JP5793669B2 - 3D measuring apparatus and 3D measuring method - Google Patents

3D measuring apparatus and 3D measuring method Download PDF

Info

Publication number
JP5793669B2
JP5793669B2 JP2011078571A JP2011078571A JP5793669B2 JP 5793669 B2 JP5793669 B2 JP 5793669B2 JP 2011078571 A JP2011078571 A JP 2011078571A JP 2011078571 A JP2011078571 A JP 2011078571A JP 5793669 B2 JP5793669 B2 JP 5793669B2
Authority
JP
Japan
Prior art keywords
angle
light
imaging
state
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011078571A
Other languages
Japanese (ja)
Other versions
JP2012211875A (en
Inventor
秀和 荒木
秀和 荒木
治美 山本
治美 山本
裕章 松川
裕章 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011078571A priority Critical patent/JP5793669B2/en
Publication of JP2012211875A publication Critical patent/JP2012211875A/en
Application granted granted Critical
Publication of JP5793669B2 publication Critical patent/JP5793669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、3次元計測装置、および3次元計測方法に関するものである。   The present invention relates to a three-dimensional measurement apparatus and a three-dimensional measurement method.

従来、ワークの3次元形状を計測する3次元計測装置が提案されている(例えば、特許文献1)。   Conventionally, a three-dimensional measuring apparatus for measuring a three-dimensional shape of a workpiece has been proposed (for example, Patent Document 1).

図14は、従来の3次元計測装置B1の構成を示し、3次元計測装置B1は、照明部501と、直線偏光板502と、カメラ503と、3次元演算部504と、表示部505とで構成される。   FIG. 14 shows a configuration of a conventional three-dimensional measurement apparatus B1. The three-dimensional measurement apparatus B1 includes an illumination unit 501, a linear polarizing plate 502, a camera 503, a three-dimensional calculation unit 504, and a display unit 505. Composed.

照明部501は、半球の椀状の照射面501aを有し、照射面501aの開口の略中心に配置したワークWに、円偏光した照射光L501を照射する。照射光L501がワークWの表面で反射した反射光L502は楕円偏光に変化し、照射部501の底部中心に設けた孔501bを通って直線偏光板502を透過する。直線偏光板502を透過した透過光L503は、直線偏光に変化し、この透過光L503をカメラ503が撮像する。3次元演算部504は、カメラ503の撮像データを取得し、この撮像データに基づいてワークWの3次元形状を計測し、この計測結果は、外観図、寸法等の形状データとして、液晶画面等の表示部505に表示される。   The illumination unit 501 has a hemispherical bowl-shaped irradiation surface 501a, and irradiates a workpiece W disposed substantially at the center of the opening of the irradiation surface 501a with circularly polarized irradiation light L501. The reflected light L502 reflected by the irradiation light L501 on the surface of the workpiece W changes to elliptically polarized light, and passes through the linear polarizing plate 502 through the hole 501b provided at the bottom center of the irradiation part 501. The transmitted light L503 transmitted through the linearly polarizing plate 502 changes to linearly polarized light, and the transmitted light L503 is captured by the camera 503. The three-dimensional calculation unit 504 acquires imaging data of the camera 503, measures the three-dimensional shape of the workpiece W based on the imaging data, and the measurement result is obtained as shape data such as an external view and dimensions, as a liquid crystal screen or the like. Are displayed on the display unit 505.

具体的には、カメラ503が透過光L503を撮像する度に、直線偏光板502は、板面の中心軸の周方向に所定角度だけ回転して偏光方向を段階的に変化させる。そして、このカメラ503の撮像動作と直線偏光板502の回転動作とは、直線偏光板502が半回転(180°回転)するまで繰り返し行われる。   Specifically, each time the camera 503 captures the transmitted light L503, the linearly polarizing plate 502 rotates by a predetermined angle in the circumferential direction of the central axis of the plate surface and changes the polarization direction stepwise. The imaging operation of the camera 503 and the rotation operation of the linear polarizing plate 502 are repeated until the linear polarizing plate 502 is rotated half a turn (180 ° rotation).

3次元演算部504は、直線偏光板502の回転角度のそれぞれに対応した透過光L503の撮像データをカメラ503から取得し、直線偏光板502の回転角度(偏光板角度)とワークWの表面の画素の輝度(画素輝度)との関係を導出する。偏光板角度と画素輝度との関係は、図15に示すように、偏光板角度の180°周期で画素輝度が増減し、画素輝度は、偏光板角度0〜180°の間で最大値および最小値がそれぞれ1個づつ現れる。   The three-dimensional calculation unit 504 acquires imaging data of the transmitted light L503 corresponding to each of the rotation angles of the linear polarizing plate 502 from the camera 503, and the rotation angle (polarizing plate angle) of the linear polarizing plate 502 and the surface of the workpiece W are obtained. A relationship with the luminance of the pixel (pixel luminance) is derived. As shown in FIG. 15, the relationship between the polarizing plate angle and the pixel luminance is such that the pixel luminance increases or decreases with a period of 180 ° of the polarizing plate angle, and the pixel luminance is a maximum value and a minimum value between the polarizing plate angles of 0 to 180 °. Each value appears one by one.

そして、3次元演算部504は、偏光板角度と画素輝度との関係に基づいて、透過光L503の偏光解析を画素毎に行い、画素毎の偏光状態を検出する。そして、偏光解析を行った画素は、ワークWの表面の微少な一部分Sn(表面片Sn)に相当しており、その偏光状態から、図16に示す表面片Snの法線ベクトルNの傾斜角θaと方位角θbとを求める。傾斜角θaは、カメラ503の撮像中心軸Zに対する法線ベクトルNの角度であり、方位角θbは、撮像中心軸Zに直交するX−Y平面上で、X軸に対する法線ベクトルNの角度である。   Then, the three-dimensional calculation unit 504 performs polarization analysis of the transmitted light L503 for each pixel based on the relationship between the polarizing plate angle and the pixel luminance, and detects the polarization state for each pixel. The pixel subjected to the polarization analysis corresponds to a small part Sn (surface piece Sn) on the surface of the workpiece W, and the inclination angle of the normal vector N of the surface piece Sn shown in FIG. θa and azimuth angle θb are obtained. The tilt angle θa is the angle of the normal vector N with respect to the imaging center axis Z of the camera 503, and the azimuth angle θb is the angle of the normal vector N with respect to the X axis on the XY plane orthogonal to the imaging center axis Z. It is.

3次元演算部504は、上述のように求めた法線ベクトルNの傾斜角θaおよび方位角θbに基づいて、表面片Snの傾斜を決定する。そして、画素毎に上記画像解析処理を行って表面片Snの傾斜を決定し、これらの表面片Snを連続させることによって、ワークWの3次元形状を計測している。   The three-dimensional calculation unit 504 determines the inclination of the surface piece Sn based on the inclination angle θa and the azimuth angle θb of the normal vector N obtained as described above. Then, the image analysis process is performed for each pixel to determine the inclination of the surface piece Sn, and the three-dimensional shape of the workpiece W is measured by making these surface pieces Sn continuous.

国際公開第2010/021148号International Publication No. 2010/021148

しかしながら、従来の3次元計測装置B1は、図3、図4(a)(b)に示す形状のワークW1を計測対象とした場合、以下のような問題があった。   However, the conventional three-dimensional measuring apparatus B1 has the following problems when the workpiece W1 having the shape shown in FIGS. 3 and 4A and 4B is a measurement target.

まず、ワークW1は、Y軸方向において互いに対向する端面M3,M4(図3、図4(a)(b)では、一端方向の端面M3のみを示す)が、上底が下底より短い台形形状となる。また、X軸方向において互いに対向する側面は、一方向へ傾斜する傾斜面M1と他方向へ傾斜するM2とで構成され、傾斜面M1,M2が、X−Y平面との間でなす内角は、「45°」である。そして、カメラ503の撮像中心軸Zが、ワークW1の上面M5の法線方向に一致するものとする。   First, the workpiece W1 is a trapezoid whose end faces M3 and M4 (in FIG. 3, FIG. 4 (a) and FIG. 4 (b) only show one end face M3) facing each other in the Y-axis direction are shorter than the lower base. It becomes a shape. Further, the side surfaces facing each other in the X-axis direction are configured by an inclined surface M1 inclined in one direction and M2 inclined in the other direction, and an inner angle formed between the inclined surfaces M1 and M2 with respect to the XY plane is , “45 °”. The imaging center axis Z of the camera 503 is assumed to coincide with the normal direction of the upper surface M5 of the workpiece W1.

そして、3次元演算部504は、偏光解析によって、傾斜面M1の法線ベクトルN1の傾斜角θa501および方位角θb501、傾斜面M2の法線ベクトルN2の傾斜角θa502および方位角θb502を導出する。   Then, the three-dimensional calculation unit 504 derives the inclination angle θa501 and the azimuth angle θb501 of the normal vector N1 of the inclined surface M1 and the inclination angle θa502 and the azimuth angle θb502 of the normal vector N2 of the inclined surface M2 by polarization analysis.

ここで、Z軸の一方向を傾斜角θa=0°とし、X軸の一方向を方位角θb=0°とした場合、カメラ3からみたワークWの傾斜面の傾斜方向は、傾斜角θa「−90°〜90°」、方位角θb「0°〜360°」の範囲内を、任意にとり得る。しかしながら、3次元演算部504が回転検光子法等の偏光解析技術を用いて求めることができる傾斜角θaおよび方位角θbの各範囲は、傾斜角θa「0°〜90°」、方位角θb「0°〜180°」である。   Here, when one direction of the Z axis is an inclination angle θa = 0 ° and one direction of the X axis is an azimuth angle θb = 0 °, the inclination direction of the inclined surface of the workpiece W viewed from the camera 3 is the inclination angle θa. The range of “−90 ° to 90 °” and the azimuth angle θb “0 ° to 360 °” can be arbitrarily set. However, the ranges of the tilt angle θa and the azimuth angle θb that can be obtained by the three-dimensional calculation unit 504 using a polarization analysis technique such as a rotation analyzer method are the tilt angle θa “0 ° to 90 °” and the azimuth angle θb. “0 ° to 180 °”.

したがって、偏光解析によって得られる傾斜角θa501および方位角θb501と、偏光解析によって得られる傾斜角θa502および方位角θb502とが、互いに同一値になってしまうという問題がある。   Therefore, there is a problem that the inclination angle θa501 and the azimuth angle θb501 obtained by the polarization analysis and the inclination angle θa502 and the azimuth angle θb502 obtained by the polarization analysis become the same value.

例えば、図17に示すように、3次元演算部504が導出した傾斜面M1の法線ベクトルN1の傾斜角θa501は「45°」、方位角θb501は「0°」となる。一方、3次元演算部504が導出した傾斜面M2の法線ベクトルN2の傾斜角θa502も「45°」、方位角θb502も「0°」となる。すなわち、傾斜面M1,M2の各法線ベクトルN1,N2は、実際は互いに異なる方向に形成されるにも関わらず、各法線ベクトルN1,N2が同一方向に形成されるかのような解析結果になる。   For example, as shown in FIG. 17, the inclination angle θa501 of the normal vector N1 of the inclined surface M1 derived by the three-dimensional calculation unit 504 is “45 °”, and the azimuth angle θb501 is “0 °”. On the other hand, the inclination angle θa502 of the normal vector N2 of the inclined surface M2 derived by the three-dimensional calculation unit 504 is also “45 °”, and the azimuth angle θb502 is also “0 °”. That is, although the normal vectors N1 and N2 of the inclined surfaces M1 and M2 are actually formed in different directions, the analysis results as if the normal vectors N1 and N2 are formed in the same direction. become.

