode 37 ... Communication part 38 ... Apply side electrode (discharge electrode)
G1 ... discharge gap G2 ... second discharge gap X ... cultivation container Y ... culture substrate

Claims (6)

キノコの栽培方法において、20kV〜120kVの高電圧放電を培養基材に印加することにより前記培養基材を殺菌する工程を含み、
前記高電圧放電は、高電圧発生部(10)と高電圧印加部(30)を有し、前記高電圧印加部は、前記高電圧発生部の出力端が接続される放電側電極(35)と、前記放電側電極(35)と放電ギャップを介して対向した接地側電極(36)と、前記接地側電極(36)と導通される印加側電極(38)とを備えた高電圧印加装置であって、前記高電圧印加部(10)の大部分が筒体(31)内に収容され、前記印加側電極(38)のみが露出することを特徴とする前記高電圧印加装置により行い、そして、
前記放電側電極(35)及び接地側電極(36)の形状が球状である
ことを特徴とする、前記キノコの栽培方法。
In cultivation method of mushrooms, it viewed including the step of sterilizing the culture substrate by applying a high voltage discharge of 20kV~120kV the culture substrate,
The high voltage discharge includes a high voltage generation unit (10) and a high voltage application unit (30), and the high voltage application unit includes a discharge side electrode (35) to which an output terminal of the high voltage generation unit is connected. A high-voltage applying device comprising: a ground-side electrode (36) opposed to the discharge-side electrode (35) via a discharge gap; and an application-side electrode (38) electrically connected to the ground-side electrode (36) The high voltage application unit (10) is housed in a cylindrical body (31), and only the application side electrode (38) is exposed. And
The method for cultivating the mushroom, wherein the discharge side electrode (35) and the ground side electrode (36) are spherical in shape .
前記高電圧放電の前記培養基材への印加は、高電圧用放電電極と対極電極との間に前記培養基材を介在させ、前記放電電極と前記対極電極との間に高電圧をかけてストリーマ放電や火花放電を発生させることにより行われ、このとき、高電圧放電距離を10kVにつき3〜20mmとする、請求項1に記載のキノコの栽培方法。   The high-voltage discharge is applied to the culture substrate by interposing the culture substrate between a high-voltage discharge electrode and a counter electrode, and applying a high voltage between the discharge electrode and the counter electrode. The method for cultivating mushrooms according to claim 1, wherein the cultivation is performed by generating streamer discharge or spark discharge, and at this time, the high voltage discharge distance is 3 to 20 mm per 10 kV. 前記高電圧放電の印加時間は、10秒〜60分間である、請求項1又は2に記載のキノコの栽培方法。   The application method of the said high voltage discharge is the cultivation method of the mushroom of Claim 1 or 2 which is 10 second-60 minutes. 前記殺菌工程を、前記培養基材を栽培容器へ充填後に行うことを特徴とする、請求項1〜3のいずれかに記載のキノコの栽培方法。   The method for cultivating mushrooms according to any one of claims 1 to 3, wherein the sterilizing step is performed after filling the culture substrate into a cultivation container. 前記殺菌工程を、前記培養基材を栽培容器へ充填する際に行うことを特徴とする、請求項1〜3のいずれかに記載のキノコの栽培方法。   The method for cultivating mushrooms according to any one of claims 1 to 3, wherein the sterilizing step is performed when the culture substrate is filled into a cultivation container. 20kV〜120kVの高電圧放電を培養基材に印加することにより前記培養基材を殺菌することを含み、
前記高電圧放電は、高電圧発生部(10)と高電圧印加部(30)を有し、前記高電圧印加部は、前記高電圧発生部の出力端が接続される放電側電極(35)と、前記放電側電極(35)と放電ギャップを介して対向した接地側電極(36)と、前記接地側電極(36)と導通される印加側電極(38)とを備えた高電圧印加装置であって、前記高電圧印加部(10)の大部分が筒体(31)内に収容され、前記印加側電極(38)のみが露出することを特徴とする前記高電圧印加装置により行い、そして、
前記放電側電極(35)及び接地側電極(36)の形状が球状であること
を特徴とする、キノコの培養基材の処理方法。
Sterilizing the culture substrate by applying a high voltage discharge of 20 kV to 120 kV to the culture substrate ;
The high voltage discharge includes a high voltage generation unit (10) and a high voltage application unit (30), and the high voltage application unit includes a discharge side electrode (35) to which an output terminal of the high voltage generation unit is connected. A high-voltage applying device comprising: a ground-side electrode (36) opposed to the discharge-side electrode (35) via a discharge gap; and an application-side electrode (38) electrically connected to the ground-side electrode (36) The high voltage application unit (10) is housed in a cylindrical body (31), and only the application side electrode (38) is exposed. And
The method for treating a mushroom culture substrate, wherein the discharge-side electrode (35) and the ground-side electrode (36) are spherical in shape .
JP2011223632A 2011-10-11 2011-10-11 Mushroom cultivation method Expired - Fee Related JP5797077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223632A JP5797077B2 (en) 2011-10-11 2011-10-11 Mushroom cultivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223632A JP5797077B2 (en) 2011-10-11 2011-10-11 Mushroom cultivation method

