JP5790230B2 - Hot metal desulfurization method - Google Patents

Hot metal desulfurization method Download PDF

Info

Publication number
JP5790230B2
JP5790230B2 JP2011158510A JP2011158510A JP5790230B2 JP 5790230 B2 JP5790230 B2 JP 5790230B2 JP 2011158510 A JP2011158510 A JP 2011158510A JP 2011158510 A JP2011158510 A JP 2011158510A JP 5790230 B2 JP5790230 B2 JP 5790230B2
Authority
JP
Japan
Prior art keywords
desulfurization
hot metal
lime
agent
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011158510A
Other languages
Japanese (ja)
Other versions
JP2012062571A (en
Inventor
正樹 小泉
正樹 小泉
麻希 岩浅
麻希 岩浅
菊池 直樹
直樹 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011158510A priority Critical patent/JP5790230B2/en
Priority to ARP110103000 priority patent/AR082480A1/en
Publication of JP2012062571A publication Critical patent/JP2012062571A/en
Application granted granted Critical
Publication of JP5790230B2 publication Critical patent/JP5790230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、機械攪拌式脱硫装置を用いた溶銑の脱硫方法に関し、詳しくは、脱硫反応を促進して効率良く溶銑を脱硫する方法に関する。   The present invention relates to a hot metal desulfurization method using a mechanical stirring desulfurization apparatus, and more particularly to a method for efficiently desulfurizing hot metal by promoting a desulfurization reaction.

高炉から出銑された溶銑には、鋼の品質に悪影響を及ぼす燐(元素記号:P)、硫黄(元素記号:S)が高濃度に含有されており、これらを除去する種々の技術が開発されている。例えば、今日の鉄鋼精錬プロセスにおいては、転炉での脱炭精錬に先立って溶銑に含有される燐及び硫黄を予め除去する方法、所謂、「溶銑の予備処理」が一般的に行われている。このうち、溶銑の脱硫処理は、水平断面がほぼ円形を有する精錬容器に溶銑を保持し、脱硫剤を溶銑上に添加し、インペラー(「攪拌羽根」、「攪拌翼」とも呼ぶ)と称する、羽根を有する回転子を溶銑中に浸漬して回転させ、溶銑及び脱硫剤を攪拌して脱硫する方法(以下、「機械攪拌式脱硫法」という)が広く行われている。この機械攪拌式脱硫法においては安価なCaO(石灰)を主成分とする石灰系脱硫剤が用いられている。   The hot metal discharged from the blast furnace contains high concentrations of phosphorus (element symbol: P) and sulfur (element symbol: S), which adversely affect steel quality, and various technologies have been developed to remove them. Has been. For example, in today's steel refining process, a method of previously removing phosphorus and sulfur contained in hot metal prior to decarburization refining in a converter, so-called “hot metal pretreatment” is generally performed. . Among these, the hot metal desulfurization treatment holds the hot metal in a refining vessel having a substantially circular horizontal cross section, adds a desulfurizing agent onto the hot metal, and is called an impeller (also referred to as “stirring blade” or “stirring blade”). A method (hereinafter referred to as “mechanical stirring type desulfurization method”) in which a rotor having blades is immersed in hot metal and rotated, and the hot metal and the desulfurizing agent are stirred to perform desulfurization is widely performed. In this mechanical stirring desulfurization method, an inexpensive lime-based desulfurization agent mainly composed of CaO (lime) is used.

この石灰系脱硫剤を用いた脱硫反応において、脱硫反応速度を高めるためには、溶銑と脱硫剤との反応界面積を増加させることが効果的であることが分かっており、従って、添加する脱硫剤の粒径を細粒化すれば脱硫反応効率が向上する。しかし、実機での機械攪拌式脱硫法においては、ホッパーから脱硫剤を切り出し、溶銑鍋などの処理容器の上方に設置した投入シュートから脱硫剤を処理容器内に上置き添加する方法が一般的であり、このような方法で細粒の脱硫剤を添加すると、飛散する脱硫剤や上昇気流で舞い上がる脱硫剤が多くなり、脱硫剤の添加歩留まりが低下し、結局、効率的な脱硫処理は得られない。その上、飛散した脱硫剤はダストとして蓄積し、ダスト処理が頻発するという問題も発生する。   In the desulfurization reaction using this lime-based desulfurization agent, it has been found that increasing the reaction interface area between the hot metal and the desulfurization agent is effective for increasing the desulfurization reaction rate. Desulfurization reaction efficiency can be improved by reducing the particle size of the agent. However, in the mechanical stirring type desulfurization method in an actual machine, it is common to cut out the desulfurization agent from the hopper and add the desulfurization agent over the treatment vessel such as a hot metal ladle installed above the treatment vessel. Yes, adding fine-grained desulfurizing agent in this way increases the amount of desulfurizing agent that scatters and soars in the updraft, reducing the yield of desulfurizing agent addition, and in the end, an efficient desulfurization treatment is obtained. Absent. In addition, the scattered desulfurizing agent accumulates as dust, which causes a problem that dust treatment frequently occurs.

また、石灰系脱硫剤の主成分であるCaO粉体と溶鉄との界面張力は1.75N/mであり、CaOは溶銑とは濡れ難い性質を有する。このため、溶銑に添加された粉体のCaOは互いに凝集してしまい、凝集体内部のCaOは未反応のままであるため、脱硫剤を微細化する効果が得られないという問題も生ずる。   Moreover, the interfacial tension between CaO powder, which is the main component of the lime-based desulfurizing agent, and molten iron is 1.75 N / m, and CaO has the property of being difficult to wet with molten iron. For this reason, the CaO of the powder added to the hot metal aggregates with each other, and the CaO inside the aggregate remains unreacted, so that there is a problem that the effect of refining the desulfurizing agent cannot be obtained.

この問題を解決するべく、特許文献1には、機械攪拌式脱硫装置を用いた溶銑の脱硫方法において、インペラーによって攪拌されている溶銑の浴面上に、脱硫剤を、上吹きランスを介して搬送用ガスとともに上吹き添加して脱硫処理を行うことが提案されている。特許文献1によれば、反応性に優れる細粒の脱硫剤を搬送用ガスとともに上吹き添加するので、添加時の飛散が少なくなり、脱硫剤の添加歩留まりが向上し、そして、細粒の脱硫剤は、反応界面積が大きく、そのため、脱硫反応が促進され、脱硫率を著しく向上させることができるとしている。また、特許文献1は、脱硫剤の投入シュートからの上置き添加と上吹きランスからの上吹き添加との併用も可能であることを記載している。   In order to solve this problem, Patent Document 1 discloses, in a hot metal desulfurization method using a mechanical stirring desulfurization apparatus, a desulfurizing agent is placed on the bath surface of the hot metal being stirred by an impeller through an upper blowing lance. It has been proposed to perform desulfurization treatment by adding top blowing with a carrier gas. According to Patent Document 1, a fine-grain desulfurization agent having excellent reactivity is added together with a carrier gas, so that scattering during the addition is reduced, the addition yield of the desulfurization agent is improved, and fine-grain desulfurization is performed. The agent has a large reaction interface area, so that the desulfurization reaction is promoted and the desulfurization rate can be remarkably improved. Patent Document 1 describes that the addition of the desulfurizing agent from the top chute and the top blowing lance can be used in combination.