このように、偏光解析によって得られる傾斜角θaおよび方位角θbでは、表面片Snの法線ベクトルN(図16参照)を一意に決定することができない。したがって、従来の3次元計測装置B1では、傾斜面M1,M2の傾斜方向の違いを識別できず、傾斜面M1,M2を区別することができなかった。   As described above, the normal vector N (see FIG. 16) of the surface piece Sn cannot be uniquely determined by the inclination angle θa and the azimuth angle θb obtained by the polarization analysis. Therefore, in the conventional three-dimensional measuring apparatus B1, the difference between the inclined directions of the inclined surfaces M1 and M2 cannot be identified, and the inclined surfaces M1 and M2 cannot be distinguished.

本発明は、上記事由に鑑みてなされたものであり、その目的は、偏光解析を用いながら、複数の傾斜面の各傾斜方向の違いを識別できる3次元計測装置、および3次元計測方法を提供することにある。   The present invention has been made in view of the above-described reasons, and an object thereof is to provide a three-dimensional measurement apparatus and a three-dimensional measurement method that can identify differences in inclination directions of a plurality of inclined surfaces using polarization analysis. There is to do.

本発明の3次元計測装置は、半球の椀状の照射面から、前記照射面の開口の略中心に配置した被計測物の表面へ円偏光の第1の光を照射する照明装置と、前記被計測物の表面で第1の光が反射して形成される第2の光を撮像した撮像データを生成する撮像装置と、前記撮像装置の撮像方向と前記被計測物の表面との相対角度を変化させる姿勢変化手段と、前記姿勢変化手段によって前記相対角度を第1の状態に設定して前記撮像装置が生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第1の傾斜角および第1の方位角を求め、前記姿勢変化手段によって前記相対角度を前記第1の状態から第2の状態に変化させた後に前記撮像装置が生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第2の傾斜角および第2の方位角を求め、前記第1の傾斜角と前記第2の傾斜角との差に基づいて、前記第1の傾斜角を補正する3次元演算部とを備え、前記3次元演算部は、前記第1の傾斜角と前記第2の傾斜角との差に応じて前記第1の傾斜角の正負の符号を決定することによって、前記第1の傾斜角を補正することを特徴とする。 Three-dimensional measurement apparatus of the present invention, the bowl-shaped irradiation surface of a hemisphere, a lighting device for morphism the first light to the surface of the circular polarization of the object to be measured which is located approximately at the center of an opening of the irradiated surface irradiation, An imaging device that generates imaging data obtained by imaging the second light formed by reflecting the first light on the surface of the measurement object, and a relative relationship between the imaging direction of the imaging device and the surface of the measurement object An attitude changing means for changing the angle, and a polarization state of the elliptically polarized light of the second light based on the imaging data generated by the imaging apparatus with the relative angle set to the first state by the attitude changing means And detecting the first tilt angle and the first azimuth angle of the surface of the object to be measured based on the detected polarization state, and the posture changing means The relative angle is changed from the first state to the second state. On the basis of the imaging data to which the imaging device is generated after the detected azimuth and ellipse angle of the polarizing ellipse polarization state of elliptically polarized light of the second light, based on the polarization state of this detection, the The second inclination angle and the second azimuth angle of the surface of the object to be measured are obtained, and the first inclination angle is corrected based on the difference between the first inclination angle and the second inclination angle 3 A three-dimensional calculation unit, wherein the three-dimensional calculation unit determines the positive or negative sign of the first inclination angle according to a difference between the first inclination angle and the second inclination angle. The first tilt angle is corrected .

本発明の3次元計測装置は、半球の椀状の照射面から、前記照射面の開口の略中心に配置した被計測物の表面へ円偏光の第1の光を照射する照明装置と、前記被計測物の表面で第1の光が反射して形成される第2の光を撮像した撮像データを生成する撮像装置と、前記撮像装置の撮像方向と前記被計測物の表面との相対角度を変化させる姿勢変化手段と、前記姿勢変化手段によって前記相対角度を第1の状態に設定して前記撮像装置が生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第1の傾斜角および第1の方位角を求め、前記姿勢変化手段によって前記相対角度を前記第1の状態から第2の状態に変化させた後に前記撮像装置が生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第2の傾斜角および第2の方位角を求め、前記第1の傾斜角と前記第2の傾斜角との差に基づいて、前記第1の方位角を補正する3次元演算部とを備え、前記3次元演算部は、前記第1の傾斜角と前記第2の傾斜角との差に応じて前記第1の方位角を180°ずらすことによって、前記第1の方位角を補正することを特徴とする。The three-dimensional measurement apparatus of the present invention includes a lighting device that irradiates a circularly polarized first light from a hemispherical bowl-shaped irradiation surface to a surface of an object to be measured disposed at a substantially center of an opening of the irradiation surface; An imaging device that generates imaging data obtained by imaging the second light formed by reflecting the first light on the surface of the measurement object, and a relative angle between the imaging direction of the imaging device and the surface of the measurement object And changing the relative angle to the first state by the posture changing means to change the elliptical polarization state of the second light based on the imaging data generated by the imaging device. An azimuth angle and an ellipticity ratio of the polarization ellipse are detected, and based on the detected polarization state, a first tilt angle and a first azimuth angle of the surface of the object to be measured are obtained, and the relative change is performed by the posture changing means. The angle is changed from the first state to the second state. After that, based on the imaging data generated by the imaging device, the azimuth angle and ellipticity ratio of the polarization ellipse are detected as the polarization state of the elliptically polarized light of the second light, and based on the detected polarization state, the The second inclination angle and the second azimuth angle of the surface of the object to be measured are obtained, and the first azimuth angle is corrected based on the difference between the first inclination angle and the second inclination angle 3 A three-dimensional calculation unit, wherein the three-dimensional calculation unit shifts the first azimuth angle by 180 degrees according to a difference between the first inclination angle and the second inclination angle. The azimuth angle is corrected.

この発明において、前記姿勢変化手段は、前記被計測物を回転させることによって、前記撮像装置の撮像方向と前記被計測物の表面との相対角度を変化させることが好ましい。 In this invention, it is preferable that the posture changing means changes the relative angle between the imaging direction of the imaging device and the surface of the measurement object by rotating the measurement object.

この発明において、前記姿勢変化手段は、前記撮像装置を回転させることによって、前記撮像装置の撮像方向と前記被計測物の表面との相対角度を変化させることが好ましい。 In this invention, it is preferable that the posture changing means changes the relative angle between the imaging direction of the imaging device and the surface of the object to be measured by rotating the imaging device.

本発明の3次元計測方法は、半球の椀状の照射面から、前記照射面の開口の略中心に配置した被計測物の表面へ円偏光の第1の光を照射し、前記被計測物の表面で第1の光が反射して形成される第2の光を撮像した撮像データを生成し、前記撮像データに基づいて、前記第2の光の偏光状態を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の傾斜角および方位角を求める3次元計測方法において、前記第2の光を撮像する撮像方向と前記被計測物の表面との相対角度を第1の状態に設定して生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第1の傾斜角および第1の方位角を求めるステップと、前記相対角度を前記第1の状態から第2の状態に変化させた後に生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第2の傾斜角および第2の方位角を求めるステップと、前記第1の傾斜角と前記第2の傾斜角との差に応じて前記第1の傾斜角の正負の符号を決定することによって、前記第1の傾斜角を補正するステップとを有することを特徴とする。The three-dimensional measurement method of the present invention irradiates the surface of the object to be measured, which is arranged at the approximate center of the opening of the irradiation surface, from the hemispherical bowl-shaped irradiation surface, and applies the first polarized light. Imaging data obtained by imaging the second light formed by the reflection of the first light on the surface of the image is generated, the polarization state of the second light is detected based on the imaging data, and the detected polarization In the three-dimensional measurement method for obtaining the tilt angle and azimuth angle of the surface of the object to be measured based on the state, the relative angle between the imaging direction in which the second light is imaged and the surface of the object to be measured is a first angle. An azimuth angle and an ellipticity rate of a polarization ellipse are detected as the polarization state of the elliptically polarized light of the second light based on the imaging data generated by setting the state, and based on the detected polarization state, the object to be covered is detected. A step of obtaining a first inclination angle and a first azimuth angle of the surface of the measurement object Based on the imaging data generated after changing the relative angle from the first state to the second state, the azimuth angle and ellipticity ratio of the polarization ellipse as the polarization state of the elliptically polarized light of the second light And determining the second tilt angle and the second azimuth angle of the surface of the object to be measured based on the detected polarization state, the first tilt angle and the second tilt angle, And correcting the first tilt angle by determining the sign of the first tilt angle in accordance with the difference between the first tilt angle and the first tilt angle.

本発明の3次元計測方法は、半球の椀状の照射面から、前記照射面の開口の略中心に配置した被計測物の表面へ円偏光の第1の光を照射し、前記被計測物の表面で第1の光が反射して形成される第2の光を撮像した撮像データを生成し、前記撮像データに基づいて、前記第2の光の偏光状態を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の傾斜角および方位角を求める3次元計測方法において、前記第2の光を撮像する撮像方向と前記被計測物の表面との相対角度を第1の状態に設定して生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第1の傾斜角および第1の方位角を求めるステップと、前記相対角度を前記第1の状態から第2の状態に変化させた後に生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第2の傾斜角および第2の方位角を求めるステップと、前記第1の傾斜角と前記第2の傾斜角との差に応じて前記第1の方位角を180°ずらすことによって、前記第1の方位角を補正するステップとを有することを特徴とする。 Three-dimensional measurement method of the present invention, the bowl-shaped irradiation surface of a hemisphere, shines irradiation the first circularly polarized light to the surface of the object to be measured which is located approximately at the center of an opening of the irradiated surface, the object to be measured The imaging data obtained by imaging the second light formed by reflecting the first light on the surface of the object is generated, the polarization state of the second light is detected based on the imaging data, and the detected In the three-dimensional measurement method for obtaining the tilt angle and azimuth angle of the surface of the object to be measured based on the polarization state, the relative angle between the imaging direction for imaging the second light and the surface of the object to be measured is a first angle. Based on the imaging data generated by setting to the state of, the azimuth angle and ellipticity ratio of the polarization ellipse as the polarization state of the elliptically polarized light of the second light, and based on the detected polarization state, A step of obtaining a first inclination angle and a first azimuth angle of the surface of the measurement object , Said relative angle from the first state based on said imaging data generated after changing to the second state, azimuth and ellipse angle of the polarizing ellipse polarization state of elliptically polarized light of the second light And determining the second tilt angle and the second azimuth angle of the surface of the object to be measured based on the detected polarization state, the first tilt angle and the second tilt angle, And correcting the first azimuth angle by shifting the first azimuth angle by 180 ° in accordance with the difference between the first azimuth angle and the first azimuth angle .

以上説明したように、本発明では、偏光解析を用いながら、複数の傾斜面の各傾斜方向の違いを識別できるという効果がある。   As described above, according to the present invention, there is an effect that a difference in each inclination direction of a plurality of inclined surfaces can be identified while using ellipsometry.

実施形態1の3次元計測装置を示す構成図である。1 is a configuration diagram illustrating a three-dimensional measurement apparatus according to Embodiment 1. FIG. 同上の傾斜角および方位角を示す斜視図である。It is a perspective view which shows the same inclination angle and azimuth. 同上のワークを示す斜視図である。It is a perspective view which shows a workpiece | work same as the above. (a)(b)同上のワークを示す平面図である。(A) (b) It is a top view which shows the workpiece | work same as the above. (a)(b)同上の第1の状態を示す平面図である。(A) (b) It is a top view which shows the 1st state same as the above. (a)(b)同上の第2の状態を示す平面図である。(A) (b) It is a top view which shows the 2nd state same as the above. (a)〜(c)同上の傾斜角および方位角の計測値、補正値を示すテーブル図である。(A)-(c) It is a table figure which shows the measured value and correction value of an inclination angle and azimuth angle same as the above. (a)(b)同上の他のワークを用いた第1の状態を示す平面図である。(A) (b) It is a top view which shows the 1st state using the other workpiece | work same as the above. (a)(b)同上の第2の状態を示す平面図である。(A) (b) It is a top view which shows the 2nd state same as the above. (a)〜(c)同上の傾斜角および方位角の計測値、補正値を示すテーブル図である。(A)-(c) It is a table figure which shows the measured value and correction value of an inclination angle and azimuth angle same as the above. (a)〜(c)実施形態2の傾斜角および方位角の計測値、補正値を示すテーブル図である。(A)-(c) It is a table figure which shows the measured value and correction value of the inclination angle and azimuth of Embodiment 2. (a)〜(c)同上の他のワークを用いた傾斜角および方位角の計測値、補正値を示すテーブル図である。(A)-(c) It is a table figure which shows the measured value and correction value of an inclination angle and an azimuth using the other workpiece | work same as the above. 実施形態3の3次元計測装置を示す構成図である。It is a block diagram which shows the three-dimensional measuring apparatus of Embodiment 3. 従来の3次元計測装置を示す構成図である。It is a block diagram which shows the conventional three-dimensional measuring apparatus. 偏光板角度と画素輝度との関係を示すグラフ図である。It is a graph which shows the relationship between a polarizing plate angle and pixel luminance. 従来の傾斜角および方位角を示す斜視図である。It is a perspective view which shows the conventional inclination angle and azimuth. 従来の傾斜角および方位角の計測値を示すテーブル図である。It is a table figure which shows the measured value of the conventional inclination angle and azimuth.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1は、本実施形態の3次元計測装置A1の構成を示し、3次元計測装置A1は、照明部1と、直線偏光板2と、カメラ3(撮像装置)と、3次元演算部4と、表示部5と、ワーク台座6(姿勢変化手段)とで構成される。
(Embodiment 1)
FIG. 1 shows a configuration of a three-dimensional measurement apparatus A1 of this embodiment. The three-dimensional measurement apparatus A1 includes an illumination unit 1, a linearly polarizing plate 2, a camera 3 (imaging device), a three-dimensional calculation unit 4, and the like. The display unit 5 and the work pedestal 6 (posture changing means).

照明部1は、半球の椀状の照射面1aを有し、照射面1aの開口の略中心に配置したワークW(被計測物)に、円偏光した照射光L1(第1の光)を照射する。照射光L1がワークWの表面で反射した反射光L2は楕円偏光に変化し、照射部1の底部中心に設けた孔1bを通って直線偏光板2を透過する。直線偏光板2を透過した透過光L3(第2の光)は、直線偏光に変化し、この透過光L3をカメラ3が撮像する。3次元演算部4は、カメラ3の撮像データを取得し、この撮像データに基づいてワークWの3次元形状を計測し、この計測結果は、外観図、寸法等の形状データとして、液晶画面等の表示部5に表示される。なお、3次元計測装置A1は、反射光L2を孔1bに導く図示しない導光手段を備えるものとする。   The illuminating unit 1 has a hemispherical bowl-shaped irradiation surface 1a, and applies circularly polarized irradiation light L1 (first light) to a workpiece W (measurement object) arranged at the approximate center of the opening of the irradiation surface 1a. Irradiate. The reflected light L2 reflected from the surface of the work W by the irradiation light L1 changes to elliptically polarized light and passes through the linearly polarizing plate 2 through the hole 1b provided at the bottom center of the irradiation part 1. The transmitted light L3 (second light) transmitted through the linearly polarizing plate 2 changes to linearly polarized light, and the camera 3 images the transmitted light L3. The three-dimensional calculation unit 4 acquires the imaging data of the camera 3, measures the three-dimensional shape of the workpiece W based on the imaging data, and the measurement result is obtained as shape data such as an external view and dimensions, as a liquid crystal screen or the like. Are displayed on the display unit 5. Note that the three-dimensional measuring apparatus A1 includes light guide means (not shown) that guides the reflected light L2 to the hole 1b.

3次元演算部4は、傾斜算出部41と、傾斜補正部42とを備える。   The three-dimensional calculation unit 4 includes an inclination calculation unit 41 and an inclination correction unit 42.

傾斜算出部41は、直線偏光板2の回転制御、およびカメラ3の撮像制御を行い、直線偏光板2を、板面の中心軸の周方向に所定角度だけ回転させて偏光方向を段階的に変化させながら、直線偏光板2の各偏光方向における透過光L3をカメラ3が撮像する。すなわち、傾斜算出部41は、直線偏光板2の回転角度のそれぞれに対応した透過光L3の撮像データをカメラ3から取得し、このカメラ3の撮像動作と直線偏光板2の回転動作とを、直線偏光板2が半回転(180°回転)するまで繰り返し行う。   The inclination calculation unit 41 performs rotation control of the linear polarizing plate 2 and imaging control of the camera 3, and rotates the linear polarizing plate 2 by a predetermined angle in the circumferential direction of the central axis of the plate surface to change the polarization direction stepwise. While changing, the camera 3 captures the transmitted light L3 in each polarization direction of the linearly polarizing plate 2. That is, the inclination calculating unit 41 acquires the imaging data of the transmitted light L3 corresponding to each rotation angle of the linear polarizing plate 2 from the camera 3, and performs the imaging operation of the camera 3 and the rotational operation of the linear polarizing plate 2, The process is repeated until the linearly polarizing plate 2 rotates halfway (180 °).

そして、傾斜算出部41は、直線偏光板2の回転角度(偏光板角度)とワークWの表面の画素の輝度(画素輝度)との関係を導出する。傾斜算出部41は、偏光板角度と画素輝度との関係に基づいて、透過光L3の偏光解析を画素毎に行い、画素毎の偏光状態を検出する。この偏光状態の検知方法には、偏光楕円の方位角および楕円角率を検知する「回転検光子法」を用いる。なお、回転検光子法は、周知の偏光解析技術であるため詳細な説明は省略する。   Then, the inclination calculation unit 41 derives the relationship between the rotation angle of the linearly polarizing plate 2 (polarizing plate angle) and the luminance of the pixels on the surface of the workpiece W (pixel luminance). The inclination calculation unit 41 performs polarization analysis of the transmitted light L3 for each pixel based on the relationship between the polarizing plate angle and the pixel luminance, and detects the polarization state for each pixel. As a method for detecting the polarization state, a “rotation analyzer method” for detecting the azimuth angle and ellipticity ratio of the polarization ellipse is used. Note that the rotation analyzer method is a well-known ellipsometric technique and will not be described in detail.

偏光解析を行った画素は、ワークWの表面の微少な一部分Sn(表面片Sn)に相当しており、傾斜算出部41は、その偏光状態から、図2に示す表面片Snの法線ベクトルNの傾斜角θaと方位角θbとを求める。傾斜角θaは、カメラ3の撮像中心軸Z(以降、Z軸と称す)に対する法線ベクトルNの角度であり、方位角θbは、撮像中心軸Zに直交するX−Y平面上で、X軸に対する法線ベクトルNの角度である。   The pixel subjected to the polarization analysis corresponds to a small part Sn (surface piece Sn) of the surface of the workpiece W, and the inclination calculating unit 41 calculates the normal vector of the surface piece Sn shown in FIG. N inclination angle θa and azimuth angle θb are obtained. The tilt angle θa is the angle of the normal vector N with respect to the imaging center axis Z (hereinafter referred to as the Z axis) of the camera 3, and the azimuth angle θb is X on the XY plane orthogonal to the imaging center axis Z. The angle of the normal vector N with respect to the axis.

ここで、Z軸の一方向を傾斜角θa=0°とし、X軸の一方向を方位角θb=0°とした場合、カメラ3からみたワークWの傾斜面の傾斜方向は、傾斜角θa「−90°〜90°」、方位角θb「0°〜360°」の範囲内を、任意にとり得る。しかしながら、傾斜算出部41が回転検光子法を用いて求めることができる傾斜角θaおよび方位角θbの各範囲は、傾斜角θa「0°〜90°」、方位角θb「0°〜180°」である。したがって、傾斜算出部41の算出結果を用いて傾斜面の傾斜を決定した場合には、複数の傾斜面の各傾斜方向の違いを識別できない虞がある。   Here, when one direction of the Z axis is an inclination angle θa = 0 ° and one direction of the X axis is an azimuth angle θb = 0 °, the inclination direction of the inclined surface of the workpiece W viewed from the camera 3 is the inclination angle θa. The range of “−90 ° to 90 °” and the azimuth angle θb “0 ° to 360 °” can be arbitrarily set. However, the ranges of the inclination angle θa and the azimuth angle θb that the inclination calculation unit 41 can obtain using the rotation analyzer method are the inclination angle θa “0 ° to 90 °” and the azimuth angle θb “0 ° to 180 °”. It is. Therefore, when the inclination of the inclined surface is determined using the calculation result of the inclination calculating unit 41, there is a possibility that the difference between the inclination directions of the plurality of inclined surfaces cannot be identified.

そこで、3次元演算部4の傾斜補正部42は、傾斜算出部41の算出結果を補正して、傾斜面の正しい傾斜を決定しており、以下、この傾斜補正について説明する。   Therefore, the inclination correction unit 42 of the three-dimensional calculation unit 4 corrects the calculation result of the inclination calculation unit 41 to determine the correct inclination of the inclined surface, and this inclination correction will be described below.

ワークWとして、図3、図4(a)(b)に示すワークW1を用いる。ワークW1は、Y軸方向において互いに対向する端面M3,M4(図3、図4(b)では、一端方向の端面M3のみを示す)が、上底が下底より短い台形形状となる。また、X軸方向において互いに対向する側面は、一方向へ傾斜する傾斜面M1と他方向へ傾斜するM2とで構成され、傾斜面M1,M2が、X−Y平面との間でなす内角は、「45°」である。   As the workpiece W, a workpiece W1 shown in FIGS. 3, 4A and 4B is used. The workpiece W1 has a trapezoidal shape in which end surfaces M3 and M4 facing each other in the Y-axis direction (only the end surface M3 in one end direction is shown in FIGS. 3 and 4B) are shorter in the upper base than in the lower base. Further, the side surfaces facing each other in the X-axis direction are configured by an inclined surface M1 inclined in one direction and M2 inclined in the other direction, and an inner angle formed between the inclined surfaces M1 and M2 with respect to the XY plane is , “45 °”.