Publications (2)

Publication Number Publication Date
JP2013081425A JP2013081425A (en) 2013-05-09
JP5797077B2 true JP5797077B2 (en) 2015-10-21

Family

ID=48527327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223632A Expired - Fee Related JP5797077B2 (en) 2011-10-11 2011-10-11 Mushroom cultivation method

Country Status (1)

Country Link
JP (1) JP5797077B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200129894A (en) * 2019-05-10 2020-11-18 에스엠푸드 농업회사법인 주식회사 method for preparation of medium for baekhwago

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179629A (en) * 1988-01-11 1989-07-17 Nissin Electric Co Ltd Method for treating fungi-culturing medium for growth acceleration
JP2566067Y2 (en) * 1992-06-18 1998-03-25 株式会社共栄社 Safety devices in high-voltage discharge weeders
US6497839B1 (en) * 2000-10-04 2002-12-24 Sanyo Electric Co., Ltd. Sterilizer and sterilization method utilizing high voltage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200129894A (en) * 2019-05-10 2020-11-18 에스엠푸드 농업회사법인 주식회사 method for preparation of medium for baekhwago
KR102249232B1 (en) 2019-05-10 2021-05-07 에스엠푸드 농업회사법인 주식회사 method for preparation of medium for baekhwago

Also Published As

Publication number Publication date
JP2013081425A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
EP3369436B1 (en) Plasma sterilization device
JP2016152796A (en) Animal and plant growth promotion methods
CN109892019A (en) Free radical generating device and its method
JP5170509B2 (en) Insecticide sterilization method and insecticide sterilizer
Kostov et al. Inactivation of Candida albicans by cold atmospheric pressure plasma jet
CN109922748A (en) Device and method for handling skin conditions
KR101839918B1 (en) Method of Sterilizing and Promoting Germination of Seed Using Non-thermal Plasma
Deepak Review on recent advances in cold plasma technology
Dalvi-Isfahan et al. Recent advances of high voltage electric field technology and its application in food processing: A review with a focus on corona discharge and static electric field
JP5797077B2 (en) Mushroom cultivation method
Kordová et al. Inactivation of microbial food contamination of plastic cups using nonthermal plasma and hydrogen peroxide
KR20150142722A (en) Acnes treatment sysyem with plasma
KR20030025940A (en) Sterilizer using high voltage and method for sterilizing object to be sterilized such as grain or seed by using the same
KR101450036B1 (en) Method of removing agricultural chemicals remained on surface of agricultural products using low-temperature plasma jet
CN109963599B (en) Method for inactivating microorganisms in air and electric sterilizer
CN111248260B (en) Fluid food sterilization device and method based on corona discharge plasma
JPH03237979A (en) Sterilizing method by high voltage pulse
RU2254143C2 (en) Method for sterilizing objects
JP7084116B2 (en) Methods and equipment for sterilizing dialysis machines
JP7232571B2 (en) Discharge treatment device for skin surface
JP2020081227A (en) Discharge sterilization method and discharge sterilization device for crop
JP2002010766A (en) Method for carrying out sterilizing treatment of object of sterilization such as cereals and seed
KR0163345B1 (en) Electronic seed management equipment
JP7333973B2 (en) Plasma device with two gas inlets
JPS63318947A (en) Sterilizing method and apparatus due to pulse discharge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150818

R150 Certificate of patent or registration of utility model

Ref document number: 5797077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees