JP5789987B2 - Rust prevention method - Google Patents

Rust prevention method Download PDF

Info

Publication number
JP5789987B2
JP5789987B2 JP2011004724A JP2011004724A JP5789987B2 JP 5789987 B2 JP5789987 B2 JP 5789987B2 JP 2011004724 A JP2011004724 A JP 2011004724A JP 2011004724 A JP2011004724 A JP 2011004724A JP 5789987 B2 JP5789987 B2 JP 5789987B2
Authority
JP
Japan
Prior art keywords
water
rust
bacillus subtilis
sample
irrigation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011004724A
Other languages
Japanese (ja)
Other versions
JP2012144781A (en
Inventor
尚志 園木
尚志 園木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2011004724A priority Critical patent/JP5789987B2/en
Publication of JP2012144781A publication Critical patent/JP2012144781A/en
Application granted granted Critical
Publication of JP5789987B2 publication Critical patent/JP5789987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、用水系統を構成する金属設備の発錆を抑制する防錆方法に関する。 The present invention relates to a rust prevention method for suppressing rusting of metal equipment constituting a water system.

例えば、発電所には発電に必要な重要機器の冷却水系統のように発錆が発電の妨げとなる等、非常に問題となる系統や消火用水系統や雑用水系統などのように発電に影響を及ぼすことのない用水系統が設けられている。発錆が問題となる重要設備では、用水系統の金属設備の防錆処理に、金属設備内面に塗装やライニング等の内面保護処理を施したり、用水中に防錆剤(薬品)を投入する等が行われている。しかし発電に影響を及ぼさない用水管等では費用的な観点で防錆処理を施さない、または排水、放水が常に行われる用水管であって環境面から防錆処理を施すことが出来ないことも多い。   For example, in power plants, rusting interferes with power generation, such as the cooling water system of important equipment required for power generation, and it affects power generation such as extremely problematic systems, fire fighting water systems, and miscellaneous water systems. A water system that does not affect the water is provided. In important facilities where rusting is a problem, rust prevention treatment of metal facilities in water systems, internal treatment treatment such as painting and lining on the inner surface of metal facilities, and introduction of rust preventives (chemicals) into the water Has been done. However, water pipes that do not affect power generation are not subjected to rust prevention treatment from a cost standpoint, or are water pipes that are always drained and discharged and cannot be subjected to rust prevention treatment from an environmental point of view. Many.

ここで、枯草菌に分類される微生物を用いた消臭剤にて、悪臭を表面的に処理するのではなく、根本的に分解して消臭し、汚物等が付着してもそれに由来する悪臭を直接消臭だけでなく、その周囲空間に存在する悪臭も消臭できるようにしたものがある(例えば、特許文献1参照)。また、枯草菌に分類される微生物を有効成分として循環水に含有させ、水中の汚れや雑菌その他の有機質を効率的に安全に除去するようにしたものがある(例えば、特許文献2参照)。さらに、有用微生物群を用いた防錆剤として、有用微生物群の醗酵液にイオン化ミネラルを加えたミネラル含有水溶性防錆溶液がある(例えば、特許文献3参照)。イオン化ミネラルは有用微生物群の醗酵液に2wt%程度加えられる。   Here, deodorizers using microorganisms classified as Bacillus subtilis do not treat bad odors superficially, but fundamentally decompose and deodorize them, even if filth adheres to them There is one that can deodorize not only direct deodorization but also malodor present in the surrounding space (for example, see Patent Document 1). In addition, there is one in which microorganisms classified as Bacillus subtilis are contained in circulating water as active ingredients to efficiently and safely remove dirt, germs and other organic substances in water (for example, see Patent Document 2). Furthermore, there exists a mineral containing water-soluble rust preventive solution which added the ionized mineral to the fermentation liquid of the useful microorganism group as a rust preventive using a useful microorganism group (for example, refer patent document 3). Ionized minerals are added to the fermentation broth of useful microorganisms in an amount of about 2 wt%.

特開平9−275975号公報JP-A-9-275975 特開2001−104991号公報JP 2001-104991 A 特開2002−20885号公報JP 2002-20885 A

しかし、金属設備の防錆のために防錆処理を施す場合にはコスト高となるだけでなく、防錆処理を施しても経年とともに防錆効果が低下するので万全といえない。また、用水系統の金属設備であるタンクや配管などに防錆剤を定期的に投入する場合には、環境保全面から防錆剤を投入した用水をそのまま外部に排水することはできないので、排水処理が必要となる。さらに、発錆がさほど問題視されていない用水系統においても、経年による金属設備内面の発錆により用水が赤く変色してしまい、用水使用後に散水範囲の景観が著しく損なわれている。   However, when the rust prevention treatment is performed for the rust prevention of the metal equipment, not only the cost is increased, but even if the rust prevention treatment is performed, the rust prevention effect is lowered with the passage of time, so that it is not perfect. In addition, when a rust preventive agent is regularly added to tanks and pipes that are metal equipment of the water system, the water with the rust preventive agent cannot be drained to the outside as it is for environmental conservation. Processing is required. Furthermore, even in irrigation systems where rusting is not considered as a problem, the irrigation on the inner surface of metal facilities due to aging causes the water to turn red, and the landscape of the sprinkling area is significantly impaired after the use of the irrigation water.