そして、3次元演算部4は、傾斜角θa「−90°〜90°」、方位角θb「0°〜360°」の各範囲内で傾斜面がとり得る全ての傾斜方向を識別する必要がある。傾斜方向を識別する方法としては、「0°〜180°」の範囲にある方位角θbに対して、正の傾斜角θaと負の傾斜角θaとの両方を設定可能にすることによって、上記全ての傾斜方向を識別可能になる。そこで、本実施形態の傾斜補正部42は、傾斜角θa:「−90°〜90°」、方位角θb:「0°〜180°」の各範囲内で傾斜角θaおよび方位角θbを決定するものとする。   The three-dimensional calculation unit 4 needs to identify all the inclination directions that the inclined surface can take within the respective ranges of the inclination angle θa “−90 ° to 90 °” and the azimuth angle θb “0 ° to 360 °”. is there. As a method for identifying the inclination direction, by making it possible to set both the positive inclination angle θa and the negative inclination angle θa with respect to the azimuth angle θb in the range of “0 ° to 180 °”, All inclination directions can be identified. Therefore, the inclination correction unit 42 of the present embodiment determines the inclination angle θa and the azimuth angle θb within the respective ranges of the inclination angle θa: “−90 ° to 90 °” and the azimuth angle θb: “0 ° to 180 °”. It shall be.

さらに、ワークW1は、ワーク台座6の台座本体61上に固定されており、台座本体61は、Y軸方向に設けた回転軸62の軸周りに回転自在に構成されており、傾斜算出部41によって、台座本体61の回転制御が行われる。すなわち、ワーク台座6は、ワークW1を回転させることによって、カメラ3の撮像方向(Z軸)とワークW1の表面との相対角度を変化させる姿勢変化手段に相当する。   Further, the workpiece W1 is fixed on a pedestal main body 61 of the work pedestal 6, and the pedestal main body 61 is configured to be rotatable around an axis of a rotation shaft 62 provided in the Y-axis direction. Thus, rotation control of the pedestal main body 61 is performed. That is, the work base 6 corresponds to a posture changing unit that changes the relative angle between the imaging direction (Z axis) of the camera 3 and the surface of the work W1 by rotating the work W1.

まず、傾斜算出部41は、台座本体61を回転制御して、図5(a)(b)に示すようにワークW1の上面M5の法線方向をZ軸方向に一致させ(第1の状態)、この状態で上記偏光解析を行う。すなわち、第1の状態におけるワークW1の傾斜面M1,M2、上面M5について、表面片Snの法線ベクトルNの傾斜角θaおよび方位角θbをそれぞれ求める。なお以降、表面片Snの法線ベクトルNの傾斜角θaおよび方位角θbを、単に傾斜角θaおよび方位角θbと称す。   First, the inclination calculating unit 41 controls the rotation of the pedestal main body 61 so that the normal direction of the upper surface M5 of the workpiece W1 coincides with the Z-axis direction as shown in FIGS. 5A and 5B (first state). ) In this state, the polarization analysis is performed. That is, the inclination angle θa and the azimuth angle θb of the normal vector N of the surface piece Sn are obtained for the inclined surfaces M1 and M2 and the upper surface M5 of the workpiece W1 in the first state. Hereinafter, the inclination angle θa and the azimuth angle θb of the normal vector N of the surface piece Sn are simply referred to as the inclination angle θa and the azimuth angle θb.

図7(a)は、第1の状態において、傾斜算出部41が導出した傾斜面M1,M2における傾斜角θa11,θa21および方位角θb11,θb21を示す。傾斜面M1における傾斜角θa11(第1の傾斜角)は「45°」、方位角θb11(第1の方位角)は「0°」となり、傾斜面M2における傾斜角θa21(第1の傾斜角)も「45°」、方位角θb21(第1の方位角)も「0°」となる。すなわち、傾斜面M1,M2の各法線ベクトルN1,N2は、実際は互いに異なる方向に形成されるにも関わらず、図5(a)(b)中の法線ベクトルN1,N2aのように同一方向に形成されるかのような解析結果になる。   FIG. 7A shows the inclination angles θa11 and θa21 and the azimuth angles θb11 and θb21 on the inclined surfaces M1 and M2 derived by the inclination calculation unit 41 in the first state. The inclination angle θa11 (first inclination angle) on the inclined surface M1 is “45 °”, the azimuth angle θb11 (first azimuth angle) is “0 °”, and the inclination angle θa21 (first inclination angle) on the inclined surface M2 is set. ) Is also “45 °”, and the azimuth angle θb21 (first azimuth angle) is also “0 °”. That is, the normal vectors N1 and N2 of the inclined surfaces M1 and M2 are the same as the normal vectors N1 and N2a in FIGS. 5A and 5B, though they are actually formed in different directions. The analysis result is as if it is formed in the direction.

次に、傾斜算出部41は、台座本体61を回転制御して、図6(a)(b)に示すようにワークW1をY軸周りに回転角度θy=5°だけ回転(左回り)させ(第2の状態)、カメラ3の撮像方向(Z軸)とワークW1の表面との相対角度を変化させる。そして、この状態で上記偏光解析を行う。なお、回転角度θyは、傾斜角θaの計測精度より大きい値であって、且つできるだけ小さいほうが望ましい。   Next, the inclination calculating unit 41 controls the rotation of the pedestal main body 61 to rotate the workpiece W1 about the Y axis by the rotation angle θy = 5 ° (counterclockwise) as shown in FIGS. 6 (a) and 6 (b). (Second state), the relative angle between the imaging direction (Z-axis) of the camera 3 and the surface of the workpiece W1 is changed. Then, the polarization analysis is performed in this state. It is desirable that the rotation angle θy is larger than the measurement accuracy of the inclination angle θa and is as small as possible.

図7(b)は、第2の状態において、傾斜算出部41が導出した傾斜面M1,M2における傾斜角θa12,θa22および方位角θb12,θb22を示す。傾斜面M1における傾斜角θa12(第2の傾斜角)は「40°」、方位角θb12(第2の方位角)は「0°」となり、傾斜面M2における傾斜角θa22(第2の傾斜角)は「50°」、方位角θb22(第2の方位角)は「0°」となる。   FIG. 7B shows the inclination angles θa12 and θa22 and the azimuth angles θb12 and θb22 on the inclined surfaces M1 and M2 derived by the inclination calculation unit 41 in the second state. The inclination angle θa12 (second inclination angle) on the inclined surface M1 is “40 °”, the azimuth angle θb12 (second azimuth angle) is “0 °”, and the inclination angle θa22 (second inclination angle) on the inclined surface M2 is set. ) Is “50 °”, and the azimuth angle θb22 (second azimuth angle) is “0 °”.

そして、傾斜補正部42は、ワークW1の回転前(第1の状態)の傾斜角θaとワークW1の回転後(第2の状態)の傾斜角θaとの差に基づいて、傾斜角θaを補正しており、その補正結果を図7(c)に示す。   Then, the inclination correcting unit 42 determines the inclination angle θa based on the difference between the inclination angle θa before the rotation of the workpiece W1 (first state) and the inclination angle θa after the rotation of the workpiece W1 (second state). FIG. 7C shows the correction result.

具体的に、傾斜面M1では、傾斜角θa12が傾斜角θa11より減少している(θa11−θa12>0)。この場合、傾斜角θa11の符号を正に設定し、傾斜面M1における傾斜角θa10=θa11=45°とする。一方、傾斜面M2では、傾斜角θa22が傾斜角θa21より増加している(θa21−θa22<0)。この場合、傾斜角θa21の符号を負に設定し、傾斜面M2における傾斜角θa20=−θa21=−45°とする。   Specifically, in the inclined surface M1, the inclination angle θa12 is smaller than the inclination angle θa11 (θa11−θa12> 0). In this case, the sign of the inclination angle θa11 is set to be positive, and the inclination angle θa10 = θa11 = 45 ° in the inclined surface M1 is set. On the other hand, in the inclined surface M2, the inclination angle θa22 is larger than the inclination angle θa21 (θa21−θa22 <0). In this case, the sign of the inclination angle θa21 is set to be negative, and the inclination angle θa20 = −θa21 = −45 ° in the inclined surface M2 is set.

また、傾斜補正部42は、傾斜面M1における方位角θb10=θb11=0°とし、傾斜面M2における方位角θb20=θb21=0°とする。   Further, the inclination correcting unit 42 sets the azimuth angle θb10 = θb11 = 0 ° on the inclined surface M1 and the azimuth angle θb20 = θb21 = 0 ° on the inclined surface M2.

而して、傾斜補正部42は、傾斜面M1における傾斜データとして、傾斜角θa10および方位角θb10を作成し、傾斜面M2における傾斜データとして、傾斜角θa20および方位角θb20を作成する。   Thus, the inclination correction unit 42 creates the inclination angle θa10 and the azimuth angle θb10 as inclination data on the inclined plane M1, and creates the inclination angle θa20 and the azimuth angle θb20 as inclination data on the inclined plane M2.

3次元演算部4は、傾斜面M1,M2だけでなく、上面M5についても画素毎に上記傾斜算出処理および傾斜補正処理を行って表面片Snの傾斜を決定する。したがって、これらの表面片Snを連続させることによって、計測されたワークW1の3次元形状は、正しい法線ベクトルNが設定された傾斜面を有するものになる。なお、ワークW1の回転による傾斜角θaの増減と、傾斜角θaの符号(正または負)との関係は、実試験またはシミュレーション等によって予め導出しておく。   The three-dimensional calculation unit 4 determines the inclination of the surface piece Sn by performing the inclination calculation process and the inclination correction process for each pixel not only on the inclined surfaces M1 and M2 but also on the upper surface M5. Therefore, by making these surface pieces Sn continuous, the measured three-dimensional shape of the workpiece W1 has an inclined surface in which the correct normal vector N is set. The relationship between the increase / decrease in the tilt angle θa due to the rotation of the workpiece W1 and the sign (positive or negative) of the tilt angle θa is derived in advance by an actual test or simulation.

そして、傾斜補正部42は、ワークW1の3次元形状の計測データを表示部5へ出力し、表示部5は、傾斜補正部42から受け取った傾斜データに基づいて、ワークW1の外観図、寸法等の形状データとして表示する。   Then, the tilt correction unit 42 outputs the measurement data of the three-dimensional shape of the work W1 to the display unit 5, and the display unit 5 displays the external view and dimensions of the work W1 based on the tilt data received from the tilt correction unit 42. Are displayed as shape data.

このように、カメラ3の撮像方向(Z軸)とワークWの表面との相対角度を変化させることによって、傾斜算出部41が偏光解析によって算出した傾斜角は、傾斜補正部42によって補正される。したがって、ワークW1の3次元形状の計測結果は、傾斜面M1,M2の傾斜方向の違いを識別でき、傾斜面M1,M2を区別することが可能となる。すなわち、3次元計測装置A1は、偏光解析を用いながら、複数の傾斜面の各傾斜方向の違いを識別できる。   In this way, by changing the relative angle between the imaging direction (Z-axis) of the camera 3 and the surface of the workpiece W, the inclination angle calculated by the inclination calculation unit 41 through polarization analysis is corrected by the inclination correction unit 42. . Therefore, the measurement result of the three-dimensional shape of the workpiece W1 can identify the difference in the inclination direction of the inclined surfaces M1 and M2, and can distinguish the inclined surfaces M1 and M2. That is, the three-dimensional measurement apparatus A1 can identify the difference between the inclination directions of the plurality of inclined surfaces using the polarization analysis.

図8(a)(b)に示すワークW2を用いた場合も、上記同様に、傾斜面の各傾斜方向の違いを認識できる。   Even when the workpiece W2 shown in FIGS. 8A and 8B is used, the difference between the inclined directions of the inclined surface can be recognized as described above.

