JP5789804B1 - Underground breathability inspection method and soil contamination investigation method - Google Patents

Underground breathability inspection method and soil contamination investigation method Download PDF

Info

Publication number
JP5789804B1
JP5789804B1 JP2015003729A JP2015003729A JP5789804B1 JP 5789804 B1 JP5789804 B1 JP 5789804B1 JP 2015003729 A JP2015003729 A JP 2015003729A JP 2015003729 A JP2015003729 A JP 2015003729A JP 5789804 B1 JP5789804 B1 JP 5789804B1
Authority
JP
Japan
Prior art keywords
borehole
gas
injection
underground
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015003729A
Other languages
Japanese (ja)
Other versions
JP2016128797A (en
Inventor
須美夫 山本
須美夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KABUSHIKI KAISHA SARA
Original Assignee
KABUSHIKI KAISHA SARA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KABUSHIKI KAISHA SARA filed Critical KABUSHIKI KAISHA SARA
Priority to JP2015003729A priority Critical patent/JP5789804B1/en
Application granted granted Critical
Publication of JP5789804B1 publication Critical patent/JP5789804B1/en
Publication of JP2016128797A publication Critical patent/JP2016128797A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Processing Of Solid Wastes (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】汚染物質が存在する可能性が高い地中の場所をピンポイントで推測することができる地中の通気性検査方法を提供すること。【解決手段】加圧容器79内で第1の圧力に加圧された気体を地中Mの所定の深度Fまで貫入された試錐管5に供給して試錐管5の下端部に穿設された排出孔から地中Mに前記気体を注入する。その注入の開始時点から、加圧容器79内の圧力が第1の圧力より低い第2の圧力に低下するまでに要する減圧時間を計測する。その計測が終了したら試錐管5の地中Mに対する深度Fを他の深度Fに変更する。深度変更したら再び気体の注入と減圧時間の計測とを実施して地中Mの通気性を検査する。【選択図】図7To provide an underground air permeability inspection method capable of pinpointing an underground place where there is a high possibility that a contaminant exists. A gas pressurized to a first pressure in a pressurized container 79 is supplied to a borehole 5 penetrated to a predetermined depth F in the ground M, and is drilled at a lower end portion of the borehole 5. The gas is injected into the ground M from the exhaust hole. The pressure reduction time required until the pressure in the pressurized container 79 decreases to the second pressure lower than the first pressure from the start of the injection is measured. When the measurement is completed, the depth F with respect to the underground M of the borehole 5 is changed to another depth F. When the depth is changed, gas injection and decompression time are measured again to check the permeability of the underground M. [Selection] Figure 7

Description

本発明は、地中の通気性検査方法および土壌汚染調査方法に関するものである。   The present invention relates to an underground air permeability inspection method and a soil contamination investigation method.

特許文献1に示されている従来の土壌汚染調査方法は、オゾン注入パイプを通じて該オゾン注入パイプの下端部に穿設された吐出孔から地中にオゾンガスを注入する一方、観測パイプの下端部に穿設された流入孔から流入した調査対象物質である揮発性有機塩素系化合物のガスを捕捉して該ガスの濃度を計測するようにしている。   In the conventional soil contamination investigation method disclosed in Patent Document 1, ozone gas is injected into the ground through a discharge hole formed in the lower end of the ozone injection pipe through the ozone injection pipe. A gas of a volatile organochlorine compound, which is a substance to be investigated, that has flowed in from an inflow hole that has been drilled is captured and the concentration of the gas is measured.

特開2006−349371号公報JP 2006-349371 A

しかしながら、従来の土壌汚染調査方法は、オゾン注入パイプと観測パイプとの下端部同士の間における地中に汚染物質が存在していた場合は、該汚染物質を観測パイプにより捕捉してその濃度を計測することができるものの、その計測結果からは、両パイプ間のどの地点の地中に汚染物質が存在するのかまでは推測することが困難であった。   However, in the conventional soil contamination investigation method, when there is a contaminant in the ground between the lower ends of the ozone injection pipe and the observation pipe, the contaminant is captured by the observation pipe and the concentration is measured. Although it can be measured, it was difficult to estimate from the measurement results to which point between the pipes the pollutant exists.

本発明は、このような問題を解消するためになされたもので、汚染物質が存在する可能性が高い地中の場所をピンポイントで推測することができる地中の通気性検査方法を提供することを目的とする。   The present invention has been made to solve such a problem, and provides an underground air permeability inspection method capable of pinpointing an underground place where there is a high possibility that a contaminant exists. For the purpose.

この目的を達成するために、本発明に係る地中の通気性検査方法は、第1の圧力に加圧された状態で加圧容器内に密封された気体を地中の所定の深度まで貫入された注入用試錐管解放することで前記注入用試錐管内に前記気体を供給して該注入用試錐管の下端部に穿設された排出孔から地中に前記気体を注入する気体注入工程と、前記気体注入工程が開始された時点から、前記加圧容器内の圧力が前記第1の圧力より低い第2の圧力に低下するまでに要する減圧時間を計測する時間計測工程と、前記時間計測工程が終了したら前記注入用試錐管の地中に対する深度を他の深度に変更する深度変更工程とを備え、前記深度変更工程が終了したら再び前記気体注入工程と前記時間計測工程とを実施するようにして地中の通気性を検査するようにしたものである。 To this end, ground breathable inspection method according to the present invention, a gas sealed in a pressure vessel in a state pressurized to a first pressure, to the ground of a predetermined depth gas injecting the gas into the ground from the injection drilling pipe to the gas discharge holes formed in the lower end of the infusion necessity drilling pipe by supplying by releasing the penetration infusion for the drilling pipe An injection step; a time measurement step for measuring a depressurization time required for the pressure in the pressurized container to drop to a second pressure lower than the first pressure from the time when the gas injection step is started; and A depth changing step of changing the depth of the injecting borehole to the other depth when the time measuring step is completed, and once the depth changing step is completed, the gas injection step and the time measuring step are performed again. I will check the breathability in the ground It is obtained by the.

請求項2に記載した発明に係る土壌汚染調査方法は、請求項1に記載の地中の通気性検査方法と並行して実施する土壌汚染調査方法であって、前記時間計測工程が終了したのち、前記気体注入工程を実施していない状態で、前記気体注入工程により地中に注入された気体を吸引用試錐管の下端部に穿設された吸入孔から吸引して前記吸引用試錐管を介して地上に回収する気体回収工程と、前記気体回収工程により回収した気体中に含まれる汚染物質の濃度を計測する濃度計測工程とを備え、前記吸引用試錐管は、前記注入用試錐管が貫入された地点の近傍であって該地点から一定の距離だけ水平方向に離間した地点の地中に前記注入用試錐管と略平行になるように貫入され、前記気体回収工程を実施するときの前記吸引用試錐管が貫入された地中の深度は、該気体回収工程の直前に実施された前記気体注入工程の際の前記注入用試錐管の地中の深度と略同じに設定されていることを特徴とするものである。   The soil contamination investigation method according to the invention described in claim 2 is a soil contamination investigation method carried out in parallel with the underground air permeability inspection method according to claim 1, wherein the time measurement step is completed. In the state where the gas injection step is not performed, the gas injected into the ground by the gas injection step is sucked from the suction hole drilled in the lower end portion of the suction borehole, and the suction borehole is A gas recovery step for recovering to the ground via, and a concentration measurement step for measuring the concentration of contaminants contained in the gas recovered by the gas recovery step, wherein the suction test tube is the injection test tube When the gas recovery step is carried out, it is inserted in the vicinity of the point of penetration and at a distance from the point in the horizontal direction by a certain distance so as to be substantially parallel to the injection test tube. The suction borehole was penetrated Depth in is characterized in that it is underground depth approximately equal to setting of the injection drilling tube during the gas injection step is conducted just prior to the gas recovery step.

請求項3に記載した発明に係る土壌汚染調査方法は、請求項2に記載の土壌汚染調査方法において、前記注入用試錐管を地中に貫入する地上の注入地点または前記吸引用試錐管を地中に貫入する地上の吸引地点のうち何れか一方の地点を、該地点間で隣り合う地点同士が水平方向に所定の間隔を隔てて配列するように一定の領域に亘って複数設定し、前記複数設定した一方の地点にそれぞれ隣接する位置に他方の地点をそれぞれ設定し、互いに隣接する前記注入地点と前記吸引地点との水平方向の間隔より、前記所定の間隔の方が離間するように設定されていることを特徴とするものである。   The soil contamination investigation method according to the invention described in claim 3 is the soil contamination investigation method according to claim 2, wherein the ground injection point that penetrates the injection borehole into the ground or the suction borehole is grounded. A plurality of suction points on the ground penetrating into the ground, and setting a plurality of points over a certain area so that the points adjacent to each other are arranged at predetermined intervals in the horizontal direction, The other point is set at a position adjacent to each of the set one point, and the predetermined interval is set to be separated from the horizontal interval between the injection point and the suction point adjacent to each other. It is characterized by being.

請求項1記載の発明によれば、注入用試錐管を貫入した地中の地点における土壌の通気性を深度ごとに正確に知得することができるので、その知得した土壌の通気性のデータに基づいて、汚染物質が存在する可能性が高い地中の場所をピンポイントで推測することができる。   According to the first aspect of the present invention, the air permeability of the soil at the underground point penetrating the injection test tube can be accurately obtained for each depth. Based on this, it is possible to pinpoint a place in the ground where there is a high possibility that a contaminant exists.

請求項2記載の発明によれば、注入用試錐管を貫入した地点の近傍に吸引用試錐管を貫入したので、注入用試錐管の排出孔を介して注入した気体により、吸引用試錐管の吸入孔の近傍に存在する地中の汚染物質が前記気体に混入することになる。そして、その汚染物質が混入した気体を吸引用試錐管で回収するようにしたので、気体を注入してから汚染物質が混入した気体を回収するまでに要する時間を可及的短くすることができ、その結果、汚染物質の濃度の計測を迅速に行うことができる。
また、地中に注入した気体を地中の通気性検査だけでなく地中の汚染物質の濃度計測のためにも利用するようにしたので、地中の通気性検査と並行して汚染物質の濃度計測を効率的に行うことができる。
According to the second aspect of the present invention, since the suction borehole is inserted in the vicinity of the point where the injection borehole is inserted, the gas injected through the discharge bore of the injection borehole allows the suction borehole to be Underground pollutants existing in the vicinity of the suction hole are mixed into the gas. Since the gas contaminated with the pollutant is collected by the suction test tube, the time required from the injection of the gas to the recovery of the gas mixed with the pollutant can be shortened as much as possible. As a result, the concentration of the pollutant can be quickly measured.
In addition, the gas injected into the ground is used not only for underground breathability inspection but also for measuring the concentration of underground contaminants. Concentration measurement can be performed efficiently.

請求項3記載の発明によれば、注入用試錐管を地中に貫入する注入地点または吸引用試錐管を地中に貫入する吸引地点のうち何れか一方の地点間で隣り合う地点同士の間隔を、互いに隣接する注入地点と吸引地点との間隔より離間するように設定したので、地中の通気性検査および土壌汚染調査を行う地点が過度に多くならずに済み、これらの検査および調査を効率的に行うことができる。   According to invention of Claim 3, the space | interval of the adjacent points between either one of the injection | pouring point which penetrates the borehole for injection | pouring into the ground, or the suction | attraction point which penetrates the borehole for suction | inhalation in the ground Is set to be separated from the interval between the injection point and the suction point adjacent to each other, so that there are not too many points to conduct underground air permeability inspection and soil contamination investigation. Can be done efficiently.

本発明の実施の形態に係る地中の通気性検査方法および土壌汚染調査方法を実施する際に使用する試錐装置を正面から見た状態を示す正面図である。It is a front view which shows the state which looked at the borehole apparatus used when implementing the underground air permeability inspection method and soil contamination investigation method which concern on embodiment of this invention from the front. 図1の矢視A−A線に沿う断面図である。It is sectional drawing which follows the arrow AA line of FIG. 図1の試錐装置を、一部の部材を透過して下方から見た状態を示す底面図である。It is a bottom view which shows the state which permeate | transmitted some members and was seen from the downward direction of the drilling apparatus of FIG. 図1の下部を拡大して示した図である。It is the figure which expanded and showed the lower part of FIG. 図1の上下方向中途部を拡大して示した図である。It is the figure which expanded and showed the up-down direction middle part of FIG. 試錐管およびその近傍の部材の一部を破断して示した断面図である。It is sectional drawing which fractured | ruptured and showed a part of sample tube and its vicinity member. 本発明の実施の形態に係る地中の通気性検査方法および土壌汚染調査方法を実施する際に使用する加圧気体供給装置,濃度計測装置および制御盤が設置された状態を模式的に示した図である。The state where the pressurized gas supply device, concentration measuring device, and control panel which are used when carrying out the underground air permeability inspection method and the soil contamination investigation method according to the embodiment of the present invention is schematically shown. FIG. 試錐装置を横倒ししてキャスタの転動により移動させている状態を示した図である。It is the figure which showed the state which laid down the trial-drilling device, and was moved by rolling of a caster. 複数の試錐管を貫入する地面の地点を上方から見た状態を模式的に示した図である。It is the figure which showed typically the state which looked at the point of the ground which penetrates a plurality of boreholes from the upper part. 試錐管を地中から引き抜く作業の様子を示す図である。It is a figure which shows the mode of the operation | work which pulls out a borehole from underground. 試錐装置をフォークリフトにより持ち上げて移動させようとしている状態を示す図である。It is a figure which shows the state which is going to lift and move a trial drill apparatus with a forklift. (1)図はX,Y座標で示した試錐管の各注入地点において同じ深度で計測された減圧時間を縦軸に取って表した三次元グラフであり、(2)図はX,Y座標で示した試錐管の各吸入地点において同じ深度で回収された汚染物質の濃度を縦軸に取って表した三次元グラフである。(1) The figure is a three-dimensional graph in which the decompression time measured at the same depth at each injection point of the borehole indicated by the X, Y coordinates is shown on the vertical axis. (2) The figure is the X, Y coordinates. 3 is a three-dimensional graph in which the vertical axis represents the concentration of contaminants collected at the same depth at each suction point of the borehole shown in FIG.

以下、本発明の実施の形態を図1ないし図12を参照して詳細に説明する。図1において符号1で示すものは、本発明の実施の形態に係る地中の通気性検査方法および土壌汚染調査方法を実施する際に使用する試錐装置の一例であり、主に、トリクロロエチレンやテトラクロロエチレン等の揮発性有機化合物(volatile organic compounds 以下「VOCs」という。)からなる汚染物質によって土壌が汚染されている地中Mの通気性検査方法および土壌汚染調査方法を実施する際に使用する。該試錐装置1は、フレーム3と、一対の試錐管5,5を地中Mに個別に貫入するための一対の打撃装置7,7と、各打撃装置7の鉛直方向の位置をそれぞれ個別に調整する一対の油圧シリンダ9,9と、フレーム3に固定されて該フレーム3を地面Eに起立させるための4つの脚部材11…と、各打撃装置7にそれぞれ個別に油圧を供給する一対の油圧供給装置13,13と、各油圧シリンダ9に圧油を個別に供給する一対の油圧供給装置14,14を備える。それぞれ一対の試錐管5,5、打撃装置7,7、油圧シリンダ9,9、油圧供給装置13,13、油圧供給装置14,14は、それぞれ互いに同一の構成を有している。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. What is shown by the code | symbol 1 in FIG. 1 is an example of the borehole apparatus used when implementing the underground air permeability inspection method and soil pollution investigation method which concern on embodiment of this invention, and mainly uses trichlorethylene and tetrachlorethylene. It is used when carrying out the air permeability inspection method and soil contamination investigation method for underground M in which the soil is contaminated with contaminants composed of volatile organic compounds (hereinafter referred to as “VOCs”). The borehole device 1 includes a frame 3, a pair of strike devices 7 and 7 for individually penetrating the pair of boreholes 5 and 5 into the ground M, and the vertical positions of the strike devices 7 individually. A pair of hydraulic cylinders 9, 9 to be adjusted, four leg members 11 fixed to the frame 3 to stand the frame 3 on the ground E, and a pair of oil pressures individually supplied to the respective striking devices 7 The hydraulic pressure supply devices 13 and 13 and a pair of hydraulic pressure supply devices 14 and 14 that individually supply pressure oil to the hydraulic cylinders 9 are provided. The pair of boreholes 5 and 5, the striking devices 7 and 7, the hydraulic cylinders 9 and 9, the hydraulic supply devices 13 and 13, and the hydraulic supply devices 14 and 14 have the same configuration.

フレーム3は、水平方向に一定の間隔を隔てて互いに平行かつ鉛直方向に延びる一対のガイドレール15,15と、各ガイドレール15の長手方向における一端部(図1における上端部)と他端部(図1における下端部)と該他端部寄りの上下方向中途部とに、それぞれガイドレール15を挟持した状態でそれぞれねじ部材16(図2参照)により締結され結着された一対の第1梁部材17,17と一対の第2梁部材19,19と一対の第3梁部材21,21を備えている。   The frame 3 includes a pair of guide rails 15 and 15 extending in the vertical direction parallel to each other at a certain interval in the horizontal direction, and one end portion (upper end portion in FIG. 1) and the other end portion of each guide rail 15 in the longitudinal direction. A pair of first members fastened and fastened by a screw member 16 (see FIG. 2) with the guide rail 15 sandwiched between the lower end portion in FIG. Beam members 17 and 17, a pair of second beam members 19 and 19, and a pair of third beam members 21 and 21 are provided.

さらに、フレーム3は、一方のガイドレール15に結着された一対の第1梁部材17,17と他方のガイドレール15に結着された一対の第1梁部材17,17とでそれぞれ対向する第1梁部材17同士に横架されてねじ部材により締結され結着された一対の第1横架部材23,23と、一方のガイドレール15に結着された一対の第2梁部材19,19と他方のガイドレール15に結着された一対の第2梁部材19,19とでそれぞれ対向する第2梁部材19の下端部同士に横架されてねじ部材により締結され結着された一対の第2横架部材25,25(図3および図4参照)と、これら一対の第2横架部材25,25の底面と各第2梁部材19の底面とにそれぞれ当接した状態で一対の第2横架部材25,25にねじ部材により締結され結着された一対の底面部材27,27とを備える。各ガイドレール15,各第1梁部材17,各第2梁部材19および各第3梁部材21は鉄製の部材からなり、それらの横断面の形状は略H字状に形成されている。該横断面に直交する方向から見て各ガイドレール15の中央の両側面にそれぞれ一対の第1梁部材17,17と一対の第2梁部材19,19と一対の第3梁部材21,21の各側面が当接して各ガイドレール15を挟持した状態で各梁部材17,19,21がねじ部材16により締結され結着されている。   Further, the frame 3 is opposed to the pair of first beam members 17 and 17 bonded to one guide rail 15 and the pair of first beam members 17 and 17 bonded to the other guide rail 15. A pair of first horizontal members 23, 23, which are horizontally mounted between the first beam members 17 and fastened by a screw member, and a pair of second beam members 19, which are bonded to one guide rail 15, 19 and a pair of second beam members 19, 19 connected to the other guide rail 15. The pair of second beam members 19, which are horizontally opposed to each other, are fastened by a screw member. The second horizontal members 25, 25 (see FIGS. 3 and 4), and a pair of the second horizontal members 25, 25 in contact with the bottom surfaces of the pair of second horizontal members 25, 25 and the bottom surfaces of the second beam members 19, respectively. The second horizontal members 25, 25 are fastened by screw members. Comprising wear has been a pair of bottom members 27 and 27. Each guide rail 15, each first beam member 17, each second beam member 19, and each third beam member 21 are made of iron members, and their cross-sectional shapes are formed in an approximately H shape. A pair of first beam members 17, 17, a pair of second beam members 19, 19, and a pair of third beam members 21, 21 are provided on both side surfaces in the center of each guide rail 15 when viewed from the direction orthogonal to the transverse section. The beam members 17, 19, and 21 are fastened and fastened by the screw members 16 in a state where the side surfaces of each of the guide rails 15 are in contact with each other.

各第2梁部材19の側面には、それぞれ同一の構造により構成された鉄製の脚部材11がねじ部材29により締結され結着されている。脚部材11の下端部には雌ねじのねじ孔が刻設され、該ねじ孔には雄ねじのねじ軸31が螺着され、該ねじ軸31の上端部にはハンドル33が結着され下端部には円盤状の接地部材35が結着されている。ハンドル33と共にねじ軸31を回転させることでフレーム3に対する接地部材35の相対位置を適宜調整して試錐装置1を地面Eに直立設置することができる。
また、各第1梁部材17および各第2梁部材19の各側面には、それぞれ同一の構成を有するキャスタ37がねじ部材により締結され結着されている。このため、ねじ部材29を取り外して第2梁部材19から各脚部材11を離脱させたのち、試錐装置1を水平方向に横倒しして各キャスタ37の車輪を地面Eに接地させ該車輪を転動させることで、試錐装置1を容易に運搬することができる。このとき、各第1梁部材17および各第2梁部材19の各側面(各キャスタ37が取り付けられた側面)に直交する方向に延びる回転軸回りに各キャスタ37が回転可能に構成されているので、試錐装置1の移動方向を容易に変更することができる。
On the side surface of each second beam member 19, an iron leg member 11 having the same structure is fastened and bound by a screw member 29. A screw hole of a female screw is formed in the lower end portion of the leg member 11, and a screw shaft 31 of a male screw is screwed into the screw hole. A handle 33 is coupled to the upper end portion of the screw shaft 31, and is attached to the lower end portion. A disk-shaped grounding member 35 is bound. By rotating the screw shaft 31 together with the handle 33, the relative position of the grounding member 35 with respect to the frame 3 can be appropriately adjusted, and the borehole device 1 can be installed upright on the ground E.
Further, casters 37 having the same configuration are fastened and bonded to the side surfaces of the first beam members 17 and the second beam members 19 by screw members. For this reason, after removing the screw member 29 and detaching each leg member 11 from the second beam member 19, the drilling device 1 is laid down in the horizontal direction so that the wheels of the casters 37 are grounded to the ground E and the wheels are rotated. By moving it, the borehole device 1 can be easily transported. At this time, each caster 37 is configured to be rotatable around a rotation axis extending in a direction orthogonal to each side surface (side surface to which each caster 37 is attached) of each first beam member 17 and each second beam member 19. Therefore, the moving direction of the borehole device 1 can be easily changed.

各打撃装置7は、その本体の両側面を一対の板状の錘板7a,7a(図5参照)で挟持した状態でねじ部材により締結されて一体化され、一対の錘板7a,7aのうち一方の錘板7aの側面にはそれぞれスライダ7bが固定されている。一対の錘板7a,7aを取り付けることで、その分、各打撃装置7の重量が増加するため、打撃するときの衝撃力が向上する。各スライダ7bが各ガイドレール15のレール部15aを挟持した状態で各レール部15aの長手方向に沿って摺動することで各打撃装置7が各ガイドレール15の長手方向に沿って移動することができるように構成されている。各スライダ7bは、低摩擦性の樹脂部材または低摩擦材で被覆された樹脂部材もしくは金属部材で構成されている。各打撃装置7は、それぞれ圧油管39を介して油圧供給装置13に接続され、各油圧供給装置13から各打撃装置7に圧油が個別に供給される。各打撃装置7は、それらの上端部がそれぞれワイヤ41を介して油圧シリンダ9のピストンロッド9bの上端部と個別に連結されている。各ワイヤ41の中途部は、各ガイドレール15の上端部にそれぞれ固定された一対の滑車43に巻き回されている。   Each striking device 7 is fastened and integrated by a screw member in a state where both side surfaces of the main body are sandwiched between a pair of plate-like weight plates 7a and 7a (see FIG. 5). A slider 7b is fixed to each side surface of one of the weight plates 7a. By attaching the pair of weight plates 7a, 7a, the weight of each striking device 7 increases accordingly, and the impact force when striking is improved. Each striking device 7 moves along the longitudinal direction of each guide rail 15 by sliding along the longitudinal direction of each rail portion 15a with each slider 7b holding the rail portion 15a of each guide rail 15. It is configured to be able to. Each slider 7b is made of a resin member or a metal member coated with a low friction resin member or a low friction material. Each striking device 7 is connected to a hydraulic pressure supply device 13 via a pressure oil pipe 39, and pressure oil is individually supplied from each hydraulic pressure supply device 13 to each striking device 7. Each striking device 7 has an upper end portion individually connected to an upper end portion of the piston rod 9 b of the hydraulic cylinder 9 via a wire 41. A midway portion of each wire 41 is wound around a pair of pulleys 43 fixed to the upper end portion of each guide rail 15.

各油圧シリンダ9は、それぞれシリンダ本体9aとピストンロッド9bとを備え、各シリンダ本体9aの上端部および下端部は、それぞれ圧油管45a,45bを介して油圧供給装置14に接続され、各油圧供給装置14から各シリンダ本体9aに圧油が個別に供給される。圧油管45a,45bのうち何れか一方の圧油管を介して油圧供給装置14からシリンダ本体9aに圧油が供給されるとともに他方の圧油管を介してシリンダ本体9aから油圧供給装置14に圧油が戻されることで、シリンダ本体9aに対してピストンロッド9bが上下方向に進退する。ピストンロッド9bが上下方向に進退することで、該ピストンロッド9bとワイヤ41を介して連結された打撃装置7が該ピストンロッド9bとは上下方向逆向きに移動する。   Each hydraulic cylinder 9 includes a cylinder body 9a and a piston rod 9b. The upper end and the lower end of each cylinder body 9a are connected to a hydraulic supply device 14 via pressure oil pipes 45a and 45b, respectively. Pressure oil is individually supplied from the device 14 to each cylinder body 9a. Pressure oil is supplied from the hydraulic pressure supply device 14 to the cylinder body 9a via one of the pressure oil tubes 45a and 45b, and from the cylinder body 9a to the hydraulic pressure supply device 14 via the other pressure oil tube. Is returned, the piston rod 9b advances and retreats in the vertical direction with respect to the cylinder body 9a. As the piston rod 9b moves back and forth in the vertical direction, the striking device 7 connected to the piston rod 9b via the wire 41 moves in the opposite direction to the piston rod 9b.

各打撃装置7はそれぞれ打撃装置本体49と打撃部51とを備え、各打撃部51の下端部にはそれぞれ椀状の嵌合部51a(図6参照)を備えている。各嵌合部51a内にはそれぞれ円柱状の被打撃部材53の上端部が嵌合され、かつ、各被打撃部材53の下端部に形成された凹部内に試錐管5の上端部が嵌合された状態で打撃部51によって被打撃部材53が打撃される。被打撃部材53が打撃されることで、試錐管5が地中Mに貫入される。
図6に示すように、各試錐管5は、地中Mに貫入されたときに下端部に位置する掘削部材55と、該掘削部材55に螺着されて連結される円筒状の第1円管57と、円筒状の接続管59を介して第1円管57に連結される円筒状の第2円管61とをそれぞれ備える。第1円管57および第2円管61の寸法としては、例えば、両円管57,61の外径を33.5ミリメートルで内径を24ミリメートルに設定するとともに、第1円管57の長さを25センチメートルで第2円管61の長さを1メートルにそれぞれ設定することが挙げられる。掘削部材55,第1円管57,接続管59および第2円管61は、鉄製の部材からなる。
なお、図6では、作図の都合上、第2円管61の長手方向中途部を省略して図示している。
Each striking device 7 includes a striking device main body 49 and a striking portion 51, and each striking portion 51 has a hook-shaped fitting portion 51 a (see FIG. 6) at the lower end. The upper end portion of the cylindrical hit member 53 is fitted in each fitting portion 51a, and the upper end portion of the borehole 5 is fitted in the recess formed in the lower end portion of each hit member 53. The hit member 53 is hit by the hitting part 51 in the state where it is made. The borehole 5 is penetrated into the underground M by hitting the hit member 53.
As shown in FIG. 6, each borehole 5 includes a drilling member 55 positioned at the lower end when penetrating into the underground M, and a cylindrical first circle that is screwed and connected to the drilling member 55. A pipe 57 and a cylindrical second circular pipe 61 connected to the first circular pipe 57 via a cylindrical connecting pipe 59 are provided. As the dimensions of the first circular pipe 57 and the second circular pipe 61, for example, the outer diameter of both the circular pipes 57, 61 is set to 33.5 millimeters, the inner diameter is set to 24 millimeters, and the length of the first circular pipe 57 is set. Is set to 25 centimeters, and the length of the second circular tube 61 is set to 1 meter. The excavation member 55, the first circular pipe 57, the connection pipe 59, and the second circular pipe 61 are made of iron members.
In FIG. 6, for the convenience of drawing, the middle part in the longitudinal direction of the second circular pipe 61 is omitted.

掘削部材55は、その上端部外周に雄ねじ部が刻設され、下端部に掘削部が設けられており、該掘削部は下端ほど先細になる階段状に形成されている。第1円管57および第2円管61の両端部内周には雌ねじ部が刻設され、接続管59の両端部外周には雄ねじ部が刻設されている。掘削部材55と第1円管57とは、掘削部材55の雄ねじ部が第1円管57の一端部の雌ねじ部に螺合されることで連結される。第1円管57の他端部と第2円管61の一端部とは、これら円管57,61の各雌ねじ部に接続管59の両端部の雄ねじ部がそれぞれ螺合されることで連結される。また、試錐管5を地中Mにさらに深く貫入したい場合は、その深度Fに応じて、他の接続管59を介して第2円管61の他端部に他の第2円管61を連結して継ぎ足すことで1本の長尺の試錐管5を構成することができる。   The excavation member 55 has a male threaded portion engraved on the outer periphery of the upper end thereof, and an excavation portion is provided at the lower end thereof. The excavation portion is formed in a stepped shape that tapers toward the lower end. A female thread portion is engraved on the inner periphery of both ends of the first circular tube 57 and the second circular tube 61, and a male thread portion is engraved on the outer periphery of both ends of the connection tube 59. The excavation member 55 and the first circular pipe 57 are connected by the male screw portion of the excavation member 55 being screwed into the female screw portion at one end of the first circular pipe 57. The other end portion of the first circular tube 57 and the one end portion of the second circular tube 61 are connected by the male screw portions of both ends of the connection tube 59 being screwed to the female screw portions of the circular tubes 57 and 61, respectively. Is done. Further, when it is desired to penetrate the borehole 5 deeper into the underground M, another second circular pipe 61 is connected to the other end of the second circular pipe 61 via another connection pipe 59 according to the depth F. A single long bore tube 5 can be constructed by connecting and connecting.

第1円管57には、該第1円管57の長手方向に長いスリットで構成された複数の貫通孔57aが穿設されている。貫通孔57aは、第1円管57における長手方向の位置が該長手方向に一定の間隔を隔てた3箇所に2個ずつ高密度のレーザービームの照射によって穿設されており、その長手方向の位置が同じ部位に穿設された2個の貫通孔57aは第1円管57の軸芯に対して対称となる位置にそれぞれ穿設されている。第1円管57の長手方向で隣り合う貫通孔57a同士は、第1円管57の軸芯回りの角度位置が90度だけズレた位置に穿設されている。貫通孔57aの寸法としては、例えば、長さが10ないし15ミリメートルで幅が0.7ミリメートルに設定することが挙げられる。   The first circular tube 57 is provided with a plurality of through holes 57 a formed by slits that are long in the longitudinal direction of the first circular tube 57. Two through-holes 57a are formed by irradiation with two high-density laser beams at three positions in the longitudinal direction of the first circular tube 57 at regular intervals in the longitudinal direction. The two through holes 57 a drilled at the same position are drilled at positions that are symmetrical with respect to the axis of the first circular tube 57. The through holes 57a adjacent to each other in the longitudinal direction of the first circular tube 57 are formed at positions where the angular position around the axis of the first circular tube 57 is shifted by 90 degrees. As a dimension of the through hole 57a, for example, the length is set to 10 to 15 millimeters and the width is set to 0.7 millimeters.