一方、脱硫処理で発生するダストや脱硫スラグは未反応の部分が多く、従って、これらを再度脱硫処理工程に再使用する方法も提案されている。例えば、特許文献2には、溶銑予備処理で発生したダストを機械攪拌式脱硫法で再使用する技術が提案され、非特許文献1には、インジェクション法による脱硫処理で発生した脱硫スラグを機械攪拌式脱硫法で再使用する技術が提案されている。尚、脱硫スラグとは、脱硫処理後に生成される、脱硫剤を主体とするスラグである。   On the other hand, there are many unreacted portions of dust and desulfurization slag generated in the desulfurization treatment, and therefore, a method of reusing them in the desulfurization treatment process has been proposed. For example, Patent Document 2 proposes a technique for reusing dust generated in hot metal pretreatment by a mechanical stirring desulfurization method, and Non-Patent Document 1 discloses mechanical stirring of desulfurized slag generated in a desulfurization process by an injection method. A technique for reusing in the desulfurization method has been proposed. In addition, desulfurization slag is slag which mainly produces | generates a desulfurization agent produced | generated after a desulfurization process.

特開2005−179690号公報JP 2005-179690 A 特開2006−291334号公報JP 2006-291334 A

住友金属、vol.45−3(1993).p.52−58Sumitomo Metals, vol. 45-3 (1993). p. 52-58

本発明者らは、特許文献1に提案された溶銑の脱硫方法を採用することで、石灰系脱硫剤を使用して効率的な脱硫処理が可能になることを確認した。特に、脱硫剤の上置き添加と上吹き添加とを併用することにより、効率的な脱硫処理が可能になることを確認した。この場合に、上置き添加の脱硫剤は、脱硫処理で発生するダストや脱硫スラグでも十分な脱硫が可能であることを確認した。但し、脱硫剤の上置き添加と上吹き添加とを併用する場合に、上置き添加の脱硫剤が多くなると、脱硫効率が悪くなって効率的な脱硫処理が得られないことを確認した。この点に関して、特許文献1は何ら記載していない。   The present inventors have confirmed that by using the hot metal desulfurization method proposed in Patent Document 1, an efficient desulfurization treatment is possible using a lime-based desulfurization agent. In particular, it has been confirmed that an efficient desulfurization treatment can be achieved by using both desulfurization agent top addition and top blowing addition in combination. In this case, it was confirmed that the desulfurization agent added on top can be sufficiently desulfurized even with dust and desulfurization slag generated in the desulfurization treatment. However, it was confirmed that when the addition of the desulfurization agent and the top blowing addition were used in combination, the desulfurization efficiency deteriorated and the efficient desulfurization treatment could not be obtained if the amount of the desulfurization agent added above was increased. In this regard, Patent Document 1 does not describe anything.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、機械攪拌式脱硫装置で攪拌されている溶銑に、投入シュートからの上置き添加と上吹きランスからの上吹き添加とを併用して石灰系脱硫剤を供給し、該溶銑を脱硫処理するにあたり、上置き添加の脱硫剤が多くなった場合でも、高い添加歩留まりで上吹き添加の脱硫剤を溶銑に侵入させることができ、これにより、安定して高効率で脱硫処理することのできる、溶銑の脱硫方法を提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is to add the top addition from the charging chute and the top blowing from the top blowing lance to the hot metal being stirred by the mechanical stirring type desulfurization apparatus. When supplying the lime-based desulfurizing agent in combination with the hot metal and desulfurizing the molten iron, even if the amount of the desulfurizing agent added on the top increases, it is possible to allow the desulfurizing agent added to the top blowing to enter the molten iron with a high addition yield. It is possible to provide a hot metal desulfurization method that can stably and efficiently perform desulfurization treatment.

上記課題を解決するための本発明の要旨は以下のとおりである。
(1)インペラーによって攪拌されている溶銑の浴面上に、上吹きランスを介して搬送用ガスとともに溶銑を脱硫するに必要な石灰系脱硫剤の一部を上吹き添加し、残りの石灰系脱硫剤を前記溶銑の浴面上に上置き添加して脱硫処理する、機械攪拌式脱硫装置を用いた溶銑の脱硫方法において、上吹きランスから上吹き添加する石灰系脱硫剤の溶銑浴面への衝突時の粒子速度を、上置き添加される石灰系脱硫剤の添加量に応じて下記の(1)式で算出される臨界粒子速度以上に制御することを特徴とする、溶銑の脱硫方法。
C=−0.000093×R2+0.047×R+17…(1)
但し、(1)式において、Cは、臨界粒子速度(m/sec)、Rは、上置き添加される石灰系脱硫剤の溶銑浴面での単位浴面積あたりの添加量(kg/m2)である。
(2)溶銑浴面へ上置き添加する石灰系脱硫剤として、製鉄工程で副次的に発生する石灰含有物質を使用することを特徴とする、上記(1)に記載の溶銑の脱硫方法。
(3)溶銑浴面へ上置き添加する石灰系脱硫剤として、機械攪拌式脱硫装置にて石灰系脱硫剤を用いた溶銑の脱硫処理で発生した脱硫スラグを使用することを特徴とする、上記(1)に記載の溶銑の脱硫方法。
(4)上置き添加する石灰系脱硫剤の割合が、添加する全石灰系脱硫剤の80質量%以下であることを特徴とする、上記(1)ないし上記(3)の何れか1項に記載の溶銑の脱硫方法。
The gist of the present invention for solving the above problems is as follows.
(1) A part of the lime-based desulfurization agent necessary for desulfurizing the hot metal together with the conveying gas is added to the hot metal bath surface being stirred by the impeller, and the remaining lime-based material is added. In the hot metal desulfurization method using the mechanical stirring type desulfurization apparatus, the desulfurization agent is placed on the hot metal bath surface and desulfurized to remove the desulfurization agent from the upper blow lance to the hot metal bath surface of the lime-based desulfurization agent. The hot metal desulfurization method is characterized in that the particle speed at the time of collision of the hot metal is controlled to be equal to or higher than the critical particle speed calculated by the following equation (1) according to the amount of the lime-based desulfurization agent added on top. .
C = −0.000093 × R 2 + 0.047 × R + 17 (1)
However, in the formula (1), C is a critical particle velocity (m / sec), R is an addition amount per unit bath area (kg / m 2 ) of the lime-based desulfurizing agent added on the hot metal bath surface. ).
(2) The method for desulfurizing hot metal as described in (1) above, wherein a lime-containing substance that is secondarily generated in the iron making process is used as a lime-based desulfurizing agent added on the hot metal bath surface.
(3) The desulfurization slag generated by the desulfurization treatment of the hot metal using the lime-based desulfurization agent in the mechanical stirring desulfurization apparatus is used as the lime-based desulfurization agent to be added on the hot metal bath surface. The hot metal desulfurization method according to (1).
(4) The ratio of the lime-based desulfurizing agent to be added on top is 80% by mass or less of the total lime-based desulfurizing agent to be added, any one of (1) to (3) above The hot metal desulfurization method as described.

本発明によれば、機械攪拌式脱硫装置を用い、石灰系脱硫剤の上置き添加と上吹き添加とを併用して溶銑を脱硫処理するにあたり、上置き添加される石灰系脱硫剤の添加量に応じた最適な速度で上吹き添加される石灰系脱硫剤を溶銑浴面に衝突させるので、上吹き添加された脱硫剤の溶銑浴への侵入・分散が安定して起こり、脱硫反応が促進され、少ない脱硫剤で所望する脱硫処理が実施可能となる。その結果、脱硫剤原単位の削減、これに伴う発生スラグ量の削減などが達成され、工業上有益な効果がもたらされる。   According to the present invention, the amount of the lime-based desulfurizing agent added on top when the hot metal is desulfurized using the mechanically added desulfurization apparatus and the top addition and top blowing addition of the lime-based desulfurization agent is added. The lime-based desulfurizing agent added by top blowing at an optimum speed according to the temperature collides with the hot metal bath surface, so that the desulfurizing agent added by top blowing can stably enter and disperse into the hot metal bath and accelerate the desulfurization reaction. Thus, the desired desulfurization treatment can be performed with a small amount of desulfurization agent. As a result, a reduction in the desulfurization agent basic unit and a reduction in the amount of generated slag associated therewith are achieved, and an industrially beneficial effect is brought about.

ノズルから噴出されるガス噴流の形態を示す模式図である。It is a schematic diagram which shows the form of the gas jet ejected from a nozzle. ノズルから噴出されるガス噴流の流速分布を示す模式図である。It is a schematic diagram which shows the flow velocity distribution of the gas jet ejected from a nozzle. 本発明を実施した機械攪拌式脱硫装置の側面概略図である。1 is a schematic side view of a mechanical stirring desulfurization apparatus embodying the present invention. 上置き脱硫剤を添加しないときの上吹き脱硫剤の溶銑浴面への衝突時の粒子速度と脱硫率との関係を示す図である。It is a figure which shows the relationship between the particle | grain speed | rate at the time of the collision with the hot metal bath surface of the top blowing desulfurization agent when not adding an upper desulfurization agent, and a desulfurization rate. 上置き脱硫剤の添加量が74kg/m2のときの上吹き脱硫剤の溶銑浴面への衝突時の粒子速度と脱硫率との関係を示す図である。It is a figure which shows the relationship between the particle velocity at the time of the collision with the hot metal bath surface of a top blowing desulfurization agent when the addition amount of a top desulfurization agent is 74 kg / m < 2 >, and a desulfurization rate. 上置き脱硫剤の添加量が250kg/m2のときの上吹き脱硫剤の溶銑浴面への衝突時の粒子速度と脱硫率との関係を示す図である。It is a figure which shows the relationship between the particle velocity at the time of the collision with the hot metal bath surface of a top blowing desulfurization agent when the addition amount of a top desulfurization agent is 250 kg / m < 2 >, and a desulfurization rate. 上置き添加される脱硫剤の溶銑浴面での単位浴面積あたりの添加量(R)と臨界粒子速度(C)との関係を示す図である。It is a figure which shows the relationship between the addition amount (R) per unit bath area in the hot metal bath surface of the desulfurization agent added on top, and a critical particle velocity (C).

以下、本発明を具体的に説明する。先ず、本発明に至った経緯について説明する。   Hereinafter, the present invention will be specifically described. First, the background to the present invention will be described.

本発明者らは、機械攪拌式脱硫装置を用いた溶銑の脱硫処理において、溶銑を効率良く脱硫する手段を種々検討した。その結果、格段に脱硫効率の向上を得られることから、特許文献1に開示された、石灰系脱硫剤の投入シュートからの上置き添加と上吹きランスからの上吹き添加とを併用して脱硫する方法が優れていることを確認した。   The present inventors have studied various means for efficiently desulfurizing hot metal in hot metal desulfurization treatment using a mechanical stirring desulfurization apparatus. As a result, the desulfurization efficiency can be remarkably improved. Therefore, the desulfurization is performed by combining the addition of the lime-based desulfurization agent from the addition chute and the addition of the upper blowing from the top blowing lance disclosed in Patent Document 1. Confirmed that the method to do is excellent.

また、この場合に、上置きの石灰系脱硫剤としては、機械攪拌式脱硫装置にて石灰系脱硫剤を用いた溶銑の脱硫処理で発生する脱硫スラグを用いることが、脱硫率や価格などを総合的に判断した場合に最も有利であることが分かっていたため、基本的には、脱硫スラグを上置きの石灰系脱硫剤として再使用することとした。   In this case, as the lime-based desulfurization agent, it is possible to use desulfurization slag generated in the desulfurization treatment of hot metal using the lime-based desulfurization agent in a mechanical stirring type desulfurization device. Since it was found that it was most advantageous when comprehensively judged, basically, desulfurization slag was reused as a lime-based desulfurization agent.

しかしながら、実機における試験結果から、上吹き添加の脱硫剤を一定量とした条件であっても、上置き添加される脱硫剤の増加に伴って脱硫効率が劣化するという現象を把握した。そこで、この原因として、脱硫スラグは脱硫剤として通常的に使用される石灰(生石灰)と比べて凝集粒が多く、上吹きランスからの噴流が衝突しても吹き飛びにくいことから、「脱硫剤として上置きした脱硫スラグが上吹き添加される脱硫剤の溶銑浴への侵入・分散を妨げている」との仮定をたて、実機において、石灰系脱硫剤の上置き添加と上吹き添加とを併用して脱硫する際に、上吹き添加する脱硫剤の溶銑浴面への衝突時の粒子速度を変更し、溶銑浴への侵入しやすさを変化させた試験を実施した。   However, from the test results in the actual machine, it was understood that the desulfurization efficiency deteriorates as the desulfurization agent added on top is increased even under the condition that the desulfurization agent added by top blowing is a constant amount. Therefore, as a cause of this, desulfurization slag has more agglomerates than lime (quick lime) that is normally used as a desulfurization agent, and even if the jet flow from the top blowing lance collides, Based on the assumption that the desulfurization slag placed on top prevents the desulfurization agent that is added by top blowing from penetrating and dispersing into the hot metal bath, the top addition and top blowing addition of the lime-based desulfurization agent are performed in the actual machine. When desulfurization was performed in combination, the particle velocity at the time of collision of the desulfurizing agent added by top blowing to the hot metal bath surface was changed, and a test was conducted in which the ease of entering the hot metal bath was changed.

上吹きランスに設置されるラバールノズル或いはストレートノズルなどのノズルを介して上吹き添加される脱硫剤の溶銑浴面への衝突時の粒子速度は、以下の方法を用いて算出した。即ち、下記の(2)式〜(7−2)式によって導出される粒子に加わる加速度の式である下記の(8)式を使って、ノズル出口から静止時の溶銑浴面までの粒子速度の変化を1mm刻みで計算することにより、脱硫剤の溶銑浴面への衝突時の粒子速度を求めた。   The particle velocity at the time of collision of the desulfurizing agent added by top blowing through a nozzle such as a Laval nozzle or a straight nozzle installed on the top blowing lance against the hot metal bath surface was calculated using the following method. That is, the particle velocity from the nozzle outlet to the hot metal bath surface at rest using the following equation (8) which is an equation of acceleration applied to particles derived from the following equations (2) to (7-2): The particle velocity at the time of collision of the desulfurizing agent with the hot metal bath surface was obtained by calculating the change in 1 mm.

但し、以下の仮定を適用して計算した。
(1)上吹きランスのノズル出口における脱硫剤の粒子速度UPoは、ノズル出口におけるガス流速Ugoに等しい。
(2)上吹き添加される脱硫剤の粒子径dPは、上吹き添加される脱硫剤の質量平均径を使用する。
(3)ガス密度ρgは、25℃の値を使用する。
(4)ガス粘度ηgは、25℃の値を使用する。
(5)上吹きランスのノズル出口には、図1に示すように、ノズル13から噴出されるガス噴流14の流速Ugがノズル出口13aでの流速Ugoのまま維持される領域15(「ポテンシャルコア」という)が形成され、このポテンシャルコア15の下流側には乱流領域16が形成される。ポテンシャルコア15の長さは、ノズルの出口径によらずノズル出口径(=D)の6倍となる。ポテンシャルコア15でのガス流速は(7−1)式で表され、乱流領域16におけるランス軸線上のガス流速Ugは(7−2)式で表される。ノズル13から噴出されるガス噴流14のガス流速Ugの分布の模式図を図2に示す。
However, the following assumptions were applied for calculation.
(1) The particle velocity U Po of the desulfurizing agent at the nozzle outlet of the top blowing lance is equal to the gas flow velocity U go at the nozzle outlet.
(2) As the particle size d P of the desulfurizing agent added by top blowing, the mass average diameter of the desulfurizing agent added by top blowing is used.
(3) The gas density ρ g uses a value of 25 ° C.
(4) The gas viscosity η g uses a value of 25 ° C.
(5) At the nozzle outlet of the upper blowing lance, as shown in FIG. 1, a region 15 (“" where the flow velocity U g of the gas jet 14 ejected from the nozzle 13 is maintained at the flow velocity U go at the nozzle outlet 13a. A potential core ”is formed, and a turbulent region 16 is formed downstream of the potential core 15. The length of the potential core 15 is six times the nozzle outlet diameter (= D) regardless of the nozzle outlet diameter. The gas flow velocity at the potential core 15 is expressed by the equation (7-1), and the gas flow velocity U g on the lance axis in the turbulent flow region 16 is expressed by the equation (7-2). A schematic diagram of the distribution of the gas flow velocity U g of the gas jet 14 ejected from the nozzle 13 is shown in FIG.

F=m×a …(2)
F=m×g-Cd×(π/4)×dP 2×(1/2)×ρg×(Ug-UP)2 …(3)
d=24×(1+0.125×Re0.72)/Re (Re<500) …(4−1)
d=0.44 (Re≧500) …(4−2)
Re=ρg×(UP-Ug)×dP/η …(5)
m=(1/6)×π×dP 3×ρP …(6)
g=Ugo (6D/L≧1) … (7−1)
g=Ugo×(6D/L) (6D/L<1) …(7−2)
a=g-[Cd×(π/4)×dP 2×(1/2)×ρg×(Ug-UP)2]/m …(8)
但し、(2)式〜(8)式において、Fは力(N)、mは脱硫剤粒子の質量(kg)、aは加速度(m/sec2)、gは重力加速度(m/sec2)、Cdは抵抗係数(−)、πは円周率、dPは上吹き添加される脱硫剤の粒子径(m)、ρgはガス密度(kg/m3)、Ugはガス流速(m/sec)、UPは脱硫剤粒子速度(m/sec)、Reはレイノズル数、ηはガスの粘度(Pa・sec)、ρPは脱硫剤粒子の密度(kg/m3)、Ugoはノズル出口におけるガス流速(m/sec)、Dは上吹きランスのノズル出口径(m)、Lは上吹きランスのノズル出口からの距離(m)である。
F = m × a (2)
F = m × g-C d × (π / 4) × d P 2 × (1/2) × ρ g × (U g -U P) 2 ... (3)
C d = 24 × (1 + 0.125 × Re 0.72 ) / Re (Re <500) (4-1)
C d = 0.44 (Re ≧ 500) (4-2)
Re = ρ g × (U P -U g) × d P / η ... (5)
m = (1/6) × π × d P 3 × ρ P (6)
U g = U go (6D / L ≧ 1) (7-1)
U g = U go × (6D / L) (6D / L <1) (7-2)
a = g- [C d × ( π / 4) × d P 2 × (1/2) × ρ g × (U g -U P) 2] / m ... (8)
However, in the formulas (2) to (8), F is force (N), m is mass (kg) of desulfurizing agent particles, a is acceleration (m / sec 2 ), and g is gravitational acceleration (m / sec 2). ), C d is the resistance coefficient (−), π is the circumference, d P is the particle size (m) of the desulfurizing agent added by top blowing, ρ g is the gas density (kg / m 3 ), and U g is the gas flow rate (m / sec), U P desulfurizing agent particle velocity (m / sec), Re is Reynolds number, eta is the viscosity of the gas (Pa · sec), the density of [rho P desulfurizing agent particle (kg / m 3) , U go is the gas flow velocity (m / sec) at the nozzle outlet, D is the nozzle outlet diameter (m) of the upper blowing lance, and L is the distance (m) from the nozzle outlet of the upper blowing lance.

つまり、(2)式〜(7−2)式に基づいて(8)式で定まる加速度aを用いて、ノズル出口から静止時の溶銑浴面までの粒子速度UPの変化を1mm刻みで計算し、操業時のランス高さL0に相当する位置(L=L0)で算出される粒子速度UPを、脱硫剤の溶銑浴面への衝突時の粒子速度として求める。ここで、ランス高さL0とは、図2に示すように、上吹きランスに設置されるノズルの出口から溶銑浴面までの距離である。 That is, (2) to (7-2) by using the acceleration a which is determined by it (8) based on the equation, calculate the change in particle velocity U P from the nozzle outlet to the molten iron bath surface at rest in 1mm increments and, the particle velocity U P calculated in the position corresponding to the lance height L 0 during operation (L = L 0), obtained as particle velocity at the time of collision of the molten iron bath surface of the desulfurization agent. Here, as shown in FIG. 2, the lance height L 0 is the distance from the outlet of the nozzle installed on the upper blowing lance to the hot metal bath surface.

試験の結果、脱硫剤の溶銑浴面への衝突時の粒子速度(以下、単に「衝突時の粒子速度」とも記す)が速くなるほど脱硫率が高くなることが分かった。但し、脱硫剤の衝突時の粒子速度が、上置き添加される脱硫剤の添加量に応じた或る値以上になると、脱硫率はほぼ飽和し、それ以上に脱硫剤の衝突時の粒子速度を高めても脱硫率は余り高くならないことを知見した。本発明では、脱硫率が飽和するときの衝突時の粒子速度を「臨界粒子速度」と定義した。そして、更なる調査結果から、臨界粒子速度は、上置き添加される石灰系脱硫剤の溶銑浴面での単位浴面積あたりの添加量に影響され、下記の(1)式の関係で表されることを知見した。
C=−0.000093×R2+0.047×R+17…(1)
但し、(1)式において、Cは、臨界粒子速度(m/sec)、Rは、上置き添加される石灰系脱硫剤の溶銑浴面での単位浴面積あたりの添加量(kg/m2)である。
As a result of the test, it has been found that the desulfurization rate increases as the particle velocity at the time of collision of the desulfurizing agent with the hot metal bath surface (hereinafter also simply referred to as “particle velocity at the time of collision”) increases. However, when the particle velocity at the time of collision of the desulfurizing agent exceeds a certain value according to the amount of desulfurizing agent added on top, the desulfurization rate is almost saturated, and the particle velocity at the time of collision of the desulfurizing agent is further exceeded. It was found that the desulfurization rate does not become so high even if the slag is increased. In the present invention, the particle velocity at the time of collision when the desulfurization rate is saturated is defined as “critical particle velocity”. From further investigation results, the critical particle velocity is affected by the amount of lime-based desulfurizing agent added on the hot metal bath surface per unit bath area and expressed by the relationship of the following equation (1). I found out.
C = −0.000093 × R 2 + 0.047 × R + 17 (1)
However, in the formula (1), C is a critical particle velocity (m / sec), R is an addition amount per unit bath area (kg / m 2 ) of the lime-based desulfurizing agent added on the hot metal bath surface. ).