ワークW2は、2つの三角柱を連続して設けたものであり、Y軸方向において互いに対向する端面M15,M16(図8(b)では、一端方向の端面M15のみを示す)は、三角形を2つ並べた形状となる。そして、Y軸方向に平行に形成された4つの傾斜面M11〜M14を有しており、傾斜面M11,M12が三角形の1つの頂点を構成し、傾斜面M13,M14が三角形の1つの頂点を構成している。さらに、傾斜面M11,M13は互いに同一方向に傾斜し、傾斜面M12,M14は互いに同一方向に傾斜し、傾斜面M11,M13と傾斜面M12,M14とは互いに異なる方向に傾斜しており、傾斜面M11〜M14がX−Y平面との間でなす内角は、「30°」である。   The workpiece W2 is formed by continuously providing two triangular prisms, and the end faces M15 and M16 (only the end face M15 in one end direction shown in FIG. 8B) facing each other in the Y-axis direction are two triangles. It becomes the shape which arranged two. And it has four inclined surfaces M11-M14 formed in parallel with the Y-axis direction, the inclined surfaces M11, M12 constitute one vertex of the triangle, and the inclined surfaces M13, M14 are one vertex of the triangle. Is configured. Further, the inclined surfaces M11, M13 are inclined in the same direction, the inclined surfaces M12, M14 are inclined in the same direction, and the inclined surfaces M11, M13 and the inclined surfaces M12, M14 are inclined in different directions, The internal angle formed between the inclined surfaces M11 to M14 and the XY plane is “30 °”.

そして、傾斜算出部41は、台座本体61を回転制御して、図8(a)(b)に示すようにワークW2の底面の法線方向をZ軸方向に一致させ(第1の状態)、この状態で上記偏光解析を行う。すなわち、第1の状態におけるワークW2の傾斜面M11〜M14について、表面片Snの傾斜角θaおよび方位角θbをそれぞれ求める。   And the inclination calculation part 41 controls rotation of the base main body 61, and makes the normal direction of the bottom face of the workpiece | work W2 correspond to a Z-axis direction, as shown to Fig.8 (a) (b) (1st state). In this state, the polarization analysis is performed. That is, the inclination angle θa and the azimuth angle θb of the surface piece Sn are obtained for the inclined surfaces M11 to M14 of the workpiece W2 in the first state.

図10(a)は、第1の状態において、傾斜算出部41が導出した傾斜面M11〜M14における傾斜角θa111,θa121,θa131,θa141、および方位角θb111,θb121,θb131,θb141を示す。傾斜面M11〜M14における各傾斜角θa111〜θa141(第1の傾斜角)は「30°」、各方位角θb111〜θb141(第1の方位角)は「0°」となる。すなわち、傾斜面M11,M13の各法線ベクトルN11,N13と傾斜面M12,M14の各法線ベクトルN12,N14とは、実際は互いに異なる方向に形成されるにも関わらず、図8(a)(b)中の法線ベクトルN11a,N12,N13a,N14のように同一方向に形成されるかのような解析結果になる。   FIG. 10A shows the inclination angles θa111, θa121, θa131, θa141 and the azimuth angles θb111, θb121, θb131, θb141 in the inclined surfaces M11 to M14 derived by the inclination calculation unit 41 in the first state. The inclination angles θa111 to θa141 (first inclination angles) on the inclined surfaces M11 to M14 are “30 °”, and the azimuth angles θb111 to θb141 (first azimuth angles) are “0 °”. That is, although the normal vectors N11 and N13 of the inclined surfaces M11 and M13 and the normal vectors N12 and N14 of the inclined surfaces M12 and M14 are actually formed in different directions, FIG. The analysis results are as if they were formed in the same direction as the normal vectors N11a, N12, N13a, and N14 in (b).

次に、傾斜算出部41は、台座本体61を回転制御して、図9(a)(b)に示すようにワークW2をY軸周りに回転角度θy=5°だけ回転(左回り)させ(第2の状態)、カメラ3の撮像方向(Z軸)とワークW2の表面との相対角度を変化させる。そして、この状態で上記偏光解析を行う。すなわち、第2の状態におけるワークW2の傾斜面M11〜M14について、表面片Snの傾斜角θaおよび方位角θbをそれぞれ求める。   Next, the inclination calculating unit 41 controls the rotation of the pedestal main body 61 to rotate the workpiece W2 about the Y axis by a rotation angle θy = 5 ° (counterclockwise) as shown in FIGS. 9 (a) and 9 (b). (Second state), the relative angle between the imaging direction (Z-axis) of the camera 3 and the surface of the workpiece W2 is changed. Then, the polarization analysis is performed in this state. That is, regarding the inclined surfaces M11 to M14 of the workpiece W2 in the second state, the inclination angle θa and the azimuth angle θb of the surface piece Sn are obtained, respectively.

図10(b)は、第2の状態において、傾斜算出部41が導出した傾斜面M11〜M14における傾斜角θaおよび方位角θbを示す。傾斜面M11,M13における各傾斜角θa112,θa132(第2の傾斜角)は「35°」、方位角θb112,θb132(第2の方位角)は「0°」となる。また、傾斜面M12,M14における各傾斜角θa122,θa142(第2の傾斜角)は「25°」、方位角θb122,θb142(第2の方位角)は「0°」となる。   FIG. 10B shows the inclination angle θa and the azimuth angle θb in the inclined surfaces M11 to M14 derived by the inclination calculation unit 41 in the second state. The inclination angles θa112 and θa132 (second inclination angle) on the inclined surfaces M11 and M13 are “35 °”, and the azimuth angles θb112 and θb132 (second azimuth angle) are “0 °”. Further, the inclination angles θa122 and θa142 (second inclination angle) on the inclined surfaces M12 and M14 are “25 °”, and the azimuth angles θb122 and θb142 (second azimuth angle) are “0 °”.

そして、傾斜補正部42は、ワークW2の回転前(第1の状態)の傾斜角θaとワークW2の回転後(第2の状態)の傾斜角θaとの差に基づいて、傾斜角θaを補正しており、その補正結果を図10(c)に示す。   Then, the inclination correction unit 42 determines the inclination angle θa based on the difference between the inclination angle θa before the rotation of the workpiece W2 (first state) and the inclination angle θa after the rotation of the workpiece W2 (second state). FIG. 10C shows the correction result.

具体的に、傾斜面M11では、傾斜角θa112が傾斜角θa111より増加している(θa111−θa112<0)。この場合、傾斜角θa111の符号を負に設定し、傾斜面M11における傾斜角θa110=−θa111=−30°とする。傾斜面M13も同様に、傾斜角θa132が傾斜角θa131より増加しているので(θa131−θa132<0)、傾斜角θa131の符号を負に設定し、傾斜面M13における傾斜角θa130=−θa131=−30°とする。   Specifically, in the inclined surface M11, the inclination angle θa112 is larger than the inclination angle θa111 (θa111−θa112 <0). In this case, the sign of the inclination angle θa111 is set to be negative, and the inclination angle θa110 = −θa111 = −30 ° in the inclined surface M11 is set. Similarly, since the inclination angle θa132 of the inclined surface M13 is larger than the inclination angle θa131 (θa131−θa132 <0), the sign of the inclination angle θa131 is set to be negative, and the inclination angle θa130 = −θa131 = -30 °.

傾斜面M12では、傾斜角θa122が傾斜角θa121より減少している(θa121−θa122>0)。この場合、傾斜角θa121の符号を正に設定し、傾斜面M12における傾斜角θa120=θa121=30°とする。傾斜面M14も同様に、傾斜角θa142が傾斜角θa141より減少しているので(θa141−θa142>0)、傾斜角θa141の符号を正に設定し、傾斜面M14における傾斜角θa140=θa141=30°とする。   In the inclined surface M12, the inclination angle θa122 is smaller than the inclination angle θa121 (θa121−θa122> 0). In this case, the sign of the inclination angle θa121 is set to be positive, and the inclination angle θa120 = θa121 = 30 ° in the inclined surface M12 is set. Similarly, since the tilt angle θa142 is smaller than the tilt angle θa141 (θa141−θa142> 0), the sign of the tilt angle θa141 is set to be positive, and the tilt angle θa140 = θa141 = 30 on the tilted surface M14. °.

また、傾斜補正部42は、傾斜面M11における方位角θb110=θb111=0°、傾斜面M12における方位角θb120=θb121=0°、傾斜面M13における方位角θb130=θb131=0°、傾斜面M14における方位角θb140=θb141=0°とする。   Further, the inclination correction unit 42 has an azimuth angle θb110 = θb111 = 0 ° on the inclined surface M11, an azimuth angle θb120 = θb121 = 0 ° on the inclined surface M12, an azimuth angle θb130 = θb131 = 0 ° on the inclined surface M13, and the inclined surface M14. At azimuth angle θb140 = θb141 = 0 °.

而して、傾斜補正部42は、傾斜面M11における傾斜データとして、傾斜角θa110および方位角θb110を作成し、傾斜面M12における傾斜データとして、傾斜角θa120および方位角θb120を作成する。さらに傾斜補正部42は、傾斜面M13における傾斜データとして、傾斜角θa130および方位角θb130を作成し、傾斜面M14における傾斜データとして、傾斜角θa140および方位角θb140を作成する。   Thus, the tilt correction unit 42 creates the tilt angle θa110 and the azimuth angle θb110 as the tilt data on the tilted surface M11, and creates the tilt angle θa120 and the azimuth angle θb120 as the tilt data on the tilted surface M12. Furthermore, the inclination correction unit 42 creates the inclination angle θa130 and the azimuth angle θb130 as inclination data on the inclined plane M13, and creates the inclination angle θa140 and the azimuth angle θb140 as inclination data on the inclined plane M14.

3次元演算部4は、画素毎に上記傾斜算出処理および傾斜補正処理を行って表面片Snの傾斜を決定する。したがって、これらの表面片Snを連続させることによって、計測されたワークW2の3次元形状は、正しい法線ベクトルNが設定された傾斜面を有するものになる。なお、ワークW2の回転による傾斜角θaの増減と、傾斜角θaの符号(正または負)との関係は、実試験またはシミュレーション等によって予め導出しておく。   The three-dimensional calculation unit 4 determines the inclination of the surface piece Sn by performing the inclination calculation process and the inclination correction process for each pixel. Therefore, by making these surface pieces Sn continuous, the measured three-dimensional shape of the workpiece W2 has an inclined surface in which the correct normal vector N is set. The relationship between the increase / decrease in the tilt angle θa due to the rotation of the workpiece W2 and the sign (positive or negative) of the tilt angle θa is derived in advance by an actual test or simulation.

そして、傾斜補正部42は、ワークW2の3次元形状の計測データを表示部5へ出力し、表示部5は、傾斜補正部42から受け取った傾斜データに基づいて、ワークW2の外観図、寸法等の形状データとして表示する。   Then, the tilt correction unit 42 outputs the measurement data of the three-dimensional shape of the workpiece W2 to the display unit 5, and the display unit 5 displays the external view and dimensions of the workpiece W2 based on the tilt data received from the tilt correction unit 42. Are displayed as shape data.

(実施形態2)
本実施形態の3次元計測装置A1は、3次元演算部4の傾斜補正部42による傾斜補正処理が実施形態1と異なるものであり、実施形態1と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 2)
The three-dimensional measurement apparatus A1 of the present embodiment is different from the first embodiment in the inclination correction processing by the inclination correction unit 42 of the three-dimensional calculation unit 4, and the same components as those in the first embodiment are denoted by the same reference numerals. Description is omitted.