各接続管59内には、両端部がそれぞれ接続管59の両端から突出した状態で円管状の挿入管63がそれぞれ挿入され、各挿入管63の両端部外周に刻設された雄ねじ部に接続具65の一端部内周に刻設された雌ねじ部がそれぞれ螺合されることで接続管59と挿入管63と一対の接続具65,65とが一体化されて継手部材66が構成される。各接続具65の他端部内には可撓性を有する樹脂材料からなる気体供給管67の端部がそれぞれ気密が保持された状態で挿入される。接続具65に挿入された気体供給管67の端部は、その外周が接続具65の内部に設けられた係止部によって緊締されることで抜け止めされるように構成されている。該係止部による緊締状態は、接続具65に設けられた解除操作子を操作することで解除することできるように構成されている。而して、それぞれ複数の挿入管63と接続具65と気体供給管67とが接続されることで、1本の長尺の気体供給配管69が構成される。2つの試錐管5内には同一の構成を有する気体供給配管69がそれぞれ配設される。   In each connection tube 59, a circular insertion tube 63 is inserted with both ends protruding from both ends of the connection tube 59, and connected to male threaded portions engraved on the outer periphery of each end of each insertion tube 63. By connecting the female threaded portion engraved on the inner periphery of one end of the tool 65, the connecting pipe 59, the insertion pipe 63, and the pair of connecting tools 65, 65 are integrated to form a joint member 66. End portions of the gas supply pipe 67 made of a resin material having flexibility are inserted into the other end portions of the respective connecting devices 65 in a state where the air tightness is maintained. The end portion of the gas supply pipe 67 inserted into the connection tool 65 is configured to be prevented from coming off when the outer periphery thereof is tightened by a locking part provided inside the connection tool 65. The tightening state by the locking portion is configured to be released by operating a release operation element provided on the connection tool 65. Thus, each of the plurality of insertion pipes 63, the connection tool 65, and the gas supply pipe 67 is connected to form one long gas supply pipe 69. Gas supply pipes 69 having the same configuration are respectively disposed in the two boreholes 5.

地中Mに貫入されたときに最上部に位置する各第2円管61の上端部の雌ねじ部には円筒状の栓部材73の一端部に刻設された雄ねじ部がそれぞれ螺合され、各栓部材73の他端部は被打撃部材53の下端部内に形成された凹部53aにそれぞれ嵌合される。各被打撃部材53には、栓部材73内の貫通孔73aと連通する連通孔53bがそれぞれ穿設されており、該連通孔53bは、凹部53aから上方に向かって延びたのち斜め上方に向かって延び、各被打撃部材53の外周面にそれぞれ開孔している。   A male threaded portion engraved at one end of a cylindrical plug member 73 is screwed into the female threaded portion at the upper end of each second circular pipe 61 located at the top when it penetrates into the ground M, The other end of each plug member 73 is fitted into a recess 53 a formed in the lower end of the hit member 53. Each hit member 53 is provided with a communication hole 53b communicating with the through hole 73a in the plug member 73. The communication hole 53b extends upward from the recess 53a and then obliquely upwards. And are opened in the outer peripheral surface of each hitting member 53.

各試錐管5が地中Mに貫入されたときに最上部に位置する第2円管61の管内にそれぞれ配設された気体供給管67は、該第2円管61の上端部に螺着された栓部材73の貫通孔73aと該栓部材73に嵌合された被打撃部材53の連通孔53bとに挿通されて斜め上方に延設されたのちそれぞれ外部に取り出されている。そして、2つの試錐管5のうち一方の試錐管5(図1および図7において右側の試錐管5)から外部に取り出された気体供給配管69における気体供給管67の端部は、予め設定された圧力に加圧された空気を供給する加圧気体供給装置75に接続されている。この加圧空気供給用の一方の試錐管5は、本発明でいう「注入用試錐管」を構成する。
一方、各第1円管57の管内には、各試錐管5が地中Mに貫入されたときに最下部に位置する気体供給配管69の気体供給管67の下端部が配設され、該気体供給管67の下端と掘削部材55の上面との間には間隙を隔てている。
The gas supply pipes 67 respectively disposed in the pipes of the second circular pipe 61 located at the uppermost position when each of the boreholes 5 penetrates the underground M are screwed to the upper end part of the second circular pipe 61. The plug member 73 is inserted into the through-hole 73a of the plug member 73 and the communication hole 53b of the hit member 53 fitted to the plug member 73, extends obliquely upward, and is taken out to the outside. The end portion of the gas supply pipe 67 in the gas supply pipe 69 taken out from one of the two borehole pipes 5 (the right side borehole pipe 5 in FIGS. 1 and 7) is set in advance. It is connected to a pressurized gas supply device 75 for supplying air pressurized to a high pressure. One borehole 5 for supplying pressurized air constitutes an “injection borehole” according to the present invention.
On the other hand, the lower ends of the gas supply pipes 67 of the gas supply pipes 69 located at the bottom when the boreholes 5 are inserted into the ground M are disposed in the pipes of the first circular pipes 57, respectively. There is a gap between the lower end of the gas supply pipe 67 and the upper surface of the excavation member 55.

また、2つの試錐管5のうち他方の試錐管5(図1および図7において左側の試錐管5)から外部に取り出された気体供給配管69の気体供給管67の端部は、該気体供給配管69を介して吸引された気体に含まれるVOCsの濃度を計測する濃度計測装置77に接続されている。この気体吸引用の他方の試錐管5は、本発明でいう「吸引用試錐管」を構成する。
図7に示すように、加圧気体供給装置75は、気体供給管67の端部が接続管78を介して接続される加圧容器79と、接続管78の長手方向中途部に配設された電磁弁80と、加圧空気供給管81を介して加圧容器79に接続された加圧ポンプ82と、加圧容器79内の圧力を検出する圧力センサ83と、加圧空気供給管81の長手方向中途部に配設された電磁弁84と、水蒸気供給管85を介して加圧容器79に接続された水蒸気供給装置86と、水蒸気供給管85の長手方向中途部に配設された電磁弁87とを備えている。加圧容器79の形状は、加圧した空気を貯留することができるものであれば何でもよく、例えば、直方体,円柱形または球体等の任意の形状に形成することができる。
Further, the end of the gas supply pipe 67 of the gas supply pipe 69 taken out from the other of the two boreholes 5 (the left side of the borehole 5 in FIGS. 1 and 7) is the gas supply. It is connected to a concentration measuring device 77 that measures the concentration of VOCs contained in the gas sucked through the pipe 69. This other borehole 5 for gas suction constitutes the “suction borehole” in the present invention.
As shown in FIG. 7, the pressurized gas supply device 75 is disposed in the longitudinal direction of the connecting pipe 78 and the pressurized container 79 to which the end of the gas supplying pipe 67 is connected via the connecting pipe 78. An electromagnetic valve 80, a pressurizing pump 82 connected to the pressurizing container 79 via the pressurizing air supply pipe 81, a pressure sensor 83 for detecting the pressure in the pressurizing container 79, and a pressurized air supply pipe 81. The solenoid valve 84 disposed in the middle in the longitudinal direction, the steam supply device 86 connected to the pressurized container 79 via the steam supply pipe 85, and the middle in the longitudinal direction of the steam supply pipe 85. And an electromagnetic valve 87. The shape of the pressurized container 79 may be anything as long as it can store pressurized air. For example, the pressurized container 79 can be formed in an arbitrary shape such as a rectangular parallelepiped, a cylinder, or a sphere.

加圧ポンプ82は、空気を圧縮してその加圧した空気を加圧空気供給管81を介して加圧容器79に供給する。水蒸気供給装置86は、水蒸気を発生するボイラー86aと、該ボイラー86aの上部に配設された圧力調整弁86bとを備えている。圧力調整弁86bは、ボイラー86aから水蒸気供給管85に供給される水蒸気の圧力が一定になるよう調整する機能を有する。一定の圧力としては例えば0.1MPa(メガパスカル)の圧力が挙げられ、そのときの水蒸気の温度としては約80℃となっている。なお、水蒸気の圧力と温度とは相関関係があり、圧力が定まるとその圧力に応じて温度も定まる。
一方、濃度計測装置77は、気体供給管67の端部が接続された気液分離装置89と、接続管91を介して気液分離装置89に接続された吸引ポンプ93と、接続管95を介して吸引ポンプ93に接続された濃度計測器97を備えている。
上述した各油圧供給装置13の電動駆動装置と、各油圧供給装置14の電動駆動装置と、加圧気体供給装置75を構成する電磁弁80,加圧ポンプ82の電動駆動装置,圧力センサ83,電磁弁87と、濃度計測装置77を構成する吸引ポンプ93の電動駆動装置,濃度計測器97は、それぞれ電線を介して操作盤99に接続されている。
The pressurizing pump 82 compresses air and supplies the pressurized air to the pressurizing container 79 through the pressurized air supply pipe 81. The water vapor supply device 86 includes a boiler 86a that generates water vapor, and a pressure adjustment valve 86b disposed on the boiler 86a. The pressure adjustment valve 86b has a function of adjusting the pressure of the water vapor supplied from the boiler 86a to the water vapor supply pipe 85 to be constant. An example of the constant pressure is a pressure of 0.1 MPa (megapascal), and the temperature of the water vapor at that time is about 80 ° C. In addition, there is a correlation between the pressure of water vapor and the temperature, and when the pressure is determined, the temperature is also determined according to the pressure.
On the other hand, the concentration measuring device 77 includes a gas-liquid separation device 89 to which an end of the gas supply pipe 67 is connected, a suction pump 93 connected to the gas-liquid separation device 89 via a connection tube 91, and a connection tube 95. A concentration measuring device 97 connected to the suction pump 93 is provided.
The electric drive device of each hydraulic pressure supply device 13, the electric drive device of each hydraulic pressure supply device 14, the electromagnetic valve 80 constituting the pressurized gas supply device 75, the electric drive device of the pressure pump 82, the pressure sensor 83, The electromagnetic valve 87, the electric drive device of the suction pump 93 constituting the concentration measuring device 77, and the concentration measuring device 97 are connected to the operation panel 99 via electric wires, respectively.