一方、枯草菌は安全な微生物であり、そのまま外部に排出しても環境面の問題はないが、特許文献1では枯草菌は防臭のために使用されており防錆のためではない。また、特許文献2でも、水中の汚れや雑菌その他の有機質を効率的に安全に除去するために枯草菌を使用しており防錆のためではない。さらに、特許文献3に記載の防錆溶液は、有用微生物群の醗酵処理やミネラルの添加が必要でありコストが高くなる。   On the other hand, Bacillus subtilis is a safe microorganism and there is no environmental problem even if it is discharged to the outside as it is. However, in Patent Document 1, Bacillus subtilis is used for deodorization and not for rust prevention. Also in Patent Document 2, Bacillus subtilis is used for efficiently and safely removing dirt in the water, germs and other organic substances, not for rust prevention. Furthermore, the anticorrosive solution described in Patent Document 3 requires fermentation treatment of useful microorganisms and addition of minerals, which increases costs.

本発明の目的は、環境に優しく安全でしかも容易、安価に金属を防錆できる防錆方法を提供することである。 An object of the present invention is to provide a rust-preventing method capable of rust- proofing a metal inexpensively, environmentally friendly and easily.

請求項1の発明に係わる防錆方法は、有機物である油脂を分解する枯草菌を主成分とした防錆剤を発電所内の用水系統の用水に投入し、前記用水系統の前記用水が接触する前記用水系統の金属設備を防錆するにあたり、前記用水系統のうち防錆のための何の薬品処理もされていない所内用水系統の用水に前記防錆剤を投入し、前記所内用水系統の前記用水を用いて散水水幕ノズルからLNGタンクに散水水幕を行い前記所内用水系統の金属設備を防錆することを特徴とする。 In the rust prevention method according to the first aspect of the present invention, a rust preventive agent mainly composed of Bacillus subtilis that decomposes fats and oils, which are organic substances, is introduced into the irrigation system water in the power plant, and the irrigation system in the irrigation system comes into contact. In rust-proofing the metal equipment of the irrigation system, the rust-preventing agent is added to the irrigation water in the irrigation system that has not been subjected to any chemical treatment for rusting in the irrigation system. Water spraying is performed from the water spray nozzle to the LNG tank using irrigation water to rust the metal equipment of the in-house water system .

以下、本発明に至った経緯を説明する。枯草菌は、有機物である油脂を分解する微生物であり、用水系統の配管やタンクの内面に付着したヌメリや沈着した汚泥を剥離分解させるために使用されている。すなわち、枯草菌の胞子は、有機物を栄養として酸素と反応することにより、枯草菌の栄養細胞となり、油脂及び悪臭の元となる物質に働きかけて油脂を分解し悪臭を除去するものであり、有機物の分解に対して有効であることは知られているが、無機物である金属に対する発錆の抑制については有効性が未だ確認されていない。   Hereinafter, the background to the present invention will be described. Bacillus subtilis is a microorganism that decomposes fats and oils, which are organic substances, and is used for peeling and decomposing slime and deposited sludge adhering to the inner surface of pipes and tanks of water systems. In other words, Bacillus subtilis spores react with oxygen using organic matter as nutrients to become vegetative cells of Bacillus subtilis, which work on the oils and substances that cause malodors to decompose fats and oils and remove malodors. Although it is known that it is effective against decomposition of the metal, its effectiveness has not yet been confirmed with respect to the suppression of rusting on inorganic metals.

そこで、金属に対する発錆の抑制についても、枯草菌が有効ではないかと着想し、以下に述べる実験を行い、鋭意検討した結果、枯草菌に防錆効果があることを知見するに至った。   Therefore, the inventors have conceived that Bacillus subtilis is also effective in suppressing rusting on metals, and conducted the following experiments. As a result of intensive studies, they have found that Bacillus subtilis has an antirust effect.