3次元演算部4は、傾斜角θa「−90°〜90°」、方位角θb「0°〜360°」の各範囲内で傾斜面がとり得る全ての傾斜方向を識別する必要がある。傾斜方向を識別する方法としては、「0°〜90°」の範囲にある傾斜角θaを、方位角θbの全周(0°〜360°)に亘って設定可能にすることによって、上記全ての傾斜方向を識別可能になる。そこで、本実施形態の傾斜補正部42は、傾斜角θa:「0°〜90°」、方位角θb:「0°〜360°」の各範囲内で傾斜角θaおよび方位角θbを決定するものとする。   The three-dimensional calculation unit 4 needs to identify all inclination directions that the inclined surface can take within the respective ranges of the inclination angle θa “−90 ° to 90 °” and the azimuth angle θb “0 ° to 360 °”. As a method for identifying the inclination direction, the inclination angle θa in the range of “0 ° to 90 °” can be set over the entire circumference (0 ° to 360 °) of the azimuth angle θb. Can be identified. Therefore, the inclination correction unit 42 of this embodiment determines the inclination angle θa and the azimuth angle θb within the respective ranges of the inclination angle θa: “0 ° to 90 °” and the azimuth angle θb: “0 ° to 360 °”. Shall.

まず、傾斜算出部41は、台座本体61を回転制御して、図5(a)(b)に示すようにワークW1の上面M5の法線方向をZ軸方向に一致させ(第1の状態)、この状態で上記偏光解析を行う。すなわち、第1の状態におけるワークW1の傾斜面M1,M2、上面M5について、表面片Snの傾斜角θaおよび方位角θbをそれぞれ求める。図11(a)は、第1の状態において、傾斜算出部41が導出した傾斜面M1,M2の各表面片Snの傾斜角θa11,θa21および方位角θb11,θb21を示す。なお、図11(a)に示す導出結果は、図7(a)と同様であり、説明は省略する。   First, the inclination calculating unit 41 controls the rotation of the pedestal main body 61 so that the normal direction of the upper surface M5 of the workpiece W1 coincides with the Z-axis direction as shown in FIGS. 5A and 5B (first state). ) In this state, the polarization analysis is performed. That is, the inclination angle θa and the azimuth angle θb of the surface piece Sn are obtained for the inclined surfaces M1 and M2 and the upper surface M5 of the workpiece W1 in the first state. FIG. 11A shows the inclination angles θa11 and θa21 and the azimuth angles θb11 and θb21 of the surface pieces Sn of the inclined surfaces M1 and M2 derived by the inclination calculation unit 41 in the first state. Note that the derivation result shown in FIG. 11A is the same as that in FIG.

次に、傾斜算出部41は、台座本体61を回転制御して、図6(a)(b)に示すようにワークW1をY軸周りに回転角度θy=5°だけ回転(左回り)させ(第2の状態)、カメラ3の撮像方向(Z軸)とワークW1の表面との相対角度を変化させる。そして、この状態で上記偏光解析を行う。図11(b)は、第2の状態において、傾斜算出部41が導出した傾斜面M1,M2の各表面片Snの傾斜角θa12,θa22および方位角θb12,θb22を示す。なお、図11(b)に示す導出結果は、図7(b)と同様であり、説明は省略する。   Next, the inclination calculating unit 41 controls the rotation of the pedestal main body 61 to rotate the workpiece W1 about the Y axis by the rotation angle θy = 5 ° (counterclockwise) as shown in FIGS. 6 (a) and 6 (b). (Second state), the relative angle between the imaging direction (Z-axis) of the camera 3 and the surface of the workpiece W1 is changed. Then, the polarization analysis is performed in this state. FIG. 11B shows the inclination angles θa12 and θa22 and the azimuth angles θb12 and θb22 of the surface pieces Sn of the inclined surfaces M1 and M2 derived by the inclination calculation unit 41 in the second state. Note that the derivation result shown in FIG. 11B is the same as that in FIG. 7B, and a description thereof will be omitted.

そして、傾斜補正部42は、ワークW1の回転前(第1の状態)の傾斜角θaとワークW1の回転後(第2の状態)の傾斜角θaとの差に基づいて、方位角θbを補正しており、その補正結果を図11(c)に示す。   Then, the inclination correcting unit 42 sets the azimuth angle θb based on the difference between the inclination angle θa before the rotation of the workpiece W1 (first state) and the inclination angle θa after the rotation of the workpiece W1 (second state). FIG. 11C shows the correction result.

具体的に、傾斜面M1では、傾斜角θa12が傾斜角θa11より減少している(θa11−θa12>0)。この場合、方位角θb11を補正せず、傾斜面M1における方位角θb10=θb11=0°とする。一方、傾斜面M2では、傾斜角θa22が傾斜角θa21より増加している(θa21−θa22<0)。この場合、方位角θb21に180°を加算し、傾斜面M2における方位角θb20=θb21+180°=180°とする。   Specifically, in the inclined surface M1, the inclination angle θa12 is smaller than the inclination angle θa11 (θa11−θa12> 0). In this case, the azimuth angle θb11 is not corrected, and the azimuth angle θb10 = θb11 = 0 ° on the inclined surface M1. On the other hand, in the inclined surface M2, the inclination angle θa22 is larger than the inclination angle θa21 (θa21−θa22 <0). In this case, 180 ° is added to the azimuth angle θb21, and the azimuth angle θb20 = θb21 + 180 ° = 180 ° in the inclined surface M2.

また、傾斜補正部42は、傾斜面M1における傾斜角θa10=θa11=45°とし、傾斜面M2における傾斜角θa20=θa21=45°とする。   Further, the inclination correction unit 42 sets the inclination angle θa10 = θa11 = 45 ° on the inclined surface M1 and the inclination angle θa20 = θa21 = 45 ° on the inclined surface M2.

而して、傾斜補正部42は、傾斜面M1における傾斜データとして、傾斜角θa10および方位角θb10を作成し、傾斜面M2における傾斜データとして、傾斜角θa20および方位角θb20を作成する。   Thus, the inclination correction unit 42 creates the inclination angle θa10 and the azimuth angle θb10 as inclination data on the inclined plane M1, and creates the inclination angle θa20 and the azimuth angle θb20 as inclination data on the inclined plane M2.

3次元演算部4は、傾斜面M1,M2だけでなく、上面M5についても画素毎に上記傾斜算出処理および傾斜補正処理を行って表面片Snの傾斜を決定する。したがって、これらの表面片Snを連続させることによって、計測されたワークW1の3次元形状は、正しい法線ベクトルNが設定された傾斜面を有するものになる。なお、ワークW1の回転による傾斜角θaの増減と、方位角θbの補正量(0°または+180°)との関係は、実試験またはシミュレーション等によって予め導出しておく。   The three-dimensional calculation unit 4 determines the inclination of the surface piece Sn by performing the inclination calculation process and the inclination correction process for each pixel not only on the inclined surfaces M1 and M2 but also on the upper surface M5. Therefore, by making these surface pieces Sn continuous, the measured three-dimensional shape of the workpiece W1 has an inclined surface in which the correct normal vector N is set. The relationship between the increase / decrease in the tilt angle θa due to the rotation of the workpiece W1 and the correction amount (0 ° or + 180 °) of the azimuth angle θb is derived in advance by an actual test or simulation.

そして、傾斜補正部42は、ワークW1の3次元形状の計測データを表示部5へ出力し、表示部5は、傾斜補正部42から受け取った傾斜データに基づいて、ワークW1の外観図、寸法等の形状データとして表示する。   Then, the tilt correction unit 42 outputs the measurement data of the three-dimensional shape of the work W1 to the display unit 5, and the display unit 5 displays the external view and dimensions of the work W1 based on the tilt data received from the tilt correction unit 42. Are displayed as shape data.

このように、カメラ3の撮像方向(Z軸)とワークWの表面との相対角度を変化させることによって、傾斜算出部41が偏光解析によって算出した方位角は、傾斜補正部42によって補正される。したがって、ワークW1の3次元形状の計測結果は、傾斜面M1,M2の傾斜方向の違いを識別でき、傾斜面M1,M2を区別することが可能となる。すなわち、3次元計測装置A1は、偏光解析を用いながら、複数の傾斜面の各傾斜方向の違いを識別できる。   Thus, by changing the relative angle between the imaging direction (Z-axis) of the camera 3 and the surface of the workpiece W, the azimuth angle calculated by the tilt calculation unit 41 by the polarization analysis is corrected by the tilt correction unit 42. . Therefore, the measurement result of the three-dimensional shape of the workpiece W1 can identify the difference in the inclination direction of the inclined surfaces M1 and M2, and can distinguish the inclined surfaces M1 and M2. That is, the three-dimensional measurement apparatus A1 can identify the difference between the inclination directions of the plurality of inclined surfaces using the polarization analysis.

図8(a)(b)に示すワークW2を用いた場合も、上記同様に、傾斜面の各傾斜方向の違いを認識できる。   Even when the workpiece W2 shown in FIGS. 8A and 8B is used, the difference between the inclined directions of the inclined surface can be recognized as described above.

まず、傾斜算出部41は、台座本体61を回転制御して、図8(a)(b)に示すようにワークW2の底面の法線方向をZ軸方向に一致させ(第1の状態)、この状態で上記偏光解析を行う。すなわち、第1の状態におけるワークW2の傾斜面M11〜M14について、表面片Snの傾斜角θaおよび方位角θbをそれぞれ求める。図12(a)は、第1の状態において、傾斜算出部41が導出した傾斜面M11〜M14の各表面片Snの傾斜角θa111,θa121,θa131,θa141、および方位角θb111,θb121,θb131,θb141を示す。なお、図12(a)に示す導出結果は、図10(a)と同様であり、説明は省略する。   First, the inclination calculating unit 41 controls the rotation of the pedestal main body 61 so that the normal direction of the bottom surface of the workpiece W2 coincides with the Z-axis direction as shown in FIGS. 8A and 8B (first state). In this state, the polarization analysis is performed. That is, the inclination angle θa and the azimuth angle θb of the surface piece Sn are obtained for the inclined surfaces M11 to M14 of the workpiece W2 in the first state. FIG. 12A shows the inclination angles θa111, θa121, θa131, θa141, and azimuth angles θb111, θb121, θb131, and the surface pieces Sn of the inclined surfaces M11 to M14 derived by the inclination calculation unit 41 in the first state. θb141 is shown. Note that the derivation result shown in FIG. 12A is the same as that in FIG.