《地中の通気性検査方法および土壌汚染調査方法》
次に、地中Mの通気性を検査する方法および地中Mの土壌汚染を調査する方法について説明する。まず、これらの方法を実施する現場まで試錐装置1,試錐管5の各構成部材,気体供給配管69,加圧気体供給装置75,濃度計測装置77およびその他の器具を運搬する。現場では、図8に示すように、各脚部材11が取り外された試錐装置1を水平方向に横倒しして各キャスタ37の車輪を地面Eに接地させ該車輪を転動させることで、試錐装置1を所望の場所に容易に移動させることができる。このようにして、各試錐管5を貫入する地面Eの地点まで試錐装置1を移動させたのち、該地点に試錐装置1を直立させるとともに各脚部材11を取り付けて設置する。そして、地面Eに対して試錐装置1が鉛直になるように各脚部材11のハンドル33を適宜回転させて接地部材35の鉛直方向の位置を調整する。
《Underground air permeability inspection method and soil contamination investigation method》
Next, a method for examining the permeability of the underground M and a method for investigating soil contamination of the underground M will be described. First, each component of the borehole device 1 and the borehole 5, the gas supply pipe 69, the pressurized gas supply device 75, the concentration measuring device 77 and other instruments are transported to the site where these methods are carried out. At the site, as shown in FIG. 8, the borehole apparatus 1 from which each leg member 11 has been removed is laid down horizontally, the wheels of the casters 37 are grounded on the ground E, and the wheels are rolled, thereby making the borehole apparatus. 1 can be easily moved to a desired location. In this way, after moving the borehole device 1 to the point of the ground E that penetrates each borehole 5, the borehole device 1 is erected at the point and each leg member 11 is attached and installed. Then, the handle 33 of each leg member 11 is appropriately rotated so that the borehole device 1 is perpendicular to the ground E, and the vertical position of the grounding member 35 is adjusted.

なお、各試錐管5を貫入する地面Eの地点は予め設定され、例えば、図9に示すように、土壌汚染が推定される領域Rの全域に亘る複数の地点が設定される。図9では、加圧気体供給装置75により加圧された空気を地中Mに注入する試錐管5を貫入する位置(以下「注入地点」という。)が白丸で表されており、その地中Mに注入された空気を吸引する試錐管5を貫入する位置(以下「吸引地点」という。)が黒丸で表されている。各注入地点間で隣り合う注入地点同士が水平方向に所定の間隔を隔てて配列するように設定されており、その水平方向の間隔は全て一定の間隔D1に設定されている。これらの注入地点にそれぞれ隣接する位置に吸引地点がそれぞれ設定されており、互いに隣接する注入地点と吸引地点との水平方向の間隔D2は、全て間隔D1より短い一定の間隔に設定されている。間隔D1とD2の寸法としては、例えば、1メートルと20センチメートルに設定することが挙げられる。なお、これとは逆に、白丸の位置を吸引地点とし、黒丸の位置を注入地点としてもよい。   In addition, the point of the ground E which penetrates each borehole 5 is set beforehand, for example, as shown in FIG. 9, the several point over the whole area | region R where soil contamination is estimated is set. In FIG. 9, the position (hereinafter referred to as “injection point”) that penetrates the test tube 5 that injects air pressurized by the pressurized gas supply device 75 into the ground M is represented by white circles. A position (hereinafter referred to as “suction point”) penetrating the borehole 5 for sucking the air injected into M is represented by a black circle. The injection points adjacent to each other are set so as to be arranged at a predetermined interval in the horizontal direction, and all the horizontal intervals are set to a constant interval D1. Suction points are respectively set at positions adjacent to these injection points, and the horizontal intervals D2 between the injection points adjacent to each other and the suction points are all set to a constant interval shorter than the interval D1. For example, the distances D1 and D2 may be set to 1 meter and 20 centimeters. On the contrary, the position of the white circle may be the suction point and the position of the black circle may be the injection point.

試錐装置1を設置したら、その付近に加圧気体供給装置75,濃度計測装置77および操作盤99も設置し、それらをそれぞれ電線を介して接続する。
次に、各気体供給配管69の一端部が各試錐管5内にそれぞれ配設され一定の長さになるよう組み付けられた各試錐管5の下端部の掘削部材55を、互いに隣接する注入地点と吸引地点とにそれぞれ位置付ける。続いて、操作盤99を操作して各油圧供給装置14を駆動して各油圧シリンダ9のピストンロッド9bを上昇させて各打撃装置7を下降させ、各打撃装置7の打撃部51に嵌合された被打撃部材53を各試錐管5の上端部に螺着された栓部材73に嵌合させる。
次に、各気体供給配管69のうち注入地点に位置付けた試錐管5から外部に取り出された気体供給配管69の気体供給管67の端部を加圧気体供給装置75に接続する。
一方、各気体供給配管69のうち吸引地点に位置付けた試錐管5から外部に取り出された気体供給配管69の気体供給管67の端部を濃度計測装置77に接続する。
When the borehole device 1 is installed, a pressurized gas supply device 75, a concentration measuring device 77, and an operation panel 99 are also installed in the vicinity thereof, and they are respectively connected via electric wires.
Next, the excavation member 55 at the lower end of each borehole 5 is assembled so that one end of each gas supply pipe 69 is disposed in each borehole 5 and has a certain length. And suction point respectively. Subsequently, the operation panel 99 is operated to drive each hydraulic pressure supply device 14 to raise the piston rod 9b of each hydraulic cylinder 9 to lower each impact device 7, and to fit the impact portion 51 of each impact device 7. The hit member 53 thus formed is fitted to a plug member 73 screwed to the upper end portion of each borehole 5.
Next, the end of the gas supply pipe 67 of the gas supply pipe 69 taken out from the borehole 5 positioned at the injection point among the gas supply pipes 69 is connected to the pressurized gas supply device 75.
On the other hand, the end of the gas supply pipe 67 of the gas supply pipe 69 taken out from the borehole 5 positioned at the suction point among the gas supply pipes 69 is connected to the concentration measuring device 77.

〈第1の深度までの貫入作業〉
次に、操作盤99を操作して各油圧供給装置13を駆動させ、各油圧供給装置13から油圧を間欠的に各打撃装置7にそれぞれ個別に供給する。これによって、各打撃装置7の打撃部51によって被打撃部材53が打撃されることで各試錐管5がそれぞれ地中Mに貫入される。両試錐管5は、互いに一定の距離だけ水平方向に離間した地点(間隔D2を隔てた地点)の地中Mに、互いに略平行になるように貫入される。両試錐管5が予め設定された所定の深度である第1の深度Fまで貫入されたら、操作盤99を操作して各油圧供給装置13による油圧の供給を停止して各打撃装置7の打撃を中断する。
<Intrusion to the first depth>
Next, the operation panel 99 is operated to drive each hydraulic pressure supply device 13, and the hydraulic pressure is intermittently supplied to each striking device 7 from each hydraulic pressure supply device 13. As a result, the hitting member 53 is hit by the hitting portion 51 of each hitting device 7 so that each of the boreholes 5 penetrates into the ground M. Both boreholes 5 are penetrated into the ground M at a point (a point separated by a distance D2) that is spaced apart by a certain distance in the horizontal direction so as to be substantially parallel to each other. When both the boreholes 5 are penetrated to the first depth F, which is a predetermined depth set in advance, the operation panel 99 is operated to stop the supply of hydraulic pressure by the hydraulic pressure supply devices 13 and strike the impact devices 7. Interrupt.

〈水蒸気充填作業〉
次に、操作盤99を操作して加圧気体供給装置75の電磁弁80,84を閉弁するとともに電磁弁87を開弁して、ボイラー86aで予め生成しておいた水蒸気を水蒸気供給管85を介して加圧容器79内に充填する。充填される水蒸気の圧力は圧力調整弁86bによって一定になるよう調整されており、その圧力としては例えば0.1MPa(メガパスカル)に設定される。
〈加圧空気充填作業〉
次に、操作盤99を操作して電磁弁87を閉弁するとともに電磁弁84を開弁した状態で加圧ポンプ82を作動させ、加圧された空気を加圧容器79内に充填する。加圧容器79内の圧力が圧力センサ83により検出され、その検出された圧力の値に相当する信号が操作盤99内の制御装置99aに送信される。該制御装置99aで受信された信号に対応する圧力の値が予め設定された第1の圧力の値に到達したら、該制御装置99aによって自動的に加圧ポンプ82が停止されるとともに電磁弁84が閉弁される。第1の圧力の値としては、例えば、0.5MPa(メガパスカル)に設定することが挙げられる。
<Steam filling work>
Next, the operation panel 99 is operated to close the electromagnetic valves 80 and 84 of the pressurized gas supply device 75 and to open the electromagnetic valve 87, and the water vapor previously generated by the boiler 86 a is used as the water vapor supply pipe. The pressurized container 79 is filled through the line 85. The pressure of the water vapor to be filled is adjusted to be constant by the pressure adjusting valve 86b, and the pressure is set to, for example, 0.1 MPa (megapascal).
<Pressurized air filling work>
Next, the operation panel 99 is operated to close the electromagnetic valve 87 and the pressure pump 82 is operated with the electromagnetic valve 84 opened to fill the pressurized container 79 with pressurized air. The pressure in the pressurized container 79 is detected by the pressure sensor 83, and a signal corresponding to the detected pressure value is transmitted to the control device 99 a in the operation panel 99. When the pressure value corresponding to the signal received by the control device 99a reaches a preset first pressure value, the control device 99a automatically stops the pressurizing pump 82 and the electromagnetic valve 84. Is closed. As a value of the first pressure, for example, setting to 0.5 MPa (megapascal) can be mentioned.

〈減圧時間計測作業〉
次に、操作盤99を操作して加圧気体供給装置75の電磁弁80を開弁し、接続管78および気体供給配管69を介して、注入地点に貫入された試錐管5の第1円管57内に水蒸気を含んだ水蒸気含有空気を供給することで第1円管57の複数の貫通孔57a(本発明でいう「排出孔」を構成する。)から水蒸気含有空気を地中Mに注入する。この注入作業の工程は、本発明でいう「気体注入工程」を構成する。このとき、電磁弁80を開弁することで注入作業が開始された時点から加圧容器79内の圧力が予め設定された第2の圧力の値に低下するまでに要した減圧時間Tが制御装置99a内のタイマによって計測される。この計測作業の工程は、本発明でいう「時間計測工程」を構成する。計測された減圧時間Tは、制御装置99a内のメモリに記憶される。第2の圧力の値としては、例えば、0.3MPa(メガパスカル)に設定することが挙げられる。地中Mに注入された空気は、地中Mに存在するVOCsのうち気体の状態で存在するVOCsの一部と混合する。
<Decompression time measurement work>
Next, the operation panel 99 is operated to open the electromagnetic valve 80 of the pressurized gas supply device 75, and the first circle of the borehole 5 penetrating the injection point through the connection pipe 78 and the gas supply pipe 69. By supplying steam-containing air containing steam into the pipe 57, the steam-containing air is introduced into the underground M from a plurality of through holes 57a (which constitutes “discharge holes” in the present invention) of the first circular pipe 57. inject. This injection work step constitutes the “gas injection step” in the present invention. At this time, by opening the electromagnetic valve 80, the decompression time T required from when the injection operation is started until the pressure in the pressurization container 79 is reduced to the preset second pressure value is controlled. It is measured by a timer in the device 99a. This measurement work process constitutes the “time measurement process” in the present invention. The measured decompression time T is stored in a memory in the control device 99a. Examples of the second pressure value include setting to 0.3 MPa (megapascal). The air injected into the underground M is mixed with a part of the VOCs existing in the gas state among the VOCs existing in the underground M.