図1は本発明の枯草菌による防錆効果の実験過程の写真図である。図1(a)に示すように、枯草菌の発錆への影響確認のために、水道水に枯草菌を投入した容器11a及び単に水道水を入れた容器11bを用意し、それぞれに同程度に少し錆びた状態の金属部材サンプルである鍵12a、12bを浸漬した。なお、金属部材サンプルの鍵12a、12bは、防錆処理のメッキが施されているものである。以下、水道水に枯草菌を投入した容器11aに鍵12aを浸漬したものをサンプルA、単に水道水を入れた容器11bに鍵12bを浸漬したものをサンプルBということにする。   FIG. 1 is a photograph of an experimental process of the rust prevention effect by Bacillus subtilis of the present invention. As shown in FIG. 1 (a), in order to confirm the influence of Bacillus subtilis on rusting, a container 11a in which Bacillus subtilis is introduced into tap water and a container 11b in which tap water is simply added are prepared, and the same degree is provided for each. The keys 12a and 12b, which are metal member samples in a slightly rusted state, were immersed. In addition, the keys 12a and 12b of the metal member sample are plated with antirust treatment. Hereinafter, sample A is a sample in which a key 12a is immersed in a container 11a in which Bacillus subtilis is introduced into tap water, and sample B is a sample in which the key 12b is simply immersed in a container 11b in which tap water is added.

図1(b)は、図1(a)の状態から3日経過した状態である。サンプルAでは水の色に変化がほとんど見られなかった。一方、サンプルBでは水がやや錆び色に変色した。   FIG. 1B shows a state in which three days have passed since the state of FIG. Sample A showed little change in the color of the water. On the other hand, in sample B, the water was slightly rusted.

図1(c)は、図1(a)の状態から7日経過した状態(図1(b)の状態から4日経過した状態)である。サンプルAでは水の色に変化がほとんど見られなかった。一方、サンプルBでは水が図1(b)の場合より濃い錆び色となった。   FIG. 1C shows a state in which 7 days have passed since the state in FIG. 1A (a state in which 4 days have passed since the state in FIG. 1B). Sample A showed little change in the color of the water. On the other hand, in Sample B, the water had a darker rust color than in the case of FIG.

図1(d)は、図1(a)の状態から15日経過した状態(図1(c)の状態から8日経過した状態)である。サンプルAでは水の色に変化がほとんど見られなかった。一方、サンプルBでは水が図1(c)の場合よりさらに濃い錆び色となった。また、この時点で途中サンプルCとして、5日前に水道水を入れた容器11cに錆びた番線13を浸漬したものを追加した。番線13は防錆処理が施されていない金属部材である。   FIG. 1D shows a state where 15 days have passed since the state of FIG. 1A (a state where 8 days have passed since the state of FIG. 1C). Sample A showed little change in the color of the water. On the other hand, in Sample B, the water had a darker rust color than in the case of FIG. Moreover, what immersed the rusty number wire | line 13 in the container 11c which put the tap water 5 days ago as the middle sample C at this time was added. The number wire 13 is a metal member that has not been subjected to rust prevention treatment.

図1(e)は、図1(a)の状態から18日経過した状態(図1(d)の状態から3日経過した状態)である。サンプルAでは水の色に変化がほとんど見られなかった。一方、サンプルBでは水が図1(d)の場合よりさらに濃い錆び色となった。また、サンプルCでは、さらに濃い錆び色となった。この状態でサンプルBに枯草菌を投入した。   FIG. 1E shows a state where 18 days have passed since the state of FIG. 1A (a state where 3 days have passed since the state of FIG. 1D). Sample A showed little change in the color of the water. On the other hand, in Sample B, the water had a darker rust color than in the case of FIG. In Sample C, a deeper rust color was obtained. Bacillus subtilis was added to Sample B in this state.

図1(f)は、図1(a)の状態から23日経過した状態(図1(e)の状態から5日経過した状態)である。サンプルAでは水の色に変化がほとんど見られなかった。一方、サンプルBでは枯草菌を投入したことから水が図1(e)の場合より透き通ってきた。また、サンプルCでは、さらに濃い錆び色となり、番線13がほとんど見えない程に濁った。   FIG. 1 (f) shows a state in which 23 days have elapsed from the state of FIG. 1 (a) (a state in which 5 days have elapsed from the state of FIG. 1 (e)). Sample A showed little change in the color of the water. On the other hand, in Sample B, since Bacillus subtilis was introduced, the water became clearer than in the case of FIG. Further, in sample C, the rust color became darker and became cloudy so that the wire 13 was hardly visible.

以上の実験結果から分かるように、枯草菌を投入した水道水のサンプルAは錆びの進行が認められず、その水も透き通った状態でほぼ変化がなかった。一方、水道水のサンプルBは錆びが進行し、また水も錆び色いわゆる赤水へ変化した。この過程で枯草菌を投入すると赤水が透き通ってきた。また、途中で追加したサンプルCの番線13は、鍵12a、12bのように防錆処理のメッキが施されていないので赤水化の進行が早かった。   As can be seen from the above experimental results, in the sample A of tap water charged with Bacillus subtilis, no progress of rust was observed, and the water was almost transparent with no change. On the other hand, the sample B of tap water progressed to rust, and the water also changed to rust color, so-called red water. When Bacillus subtilis was introduced in this process, red water became clear. Further, the number 13 of the sample C added during the process was not subjected to rust-proof plating like the keys 12a and 12b, so the red water progressed quickly.

図2は、図1(f)の各サンプルA、B、Cの水分を蒸発させて金属部材を取り出した写真図である。サンプルAでは実験開始時の鍵12aの状態とほとんど同じであり、サンプルBでは鍵12bに錆が進行し錆分も出ていた。また、サンプルCでは番線13にさらに錆が進行しており錆分もサンプルBより多かった。この実験結果から枯草菌は発錆の防止や用水の赤水化防止及び赤水化した用水の透明化に有効であることが確認できた。   FIG. 2 is a photograph of the metal members taken out by evaporating the moisture of the samples A, B, and C of FIG. In sample A, the state of the key 12a at the start of the experiment was almost the same, and in sample B, rust progressed to the key 12b and rust was also produced. Further, in sample C, rust further progressed on the wire 13, and the amount of rust was larger than that of sample B. From these experimental results, it was confirmed that Bacillus subtilis is effective in preventing rusting, preventing red water from being used, and clarifying red water.

本発明によれば、枯草菌は発錆の防止や用水の赤水化防止及び赤水化した用水の透明化に有効であることが得られたので、金属の防錆剤として使用できる。そのため、水を取り扱う用水系統内に枯草菌を投入することで用水系統内面の防錆及び防錆に伴い赤水化防止を行うことができる。また、汎用的な用途として金属表面に枯草菌の溶解液を散布して防錆を行うことができる。この際、菌の醗酵処理やミネラルの添加は不要であり、安価に防錆できる。さらに、枯草菌を防錆剤として使用することで、排水時の水処理が不要となる。   According to the present invention, Bacillus subtilis can be used as a metal rust preventive agent because it is effective for preventing rusting, preventing red water from becoming red water, and transparentizing red water. Therefore, by introducing Bacillus subtilis into the irrigation system that handles water, it is possible to prevent red water with rust prevention and rust prevention on the inner surface of the irrigation system. Further, as a general purpose application, it is possible to prevent rust by spraying a Bacillus subtilis solution on the metal surface. At this time, the fermentation treatment of bacteria and the addition of minerals are unnecessary and can be rusted at low cost. Furthermore, the use of Bacillus subtilis as a rust preventive agent eliminates the need for water treatment during drainage.

本発明の枯草菌による防錆効果の実験過程の写真図。The photograph figure of the experimental process of the rust prevention effect by Bacillus subtilis of this invention. 図1(f)の各サンプルA、B、Cの水分を蒸発させて金属部材を取り出した写真図。The photograph figure which took out the metal member by evaporating the water | moisture content of each sample A, B, and C of FIG.1 (f). 枯草菌の投入直後の散水・水幕を行った状態でのろ過水タンク周りの写真図。A photograph of the area around the filtered water tank with water spray and water curtain right after the introduction of Bacillus subtilis. 枯草菌を投入してから6ヶ月経過後に散水・水幕を行った状態でのろ過水タンク周りの写真図。A photograph of the area around the filtered water tank with watering and water curtains 6 months after the introduction of Bacillus subtilis. 表1に示した気化器海水冷却水タンクの毎月の水質分析結果のグラフ。The graph of the monthly water quality analysis result of the vaporizer seawater cooling water tank shown in Table 1. 枯草菌を投入してからの鉄分の変化を示す写真図。The photograph figure which shows the change of iron content after putting in Bacillus subtilis.

以下、本発明の実施の形態を説明する。枯草菌に防錆効果があることを知見したことから、防錆のための何の薬品処理もされていない発電所内の所内用水系統への使用を検討するとともに、脱酸素による防錆のために薬品の投入による溶存酸素の管理を行っている用水系統設備への使用を検討した。   Embodiments of the present invention will be described below. Since we have found that Bacillus subtilis has a rust-preventing effect, we considered its use in an in-house water system in power plants that have not been treated with any chemicals for rust prevention. We examined the use of this system in the irrigation system where the dissolved oxygen is controlled by chemicals.

枯草菌(Bacillus subtilis)は、自然環境から分離したものや、市販の枯草菌に分類される微生物を使用することができる。   As Bacillus subtilis, those isolated from the natural environment and microorganisms classified as commercially available Bacillus subtilis can be used.

まず、防錆のための何の薬品処理もされていない発電所内の所内用水系統への枯草菌の使用について説明する。   First, the use of Bacillus subtilis in an in-house water system in a power plant that has not been subjected to any chemical treatment for rust prevention will be described.

所内用水系統は、淡水消火系統や海水消火系統の充満水としており、何の薬品処理もされておらず、従来においては、ろ過水タンクから系統水を供給している。その系統水は錆により常に赤水であり配管も錆びによる腐食の進行が激しく、ピンホールや亀裂等によるリークも多発している。さらには、各散水や水膜作動確認テストにおいても、散水水幕ノズル、ブローライン等の錆び屑の詰まりも多発し、作業量や費用が嵩んでいる。また水幕や散水テストでの排水が赤水であるためLNGタンクの屋根、側壁、ラック、地表面、側溝等が水幕や散水テスト後に真っ赤に染まっており、従来からの問題として解決に至っていない。   The in-house irrigation system is filled with freshwater firefighting system and seawater firefighting system, has not been treated with any chemicals, and conventionally supplies system water from a filtered water tank. The system water is always red water due to rust, and the corrosion of pipes is intense due to rust, and leaks due to pinholes, cracks, etc. occur frequently. Furthermore, in each sprinkling and water film operation confirmation test, clogging of rust debris such as sprinkling water nozzles and blow lines frequently occurs, which increases the amount of work and cost. Also, since the drainage in the water curtain and sprinkling test is red water, the roof, side walls, racks, ground surface, gutters, etc. of the LNG tank are stained red after the water curtain and sprinkling test, and it has not been solved as a conventional problem .

そこで、所内用水系統である消火系統の隣接ろ過水タンクへ直接枯草菌を投入した。図3は、枯草菌の投入直後の散水・水幕を行った状態でのLNGタンク周りの写真図であり、図3(a)は側溝の写真図、図3(b)はLNGタンク14への散水水幕を行う給水母管15及び散水水幕ノズル16の写真図、図3(c)は散水・水幕の写真図、図3(d)はLNGタンク14の上部の写真図、図3(e)は隣接雨水排水槽の写真図である。この状態では配管内に枯草菌が投入されたろ過水がほぼ充満されたものと推定できるが、図3(a)〜図3(e)から分かるように排水は赤水により濁っている。   Therefore, Bacillus subtilis was introduced directly into the adjacent filtrate tank of the fire extinguishing system, which is an in-house water system. FIG. 3 is a photographic view of the area around the LNG tank in a state where watering and water curtains have been performed immediately after the introduction of Bacillus subtilis, FIG. 3 (a) is a photographic view of a side groove, and FIG. 3 (b) is a view of the LNG tank 14. FIG. 3 (c) is a photograph of the water spray / water curtain, FIG. 3 (d) is a photograph of the upper part of the LNG tank 14, and FIG. 3 (e) is a photograph of an adjacent rainwater drainage tank. In this state, it can be presumed that the filtered water in which Bacillus subtilis is introduced into the pipe is almost full, but as can be seen from FIGS. 3 (a) to 3 (e), the drainage is clouded by red water.

図4は、枯草菌を投入してから6ヶ月経過後に散水・水幕を行った状態でのLNGタンク周りの写真図であり、図4(a)は側溝の写真図、図4(b)はLNGタンク14への散水水幕を行う部分の写真図、図4(c)は散水・水幕の写真図、図4(d)はLNGタンク14の上部の写真図、図4(e)は隣接雨水排水槽の写真図である。図4(a)〜図4(d)から分かるように水は綺麗になっており、図4(e)から分かるように排水は赤っぽい色が薄れ土色に変化し濁りが減少している。   FIG. 4 is a photographic view of the area around the LNG tank in a state where watering and water curtains were performed 6 months after the introduction of Bacillus subtilis, and FIG. 4 (a) is a photographic view of a side groove, FIG. 4 (b). Fig. 4 (c) is a photograph of the water spray / water curtain, Fig. 4 (d) is a photograph of the upper part of the LNG tank 14, and Fig. 4 (e). Is a photograph of an adjacent rainwater drainage tank. As can be seen from FIG. 4 (a) to FIG. 4 (d), the water is beautiful, and as can be seen from FIG. 4 (e), the reddish color fades and changes to soil color and turbidity decreases. Yes.

このように、排水の濁りが減少していることから、散水水幕配管の赤水対策はもとより、これによる様々な設備の発錆抑制が可能である。また枯草菌は環境に優しいので、そのまま排水した場合においても、側溝や隣接雨水排水槽を浄化し、さらに河川や土壌を綺麗にしてくれるものと考察できる。   In this way, since the turbidity of the drainage is reduced, it is possible to suppress rusting of various facilities as well as measures against red water in the sprinkling water curtain piping. Bacillus subtilis is environmentally friendly, so even if it is drained as it is, it can be considered that it cleans the gutters and adjacent rainwater drainage tanks and cleans the river and soil.

次に、脱酸素による防錆のために薬品の投入による溶存酸素の管理を行っている用水系統設備への枯草菌の使用について説明する。   Next, the use of Bacillus subtilis for irrigation system facilities that manage dissolved oxygen by introducing chemicals for rust prevention by deoxygenation will be described.

現在、気化器海水ポンプモーター用冷却水は、気化器海水冷却水タンクから冷却水系統にて循環運転を実施しており、リン酸系薬品「クリレックスL−110」を適宜投入し、防錆対策及び設備保全を行っている。冷却水の水質管理については月/回の水質分析を行い、リン酸濃度、濁度、鉄分濃度等の確認を行い、各基準値超過時には、薬品投入または冷却水貯蔵タンク内に所内用水入れ替えを実施し水質管理をしている。   At present, the cooling water for the vaporizer seawater pump motor is being circulated through the cooling water system from the vaporizer seawater cooling water tank, and the phosphoric acid chemical “Krillex L-110” is appropriately added to prevent rust. Countermeasures and equipment maintenance are performed. For water quality management of cooling water, monthly water quality analysis is performed, and phosphoric acid concentration, turbidity, iron concentration, etc. are confirmed. When each standard value is exceeded, chemicals are charged or in-house water is replaced in the cooling water storage tank. Implement and manage water quality.

そこで、気化器海水冷却水タンクの防錆剤(薬品:クリレックスL−110)の代替として、枯草菌を気化器海水冷却水タンクヘ投入した。枯草菌の投入については、既に投入していた薬品(クリレックスL−110)の追加投入を停止し、冷却水中の薬品(クリレックスL−110)がある程度減少した後に枯草菌を投入した。また、枯草菌の投入量は、冷却水タンク内の枯草菌の濃度を10ppmとした。そのため、冷却水タンク1基当りのタンク容量が30mであることから300mlを投入した。 Therefore, Bacillus subtilis was introduced into the vaporizer seawater cooling water tank as an alternative to the rust preventive agent (chemical: Krillex L-110) for the vaporizer seawater cooling water tank. Regarding the charging of Bacillus subtilis, the additional charging of the chemical (Krillex L-110) that had already been added was stopped, and Bacillus subtilis was added after the chemical in the cooling water (Chrilex L-110) was reduced to some extent. Further, the amount of Bacillus subtilis was 10 ppm as the concentration of Bacillus subtilis in the cooling water tank. Therefore, since the tank capacity per cooling water tank was 30 m 3 , 300 ml was added.

薬品(クリレックスL−110)を投入した状態から薬品(クリレックスL−110)の追加投入を停止し、その後に枯草菌を投入した場合の気化器海水冷却水タンクの毎月の水質分析結果を表1に示す。
Monthly water quality analysis results of the vaporizer seawater cooling water tank when the chemical (Crillex L-110) is stopped from being added and then Bacillus subtilis is added. Table 1 shows.

また、図5は、表1に示した気化器海水冷却水タンクの毎月の水質分析結果のグラフである。曲線S1は電気伝導度、曲線S2は薬品(クリレックスL−110)の濃度、曲線S3は濁度、曲線S4はpH、曲線S5は鉄分濃度である。   FIG. 5 is a graph of monthly water quality analysis results of the vaporizer seawater cooling water tank shown in Table 1. Curve S1 is the electrical conductivity, curve S2 is the concentration of the chemical (Krillex L-110), curve S3 is the turbidity, curve S4 is the pH, and curve S5 is the iron concentration.

気化器海水冷却水タンクの毎月の水質の計測開始後の4ヶ月めの時点t1で防錆剤である薬品(クリレックスL−110)を追加投入を停止し、投入中の薬品「クリレックスL−110」の防錆効果がほぼ2ヶ月程度でなくなることから、薬品「クリレックスL−110」投入停止した4ヶ月めの時点t1からほぼ2ヶ月後の計測開始6ヶ月めの時点t2で枯草菌を投入した。従って、枯草菌の効果は時点t2以降のデータで判断することになる。   At the time t1 of the fourth month after the start of the monthly water quality measurement of the vaporizer seawater cooling water tank, the addition of the rust preventive chemical (Crillex L-110) was stopped, and the chemical “Crillex L” -110 "rust prevention effect is no longer about 2 months, so the hay at the time t2 of the 6th month after the start of the measurement almost 2 months from the time t1 of the 4th month when the introduction of the chemical" Kurilex L-110 "is stopped The fungus was introduced. Therefore, the effect of Bacillus subtilis is determined by data after time t2.

表1及び図5から分かるように、枯草菌の投入前(時点t2前)においては鉄分が常に1mg/l以上であったが、枯草菌の投入後の2ヶ月経過後(時点t3)では、鉄分は0.5mg/lに低下した。   As can be seen from Table 1 and FIG. 5, the iron content was always 1 mg / l or more before Bacillus subtilis was introduced (before time t2), but after 2 months have elapsed since the introduction of Bacillus subtilis (time t3), Iron content dropped to 0.5 mg / l.

また、それに合わせて濁度が6.4度まで低下した。濁度は水中の透過度を測定しておりそれ自体も鉄分の低下を表している。鉄分の変化は分析に使用するミルボワフィルターでサンプル水を通過させた色の濃淡で量を測定している。図6は鉄分の変化を示す写真図であり、図6(a)は7ヶ月めの写真図、図6(b)は8ヶ月めの写真図(時点t3)である。図6から分かるように明らかに淡色に変化しており、鉄分が低下していることが一目で分かる。このように、枯草菌を投入してから2ヶ月後の分析で顕著な効果が現れた。5ヶ月後においても鉄分は0.5mg/l程度を維持しており更に濁度は3.3度まで低下している。   In accordance with this, the turbidity decreased to 6.4 degrees. Turbidity is a measure of the permeability in water and itself represents a decrease in iron content. The change in iron content is measured by the shading of the color through which the sample water is passed by the Millbois filter used for analysis. FIG. 6 is a photographic diagram showing changes in iron content, FIG. 6 (a) is a photographic diagram for the seventh month, and FIG. 6 (b) is a photographic diagram for the eighth month (time point t3). As can be seen from FIG. 6, it clearly changes to a light color, and it can be seen at a glance that the iron content is reduced. Thus, a remarkable effect appeared in the analysis two months after the introduction of Bacillus subtilis. Even after 5 months, the iron content is maintained at about 0.5 mg / l, and the turbidity is lowered to 3.3 degrees.

このように、保護膜形成よる防錆のため薬品の投入による薬品の濃度管理を行っている用水系統設備への使用も問題がないことが確認できた。防錆剤の薬品の代替として枯草菌が使用できるので、薬品使用の削減による環境負荷の低減が可能となり、用水系統の設備点検時のブローによる排水も気にする必要がなくなるという効果も有する。   As described above, it was confirmed that there was no problem in use in water system facilities in which chemical concentration control was performed by adding chemicals for rust prevention by forming a protective film. Since Bacillus subtilis can be used as an alternative to rust preventive chemicals, it is possible to reduce the environmental burden by reducing the use of chemicals, and there is also an effect that there is no need to worry about drainage by blow during equipment inspection of the water system.

枯草菌による防錆のメカニズムについて検討するため、枯草菌投入の有無による水中溶存酸素濃度の比較を行った。   In order to investigate the mechanism of rust prevention by Bacillus subtilis, the concentration of dissolved oxygen in water with and without Bacillus subtilis was compared.

水道水と、枯草菌を投入した水道水を用意し、それぞれを別のペットボトルに入れて蓋を閉めて放置した。放置開始から6日後および20日後に、それぞれのペットボトルから少量の液体をビーカーに移し、溶存酸素濃度を計測した。   Tap water and tap water charged with Bacillus subtilis were prepared, each was put in a separate plastic bottle, and the lid was closed and left. Six days and 20 days after the start of standing, a small amount of liquid was transferred from each PET bottle to a beaker, and the dissolved oxygen concentration was measured.

溶存酸素濃度の計測は、低濃度ポータブル溶存酸素計(東亜ディーケーケー株式会社製D0−32A)を用いた。蓋をしない状態でビーカーに溶存酸素電極を入れ、開放条件で計測を行った。計測結果を表2に示す。
The dissolved oxygen concentration was measured using a low concentration portable dissolved oxygen meter (D0-32A manufactured by Toa DKK Corporation). A dissolved oxygen electrode was placed in a beaker without a lid, and the measurement was performed under open conditions. Table 2 shows the measurement results.

表2より、枯草菌投入水道水の方は溶存酸素濃度が急速に低下し、水道水に比較して6日後で約1/3、20日後で約1/16となった。溶存酸素濃度の低下を考慮すると、枯草菌投入水道水の環境では、通常の水道水よりも鉄の腐食速度が少なくとも約1/16(約0.006mm/yr)になると想定される。よって、枯草菌投入により防錆効果が発揮された要因の1つとして、水中の溶存酸素濃度が低下したことが考えられる。   From Table 2, the concentration of dissolved oxygen in tap water with Bacillus subtilis decreased rapidly, and was about 1/3 after 6 days and about 1/16 after 20 days compared to tap water. Considering the decrease in dissolved oxygen concentration, it is assumed that the corrosion rate of iron is at least about 1/16 (about 0.006 mm / yr) in the environment of tap water charged with Bacillus subtilis than normal tap water. Therefore, it is conceivable that the dissolved oxygen concentration in the water was lowered as one of the factors that exerted the rust prevention effect by introducing Bacillus subtilis.

11…容器、12…鍵、13…番線、14…LNGタンク、15…給水母管、16…散水水幕ノズル DESCRIPTION OF SYMBOLS 11 ... Container, 12 ... Key, 13 ... Number line, 14 ... LNG tank, 15 ... Water supply mother pipe, 16 ... Sprinkling water curtain nozzle

Claims (1)

有機物である油脂を分解する枯草菌を主成分とした防錆剤を発電所内の用水系統の用水に投入し、前記用水系統の前記用水が接触する前記用水系統の金属設備を防錆するにあたり、
前記用水系統のうち防錆のための何の薬品処理もされていない所内用水系統の用水に前記防錆剤を投入し、
前記所内用水系統の前記用水を用いて散水水幕ノズルからLNGタンクに散水水幕を行い前記所内用水系統の金属設備を防錆することを特徴とする防錆方法。
Injecting a rust preventive agent mainly composed of Bacillus subtilis that decomposes fats and oils that are organic matter into the water of the irrigation system in the power plant, and rusting the metal equipment of the irrigation system that the irrigation system of the irrigation system contacts,
Injecting the rust inhibitor into the irrigation water of the in-house irrigation system that is not subjected to any chemical treatment for rust prevention among the irrigation system,
A rust-preventing method, comprising spraying a water spray screen from a water spray nozzle to an LNG tank using the water of the in-house water system to rust the metal equipment of the in-house water system.
JP2011004724A 2011-01-13 2011-01-13 Rust prevention method Active JP5789987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011004724A JP5789987B2 (en) 2011-01-13 2011-01-13 Rust prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011004724A JP5789987B2 (en) 2011-01-13 2011-01-13 Rust prevention method

Publications (2)

Publication Number Publication Date
JP2012144781A JP2012144781A (en) 2012-08-02
JP5789987B2 true JP5789987B2 (en) 2015-10-07

Family

ID=46788641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011004724A Active JP5789987B2 (en) 2011-01-13 2011-01-13 Rust prevention method

Country Status (1)

Country Link
JP (1) JP5789987B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877581A (en) * 1981-11-04 1983-05-10 Idemitsu Kosan Co Ltd Method of preventing corrosion of metal using microorganism
JP2003305443A (en) * 2002-04-15 2003-10-28 Sanyo Electric Co Ltd Waste treatment equipment
JP2006104426A (en) * 2004-09-30 2006-04-20 Fujio Goto Antioxidation liquid prepared from kitchen garbage and the use

Also Published As

Publication number Publication date
JP2012144781A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
Rahmani et al. Evaluation of inhibitors and biocides on the corrosion, scaling and biofouling control of carbon steel and copper–nickel alloys in a power plant cooling water system
Liu et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water
US8668779B2 (en) Method of simultaneously cleaning and disinfecting industrial water systems
US9034812B2 (en) Compositions and methods for treating biofilms
EP2807323B1 (en) Composition and method for treating water systems
CA2797659C (en) Control of bacterial activity, such as in sewers and wastewater treatment systems
US20060006120A1 (en) Method of preventing hydrogen sulfide odor generation in an aqueous medium
US7347941B2 (en) Treating micro-organisms in water using boron conditioned enzymes and composition therefor
CN111472006B (en) Cleaning composition for carbon steel pipeline of nuclear power fire-fighting water system and preparation method thereof
Ali Inhibition of mild steel corrosion in cooling systems by low-and non-toxic corrosion inhibitors
Gu et al. Microbiologically influenced corrosion and its impact on metals and other materials
TW201808822A (en) Composition, system, and method for treating water systems
KR20050015910A (en) A Method of Controlling Microbial Fouling in Aqueous System
SA516380063B1 (en) Slurry biocide
AU2002214357B2 (en) Multifunctional water-treating composition and method of water-treating using the same
US8226964B2 (en) Systems and methods for cleaning liquid carriers related applications data
JP5789987B2 (en) Rust prevention method
US11033648B2 (en) Method, system and device for reducing microbial concentration and/or biofilm formation and/or reducing mineral and chemical concentrations to purify contaminated surfaces and substances
US9441190B2 (en) Composition and method for treating water systems
US9506016B2 (en) Composition and method for treating water systems
JP2008247751A (en) Granular green alga controller and method for controlling granular green alga
JP2019157205A (en) Oil tanker crude oil tank corrosion prevention process, and ship
Maguire et al. Biological fouling in recirculating cooling water systems
JP7340039B2 (en) Method for destroying organic constituents in cooling circuits of industrial plants and cooling circuits for industrial plants
Oparaodu et al. Effects of Tetrakis (Hydroxymethyl) Phosphorium Sulphate Biocides on Metal Loss in Mild Steel Coupon Buried in a Water-Logged Soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5789987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350