次に、傾斜算出部41は、台座本体61を回転制御して、図9(a)(b)に示すようにワークW2をY軸周りに回転角度θy=5°だけ回転(左回り)させ(第2の状態)、カメラ3の撮像方向(Z軸)とワークW2の表面との相対角度を変化させる。そして、この状態で上記偏光解析を行う。すなわち、第2の状態におけるワークW2の傾斜面M11〜M14について、表面片Snの傾斜角θaおよび方位角θbをそれぞれ求める。図12(b)は、第2の状態において、傾斜算出部41が導出した傾斜面M11〜M14の各表面片Snの傾斜角θa112,θa122,θa132,θa142、および方位角θb112,θb122,θb132,θb142を示す。なお、図12(b)に示す導出結果は、図10(b)と同様であり、説明は省略する。   Next, the inclination calculating unit 41 controls the rotation of the pedestal main body 61 to rotate the workpiece W2 about the Y axis by a rotation angle θy = 5 ° (counterclockwise) as shown in FIGS. 9 (a) and 9 (b). (Second state), the relative angle between the imaging direction (Z-axis) of the camera 3 and the surface of the workpiece W2 is changed. Then, the polarization analysis is performed in this state. That is, regarding the inclined surfaces M11 to M14 of the workpiece W2 in the second state, the inclination angle θa and the azimuth angle θb of the surface piece Sn are obtained, respectively. FIG. 12B shows the inclination angles θa112, θa122, θa132, θa142, and azimuth angles θb112, θb122, θb132, θb142 is shown. Note that the derivation result shown in FIG. 12B is the same as that in FIG.

そして、傾斜補正部42は、ワークW2の回転前(第1の状態)の傾斜角θaとワークW2の回転後(第2の状態)の傾斜角θaとの差に基づいて、方位角θbを補正しており、その補正結果を図12(c)に示す。   Then, the inclination correction unit 42 sets the azimuth angle θb based on the difference between the inclination angle θa before the rotation of the workpiece W2 (first state) and the inclination angle θa after the rotation of the workpiece W2 (second state). FIG. 12C shows the correction result.

具体的に、傾斜面M11では、傾斜角θa112が傾斜角θa111より増加している(θa111−θa112<0)。この場合、方位角θb111に180°を加算し、傾斜面M11における方位角θb110=θb111+180°=180°とする。傾斜面M13も同様に、傾斜角θa132が傾斜角θa131より増加しているので(θa131−θa132<0)、方位角θb131に180°を加算し、傾斜面M13における方位角θb130=θb131+180°=180°とする。   Specifically, in the inclined surface M11, the inclination angle θa112 is larger than the inclination angle θa111 (θa111−θa112 <0). In this case, 180 ° is added to the azimuth angle θb111, and the azimuth angle θb110 = θb111 + 180 ° = 180 ° in the inclined plane M11. Similarly, since the inclination angle θa132 of the inclined surface M13 is larger than the inclination angle θa131 (θa131−θa132 <0), 180 ° is added to the azimuth angle θb131, and the azimuth angle θb130 = θb131 + 180 ° = 180 in the inclined surface M13. °.

傾斜面M12では、傾斜角θa122が傾斜角θa121より減少している(θa121−θa122>0)。この場合、方位角θb121を補正せず、傾斜面M12における方位角θb120=θb121=0°とする。傾斜面M14も同様に、傾斜角θa142が傾斜角θa141より減少しているので(θa141−θa142>0)、方位角θb141を補正せず、傾斜面M14における方位角θb140=θb141=0°とする。   In the inclined surface M12, the inclination angle θa122 is smaller than the inclination angle θa121 (θa121−θa122> 0). In this case, the azimuth angle θb121 is not corrected, and the azimuth angle θb120 = θb121 = 0 ° in the inclined surface M12 is set. Similarly, in the inclined surface M14, since the inclination angle θa142 is smaller than the inclination angle θa141 (θa141-θa142> 0), the azimuth angle θb141 is not corrected, and the azimuth angle θb140 = θb141 = 0 ° in the inclined surface M14. .

また、傾斜補正部42は、傾斜面M11における傾斜角θa110=θa111=30°、傾斜面M12における傾斜角θa120=θa121=30°、傾斜面M13における傾斜角θa130=θa131=30°、傾斜面M14における傾斜角θa140=θa141=30°とする。   In addition, the inclination correcting unit 42 has an inclination angle θa110 = θa111 = 30 ° on the inclined surface M11, an inclination angle θa120 = θa121 = 30 ° on the inclined surface M12, an inclination angle θa130 = θa131 = 30 ° on the inclined surface M13, and an inclined surface M14. Inclination angle θa140 = θa141 = 30 °.

而して、傾斜補正部42は、傾斜面M11における傾斜データとして、傾斜角θa110および方位角θb110を作成し、傾斜面M12における傾斜データとして、傾斜角θa120および方位角θb120を作成する。さらに傾斜補正部42は、傾斜面M13における傾斜データとして、傾斜角θa130および方位角θb130を作成し、傾斜面M14における傾斜データとして、傾斜角θa140および方位角θb140を作成する。   Thus, the tilt correction unit 42 creates the tilt angle θa110 and the azimuth angle θb110 as the tilt data on the tilted surface M11, and creates the tilt angle θa120 and the azimuth angle θb120 as the tilt data on the tilted surface M12. Furthermore, the inclination correction unit 42 creates the inclination angle θa130 and the azimuth angle θb130 as inclination data on the inclined plane M13, and creates the inclination angle θa140 and the azimuth angle θb140 as inclination data on the inclined plane M14.

3次元演算部4は、画素毎に上記傾斜算出処理および傾斜補正処理を行って表面片Snの傾斜を決定する。したがって、これらの表面片Snを連続させることによって、計測されたワークW2の3次元形状は、正しい法線ベクトルNが設定された傾斜面を有するものになる。なお、ワークW2の回転による傾斜角θaの増減と、方位角θbの補正量(0°または+180°)との関係は、実試験またはシミュレーション等によって予め導出しておく。   The three-dimensional calculation unit 4 determines the inclination of the surface piece Sn by performing the inclination calculation process and the inclination correction process for each pixel. Therefore, by making these surface pieces Sn continuous, the measured three-dimensional shape of the workpiece W2 has an inclined surface in which the correct normal vector N is set. The relationship between the increase / decrease in the tilt angle θa due to the rotation of the workpiece W2 and the correction amount (0 ° or + 180 °) of the azimuth angle θb is derived in advance by an actual test or simulation.

そして、傾斜補正部42は、ワークW2の3次元形状の計測データを表示部5へ出力し、表示部5は、傾斜補正部42から受け取った傾斜データに基づいて、ワークW2の外観図、寸法等の形状データとして表示する。   Then, the tilt correction unit 42 outputs the measurement data of the three-dimensional shape of the workpiece W2 to the display unit 5, and the display unit 5 displays the external view and dimensions of the workpiece W2 based on the tilt data received from the tilt correction unit 42. Are displayed as shape data.

(実施形態3)
図13は、本実施形態の3次元計測装置A2の構成を示し、3次元計測装置A2は、照明部1と、直線偏光板2と、カメラ3(撮像装置)と、3次元演算部4と、表示部5と、カメラ台座7(姿勢変化手段)とで構成される。なお、実施形態1,2と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 3)
FIG. 13 shows the configuration of the three-dimensional measurement apparatus A2 of this embodiment. The three-dimensional measurement apparatus A2 includes an illumination unit 1, a linearly polarizing plate 2, a camera 3 (imaging device), a three-dimensional calculation unit 4, and the like. The display unit 5 and the camera pedestal 7 (posture changing means). In addition, the same code | symbol is attached | subjected to the structure similar to Embodiment 1, 2, and description is abbreviate | omitted.

カメラ3は、カメラ台座7の台座本体71上に固定されており、台座本体71は、Y軸方向に設けた回転軸72の軸周りに回転自在に構成されており、傾斜算出部41によって、台座本体71の回転制御が行われる。すなわち、カメラ台座7は、カメラ3を回転させることによって、カメラ3の撮像方向(Z軸)とワークWの表面との相対角度を変化させる姿勢変化手段に相当する。   The camera 3 is fixed on a pedestal main body 71 of the camera pedestal 7, and the pedestal main body 71 is configured to be rotatable around the rotation axis 72 provided in the Y-axis direction. The rotation control of the pedestal main body 71 is performed. That is, the camera pedestal 7 corresponds to posture changing means for changing the relative angle between the imaging direction (Z axis) of the camera 3 and the surface of the workpiece W by rotating the camera 3.

そして、カメラ台座7によって、カメラ3の撮像方向とワークWの表面との相対角度を変化させることができるので、実施形態1,2と同様に、3次元演算部4の傾斜補正部42による傾斜補正処理を行うことができる。   Since the camera base 7 can change the relative angle between the imaging direction of the camera 3 and the surface of the workpiece W, the tilt by the tilt correction unit 42 of the three-dimensional calculation unit 4 is the same as in the first and second embodiments. Correction processing can be performed.

したがって、ワークWの3次元形状の計測結果は、実施形態1,2と同様に傾斜面の傾斜方向の違いを識別でき、傾斜面を区別することが可能となる。すなわち、3次元計測装置A2は、偏光解析を用いながら、複数の傾斜面の各傾斜方向の違いを識別できる。   Therefore, the measurement result of the three-dimensional shape of the workpiece W can identify the difference in the inclination direction of the inclined surface as in the first and second embodiments, and can distinguish the inclined surface. In other words, the three-dimensional measuring apparatus A2 can identify the difference in the inclination directions of the plurality of inclined surfaces while using the polarization analysis.

A1 3次元計測装置
1 照明部
2 直線偏光板
3 カメラ(撮像装置)
4 3次元演算部
41 傾斜算出部
42 傾斜補正部
5 表示部
6 ワーク台座(姿勢変化手段)
W ワーク(被計測物)
A1 3D measuring device 1 Illumination unit 2 Linear polarizing plate 3 Camera (imaging device)
4 Three-dimensional calculation part 41 Inclination calculation part 42 Inclination correction part 5 Display part 6 Work base (attitude change means)
W Workpiece (object to be measured)

Claims (6)