加圧容器79内の圧力が前記第2の圧力の値に低下したのち、操作盤99を操作して、上述した水蒸気充填作業と加圧空気充填作業とを再び行う。
〈濃度計測作業〉
水蒸気充填作業および加圧空気充填作業と並行して、操作盤99を操作して濃度計測装置77の吸引ポンプ93を作動させ、吸引地点に貫入された試錐管5の第1円管57の複数の貫通孔57a(本発明でいう「吸入孔」を構成する。)および気体供給配管69を介して、地中Mの空気とVOCsとが含まれる気体を吸引し、該気体を地上に回収する。この回収作業の工程は、本発明でいう「気体回収工程」を構成する。この回収作業を実施するときの、吸引地点に貫入された試錐管5の地中Mの深度Fは、該回収作業の直前に実施された前記気体注入作業の際の、注入地点に貫入された試錐管5の地中Mの深度Fと略同じに設定されている。この気体の回収によって気体と共に吸引された地中Mの水は、気液分離装置89を通過する際に分離され、気体だけが接続管91を介して吸引されて接続管95を介して濃度計測器97に送出される。濃度計測器97内に流入した気体に含まれるVOCsの濃度Nが濃度計測器97により計測される。この計測作業の工程は、本発明でいう「濃度計測工程」を構成する。濃度計測器97により計測された計測値に相当する信号は制御装置99aに送信され、その計測値が制御装置99a内のメモリに記憶される。濃度Nは、単位容積当たりの気体中に存在するVOCsの容積または質量で表される。
After the pressure in the pressurized container 79 decreases to the second pressure value, the operation panel 99 is operated to perform the above-described steam filling operation and pressurized air filling operation again.
<Density measurement work>
In parallel with the steam filling operation and the pressurized air filling operation, the operation panel 99 is operated to operate the suction pump 93 of the concentration measuring device 77, and a plurality of the first circular tubes 57 of the borehole 5 penetrated into the suction point. The gas containing the underground M air and VOCs is sucked through the through hole 57a (which constitutes the “suction hole” in the present invention) and the gas supply pipe 69, and the gas is collected on the ground. . This recovery operation process constitutes the “gas recovery process” in the present invention. The depth F of the underground M of the borehole 5 that has penetrated into the suction point when performing this recovery operation was inserted into the injection point during the gas injection operation that was performed immediately before the recovery operation. It is set to be substantially the same as the depth F of the underground pipe 5 in the underground M. The underground M water sucked together with the gas by the gas recovery is separated when passing through the gas-liquid separator 89, and only the gas is sucked through the connecting pipe 91 and the concentration is measured through the connecting pipe 95. Is sent to the device 97. The concentration meter 97 measures the concentration N of VOCs contained in the gas flowing into the concentration meter 97. This measurement work process constitutes the “concentration measurement process” in the present invention. A signal corresponding to the measurement value measured by the concentration measuring device 97 is transmitted to the control device 99a, and the measurement value is stored in a memory in the control device 99a. The concentration N is represented by the volume or mass of VOCs present in the gas per unit volume.

〈次の深度までの貫入作業〉
次に、操作盤99を操作して各油圧供給装置13から各打撃装置7にそれぞれ油圧を供給して再び試錐管5の貫入作業を行い、予め設定された長さ分だけ加算された深度Fまで各試錐管5をそれぞれ地中Mにさらに深く貫入させる。この深度Fを変更する作業は、本発明でいう「深度変更工程」を構成する。深度Fの変更のため加算される長さ分としては、例えば50センチメートルに設定することが挙げられる。
〈試錐管および気体供給配管の継ぎ足し作業〉
各試錐管5を貫入させる深度Fが深くなるに応じて、接続管59を介して第2円管61を連結して継ぎ足していく。継ぎ足す場合は、操作盤99を操作して油圧シリンダ9のピストンロッド9bを下降させて打撃装置7を上昇させたのち、最上部の第2円管61をその下端部に螺着された継手部材66の接続管59から取り外す。このとき、その継手部材66の上端部側の接続具65には、気体供給管67の端部が挿入され該接続具65の係止部により緊締されたままであるので、該接続具65の解除操作子を操作して該気体供給管67の端部を該接続具65から引き抜く。
<Intrusion work to the next depth>
Next, by operating the operation panel 99, the hydraulic pressure is supplied from each hydraulic pressure supply device 13 to each striking device 7, the penetration operation of the borehole 5 is performed again, and the depth F added by a preset length is added. Each of the boreholes 5 is further deeply penetrated into the underground M. The operation of changing the depth F constitutes a “depth changing step” in the present invention. For example, the length added for changing the depth F is set to 50 centimeters.
<Addition work of borehole and gas supply pipe>
As the depth F through which each borehole 5 penetrates becomes deeper, the second circular pipe 61 is connected and connected through the connecting pipe 59. In the case of adding the joint, the operation panel 99 is operated to lower the piston rod 9b of the hydraulic cylinder 9 to raise the impact device 7, and then the uppermost second circular pipe 61 is screwed to the lower end thereof. The member 66 is removed from the connection pipe 59. At this time, since the end portion of the gas supply pipe 67 is inserted into the connecting device 65 on the upper end side of the joint member 66 and is tightened by the engaging portion of the connecting device 65, the connection device 65 is released. The operating element is operated to pull out the end of the gas supply pipe 67 from the connector 65.

気体供給管67は、その長さが第2円管61より長尺に設定されているので、第2円管61内に配設されたときは図6に示すように屈曲した状態で収納されている。このため、取り外した第2円管61の端部からは気体供給管67の端部を外部に突出させることができるので、その突出させた気体供給管67の端部を、継ぎ足し用の新たな継手部材66の一方の接続具65に挿入したのち、該継手部材66の接続管59の一端部を、取り外した第2円管61の端部に螺着する。次に、該継ぎ足し用の継手部材66の他方の接続具65に継ぎ足し用の新たな気体供給管67の一端部を挿入するとともに他端部を継ぎ足し用の新たな第2円管61の一端部から該管内に挿入して他端部から外部に引っ張り出す。引っ張り出された継ぎ足し用の気体供給管67の他端部を、第2円管61が取り外された前記継手部材66の上端部側の接続具65に挿入する。   Since the gas supply pipe 67 is set to be longer than the second circular pipe 61, the gas supply pipe 67 is stored in a bent state as shown in FIG. ing. For this reason, since the end of the gas supply pipe 67 can be protruded to the outside from the end of the removed second circular pipe 61, the end of the protruded gas supply pipe 67 is newly added for addition. After being inserted into one connector 65 of the joint member 66, one end of the connection pipe 59 of the joint member 66 is screwed to the end of the removed second circular pipe 61. Next, one end of a new gas supply pipe 67 for addition is inserted into the other connecting member 65 of the joint member 66 for addition and one end of a new second circular pipe 61 for addition of the other end. Then, it is inserted into the tube and pulled out from the other end. The other end of the extended gas supply pipe 67 that has been pulled out is inserted into the connection tool 65 on the upper end side of the joint member 66 from which the second circular pipe 61 has been removed.

次に、第2円管61が取り外された前記継手部材66の接続管59の端部に前記継ぎ足し用の第2円管61の他端部を螺着したのち、該第2円管61の一端部に、取り外した第2円管61の端部に螺着した継手部材66の接続管59の他端部を螺着する。このとき、該継手部材66がその軸芯回りに回転するのに伴って気体供給管67も連れ回されて捩じられるが、該気体供給管67が挿通された被打撃部材53の連通孔53bは斜め上方に向かって穿設されているため、該連通孔53bに対して該気体供給管67は相対的に回転することができるので、該気体供給管67が短い区間に偏って捩じられることはない。
最後に、操作盤99を操作して油圧シリンダ9のピストンロッド9bを上昇させて打撃装置7を下降させ、第2円管61の上端部の栓部材73に嵌合された被打撃部材53に打撃部51を嵌合させる。以上で、新たな第2円管61,継手部材66および気体供給管67の継ぎ足し作業が終了する。
Next, after screwing the other end of the second circular pipe 61 for addition to the end of the connection pipe 59 of the joint member 66 from which the second circular pipe 61 has been removed, The other end of the connection pipe 59 of the joint member 66 screwed to the end of the removed second circular pipe 61 is screwed to one end. At this time, as the joint member 66 rotates about its axis, the gas supply pipe 67 is also rotated and twisted, but the communication hole 53b of the hit member 53 through which the gas supply pipe 67 is inserted. Since the gas supply pipe 67 can be rotated relative to the communication hole 53b, the gas supply pipe 67 is twisted in a short section. There is nothing.
Finally, the operation panel 99 is operated to raise the piston rod 9 b of the hydraulic cylinder 9 to lower the impact device 7, so that the impacted member 53 fitted to the plug member 73 at the upper end portion of the second circular pipe 61 is applied. The striking part 51 is fitted. This completes the work of adding the new second circular pipe 61, the joint member 66, and the gas supply pipe 67.