即ち、上置き添加される石灰系脱硫剤の溶銑浴面での単位浴面積あたりの添加量(R)に応じて、(1)式から算出される臨界粒子速度(C)以上の速度で上吹き添加の脱硫剤を溶銑浴面に衝突させることで、高い脱硫率が得られることを知見した。これは、上吹き添加される石灰系脱硫剤の衝突時の粒子速度を臨界粒子速度(C)以上に上昇させることで、上置きした石灰系脱硫剤による、上吹き脱硫剤の溶銑への侵入抑制作用に打ち勝ち、上吹きされる脱硫剤の溶銑への侵入・分散が活発化することによる。   That is, according to the addition amount (R) per unit bath area on the hot metal bath surface of the lime-based desulfurizing agent added on top, the upper is at a speed equal to or higher than the critical particle speed (C) calculated from the equation (1) It has been found that a high desulfurization rate can be obtained by colliding the desulfurizing agent added by blowing with the hot metal bath surface. This is to increase the particle velocity at the time of collision of the lime-based desulfurizing agent added to the top blowing to a critical particle velocity (C) or higher, so that the top-blown desulfurizing agent penetrates the hot metal by the lime-based desulfurizing agent placed on top. By overcoming the inhibitory action, the penetration and dispersion of the desulfurizing agent blown into the hot metal is activated.

本発明は、これらの知見に基づくものであり、機械攪拌式脱硫装置を用い、石灰系脱硫剤の投入シュートからの上置き添加と上吹きランスからの上吹き添加とを併用して溶銑を脱硫処理するにあたり、上吹きランスから上吹き添加する石灰系脱硫剤の溶銑浴面への衝突時の粒子速度を、上置き添加される石灰系脱硫剤の添加量(R)に応じて上記の(1)式で算出される臨界粒子速度(C)以上となるように制御することを特徴とする。   The present invention is based on these findings, and uses a mechanical stirring type desulfurization apparatus to desulfurize hot metal in combination with the addition of the lime-based desulfurization agent from the top chute and the top blowing lance. In the treatment, the particle speed at the time of collision of the lime-based desulfurizing agent added from the top blowing lance to the hot metal bath surface is determined according to the amount (R) of the lime-based desulfurizing agent added above ( Control is performed so as to be equal to or higher than the critical particle velocity (C) calculated by the equation (1).

次に、図面を参照して本発明に係る溶銑の脱硫処理方法を説明する。   Next, the hot metal desulfurization method according to the present invention will be described with reference to the drawings.

図3は、本発明を実施した機械攪拌式脱硫装置の側面概略図であり、図3において、高炉から出銑された溶銑3を収容する溶銑鍋2が、台車1に搭載されて機械攪拌式脱硫装置に搬入されている。機械攪拌式脱硫装置は、溶銑鍋2に収容された溶銑3に浸漬・埋没し、旋回して溶銑3を攪拌するための耐火物製のインペラー4を備えており、このインペラー4は、昇降装置(図示せず)によってほぼ鉛直方向に昇降し、且つ、回転装置(図示せず)によって軸4aを回転軸として旋回するようになっている。また、機械攪拌式脱硫装置には、石灰系脱硫剤6を溶銑鍋2に収容された溶銑3に向けて上吹きして添加するための上吹きランス5と、石灰系脱硫剤6を溶銑鍋2に収容された溶銑3に上置き添加するための投入シュート10とが設置されている。上吹きランス5はほぼ鉛直方向下方を向いて設置されている。   FIG. 3 is a schematic side view of a mechanical stirring desulfurization apparatus embodying the present invention. In FIG. 3, a hot metal ladle 2 containing hot metal 3 discharged from a blast furnace is mounted on a carriage 1 and is mechanically stirred. It is carried into the desulfurization equipment. The mechanical stirring type desulfurization apparatus is equipped with a refractory impeller 4 that is immersed and buried in a hot metal 3 accommodated in a hot metal ladle 2 and swirls to stir the hot metal 3. The impeller 4 is an elevator device. (Not shown) is moved up and down in a substantially vertical direction, and is rotated about a shaft 4a as a rotation axis by a rotating device (not shown). Further, in the mechanical stirring type desulfurization apparatus, an upper blowing lance 5 for adding the lime-based desulfurizing agent 6 by blowing it upward toward the hot metal 3 accommodated in the hot metal ladle 2, and the lime-based desulfurizing agent 6 are added. 2 and a charging chute 10 for adding to the hot metal 3 accommodated in the hot metal 3 is installed. The upper blowing lance 5 is installed facing substantially downward in the vertical direction.

上吹きランス5は、粉体状の石灰系脱硫剤6を収容するディスペンサー7とディスペンサー7から定量切り出すための切り出し装置8とからなる供給装置と接続しており、上吹きランス5の先端部に設置されるラバールノズル或いはストレートノズルなどのノズル(図示せず)から、搬送用ガスとともに、粉体状の石灰系脱硫剤6を任意のタイミングで供給できる構造になっている。ラバールノズルを介して噴射する場合には、ノズル出口における噴射速度を低速域から亜音速域、更には超音速域まで任意に調整することができるので、ラバールノズルを用いることが好ましい。   The top blowing lance 5 is connected to a supply device including a dispenser 7 that contains the powdered lime-based desulfurizing agent 6 and a cutting device 8 for quantitatively cutting out from the dispenser 7. The structure is such that the powdery lime-based desulfurization agent 6 can be supplied together with the transfer gas from a nozzle (not shown) such as a Laval nozzle or a straight nozzle that is installed. In the case of injection through a Laval nozzle, the injection speed at the nozzle outlet can be arbitrarily adjusted from a low speed range to a subsonic speed range, and further to a supersonic speed range, so it is preferable to use a Laval nozzle.

石灰系脱硫剤6の搬送用ガスとしては、還元性ガス、不活性ガスまたは非酸化性ガスを使用する。一方、投入シュート10は、粉体状または細粒の石灰系脱硫剤6を収容するホッパー11とホッパー11から定量切り出すためのロータリーフィーダー12とからなる供給装置と接続しており、投入シュート10から、粉体状または細粒の石灰系脱硫剤6を任意のタイミングで供給できる構造になっている。ホッパー11に収容する石灰系脱硫剤6としては、前述したように、機械攪拌式脱硫装置にて石灰系脱硫剤を用いた溶銑の脱硫処理で発生した脱硫スラグを使用することが好ましい。   As the carrier gas for the lime-based desulfurizing agent 6, a reducing gas, an inert gas, or a non-oxidizing gas is used. On the other hand, the input chute 10 is connected to a supply device including a hopper 11 containing the powdery or fine lime-based desulfurization agent 6 and a rotary feeder 12 for quantitatively cutting out from the hopper 11. The powdery or fine lime-based desulfurization agent 6 can be supplied at an arbitrary timing. As the lime-based desulfurization agent 6 accommodated in the hopper 11, it is preferable to use desulfurization slag generated by hot metal desulfurization treatment using a lime-based desulfurization agent in a mechanical stirring desulfurization apparatus as described above.

また、溶銑鍋2の上方位置には、溶銑鍋2を覆うための、上下移動可能な集塵フード9が備えられ、集塵フード9に取り付けられた排気ダクト(図示せず)を介して処理中の排ガスやダストが集塵機(図示せず)に吸引されるようになっている。この場合、インペラー4の軸4a、上吹きランス5、投入シュート10は、集塵フード9を貫通し且つ上下移動が可能なように構成されている。   Further, a dust collection hood 9 that can be moved up and down is provided above the hot metal ladle 2 to cover the hot metal ladle 2, and treatment is performed via an exhaust duct (not shown) attached to the dust collection hood 9. The exhaust gas and dust inside are sucked into a dust collector (not shown). In this case, the shaft 4 a of the impeller 4, the upper blowing lance 5, and the charging chute 10 are configured to penetrate the dust collection hood 9 and move up and down.

インペラー4の位置が溶銑鍋2のほぼ中心になるように、溶銑鍋2を搭載した台車1の位置を調整し、次いで、インペラー4を下降させて溶銑3に浸漬させる。インペラー4が溶銑3に浸漬したならば、インペラー4の旋回を開始し、所定の回転数まで昇速する。   The position of the carriage 1 on which the hot metal ladle 2 is mounted is adjusted so that the position of the impeller 4 is substantially at the center of the hot metal ladle 2, and then the impeller 4 is lowered and immersed in the hot metal 3. If the impeller 4 is immersed in the hot metal 3, the impeller 4 starts to turn and the speed is increased to a predetermined rotational speed.

インペラー4の回転数が所定の回転数に達したならば、ロータリーフィーダー12を起動させて、ホッパー11に収容された石灰系脱硫剤6を、溶銑3の浴面上に投入シュート10を介して上置き添加する。投入シュート10からの石灰系脱硫剤6の投入開始と同時にまたは投入開始後に、若しくは投入シュート10からの石灰系脱硫剤6の投入完了後に、切り出し装置8を起動させて、ディスペンサー7に収容された石灰系脱硫剤6を、搬送用ガスとともに溶銑3の浴面に向けて上吹きランス5から吹き付けて添加する。   When the rotational speed of the impeller 4 reaches a predetermined rotational speed, the rotary feeder 12 is activated, and the lime-based desulfurizing agent 6 accommodated in the hopper 11 is placed on the bath surface of the hot metal 3 via the charging chute 10. Add on top. At the same time as or after the start of the charging of the lime-based desulfurizing agent 6 from the charging chute 10, or after the charging of the lime-based desulfurizing agent 6 from the charging chute 10 is completed, the cutting device 8 is activated and stored in the dispenser 7. The lime-based desulfurizing agent 6 is added by spraying from the top blowing lance 5 toward the bath surface of the hot metal 3 together with the carrier gas.

この場合に、投入シュート10からの石灰系脱硫剤6の投入量を予め把握しておき、投入シュート10からの投入量から、上置き添加される石灰系脱硫剤6の溶銑浴面での単位浴面積あたりの添加量(R:kg/m2)を求め、求めた添加量(R)を上記の(1)式に代入して臨界粒子速度(C:m/sec)を算出する。そして、上吹きランス5から吹き付けられる石灰系脱硫剤6の溶銑浴面での衝突時の粒子速度が、算出された臨界粒子速度(C)以上になるように、搬送用ガスの流量及び/または圧力を調整する。搬送用ガスの流量や背圧を高めれば、衝突時の粒子速度は上昇する。上吹きランス5から噴射される石灰系脱硫剤6の溶銑浴面への衝突時の粒子速度は、前述したように、(8)式で定まる加速度aを用いてノズル出口から静止時の溶銑浴面までの粒子速度の変化を1mm刻みで計算し、操業時のランス高さL0に相当する位置(L=L0)で算出される粒子速度を石灰系脱硫剤6の溶銑浴面への衝突時の粒子速度と決める。 In this case, the input amount of the lime-based desulfurizing agent 6 from the input chute 10 is grasped in advance, and the unit on the hot metal bath surface of the lime-based desulfurizing agent 6 added from the input amount from the input chute 10 is determined. The addition amount per bath area (R: kg / m 2 ) is obtained, and the obtained addition amount (R) is substituted into the above equation (1) to calculate the critical particle velocity (C: m / sec). Then, the flow rate of the conveying gas and / or the particle velocity at the time of collision of the lime-based desulfurizing agent 6 sprayed from the top blowing lance 5 on the hot metal bath surface is equal to or higher than the calculated critical particle velocity (C). Adjust pressure. Increasing the flow rate and back pressure of the carrier gas will increase the particle velocity at the time of collision. As described above, the particle velocity at the time of collision of the lime-based desulfurizing agent 6 injected from the top blowing lance 5 with the hot metal bath surface is the hot metal bath at rest from the nozzle outlet using the acceleration a determined by the equation (8). The change in the particle velocity up to the surface is calculated in 1 mm increments, and the particle velocity calculated at the position corresponding to the lance height L 0 during operation (L = L 0 ) is applied to the hot metal bath surface of the lime-based desulfurizing agent 6. Determine the particle velocity at impact.

所定量の石灰系脱硫剤6の上置き添加及び上吹き添加が完了し、そして、所定時間の攪拌が行われたなら、インペラー4の回転数を減少させ停止させる。インペラー4の旋回が停止したなら、インペラー4を上昇させ、溶銑鍋2の上方に待機させる。生成したスラグ(「脱硫スラグ」と呼ぶ)が浮上して溶銑表面を覆い、静止した状態で溶銑3の脱硫処理が終了する。脱硫処理後、生成した脱硫スラグを溶銑鍋2から排出し、次の精錬工程に溶銑鍋2を搬送する。脱硫スラグは回収し、次回以降の脱硫処理において、投入シュート10から投入する石灰系脱硫剤6として活用する。   When the top addition and top blowing addition of a predetermined amount of the lime-based desulfurizing agent 6 are completed and stirring is performed for a predetermined time, the rotation speed of the impeller 4 is decreased and stopped. If the turning of the impeller 4 is stopped, the impeller 4 is raised and waited above the hot metal ladle 2. The generated slag (referred to as “desulfurization slag”) floats to cover the hot metal surface, and the desulfurization process of the hot metal 3 is finished in a stationary state. After the desulfurization treatment, the generated desulfurization slag is discharged from the hot metal ladle 2 and conveyed to the next refining process. The desulfurized slag is recovered and used as the lime-based desulfurizing agent 6 to be charged from the charging chute 10 in the subsequent desulfurization process.

上吹き添加する石灰系脱硫剤6としては、生石灰(CaO)、ドロマイト(MgCO3・CaCO3)、消石灰(Ca(OH)2)、石灰石(CaCO3)などを使用することができる。また、これらに、CaOの滓化促進剤として機能するアルミナ(Al23)や蛍石(CaF2)などを混合したものも使用可能である。勿論、これらを上置き添加する石灰系脱硫剤6として使用することも可能である。 As the lime-based desulfurizing agent 6 to be added by top blowing, quick lime (CaO), dolomite (MgCO 3 · CaCO 3 ), slaked lime (Ca (OH) 2 ), limestone (CaCO 3 ) and the like can be used. Further, a mixture of alumina (Al 2 O 3 ) or fluorite (CaF 2 ) that functions as a CaO hatching accelerator can be used. Of course, it is also possible to use them as the lime-based desulfurizing agent 6 to be added on top.

上置き添加する石灰系脱硫剤6は、その脱硫処理で添加する全石灰系脱硫剤の80質量%以下であることが好ましい。これは、上置き添加する石灰系脱硫剤6が全石灰系脱硫剤の80質量%を超えると、上吹き添加の脱硫剤が少なくなり、脱硫剤を上吹き添加する効果が少なくなるからである。   It is preferable that the lime-based desulfurizing agent 6 added on top is 80% by mass or less of the total lime-based desulfurizing agent added in the desulfurization treatment. This is because if the lime-based desulfurizing agent 6 to be added on top exceeds 80% by mass of the total lime-based desulfurizing agent, the amount of desulfurizing agent added by top blowing decreases and the effect of adding the desulfurizing agent by top blowing decreases. .

以上説明したように、本発明によれば、機械攪拌式脱硫装置を用い、石灰系脱硫剤6の上置き添加と上吹き添加とを併用して溶銑3を脱硫処理するにあたり、上置き添加される石灰系脱硫剤の添加量に応じた最適な速度で上吹き添加される石灰系脱硫剤6を溶銑浴面に衝突させるので、上吹き添加された脱硫剤の溶銑浴への侵入・分散が安定して起こり、脱硫反応が促進され、少ない脱硫剤で所望する脱硫処理が実施可能となる。   As described above, according to the present invention, when the hot metal 3 is desulfurized using the mechanical stirring type desulfurization apparatus and the top addition and the top blowing addition of the lime-based desulfurization agent 6 are combined, the top addition is performed. Since the lime-based desulfurizing agent 6 added by top blowing is made to collide with the hot metal bath surface at an optimum rate according to the amount of lime-based desulfurizing agent added, the penetration and dispersion of the desulfurized agent added by top blowing into the hot metal bath is prevented. It occurs stably, the desulfurization reaction is accelerated, and the desired desulfurization treatment can be performed with a small amount of desulfurization agent.

図3に示す機械攪拌式脱硫装置を用い、上吹き脱硫剤として生石灰粉、上置き脱硫剤として脱硫スラグを使用し、上吹きランスから噴射する脱硫剤の溶銑浴面への衝突時の粒子速度を変更して合計9チャージの溶銑の脱硫処理試験を実施した。   Particle velocity at the time of collision of the desulfurizing agent sprayed from the top blowing lance against the hot metal bath surface using the mechanical stirring type desulfurization apparatus shown in FIG. 3, using quick lime powder as the top blowing desulfurization agent, desulfurization slag as the top desulfurization agent A total of 9 charges of hot metal desulfurization treatment test was conducted.

上吹き添加する脱硫剤の搬送用ガスとしては窒素ガスを使用し、インペラーは4枚の羽根を有し、羽根に傾斜のないものを使用した。用いた溶銑の化学成分は、C:3.5〜5.0質量%、Si:0.1〜0.3質量%、P:0.02〜0.15質量%、S:0.020〜0.039質量%で、溶銑温度は1200〜1350℃の範囲であった。脱硫処理は200〜500トンの溶銑の処理が可能な溶銑鍋を処理容器として用い、約300トンの溶銑を脱硫した。また、脱硫処理時間は脱硫剤の上置き添加開始から15分間の一定とした。上置き添加の脱硫スラグは、1チャージあたり0kg、1190kg、4000kgの3水準とし、上吹き添加の生石灰は1チャージあたり1000kgの一定とした。   Nitrogen gas was used as the carrier gas for the desulfurizing agent to be added by top blowing, and the impeller had four blades and the blades had no inclination. The chemical components of the hot metal used were C: 3.5 to 5.0% by mass, Si: 0.1 to 0.3% by mass, P: 0.02 to 0.15% by mass, S: 0.020 to The hot metal temperature was in the range of 1200 to 1350 ° C. at 0.039 mass%. In the desulfurization treatment, a hot metal ladle capable of treating 200 to 500 tons of hot metal was used as a treatment container, and about 300 tons of hot metal was desulfurized. The desulfurization treatment time was fixed at 15 minutes from the start of the addition of the desulfurizing agent. The desulfurization slag added on top was set at three levels of 0 kg, 1190 kg, and 4000 kg per charge, and the quick-lime added quick lime was fixed at 1000 kg per charge.

脱硫処理前後の溶銑から試料を採取し、脱硫率を調査した。ここで、脱硫率は下記の(9)式で定義される値である。   A sample was taken from the hot metal before and after the desulfurization treatment, and the desulfurization rate was investigated. Here, the desulfurization rate is a value defined by the following equation (9).

Figure 0005790230
Figure 0005790230

表1に、各脱硫処理試験の操業条件及び脱硫率を示す。尚、表1に示す粒子速度は溶銑浴面に衝突するときの速度であり、粒子速度=0とは、脱硫剤を上吹きランスから自然落下させた条件である。また、表1の備考欄には、本発明の範囲の試験には「本発明例」と表示し、それ以外には「比較例」と表示している。   Table 1 shows the operating conditions and the desulfurization rate of each desulfurization treatment test. The particle velocity shown in Table 1 is the velocity when colliding with the hot metal bath surface, and the particle velocity = 0 is a condition in which the desulfurizing agent is naturally dropped from the top blowing lance. In the remarks column of Table 1, “Example of the present invention” is displayed for tests within the scope of the present invention, and “Comparative example” is displayed otherwise.

Figure 0005790230
Figure 0005790230

表1に示すように、上吹き脱硫剤の衝突時の粒子速度の上昇に伴って脱硫率が高くなることが確認できた。この脱硫率と上吹き脱硫剤の衝突時の粒子速度との関係を、上置き脱硫剤の添加量別に図4、5、6に示す。図4〜6に示すように、上吹き脱硫剤の衝突時の粒子速度が速くなると脱硫率は高くなるが、上吹き脱硫剤の溶銑浴面への衝突時の粒子速度が或る値以上になると、脱硫率が飽和し、それ以上に衝突時の粒子速度を高めても脱硫率は余り向上しないことが確認できた。前述したように、本発明では、脱硫率が飽和するときの衝突時の粒子速度を臨界粒子速度と定義した。   As shown in Table 1, it was confirmed that the desulfurization rate was increased as the particle velocity increased during the collision of the top blowing desulfurizing agent. The relationship between the desulfurization rate and the particle velocity at the time of collision of the top blowing desulfurizing agent is shown in FIGS. As shown in FIGS. 4 to 6, the desulfurization rate increases as the particle velocity at the time of collision of the top blowing desulfurizing agent increases, but the particle velocity at the time of collision of the top blowing desulfurizing agent with the hot metal bath surface exceeds a certain value. As a result, it was confirmed that the desulfurization rate was saturated and the desulfurization rate was not improved much even if the particle velocity at the time of collision was further increased. As described above, in the present invention, the particle velocity at the time of collision when the desulfurization rate is saturated is defined as the critical particle velocity.

図4に示すように、上置き添加される脱硫剤の溶銑浴面での単位浴面積あたりの添加量(R)が0kg/m2のときには臨界粒子速度(C)は17m/secとなり、図5に示すように、添加量(R)が74kg/m2のときには臨界粒子速度(C)は20m/secとなり、図6に示すように、添加量(R)が250kg/m2のときには臨界粒子速度(C)は23m/secとなることが分かった。 As shown in FIG. 4, when the addition amount (R) per unit bath area on the hot metal bath surface of the desulfurizing agent added above is 0 kg / m 2 , the critical particle velocity (C) is 17 m / sec. As shown in FIG. 5, when the addition amount (R) is 74 kg / m 2 , the critical particle velocity (C) becomes 20 m / sec, and as shown in FIG. 6, the critical amount velocity (C) becomes critical when the addition amount (R) is 250 kg / m 2. The particle velocity (C) was found to be 23 m / sec.

図4〜6によって得られた、上置き添加される脱硫剤の溶銑浴面での単位浴面積あたりの添加量(R)と臨界粒子速度(C)との関係を図7に示す。図7に基づいて添加量(R)と臨界粒子速度(C)との関係を回帰式により求めると、前述した(1)式が定まる。   FIG. 7 shows the relationship between the amount of addition (R) per unit bath area on the hot metal bath surface of the desulfurizing agent added on top and the critical particle velocity (C) obtained by FIGS. When the relationship between the addition amount (R) and the critical particle velocity (C) is obtained by a regression equation based on FIG. 7, the above-described equation (1) is determined.

従って、上吹き添加する脱硫剤の溶銑浴面への衝突時の粒子速度を、上置き添加される脱硫剤の溶銑浴面での単位浴面積あたりの添加量(R)に応じて求められる臨界粒子速度(C)以上とすることで、安定して高い脱硫率を得ることができる。   Therefore, the particle speed at the time of collision of the desulfurizing agent added by top blowing to the hot metal bath surface is determined in accordance with the addition amount (R) per unit bath area of the desulfurizing agent added on the hot metal bath surface. By setting the particle speed (C) or higher, a high desulfurization rate can be stably obtained.