半球の椀状の照射面から、前記照射面の開口の略中心に配置した被計測物の表面へ円偏光の第1の光を照射する照明装置と、
前記被計測物の表面で第1の光が反射して形成される第2の光を撮像した撮像データを生成する撮像装置と、
前記撮像装置の撮像方向と前記被計測物の表面との相対角度を変化させる姿勢変化手段と、
前記姿勢変化手段によって前記相対角度を第1の状態に設定して前記撮像装置が生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第1の傾斜角および第1の方位角を求め、前記姿勢変化手段によって前記相対角度を前記第1の状態から第2の状態に変化させた後に前記撮像装置が生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第2の傾斜角および第2の方位角を求め、前記第1の傾斜角と前記第2の傾斜角との差に基づいて、前記第1の傾斜角を補正する3次元演算部と
を備え
前記3次元演算部は、前記第1の傾斜角と前記第2の傾斜角との差に応じて前記第1の傾斜角の正負の符号を決定することによって、前記第1の傾斜角を補正する
ことを特徴とする3次元計測装置。
From bowl-shaped irradiation surface of a hemisphere, a lighting device for morphism the first light to the surface of the circular polarization of the object to be measured which is located approximately at the center of an opening of the irradiated surface irradiation,
An imaging device for generating imaging data obtained by imaging the second light formed by reflecting the first light on the surface of the measurement object;
Posture changing means for changing a relative angle between the imaging direction of the imaging device and the surface of the object to be measured;
Based on the imaging data generated by the imaging device with the relative angle set to the first state by the posture changing means, the azimuth angle and elliptical angle of the polarization ellipse as the polarization state of the elliptically polarized light of the second light And detecting a first tilt angle and a first azimuth angle of the surface of the object to be measured based on the detected polarization state, and changing the relative angle from the first state by the posture changing means. Based on the imaging data generated by the imaging device after being changed to the second state, the azimuth angle and ellipticity ratio of the polarization ellipse are detected as the polarization state of the elliptically polarized light of the second light, and this detection is performed. Based on the polarization state, the second tilt angle and the second azimuth angle of the surface of the object to be measured are obtained, and based on the difference between the first tilt angle and the second tilt angle, the first tilt angle is calculated. A three-dimensional calculation unit that corrects the tilt angle of Prepared ,
The three-dimensional calculation unit corrects the first inclination angle by determining a positive or negative sign of the first inclination angle according to a difference between the first inclination angle and the second inclination angle. A three-dimensional measuring apparatus characterized by:
半球の椀状の照射面から、前記照射面の開口の略中心に配置した被計測物の表面へ円偏光の第1の光を照射する照明装置と、An illumination device that irradiates a circularly polarized first light from a hemispherical bowl-shaped irradiation surface to a surface of an object to be measured disposed substantially at the center of the opening of the irradiation surface;
前記被計測物の表面で第1の光が反射して形成される第2の光を撮像した撮像データを生成する撮像装置と、An imaging device for generating imaging data obtained by imaging the second light formed by reflecting the first light on the surface of the measurement object;
前記撮像装置の撮像方向と前記被計測物の表面との相対角度を変化させる姿勢変化手段と、Posture changing means for changing a relative angle between the imaging direction of the imaging device and the surface of the object to be measured;
前記姿勢変化手段によって前記相対角度を第1の状態に設定して前記撮像装置が生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第1の傾斜角および第1の方位角を求め、前記姿勢変化手段によって前記相対角度を前記第1の状態から第2の状態に変化させた後に前記撮像装置が生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第2の傾斜角および第2の方位角を求め、前記第1の傾斜角と前記第2の傾斜角との差に基づいて、前記第1の方位角を補正する3次元演算部とBased on the imaging data generated by the imaging device with the relative angle set to the first state by the posture changing means, the azimuth angle and elliptical angle of the polarization ellipse as the polarization state of the elliptically polarized light of the second light And detecting a first tilt angle and a first azimuth angle of the surface of the object to be measured based on the detected polarization state, and changing the relative angle from the first state by the posture changing means. Based on the imaging data generated by the imaging device after being changed to the second state, the azimuth angle and ellipticity ratio of the polarization ellipse are detected as the polarization state of the elliptically polarized light of the second light, and this detection is performed. Based on the polarization state, the second tilt angle and the second azimuth angle of the surface of the object to be measured are obtained, and based on the difference between the first tilt angle and the second tilt angle, the first tilt angle is calculated. A three-dimensional calculation unit for correcting the azimuth angle of
を備え、With
前記3次元演算部は、前記第1の傾斜角と前記第2の傾斜角との差に応じて前記第1の方位角を180°ずらすことによって、前記第1の方位角を補正するThe three-dimensional calculation unit corrects the first azimuth angle by shifting the first azimuth angle by 180 degrees according to a difference between the first tilt angle and the second tilt angle.
ことを特徴とする3次元計測装置。A three-dimensional measuring apparatus characterized by that.
前記姿勢変化手段は、前記被計測物を回転させることによって、前記撮像装置の撮像方向と前記被計測物の表面との相対角度を変化させることを特徴とする請求項1または2記載の3次元計測装置。 The orientation change means, said by rotating the measurement object, three-dimensional claim 1 or 2, wherein changing the relative angle between the surface of the imaging direction said object to be measured of the imaging device Measuring device. 前記姿勢変化手段は、前記撮像装置を回転させることによって、前記撮像装置の撮像方向と前記被計測物の表面との相対角度を変化させることを特徴とする請求項1または2記載の3次元計測装置。3. The three-dimensional measurement according to claim 1, wherein the posture changing unit changes a relative angle between an imaging direction of the imaging device and a surface of the measurement object by rotating the imaging device. apparatus. 半球の椀状の照射面から、前記照射面の開口の略中心に配置した被計測物の表面へ円偏光の第1の光を照射し、前記被計測物の表面で第1の光が反射して形成される第2の光を撮像した撮像データを生成し、前記撮像データに基づいて、前記第2の光の偏光状態を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の傾斜角および方位角を求める3次元計測方法において、The circularly polarized first light is irradiated from the hemispherical bowl-shaped irradiation surface to the surface of the object to be measured disposed at the approximate center of the opening of the irradiation surface, and the first light is reflected by the surface of the object to be measured. Imaging data obtained by imaging the second light formed in this manner is generated, a polarization state of the second light is detected based on the imaging data, and the object to be measured is detected based on the detected polarization state. In the three-dimensional measurement method for obtaining the tilt angle and azimuth angle of the surface of
前記第2の光を撮像する撮像方向と前記被計測物の表面との相対角度を第1の状態に設定して生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第1の傾斜角および第1の方位角を求めるステップと、Based on the imaging data generated by setting the relative angle between the imaging direction for imaging the second light and the surface of the object to be measured to the first state, the polarization state of the elliptically polarized light of the second light Detecting the azimuth angle and the ellipticity ratio of the polarization ellipse, and determining the first tilt angle and the first azimuth angle of the surface of the object to be measured based on the detected polarization state;
前記相対角度を前記第1の状態から第2の状態に変化させた後に生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第2の傾斜角および第2の方位角を求めるステップと、Based on the imaging data generated after the relative angle is changed from the first state to the second state, the azimuth angle and ellipticity rate of the polarization ellipse are obtained as the polarization state of the elliptically polarized light of the second light. Detecting and determining a second tilt angle and a second azimuth angle of the surface of the object to be measured based on the detected polarization state;
前記第1の傾斜角と前記第2の傾斜角との差に応じて前記第1の傾斜角の正負の符号を決定することによって、前記第1の傾斜角を補正するステップとCorrecting the first tilt angle by determining a sign of the first tilt angle according to a difference between the first tilt angle and the second tilt angle;
を有することを特徴とする3次元計測方法。A three-dimensional measurement method comprising:
半球の椀状の照射面から、前記照射面の開口の略中心に配置した被計測物の表面へ円偏光の第1の光を照射し、前記被計測物の表面で第1の光が反射して形成される第2の光を撮像した撮像データを生成し、前記撮像データに基づいて、前記第2の光の偏光状態を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の傾斜角および方位角を求める3次元計測方法において、
前記第2の光を撮像する撮像方向と前記被計測物の表面との相対角度を第1の状態に設定して生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第1の傾斜角および第1の方位角を求めるステップと、
前記相対角度を前記第1の状態から第2の状態に変化させた後に生成した前記撮像データに基づいて、前記第2の光の楕円偏光の偏光状態として偏光楕円の方位角および楕円角率を検出し、この検出した偏光状態に基づいて、前記被計測物の表面の第2の傾斜角および第2の方位角を求めるステップと、
前記第1の傾斜角と前記第2の傾斜角との差に応じて前記第1の方位角を180°ずらすことによって、前記第1の方位角を補正するステップと
を有することを特徴とする3次元計測方法。
From bowl-shaped irradiation surface of a hemisphere, said shines the first light to the surface of the circular polarization of the object to be measured which is located approximately at the center of an opening of the irradiated surface irradiation, the first light at the surface of the object to be measured Imaging data obtained by imaging the second light formed by reflection is generated, a polarization state of the second light is detected based on the imaging data, and the measurement target is based on the detected polarization state. In the three-dimensional measurement method for obtaining the tilt angle and azimuth angle of the surface of an object,
Based on the imaging data generated by setting the relative angle between the imaging direction for imaging the second light and the surface of the object to be measured to the first state, the polarization state of the elliptically polarized light of the second light Detecting the azimuth angle and the ellipticity ratio of the polarization ellipse , and determining the first tilt angle and the first azimuth angle of the surface of the object to be measured based on the detected polarization state;
Based on the imaging data generated after the relative angle is changed from the first state to the second state, the azimuth angle and ellipticity rate of the polarization ellipse are obtained as the polarization state of the elliptically polarized light of the second light. Detecting and determining a second tilt angle and a second azimuth angle of the surface of the object to be measured based on the detected polarization state;
Correcting the first azimuth angle by shifting the first azimuth angle by 180 ° in accordance with a difference between the first tilt angle and the second tilt angle. 3D measurement method.
JP2011078571A 2011-03-31 2011-03-31 3D measuring apparatus and 3D measuring method Active JP5793669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078571A JP5793669B2 (en) 2011-03-31 2011-03-31 3D measuring apparatus and 3D measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078571A JP5793669B2 (en) 2011-03-31 2011-03-31 3D measuring apparatus and 3D measuring method

Publications (2)

Publication Number Publication Date
JP2012211875A JP2012211875A (en) 2012-11-01
JP5793669B2 true JP5793669B2 (en) 2015-10-14

Family

ID=47265942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078571A Active JP5793669B2 (en) 2011-03-31 2011-03-31 3D measuring apparatus and 3D measuring method

Country Status (1)

Country Link
JP (1) JP5793669B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3575894B2 (en) * 1995-12-11 2004-10-13 三菱プレシジョン株式会社 Relative angle detection device and virtual reality providing device
EP2120007A4 (en) * 2007-02-13 2010-12-01 Panasonic Corp Image processing system, method, device and image format
CN102047651B (en) * 2008-06-02 2013-03-13 松下电器产业株式会社 Image processing device and method, and viewpoint-converted image generation device
US20110144505A1 (en) * 2008-08-20 2011-06-16 Masaki Yamamoto Optical device and method for shape and gradient detection and/or measurement and associated device
JP5541653B2 (en) * 2009-04-23 2014-07-09 キヤノン株式会社 Imaging apparatus and control method thereof

Also Published As

Publication number Publication date
JP2012211875A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP5300929B2 (en) Measuring method, measuring apparatus and program
JP6289283B2 (en) Method for correcting surface shape data of annular rotating body, and appearance inspection device for annular rotating body
CN108072335B (en) Three-dimensional shape measuring device
JP5397537B2 (en) Height measuring method, height measuring program, height measuring device
JP2007071769A (en) Method for detecting deviation, pattern rotation, distortion, and positional deviation by using moire fringe
TW200912244A (en) Shape measuring apparatus and shape measuring method
JP4837538B2 (en) End position measuring method and dimension measuring method
JP5270138B2 (en) Calibration jig and calibration method
JP5914850B2 (en) Three-dimensional measuring device and illumination device used therefor
JP5101955B2 (en) Shape measuring method and shape measuring apparatus
KR20210060612A (en) 3-dimensional sensor with replacement channel
WO2008075632A1 (en) Test method for compound-eye distance measuring device, its test device and chart used for same
JP5793669B2 (en) 3D measuring apparatus and 3D measuring method
WO2009107365A1 (en) Test method and test device for compound-eye distance measuring device and chart used therefor
JP2017096738A (en) Three-dimensional position measurement system, probe for three-dimensional position measurement, and calibrator
JP2013117395A (en) Inclination measuring device and method thereof
JP2008170282A (en) Shape measuring device
JP2020034355A (en) Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method
JP2010238970A (en) Method of estimating central position of disc member, and image processing apparatus
JP2005345288A (en) Mach-zehnder interferometer and inspection method of optical element by mach-zehnder interferometer
US20220357149A1 (en) Apparatus and method for determining three-dimensional shape of object
JP4837541B2 (en) End face shape inspection method and apparatus
JP2005318355A (en) Trapezoidal distortion correcting device of projector and projector provided therewith
JP6484418B2 (en) Position calculation device, symbol display device, and sheet
JP2004198264A (en) Measuring method for radius of shoulder circular arc part of notch in semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150313

R151 Written notification of patent or utility model registration

Ref document number: 5793669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151