加算された次の深度Fまで両試錐管5が貫入されたら、操作盤99を操作して各油圧供給装置13による油圧の供給を停止して各打撃装置7の打撃を中断する。
その後、同様にして、上述した水蒸気充填作業,加圧空気充填作業,減圧時間計測作業、濃度計測作業および次の深度Fまでの貫入作業を繰り返し行い、最も深い目的の深度Fまで両試錐管5が貫入され、該深度Fでの水蒸気充填作業,加圧空気充填作業,減圧時間計測作業および濃度計測作業が終了したら、貫入した各試錐管5を地中Mから引き抜く。
〈試錐管の引き抜き作業〉
貫入した各試錐管5を地中Mから引き抜く場合は、図10に示すように、F字状の引抜用具101を試錐管5の第2円管61の長手方向中途部に係合するとともに、引抜用具101の端部に連結されたワイヤ102の端部を打撃装置7の錘板7aに連結したのち、操作盤99を操作して油圧供給装置14を作動させ、油圧シリンダ9のピストンロッド9bを降下させることで容易に引き抜くことができる。地面Eより上方に1本分の第2円管61が引き上げられたら、上述した試錐管および気体供給配管の継ぎ足し作業とは逆の手順で第2円管61,継手部材66および気体供給管67をそれぞれ取り外したのち、地中Mに残った試錐管5の残りの部分を引抜用具101により同様に引き抜く。
When both boreholes 5 have penetrated to the next added depth F, the operation panel 99 is operated to stop the supply of hydraulic pressure by each hydraulic supply device 13 and the impact of each impact device 7 is interrupted.
Thereafter, in the same manner, the above-described steam filling work, pressurized air filling work, decompression time measurement work, concentration measurement work and penetration work up to the next depth F are repeated, and both the test tubes 5 are deepened to the deepest target depth F. When the water vapor filling operation, the pressurized air filling operation, the decompression time measuring operation, and the concentration measuring operation at the depth F are completed, each penetrating pipe 5 that has been inserted is pulled out from the underground M.
<Pulling out the borehole>
When each of the penetrating test tubes 5 is pulled out from the ground M, as shown in FIG. 10, the F-shaped pulling tool 101 is engaged with the middle portion in the longitudinal direction of the second circular tube 61 of the test tube 5, After the end of the wire 102 connected to the end of the drawing tool 101 is connected to the weight plate 7a of the striking device 7, the operation panel 99 is operated to operate the hydraulic supply device 14, and the piston rod 9b of the hydraulic cylinder 9 is operated. It can be easily pulled out by lowering. When one second circular pipe 61 is lifted above the ground E, the second circular pipe 61, the joint member 66, and the gas supply pipe 67 are reversely operated in the procedure reverse to the above-described work of adding the borehole and the gas supply pipe. Then, the remaining part of the borehole 5 remaining in the underground M is similarly pulled out by the pulling tool 101.

〈試錐装置の移動作業〉
各試錐管5の引き抜き作業が終了したら、図11に示すように、試錐装置1を直立させたままフォークリフト103で移動させる。このとき、試錐装置1のフレーム3の一部を構成する4つの第3梁部材21の下端をフォークリフト103の一対のフォーク部103a,103aにより支持することで、試錐装置1を直立させたまま容易に持ち上げて移動させることができるので、その分、作業効率が向上する。
このようにして、試錐装置1を移動させることで注入地点および吸引地点を変更して、上述した各作業を繰り返し行う。
領域R内の各注入地点および各吸引地点での上述した各作業が全て終了したら、地中Mの通気性検査方法および土壌汚染調査方法による作業は終了する。
上述した作業を行った結果、領域R内の各注入地点での減圧時間Tおよび各吸引地点でのVOCsの濃度Nは、地中Mの深度Fごとにそれぞれグラフ化することで領域R内のVOCsによる汚染状況を推測することができる。
<Movement work of borehole device>
When the pulling-out operation of each borehole 5 is completed, as shown in FIG. 11, the borehole apparatus 103 is moved by the forklift 103 while being kept upright. At this time, by supporting the lower ends of the four third beam members 21 constituting a part of the frame 3 of the borehole device 1 by the pair of fork portions 103a and 103a of the forklift 103, the borehole device 1 can be easily kept upright. Therefore, the working efficiency is improved accordingly.
In this manner, the injection point and the suction point are changed by moving the borehole device 1, and each operation described above is repeated.
When all the above-described operations at each injection point and each suction point in the region R are completed, the operations according to the underground M air permeability inspection method and the soil contamination inspection method are completed.
As a result of performing the above-described operation, the decompression time T at each injection point in the region R and the concentration N of VOCs at each suction point are graphed for each depth F of the underground M, so that The contamination status due to VOCs can be estimated.

図12の(1)図は、図9中の領域R内における一部の領域S内の各注入地点において、同じ深度Fで計測された減圧時間Tを縦軸に取って表した三次元グラフで、減圧時間Tが長いほど縦軸の正方向に位置するように表している。(1)図中の白丸の位置は、図9中の領域Sにおける白丸のX,Y座標の位置と一致させて表している。一方、図12の(2)図は、図9中の領域S内の各吸入地点において、同じ深度Fで計測されたVOCsの濃度Nを縦軸に取って表した三次元グラフで、濃度が高いほど縦軸の正方向に位置するように表している。(2)図中の黒丸の位置は、図9中の領域Sにおける黒丸のX,Y座標の位置と一致させて表している。注入地点と吸入地点とは互いに隣接しているので、両地点は略一致していると見做すと、図12の(1)図および(2)図から各地点での減圧時間TとVOCsの濃度Nとの相関が分かる。これらの三次元グラフは、それぞれ深度Fごとに作成することで地中Mの汚染状況を三次元的に推測することができる。
ところで、VOCsは、通常、岩,大小の石,礫および砂が多く地中に存在することで形成された帯水層の隙間を地下水と共に通り抜けて、該帯水層とその下方に存在する粘土層との間に介在するシルト層に多く滞留している。上述した減圧時間Tは、前記帯水層,シルト層,粘土層の順に長くなるので、上述した減圧時間計測作業により計測された減圧時間TからVOCsが多く滞留している可能性の高いシルト層の位置を推測することができ、その結果、VOCsが多く滞留している可能性の高い地中Mの位置をピンポイントで推測することができる。
(1) in FIG. 12 is a three-dimensional graph showing the decompression time T measured at the same depth F at each injection point in the partial region S in the region R in FIG. Thus, the longer the decompression time T is, the longer the pressure is on the vertical axis. (1) The position of the white circle in the figure is represented by matching the position of the X and Y coordinates of the white circle in the region S in FIG. On the other hand, FIG. 12 (2) is a three-dimensional graph in which the concentration N of VOCs measured at the same depth F is plotted on the vertical axis at each inhalation point in the region S in FIG. The higher the position is, the higher the vertical axis is. (2) The positions of the black circles in the figure are represented by matching the positions of the X and Y coordinates of the black circles in the region S in FIG. Since the injection point and the suction point are adjacent to each other, assuming that the two points are substantially coincident with each other, the decompression time T and VOCs at each point are shown in FIGS. 12A and 12B. The correlation with the concentration N of N is known. By creating these three-dimensional graphs for each depth F, it is possible to three-dimensionally estimate the contamination status of the underground M.
By the way, VOCs usually pass through the gap between the aquifer formed by the presence of a lot of rocks, large and small stones, gravel and sand in the ground together with the groundwater, and the aquifer and the clay existing below it. Many stay in the silt layer interposed between the layers. Since the decompression time T described above becomes longer in the order of the aquifer, silt layer, and clay layer, the silt layer in which a large amount of VOCs is likely to stay from the decompression time T measured by the decompression time measurement operation described above. As a result, it is possible to pinpoint the position of the underground M where there is a high possibility that a large amount of VOCs stays.

上述したような本発明の実施の形態に係る地中の通気性検査方法によれば、試錐管5を貫入した地中Mの地点における土壌の通気性を深度Fごとに正確に知得することができるので、その知得した土壌の通気性のデータに基づいて、汚染物質のVOCsが存在する可能性が高い地中Mの場所をピンポイントで推測することができる。
また、注入用の試錐管5を貫入した地点の近傍に吸引用の試錐管5を貫入したので、注入用の試錐管5の貫通孔57aを介して注入した高温の水蒸気含有空気により、吸引用の試錐管5の貫通孔57aの近傍に存在する地中MのVOCsが気化して前記水蒸気含有空気に混入することになる。そして、そのVOCsが混入した空気を吸引用の試錐管5で回収するようにしたので、水蒸気含有空気を注入してからVOCsが混入した空気を回収するまでに要する時間を可及的短くすることができ、その結果、VOCsの濃度Nの計測を迅速に行うことができる。
また、地中Mに注入した水蒸気含有空気を地中Mの通気性検査だけでなく地中MのVOCsの濃度計測のためにも利用するようにしたので、地中Mの通気性検査と並行してVOCsの濃度Nの計測を効率的に行うことができる。
According to the underground air permeability inspection method according to the embodiment of the present invention as described above, it is possible to accurately know the soil air permeability at each depth F at the point of the underground M penetrating the borehole 5. Therefore, it is possible to pinpoint the location of the underground M where there is a high possibility that the pollutant VOCs are present based on the obtained soil permeability data.
Further, since the suction test tube 5 is inserted in the vicinity of the point where the injection test tube 5 is inserted, the high-temperature steam-containing air injected through the through hole 57a of the injection test tube 5 is used for suction. The VOCs in the underground M present in the vicinity of the through hole 57a of the borehole 5 are vaporized and mixed into the water vapor-containing air. Then, since the air mixed with the VOCs is collected by the suction test tube 5, the time required to recover the air mixed with the VOCs after injecting the steam-containing air is made as short as possible. As a result, the concentration N of VOCs can be measured quickly.
In addition, since the steam-containing air injected into the underground M is used not only for the underground M breathability test but also for measuring the concentration of VOCs in the underground M, in parallel with the underground M breathability test. Thus, the concentration N of VOCs can be measured efficiently.

さらにまた、注入用の試錐管5を地中Mに貫入する注入地点または吸引用の試錐管5を地中Mに貫入する吸引地点のうち何れか一方の地点間で隣り合う地点同士の間隔を、互いに隣接する注入地点と吸引地点との間隔より離間するように設定したので、地中の通気性検査および土壌汚染調査を行う地点が過度に多くならずに済み、これらの検査および調査を効率的に行うことができる。   Furthermore, the interval between adjacent points between any one of the injection point where the injection borehole 5 penetrates into the ground M or the suction point where the suction borehole 5 penetrates into the ground M is set. Since the distance between the injection point and the suction point adjacent to each other is set apart, it is not necessary to increase the number of underground breathability inspections and soil contamination investigations. Can be done automatically.