尚、図4〜6に示すように、脱硫剤の衝突時の粒子速度が50m/sec程度では脱硫率は高位であるが、過剰に速くすると、上置き添加される脱硫剤が吹き飛ばされて脱硫率が低下する恐れがあるので、過剰に速くする必要はない。過剰に速くすることはエネルギー消費の観点からも好ましくはない。   As shown in FIGS. 4 to 6, the desulfurization rate is high when the particle velocity at the time of collision of the desulfurizing agent is about 50 m / sec. However, if it is excessively fast, the desulfurizing agent added on top is blown off and desulfurized. There is no need to make it too fast, as the rate may drop. Too much speed is not preferable from the viewpoint of energy consumption.

1 台車
2 溶銑鍋
3 溶銑
4 インペラー
5 上吹きランス
6 石灰系脱硫剤
7 ディスペンサー
8 切り出し装置
9 集塵フード
10 投入シュート
11 ホッパー
12 ロータリーフィーダー
13 ノズル
14 ガス噴流
15 ポテンシャルコア
16 乱流領域
DESCRIPTION OF SYMBOLS 1 Bogie 2 Hot metal ladle 3 Hot metal 4 Impeller 5 Top blowing lance 6 Lime-based desulfurization agent 7 Dispenser 8 Cutting device 9 Dust collection hood 10 Input chute 11 Hopper 12 Rotary feeder 13 Nozzle 14 Gas jet 15 Potential core 16 Turbulence area

Claims (4)

インペラーによって攪拌されている溶銑の浴面上に、上吹きランスを介して搬送用ガスとともに溶銑を脱硫するに必要な石灰系脱硫剤の一部を上吹き添加し、残りの石灰系脱硫剤を前記溶銑の浴面上に上置き添加して脱硫処理する、機械攪拌式脱硫装置を用いた溶銑の脱硫方法において、上置き添加される石灰系脱硫剤の添加量に応じて下記の(1)式を用いて臨界粒子速度を求め、上吹きランスから上吹き添加する石灰系脱硫剤の溶銑浴面への衝突時の粒子速度を、求めた臨界粒子速度以上に制御することを特徴とする、溶銑の脱硫方法。
C=−0.000093×R2+0.047×R+17…(1)
但し、(1)式において、Cは、臨界粒子速度(m/sec)、Rは、上置き添加される石灰系脱硫剤の溶銑浴面での単位浴面積あたりの添加量(kg/m2)である。
A part of the lime-based desulfurization agent necessary for desulfurizing the hot metal together with the carrier gas is blown over the hot metal bath surface stirred by the impeller, and the remaining lime-based desulfurization agent is added. In the hot metal desulfurization method using a mechanical stirring desulfurization apparatus, the hot metal is added on the hot metal bath surface and desulfurized, and the following (1) wherein the calculated critical particle velocity, to control the particle velocity at the time of collision of the molten iron bath surface lime desulfurization agent which top blowing added from the top lance, above the critical particle velocity was determined using the formula, Hot metal desulfurization method.
C = −0.000093 × R 2 + 0.047 × R + 17 (1)
However, in the formula (1), C is a critical particle velocity (m / sec), R is an addition amount per unit bath area (kg / m 2 ) of the lime-based desulfurizing agent added on the hot metal bath surface. ).
溶銑浴面へ上置き添加する石灰系脱硫剤として、製鉄工程で副次的に発生する石灰含有物質を使用することを特徴とする、請求項1に記載の溶銑の脱硫方法。   2. The hot metal desulfurization method according to claim 1, wherein a lime-containing substance that is secondarily generated in the iron making process is used as a lime-based desulfurization agent that is added on the hot metal bath surface. 3. 溶銑浴面へ上置き添加する石灰系脱硫剤として、機械攪拌式脱硫装置にて石灰系脱硫剤を用いた溶銑の脱硫処理で発生した脱硫スラグを使用することを特徴とする、請求項1に記載の溶銑の脱硫方法。   2. The desulfurization slag generated by desulfurization treatment of hot metal using a lime-based desulfurization agent in a mechanical stirring type desulfurization apparatus is used as the lime-based desulfurization agent added on the hot metal bath surface. The hot metal desulfurization method as described. 上置き添加する石灰系脱硫剤の割合が、添加する全石灰系脱硫剤の80質量%以下であることを特徴とする、請求項1ないし請求項3の何れか1項に記載の溶銑の脱硫方法。   The desulfurization of hot metal according to any one of claims 1 to 3, wherein a ratio of the lime-based desulfurizing agent to be added on top is 80% by mass or less of the total lime-based desulfurizing agent to be added. Method.
JP2011158510A 2010-08-18 2011-07-20 Hot metal desulfurization method Active JP5790230B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011158510A JP5790230B2 (en) 2010-08-18 2011-07-20 Hot metal desulfurization method
ARP110103000 AR082480A1 (en) 2010-08-18 2011-08-18 METHOD FOR DESULFURING HOT METAL

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010182685 2010-08-18
JP2010182685 2010-08-18
JP2011158510A JP5790230B2 (en) 2010-08-18 2011-07-20 Hot metal desulfurization method

Publications (2)

Publication Number Publication Date
JP2012062571A JP2012062571A (en) 2012-03-29
JP5790230B2 true JP5790230B2 (en) 2015-10-07

Family

ID=46058571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158510A Active JP5790230B2 (en) 2010-08-18 2011-07-20 Hot metal desulfurization method

Country Status (2)

Country Link
JP (1) JP5790230B2 (en)
AR (1) AR082480A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668641B2 (en) * 2011-08-22 2015-02-12 Jfeスチール株式会社 Hot metal desulfurization method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194678B2 (en) * 2007-09-26 2013-05-08 Jfeスチール株式会社 Hot metal desulfurization method
JP5433955B2 (en) * 2008-02-12 2014-03-05 Jfeスチール株式会社 Desulfurizing agent supply apparatus and method for supplying desulfurizing agent to hot metal

Also Published As

Publication number Publication date
AR082480A1 (en) 2012-12-12
JP2012062571A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5194678B2 (en) Hot metal desulfurization method
JP5195833B2 (en) Hot metal desulfurization method
JP4845078B2 (en) Hot metal desulfurization method
JP6061053B2 (en) Hot metal desulfurization method and desulfurization agent
JP5195737B2 (en) Hot metal desulfurization method
JP4961787B2 (en) Hot metal desulfurization method
JP5177170B2 (en) Hot metal desulfurization method
JP4715369B2 (en) Hot metal desulfurization treatment method
JP5130663B2 (en) Method for refining molten iron
JP4635672B2 (en) Method for refining molten metal
JP5790230B2 (en) Hot metal desulfurization method
CN109790590B (en) Dephosphorization apparatus and dephosphorization method of molten iron using the same
JP2015218390A (en) Desulfurization method of molten pig iron using combination of mechanical stirring and gas stirring
JP5401938B2 (en) Hot metal desulfurization method
JP5906664B2 (en) Hot metal desulfurization method
JP5983059B2 (en) Additive apparatus and addition method of powdery additive for desulfurization apparatus
JP5418248B2 (en) Hot metal desulfurization method
JP2009299126A (en) Method for desulfurizing molten metal
JP5446300B2 (en) Hot metal desulfurization treatment method
JP6369516B2 (en) Mechanical stirring type hot metal desulfurization method
JP2019090078A (en) Immersion lance for blowing and refining method of molten iron
JP5668641B2 (en) Hot metal desulfurization method
JP2013129861A (en) Method of desulfurizing molten iron
JP6238019B2 (en) Hot metal desulfurization method with less recuperation
JP6289204B2 (en) Desiliconization and desulfurization methods in hot metal ladle

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R150 Certificate of patent or registration of utility model

Ref document number: 5790230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250