上述した本発明の実施の形態は本発明を説明するための一例であり、本発明は、前記の実施の形態に限定されるものではなく、特許請求の範囲と明細書との全体から読み取れる発明の要旨または思想に反しない範囲で適宜変更可能であり、そのような変更後の地中の通気性検査方法および土壌汚染調査方法もまた、本発明の技術的範囲に含まれるものである。
例えば、上述した実施の形態では、加圧ポンプ82と水蒸気供給装置86とを設けて、加圧した空気と高温の水蒸気とを地中Mに注入する例を示したが、これに替えて、水蒸気供給装置86を廃止して加圧した空気だけ地中Mに注入するようにしてもよい。この場合、空気の温度は常温でもよいが、ヒーターで高温にした空気を注入するようにしてもよい。なお、空気だけでなく高温の水蒸気も一緒に供給する方が地中MのVOCsを気化させやすいが、地中Mに存在するVOCsの一部は気体の状態で存在しているので、その気体のVOCsを空気と共に吸引して地上に回収することで、濃度計測器97により濃度Nを計測することができる。
また、注入する気体としては、空気に替えて、窒素ガスのような不活性気体を使用してもよい。
The embodiment of the present invention described above is an example for explaining the present invention, and the present invention is not limited to the above-described embodiment, and the invention can be read from the whole of the claims and the specification. As long as it does not contradict the gist or idea of the present invention, it can be changed as appropriate, and the underground air permeability inspection method and soil contamination investigation method after such change are also included in the technical scope of the present invention.
For example, in the above-described embodiment, an example in which the pressurization pump 82 and the water vapor supply device 86 are provided and pressurized air and high-temperature water vapor are injected into the underground M has been shown. The water vapor supply device 86 may be eliminated and only pressurized air may be injected into the underground M. In this case, the temperature of the air may be room temperature, but air heated to a high temperature by a heater may be injected. Note that it is easier to vaporize VOCs in the underground M when supplying not only air but also high-temperature water vapor, but a part of the VOCs existing in the underground M exists in a gaseous state, so that gas The concentration N can be measured by the concentration measuring device 97 by sucking the VOCs together with air and collecting them on the ground.
Further, as the gas to be injected, an inert gas such as nitrogen gas may be used instead of air.

5 試錐管
57a 貫通孔(排出孔、吸入孔)
79 加圧容器
D1 間隔
D2 間隔
F 深度
M 地中
N 濃度
T 減圧時間
5 Borehole 57a Through hole (discharge hole, suction hole)
79 Pressurized container D1 Interval D2 Interval F Depth M Ground N concentration T Depressurization time

Claims (3)

1の圧力に加圧された状態で加圧容器内に密封された気体を地中の所定の深度まで貫入された注入用試錐管解放することで前記注入用試錐管内に前記気体を供給して該注入用試錐管の下端部に穿設された排出孔から地中に前記気体を注入する気体注入工程と、
前記気体注入工程が開始された時点から、前記加圧容器内の圧力が前記第1の圧力より
低い第2の圧力に低下するまでに要する減圧時間を計測する時間計測工程と、
前記時間計測工程が終了したら前記注入用試錐管の地中に対する深度を他の深度に変更
する深度変更工程とを備え、
前記深度変更工程が終了したら再び前記気体注入工程と前記時間計測工程とを実施する
ようにして地中の通気性を検査するようにした地中の通気性検査方法。
The gas of the gas sealed in the first pressurized vessel with pressurized state to a pressure, the injection borehole tube by releasing into the ground of a predetermined penetration has been injected for the drilling pipe to a depth a gas injection step of injecting the gas into the ground from the discharge hole formed in the lower end of the infusion necessity drilling tube by supplying,
A time measuring step of measuring a depressurization time required for the pressure in the pressurized container to drop to a second pressure lower than the first pressure from the time when the gas injection step is started;
When the time measurement step is completed, a depth changing step for changing the depth of the injection test tube to the depth to the other depth, and
An underground permeability test method in which the gas injection process and the time measurement process are performed again after the depth changing process is completed to check the underground permeability.
請求項1に記載の地中の通気性検査方法と並行して実施する土壌汚染調査方法であって、
前記時間計測工程が終了したのち、前記気体注入工程を実施していない状態で、前記気体注入工程により地中に注入された気体を吸引用試錐管の下端部に穿設された吸入孔から吸引して前記吸引用試錐管を介して地上に回収する気体回収工程と、
前記気体回収工程により回収した気体中に含まれる汚染物質の濃度を計測する濃度計測工程とを備え、
前記吸引用試錐管は、前記注入用試錐管が貫入された地点の近傍であって該地点から一定の距離だけ水平方向に離間した地点の地中に前記注入用試錐管と略平行になるように貫入され、
前記気体回収工程を実施するときの前記吸引用試錐管が貫入された地中の深度は、該気体回収工程の直前に実施された前記気体注入工程の際の前記注入用試錐管の地中の深度と略同じに設定されていることを特徴とする土壌汚染調査方法。
A soil contamination investigation method that is carried out in parallel with the underground air permeability inspection method according to claim 1,
After the time measurement step is completed, the gas injected into the ground by the gas injection step is sucked from the suction hole drilled in the lower end portion of the suction borehole without performing the gas injection step. And a gas recovery step of recovering to the ground via the suction borehole,
A concentration measurement step for measuring the concentration of contaminants contained in the gas recovered by the gas recovery step,
The suction borehole is substantially parallel to the injection borehole in the vicinity of a point where the injection borehole is penetrated and at a certain distance from the point in the horizontal direction. Intruded,
The depth of the underground through which the suction borehole when the gas recovery step is performed is the depth of the underground of the injection borehole at the time of the gas injection step performed immediately before the gas recovery step. A soil contamination investigation method characterized by being set to be substantially the same as the depth.
請求項2に記載の土壌汚染調査方法において、
前記注入用試錐管を地中に貫入する地上の注入地点または前記吸引用試錐管を地中に貫入する地上の吸引地点のうち何れか一方の地点を、該地点間で隣り合う地点同士が水平方向に所定の間隔を隔てて配列するように一定の領域に亘って複数設定し、
前記複数設定した一方の地点にそれぞれ隣接する位置に他方の地点をそれぞれ設定し、
互いに隣接する前記注入地点と前記吸引地点との水平方向の間隔より、前記所定の間隔の方が離間するように設定されていることを特徴とする土壌汚染調査方法。
In the soil contamination investigation method according to claim 2,
One of a ground injection point that penetrates the injection borehole into the ground and a ground suction point that penetrates the suction borehole into the ground, the adjacent points between the points are horizontal. Set a plurality over a certain area so as to be arranged at predetermined intervals in the direction,
The other point is set at a position adjacent to each of the set one point,
The soil contamination investigation method, wherein the predetermined interval is set to be separated from a horizontal interval between the injection point and the suction point adjacent to each other.
JP2015003729A 2015-01-10 2015-01-10 Underground breathability inspection method and soil contamination investigation method Expired - Fee Related JP5789804B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015003729A JP5789804B1 (en) 2015-01-10 2015-01-10 Underground breathability inspection method and soil contamination investigation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015003729A JP5789804B1 (en) 2015-01-10 2015-01-10 Underground breathability inspection method and soil contamination investigation method

Publications (2)

Publication Number Publication Date
JP5789804B1 true JP5789804B1 (en) 2015-10-07
JP2016128797A JP2016128797A (en) 2016-07-14

Family

ID=54346119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003729A Expired - Fee Related JP5789804B1 (en) 2015-01-10 2015-01-10 Underground breathability inspection method and soil contamination investigation method

Country Status (1)

Country Link
JP (1) JP5789804B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323339A (en) * 1995-05-31 1996-12-10 Hitachi Plant Eng & Constr Co Ltd Soil purifying method and device therefor
JPH09225428A (en) * 1996-02-21 1997-09-02 Kyodo Sanso Kk Method for measuring gas permeability and gas permeation range at polluted stratum or waste gathering point
JPH11194085A (en) * 1997-12-26 1999-07-21 Kazuo Inami Method for measuring permeability by approximation of pressure reduction curve
JP2000009721A (en) * 1998-06-19 2000-01-14 Mitsui Kinzoku Shigen Kaihatsu Kk Investigation method of soil pollution
JP2000028513A (en) * 1998-07-10 2000-01-28 Yoshitaka Oguri Simple measuring device for air permeability of soil
JP2006349371A (en) * 2005-06-13 2006-12-28 Karuto Kk Concentration measurement method for volatile organic chlorine compound remaining in polluted soil and depollution method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323339A (en) * 1995-05-31 1996-12-10 Hitachi Plant Eng & Constr Co Ltd Soil purifying method and device therefor
JPH09225428A (en) * 1996-02-21 1997-09-02 Kyodo Sanso Kk Method for measuring gas permeability and gas permeation range at polluted stratum or waste gathering point
JPH11194085A (en) * 1997-12-26 1999-07-21 Kazuo Inami Method for measuring permeability by approximation of pressure reduction curve
JP2000009721A (en) * 1998-06-19 2000-01-14 Mitsui Kinzoku Shigen Kaihatsu Kk Investigation method of soil pollution
JP2000028513A (en) * 1998-07-10 2000-01-28 Yoshitaka Oguri Simple measuring device for air permeability of soil
JP2006349371A (en) * 2005-06-13 2006-12-28 Karuto Kk Concentration measurement method for volatile organic chlorine compound remaining in polluted soil and depollution method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015014133; LI H, JIAO J J , LUK M: 'A falling-pressure method for measuring air permeability of asphalt in laboratory' J Hydrol Vol.286 No.1/4, 20040130, Page.69-77 *

Also Published As

Publication number Publication date
JP2016128797A (en) 2016-07-14

Similar Documents

Publication Publication Date Title
DE60215378T2 (en) RESTORATION OF MISTICLE-CONTAMINATED FLOORS
US6412559B1 (en) Process for recovering methane and/or sequestering fluids
US7311011B2 (en) Apparatuses for interaction with a subterranean formation, and methods of use thereof
CN109882183A (en) A kind of rich water loose crushing coal and rock grouting reinforcement experimental provision and effect evaluation method
US7845883B1 (en) Method for remediation of contaminated subsurface area
WO2015092854A1 (en) Ground improvement method
Jung et al. Stimuli-responsive/rheoreversible hydraulic fracturing fluids as a greener alternative to support geothermal and fossil energy production
CN105756645A (en) Physical simulation system and method for fracture propagation in shale
JP2007016587A (en) Method for monitoring underground water using boring hole and system used for the same
US20150275583A1 (en) Drill rig and methods for directional drilling
CN106269838A (en) The contaminated site of one kind Fenton medicament system injects repair system in situ
McCall et al. Use of direct-push technologies in environmental site characterization and ground-water monitoring
CN108915689A (en) A kind of water rich strata shaft excavation spy shutoff method
JP5433523B2 (en) Geochemical sampler
JP5789804B1 (en) Underground breathability inspection method and soil contamination investigation method
JP2015057267A (en) Method of purifying contaminated ground
Keller Improved Spatial Resolution in Vertical and Horizontal Holes for Measurement of Bioremediation Parameters and Histories
Giwelli et al. CO2-brine injectivity tests in high CO2 content carbonate field, Sarawak basin, offshore East Malaysia
CN202379856U (en) Air injection system for remedying volatile organic pollutants in underground water in situ
CN104806256B (en) A kind of shield is prominent to meet processing method in molten chamber hole
JP5100512B2 (en) Pulling out existing piles
CN112684111A (en) Aeration strengthening test device and method for surfactant in polluted soil
Cho et al. Pneumatic pumping test for soil vacuum extraction
JP2000178956A (en) Ground survey method
Goodfellow et al. Acoustic emission geomechanics of hydraulic fracturing in the laboratory

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5789804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees