JP5787566B2 - Antibacterial catheter and method for producing the same - Google Patents

Antibacterial catheter and method for producing the same Download PDF

Info

Publication number
JP5787566B2
JP5787566B2 JP2011064607A JP2011064607A JP5787566B2 JP 5787566 B2 JP5787566 B2 JP 5787566B2 JP 2011064607 A JP2011064607 A JP 2011064607A JP 2011064607 A JP2011064607 A JP 2011064607A JP 5787566 B2 JP5787566 B2 JP 5787566B2
Authority
JP
Japan
Prior art keywords
catheter
antibacterial
particles
antibacterial agent
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011064607A
Other languages
Japanese (ja)
Other versions
JP2012200274A (en
Inventor
直人 竹村
直人 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRUMO KABUSHIKI KAISHA
Original Assignee
TRUMO KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUMO KABUSHIKI KAISHA filed Critical TRUMO KABUSHIKI KAISHA
Priority to JP2011064607A priority Critical patent/JP5787566B2/en
Priority to CN 201220056703 priority patent/CN202951096U/en
Publication of JP2012200274A publication Critical patent/JP2012200274A/en
Application granted granted Critical
Publication of JP5787566B2 publication Critical patent/JP5787566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、抗菌性カテーテルおよびその製造方法に関し、特に、血管内に留置される中心静脈カテーテルに関する。   The present invention relates to an antibacterial catheter and a method for producing the same, and more particularly to a central venous catheter placed in a blood vessel.

抗菌性カテーテルの一つとして、中心静脈カテーテルが挙げられる。この中心静脈カテーテルは、鎖骨下静脈や頸静脈に中心静脈カテーテルの皮膚刺入部を差し込み、上大静脈に中心静脈カテーテルの先端部を長期留置して使用する器具である。
そして、中心静脈カテーテルは、中心静脈カテーテルの皮膚刺入部あるいは内腔を介して細菌が体内に進入し、細菌感染を起こすおそれを回避するために、中心静脈カテーテルに抗菌性が付与されている。
また、中心静脈カテーテルを体内に長期留置して使用することがあるため、抗菌性が長期間維持されることが望まれている。
One example of an antibacterial catheter is a central venous catheter. This central venous catheter is an instrument that is used by inserting the skin piercing portion of the central venous catheter into the subclavian vein or the jugular vein and placing the distal end portion of the central venous catheter in the superior vena cava for a long period of time.
The central venous catheter is given antibacterial properties in order to avoid the possibility of bacteria entering the body via the skin puncture site or lumen of the central venous catheter and causing bacterial infection. .
In addition, since the central venous catheter may be used after being placed in the body for a long period of time, it is desired that antibacterial properties be maintained for a long period of time.

ここで、抗菌性が付与された抗菌性カテーテルの製造方法としては、特許文献1に開示されるように、カテーテルの原材料である高分子化合物などに抗菌剤を練り込む製造方法がある。また、特許文献2に開示されるように、抗菌剤が溶けた溶液にカテーテルを浸漬させるとともに、付着した溶液を乾燥させて、カテーテルの表面を抗菌剤の層でコーティングする製造方法がある。   Here, as disclosed in Patent Document 1, as a method for producing an antibacterial catheter to which antibacterial properties are imparted, there is a production method in which an antibacterial agent is kneaded into a polymer compound which is a raw material of the catheter. Further, as disclosed in Patent Document 2, there is a manufacturing method in which a catheter is immersed in a solution in which an antibacterial agent is dissolved, and the attached solution is dried to coat the surface of the catheter with an antibacterial agent layer.

また、前記した抗菌性カテーテルの製造方法によれば、同じ量の抗菌剤を使用した際、高分子化合物などに抗菌剤を練り込んで製造した場合に比べて、カテーテルの表面に抗菌剤の層をコーティングした場合の方が、カテーテルの表面に多くの抗菌剤が分布する。そのため、カテーテルの表面に抗菌剤の層をコーティングした場合の方が、抗菌性が高いという利点がある。   Further, according to the above-described method for producing an antibacterial catheter, when the same amount of the antibacterial agent is used, the antibacterial agent layer is formed on the surface of the catheter as compared with the case where the antibacterial agent is kneaded into a polymer compound. More antibacterial agents are distributed on the surface of the catheter when coated with. Therefore, the antibacterial property is more advantageous when the catheter surface is coated with an antibacterial agent layer.

特開平5−220216号公報Japanese Patent Laid-Open No. 5-220216 特開平11−290449号公報Japanese Patent Laid-Open No. 11-290449

しかしながら、特許文献2に記載されたコーティング方法において、例えば、ゼオライト銀粒子などの溶媒に溶けない抗菌剤粒子を用いて、カテーテルの表面をコーティングしようとした場合、ゼオライト銀粒子は溶媒に溶けないため、粒径が大きい状態で、カテーテルの表面に固定され、表面の粗さが大きくなる。そのため、使用時において、カテーテルを血管内に挿入する際に、ゼオライト銀粒子がカテーテル表面から脱落し、抗菌性を維持することができないおそれがある。一方、カテーテルを血管内に長期に留置した際には、カテーテルの表面に血栓が形成され、血液適合性が低下するおそれがある。   However, in the coating method described in Patent Document 2, for example, when an antibacterial agent particle that does not dissolve in a solvent such as zeolite silver particles is used to coat the surface of the catheter, the zeolite silver particles do not dissolve in the solvent. In a state where the particle size is large, it is fixed to the surface of the catheter, and the surface roughness becomes large. Therefore, during use, when the catheter is inserted into the blood vessel, the silver silver particles may fall off the catheter surface and the antibacterial property may not be maintained. On the other hand, when the catheter is left in the blood vessel for a long time, a thrombus is formed on the surface of the catheter, which may reduce blood compatibility.

また、ゼオライト銀粒子の粒径が小さすぎる場合には、溶媒中で粒子が凝集し、溶媒中での粒子分散が不安定となるため、ゼオライト銀粒子がカテーテルの表面に均一に被覆されなくなり、粒径が大きい場合と同様に、使用時にカテーテルの表面に血栓が形成される。また、カテーテル表面へのゼオライト銀粒子の不均一な被覆は、抗菌性の低下にもつながる。   Also, if the particle size of the zeolite silver particles is too small, the particles aggregate in the solvent, and the dispersion of the particles in the solvent becomes unstable, so the zeolite silver particles are not uniformly coated on the catheter surface, As with the large particle size, a thrombus is formed on the surface of the catheter during use. In addition, nonuniform coating of zeolite silver particles on the catheter surface also leads to a decrease in antibacterial properties.

そこで、本発明は、前記問題に鑑みて創案されたもので、溶媒に溶けない抗菌剤粒子であっても、カテーテルの表面から抗菌剤粒子が脱落することを抑制し、長期において抗菌性を維持できると共に、優れた血液適合性を有する抗菌性カテーテルおよびその製造方法を提供することを課題とする。   Therefore, the present invention was devised in view of the above problems, and even if the antibacterial agent particles are insoluble in the solvent, the antibacterial agent particles are prevented from falling off from the surface of the catheter, and the antibacterial property is maintained for a long time. An object is to provide an antibacterial catheter having excellent blood compatibility and a method for producing the same.

前記課題を解決するために、本発明に係る抗菌性カテーテルは、カテーテルの少なくとも血管内挿入部位の表面に、抗菌剤粒子からなる被覆層が形成されたもので、前記被覆層を構成する抗菌剤粒子のうち、粒径が0.04〜1.0μmの抗菌剤粒子の体積%の合計が97%以上であり、前記被覆層の表面の粗さは、算術平均粗さ(Ra)で0.1μm未満であることを特徴とする。   In order to solve the above-mentioned problems, an antibacterial catheter according to the present invention has a coating layer composed of antibacterial agent particles formed on the surface of at least the intravascular insertion site of the catheter, and the antibacterial agent constituting the coating layer Of the particles, the total volume% of the antibacterial agent particles having a particle size of 0.04 to 1.0 μm is 97% or more, and the surface roughness of the coating layer is 0. 0 in terms of arithmetic average roughness (Ra). It is characterized by being less than 1 μm.

前記構成によれば、カテーテル表面の被覆層を構成する所定径の抗菌剤粒子の割合が所定範囲であって、被覆層の表面粗さが所定範囲であることによって、血管内に挿入、留置された際に、抗菌性および抗血栓性が長期にわたって維持される。   According to the above configuration, when the ratio of the antibacterial agent particles having a predetermined diameter constituting the coating layer on the catheter surface is in the predetermined range and the surface roughness of the coating layer is in the predetermined range, the catheter is inserted and placed in the blood vessel. Antibacterial and antithrombogenic properties are maintained over time.

また、前記抗菌性カテーテルでは、前記抗菌剤粒子は、銀担持シリカ粒子、ゼオライト銀粒子、銀粒子の少なくともいずれか1つを含むことが好ましい。
前記構成によれば、抗菌作用に優れた銀を含有する抗菌剤粒子を用いることによって、抗菌性がさらに維持される。
In the antibacterial catheter, the antibacterial agent particles preferably include at least one of silver-supported silica particles, zeolite silver particles, and silver particles.
According to the said structure, antimicrobial property is further maintained by using the antimicrobial agent particle containing silver excellent in the antimicrobial effect.

本発明に係る抗菌性カテーテルの製造方法は、有機溶媒中に抗菌剤粒子を分散させ、粉砕機を用いて前記抗菌剤粒子の粒度分布を調製して抗菌剤含有溶液とする分散粉砕工程と、カテーテルの少なくとも血管内挿入部位の表面に、前記抗菌剤含有溶液を付着させる付着工程と、前記カテーテルの表面に付着した前記抗菌剤含有溶液を乾燥させる乾燥工程と、を含み、前記分散粉砕工程で調製された粒度分布は、粒径が0.04〜1.0μmの抗菌剤粒子の体積%の合計が97%以上、かつ、粒径が0.04〜0.2μmの抗菌剤粒子の体積%の合計が70%以下であることを特徴とする。   The antibacterial catheter manufacturing method according to the present invention includes a dispersion crushing step in which antibacterial agent particles are dispersed in an organic solvent, and a particle size distribution of the antibacterial agent particles is prepared using a pulverizer to obtain an antibacterial agent-containing solution. An attachment step of attaching the antibacterial agent-containing solution to at least the surface of the intravascular insertion site of the catheter, and a drying step of drying the antibacterial agent-containing solution attached to the surface of the catheter. The prepared particle size distribution is 97% or more in total of the volume% of the antibacterial particles having a particle diameter of 0.04 to 1.0 μm, and the volume% of the antibacterial particles having a particle diameter of 0.04 to 0.2 μm. The total of the above is 70% or less.

前記手順によれば、分散粉砕工程において、抗菌剤含有溶液の抗菌剤粒子の粒度分布が所定範囲となるように粉砕機を用いて調製することによって、付着工程および乾燥工程を経て、カテーテル表面に所定範囲の粒径を有する抗菌剤粒子から構成された被覆層が形成されると共に、その被覆層の表面粗さが所定範囲となる。その結果、抗菌性および抗血栓性が長期にわたって維持される抗菌性カテーテルを製造できる。   According to the above procedure, in the dispersion pulverization step, by preparing using a pulverizer so that the particle size distribution of the antibacterial agent particles in the antibacterial agent-containing solution is within a predetermined range, the adhesion surface and the drying step are performed on the catheter surface. A coating layer composed of antibacterial agent particles having a particle size in a predetermined range is formed, and the surface roughness of the coating layer is in a predetermined range. As a result, an antibacterial catheter that maintains antibacterial and antithrombogenic properties over a long period of time can be manufactured.

また、抗菌性カテーテルの製造方法では、前記分散粉砕工程で調製された粒度分布は、前記抗菌剤粒子の体積%が最大値を示す粒径(最頻径)が0.08μm以上であることが好ましい。   In the method for producing an antibacterial catheter, the particle size distribution prepared in the dispersion and pulverization step may be such that the particle size (mode) in which the volume% of the antibacterial agent particles is maximum is 0.08 μm or more. preferable.

前記手順によれば、抗菌剤粒子の最頻径が所定範囲であることによって、粒径:0.04〜0.2μmの範囲の抗菌剤粒子の体積%の合計を調製しやすくなり、被覆層の抗菌剤粒子の粒径、および、被覆層の表面粗さが所定範囲となる。その結果、抗菌性および抗血栓性がさらに維持される抗菌性カテーテルを製造できる。   According to the above procedure, when the mode diameter of the antibacterial agent particles is within a predetermined range, it becomes easy to prepare a total of the volume% of the antibacterial agent particles having a particle size of 0.04 to 0.2 μm. The particle size of the antibacterial agent particles and the surface roughness of the coating layer are within a predetermined range. As a result, an antibacterial catheter that can further maintain antibacterial and antithrombogenic properties can be produced.

また、抗菌性カテーテルの製造方法は、前記抗菌剤粒子が、銀担持シリカ粒子、ゼオライト粒子、銀粒子の少なくともいずれか1つを含むことが好ましい。
前記手順によれば、抗菌作用に優れた銀を含有する抗菌剤粒子を用いることによって、抗菌性がさらに維持される抗菌性カテーテルを製造できる。
In the method for producing an antibacterial catheter, the antibacterial agent particles preferably include at least one of silver-carrying silica particles, zeolite particles, and silver particles.
According to the said procedure, the antimicrobial catheter in which antimicrobial property is further maintained can be manufactured by using the antimicrobial agent particle containing silver excellent in the antimicrobial activity.

以上、本発明によれば、溶媒に溶けない抗菌剤粒子であっても、カテーテルの表面から抗菌剤粒子が脱落することを抑制し、長期において抗菌性を維持できると共に、優れた血液適合性を有する抗菌性カテーテルおよびその製造方法を提供できる。   As described above, according to the present invention, even when the antibacterial agent particles are not soluble in the solvent, the antibacterial agent particles are prevented from dropping from the surface of the catheter, and the antibacterial property can be maintained for a long time, and excellent blood compatibility can be obtained. An antibacterial catheter having the same and a method for producing the same can be provided.

本発明の実施形態である中心静脈カテーテルの全体構成を示す図である。It is a figure which shows the whole structure of the central venous catheter which is embodiment of this invention. 実施例No.1で用いた抗菌剤含有溶液の粒度分布を示す図である。Example No. FIG. 2 is a diagram showing a particle size distribution of an antibacterial agent-containing solution used in 1. 実施例No.2で用いた抗菌剤含有溶液の粒度分布を示す図である。Example No. It is a figure which shows the particle size distribution of the antibacterial agent containing solution used by 2. FIG. 比較例No.3で用いた抗菌剤含有溶液の粒度分布を示す図である。Comparative Example No. 3 is a graph showing the particle size distribution of an antibacterial agent-containing solution used in No. 3. FIG. 比較例No.4で用いた抗菌剤含有溶液の粒度分布を示す図である。Comparative Example No. It is a view showing a particle size distribution of the antimicrobial-containing solution used in 4. 比較例No.5で用いた抗菌剤含有溶液の粒度分布を示す図である。Comparative Example No. 5 is a view showing a particle size distribution of the antimicrobial-containing solution used in. 比較例No.6で用いた抗菌剤含有溶液の粒度分布を示す図である。Comparative Example No. 6 is a graph showing the particle size distribution of the antibacterial agent-containing solution used in FIG. 血液適合性の評価に用いたTAT産出量測定装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the TAT output measurement apparatus used for evaluation of blood compatibility.

本発明に係る抗菌性カテーテルの実施形態について説明する。
抗菌性カテーテルは、カテーテルの少なくとも血管内挿入部位の表面に、抗菌剤粒子からなる被覆層が形成されたもので、被覆層を構成する抗菌剤粒子の粒径、および、被覆層の表面の粗さを所定範囲に規定したものである。以下、各構成について説明する。
An embodiment of an antibacterial catheter according to the present invention will be described.
An antibacterial catheter has a coating layer made of antibacterial agent particles formed on the surface of at least the intravascular insertion site of the catheter, and the particle size of the antibacterial agent particles constituting the coating layer and the roughness of the surface of the coating layer. Is defined within a predetermined range. Each configuration will be described below.

抗菌性カテーテルにおいて、被覆層が形成されるカテーテルは、血管内に挿入して使用されるものであれば、その構成は特に限定されないが、例えば、本発明の抗菌性カテーテルを中心静脈カテーテルとして使用する場合には、以下のような構成を備える。   In the antibacterial catheter, the structure of the catheter in which the coating layer is formed is not particularly limited as long as it is used by being inserted into a blood vessel. For example, the antibacterial catheter of the present invention is used as a central venous catheter. If so, the following configuration is provided.

図1に示すように、中心静脈カテーテル1は、薬液等が流れる内腔(図示せず)を有するチューブ状の本体部2と、本体部2の先端側に接合されたチューブ状の先端部3と、本体部2の基端側に接合されたハブ4と、ハブ4に接合された薬液注入のための接続チューブ5と、接続チューブ5の基端側に接合されたコネクター6とを備えている。   As shown in FIG. 1, the central venous catheter 1 includes a tubular main body 2 having a lumen (not shown) through which a drug solution and the like flow, and a tubular distal end 3 joined to the distal end side of the main body 2. A hub 4 joined to the base end side of the main body 2, a connection tube 5 for injecting a chemical solution joined to the hub 4, and a connector 6 joined to the base end side of the connection tube 5. Yes.

この中心静脈カテーテル1は、鎖骨下静脈や頸静脈から先端部3(本体部2)を挿入し、本体部2を上大静脈などに留置させて、接続チューブ5を用いて高カロリー輸液、薬剤投与、採血などを行うための医療器具であり、従来から抗菌性カテーテルに用いられている高分子材料で形成されている。高分子材料としては、ポリウレタン、ポリ塩化ビニル、ポリアミド、ポリオレフィン、ポリエステル、シリコン樹脂などが使用できる。   This central venous catheter 1 has a distal end portion 3 (main body portion 2) inserted from a subclavian vein or a jugular vein, and the main body portion 2 is left in the superior vena cava, etc. It is a medical device for performing administration, blood collection, and the like, and is formed of a polymer material conventionally used for antibacterial catheters. As the polymer material, polyurethane, polyvinyl chloride, polyamide, polyolefin, polyester, silicon resin, or the like can be used.

なお、中心静脈カテーテル1において、抗菌剤粒子からなる被覆層(図示せず)が形成される血管内挿入部位とは、本体部2と先端部3であって、血管内挿入部位の表面とは、チューブ状である本体部2と先端部3との内表面と外表面を指す。   In the central venous catheter 1, the intravascular insertion site where a coating layer (not shown) made of antibacterial particles is formed is the main body 2 and the distal end 3, and the surface of the intravascular insertion site is The inner surface and the outer surface of the tube-shaped main body 2 and the tip 3 are indicated.

抗菌性カテーテルにおいて、被覆層を構成する抗菌剤粒子は、無機系抗菌剤粒子、有機系抗菌剤粒子のいずれであってもよく、例えば、銀担持シリカ粒子、ゼオライト銀粒子、銀粒子、銅粒子、プラチナ微粒子、酸化チタン粒子、酸化亜鉛粒子、酸化タングステン粒子、スルファジアジン銀、カーボンナノチューブ、銀担持カーボンナノチューブ、銀被覆カーボンナノチューブなどが挙げられる。そして、抗菌剤粒子は、抗菌作用が優れている銀を含有する点で、銀担持シリカ粒子、ゼオライト銀粒子および銀粒子の少なくともいずれか1つを含むことが好ましい。   In the antibacterial catheter, the antibacterial agent particles constituting the coating layer may be either inorganic antibacterial agent particles or organic antibacterial agent particles. For example, silver-supported silica particles, zeolite silver particles, silver particles, copper particles Platinum fine particles, titanium oxide particles, zinc oxide particles, tungsten oxide particles, silver sulfadiazine, carbon nanotubes, silver-carrying carbon nanotubes, silver-coated carbon nanotubes, and the like. And it is preferable that an antibacterial agent particle contains at least any one of silver carrying | support silica particle, zeolite silver particle, and silver particle at the point containing the silver which is excellent in antibacterial action.

また、被覆層を構成する抗菌剤粒子のうち、粒径が0.04〜1.0μmの抗菌剤粒子の体積%の合計が97%以上である必要がある。被覆層を構成する抗菌剤粒子の粒径において、粒径が0.04〜1.0μmの範囲にあるものの割合が97%未満であると、被覆層に粒径が1.0μmを超える粗大粒子が存在することとなり、被覆層の表面粗さが大きくなって、カテーテル使用時に、カテーテル表面から抗菌剤粒子が脱落すると共に、カテーテル表面に血栓が形成される。ここで、粒径0.04μmは、市販の粒径測定装置(粒度分布計)の測定限界値である。なお、被覆層を構成する抗菌剤粒子の粒径の制御は、抗菌性カテーテルの製造において、被覆層を形成する抗菌剤含有溶液の抗菌剤粒子の粒度分布を調することによって達成される(後記する分散粉砕工程参照)。 Further, among the antibacterial agent particles constituting the coating layer, the total volume% of the antibacterial agent particles having a particle size of 0.04 to 1.0 μm needs to be 97% or more. In the particle size of the antibacterial agent particles constituting the coating layer, if the proportion of particles having a particle size in the range of 0.04 to 1.0 μm is less than 97%, coarse particles having a particle size exceeding 1.0 μm in the coating layer As the surface roughness of the coating layer increases, the antibacterial agent particles fall off from the catheter surface during use of the catheter, and a thrombus is formed on the catheter surface. Here, the particle size of 0.04 μm is a measurement limit value of a commercially available particle size measuring device (particle size distribution meter). The control of the particle size of the antimicrobial agent particles constituting the coating layer, in the production of antimicrobial catheters is accomplished by particle size distribution made a tone of the antimicrobial agent particles of the antimicrobial agent-containing solution to form a coating layer ( (Refer to the dispersion and pulverization step described later).

抗菌性カテーテルにおいて、被覆層の表面粗さは、算術平均粗さ(Ra)で0.1μm未満である必要がある。被覆層の表面粗さ(Ra)が0.1μm以上であると、被覆層の表面粗さが大きくなって、カテーテル使用時に、カテーテル表面から抗菌剤粒子が脱落すると共に、カテーテル表面に血栓が形成される。なお、被覆層の表面粗さ(Ra)の制御は、抗菌性カテーテルの製造において、被覆層を形成する抗菌剤含有溶液の抗菌剤粒子の粒度分布を調することによって達成される(後記する分散粉砕工程参照)。 In the antibacterial catheter, the surface roughness of the coating layer needs to be less than 0.1 μm in terms of arithmetic average roughness (Ra). When the surface roughness (Ra) of the coating layer is 0.1 μm or more, the surface roughness of the coating layer increases, and when the catheter is used, the antibacterial agent particles fall off from the catheter surface and a thrombus is formed on the catheter surface. Is done. The control of the surface roughness of the coating layer (Ra) is, in the production of antimicrobial catheter and (later is achieved by made the particle size distribution of the antimicrobial agent particles of the antimicrobial agent-containing solution to form a coating layer tone (Refer to the dispersion grinding process).

次に、本発明に係る抗菌性カテーテルの製造方法の実施形態について説明する。
本発明の製造方法は、分散粉砕工程と、付着工程と、乾燥工程とを含み、分散粉砕工程における抗菌剤含有溶液の抗菌剤粒子の粒度分布を所定範囲に規定したものである。以下、各工程について説明する。
Next, an embodiment of a method for producing an antibacterial catheter according to the present invention will be described.
The production method of the present invention includes a dispersion pulverization step, an adhesion step, and a drying step, and defines the particle size distribution of the antibacterial agent particles of the antibacterial agent-containing solution in the dispersion pulverization step within a predetermined range. Hereinafter, each step will be described.

(分散粉砕工程)
分散粉砕工程は、有機溶媒中に抗菌剤粒子を分散させ、粉砕機を用いて抗菌剤粒子の粒度分布を調製して抗菌剤含有溶液とする工程である。そして、分散粉砕工程では、抗菌剤含有溶液の抗菌剤粒子の粒度分布が、粒径が0.04〜1.0μmの抗菌剤粒子の体積%の合計において所定範囲、かつ、粒径が0.04〜0.2μmの抗菌剤粒子の体積%の合計において所定範囲となるように、粉砕機を用いて調製する。また、粒度分布においては、抗菌剤粒子の体積%が最大値を示す粒径(最頻径)が所定範囲であることが好ましい。
(Dispersion grinding process)
The dispersion pulverization step is a step in which the antibacterial agent particles are dispersed in an organic solvent, and the particle size distribution of the antibacterial agent particles is prepared using a pulverizer to obtain an antibacterial agent-containing solution. In the dispersion and pulverization step, the particle size distribution of the antibacterial agent particles in the antibacterial agent-containing solution is within a predetermined range in the total volume percent of the antibacterial agent particles having a particle size of 0.04 to 1.0 μm, and the particle size is 0.00. It prepares using a grinder so that it may become a predetermined range in the sum total of the volume% of 04-0.2 micrometer antibacterial agent particle | grains. In the particle size distribution, it is preferable that the particle size (mode) at which the volume% of the antibacterial agent particles has a maximum value is within a predetermined range.

分散粉砕工程において、抗菌剤含有溶液の作製に使用される有機溶媒は、その溶媒種は、次工程におけるカテーテル表面への付着に適し、溶媒中に抗菌剤粒子を分散できるものから選定され、N−メチル−ピロリドン(NMP)、テトラハイドロフラン(THF)、N,N−ジメチルホルムアミド(DMF)、ジ−メチルアセトアミド(DMA)、シクロヘキサノンなどが好ましい。また、抗菌剤含有溶液を付着工程で使用する際には、適宜溶媒で希釈して使用することが好ましい。希釈溶媒としては、前記分散処理で使用した溶媒、メタノール、エタノールなどを使用する。また、抗菌剤粒子については、既に記載したとおりであるので、記載を省略する。さらに、抗菌剤含有溶液における抗菌剤粒子の含有量は、抗菌性カテーテルに要求される抗菌性および血液適合性の度合いによって適宜設定されるが、抗菌性カテーテルを中心静脈カテーテルとして使用する場合には、0.1〜3wt/v%が好ましい。   In the dispersion and pulverization step, the organic solvent used for the preparation of the antibacterial agent-containing solution is selected from those that are suitable for attachment to the catheter surface in the next step and can disperse the antibacterial particles in the solvent. -Methyl-pyrrolidone (NMP), tetrahydrofuran (THF), N, N-dimethylformamide (DMF), di-methylacetamide (DMA), cyclohexanone and the like are preferable. Moreover, when using an antibacterial agent containing solution at an adhesion | attachment process, it is preferable to use it, diluting with a solvent suitably. As a dilution solvent, the solvent used in the dispersion treatment, methanol, ethanol, or the like is used. Moreover, since it is as having already described about the antimicrobial agent particle | grains, description is abbreviate | omitted. Furthermore, the content of the antibacterial agent particles in the antibacterial agent-containing solution is appropriately set according to the degree of antibacterial and blood compatibility required for the antibacterial catheter, but when the antibacterial catheter is used as a central venous catheter, 0.1 to 3 wt / v% is preferable.

分散粉砕工程において、抗菌剤粒子の粒度分布を調するために用いられる粉砕機は、粒度分布を所定範囲に調できれば特に限定されないが、ジェットミル装置が好ましい。そして、粉砕機の粉砕条件を制御することによって、抗菌剤粒子の粒度分布を調製する。粉砕機としてジェットミル装置を用いる場合には、粉砕条件として50〜200MPa、50〜1000passが好ましい。 In the dispersion milling step, pulverizing machine used to, prepare the particle size distribution of the antimicrobial agent particles is not particularly limited as long, prepare particle size distribution in a predetermined range, a jet mill is preferred. Then, the particle size distribution of the antibacterial agent particles is prepared by controlling the pulverization conditions of the pulverizer. When a jet mill apparatus is used as the pulverizer, the pulverization conditions are preferably 50 to 200 MPa and 50 to 1000 pass.

抗菌剤粒子の粒度分布は、粒径が0.04〜1.0μmの抗菌剤粒子の体積%の合計において97%以上、かつ、粒径が0.04〜0.2μmの抗菌剤粒子の体積%の合計において70%以下となる必要がある。また、粒度分布において、抗菌剤粒子の最頻径が0.08μm以上であることが好ましい。   The particle size distribution of the antibacterial particles is 97% or more in the total of the volume% of the antibacterial particles having a particle size of 0.04 to 1.0 μm, and the volume of the antibacterial particles having a particle size of 0.04 to 0.2 μm. It is necessary to be 70% or less in the total of%. In the particle size distribution, the mode diameter of the antibacterial agent particles is preferably 0.08 μm or more.

粒度分布において、粒径が0.04〜1.0μmの抗菌剤粒子の体積%の合計が97%未満であると、後工程で形成される被覆層に粒径1.0μmを超える粗大粒子が存在することとなり、被覆層の表面粗さが大きくなって、カテーテル使用時に、カテーテル表面から抗菌剤粒子が脱落すると共に、カテーテル表面に血栓が形成される。ここで、粒径0.04μmは、市販の粒度分布計の測定限界値である。   In the particle size distribution, when the total volume% of the antibacterial agent particles having a particle size of 0.04 to 1.0 μm is less than 97%, coarse particles having a particle size exceeding 1.0 μm are formed in the coating layer formed in the subsequent step. As a result, the surface roughness of the coating layer increases, and when the catheter is used, the antibacterial agent particles fall off from the catheter surface, and a thrombus is formed on the catheter surface. Here, the particle size of 0.04 μm is a measurement limit value of a commercially available particle size distribution meter.

また、粒度分布において、粒径が0.04〜0.2μmの抗菌剤粒子の体積%の合計が70%を超えると、抗菌剤含有溶液中に分散した粒径の小さい抗菌剤粒子が多くなり、粉砕機で粉砕後に再凝集して粒径の大きい粗大粒子を形成させる。その結果、後工程で形成される被覆層に粗大粒子が存在することとなり、被覆層の表面粗さが大きくなって、カテーテル使用時に、カテーテル表面から抗菌剤粒子が脱落すると共に、カテーテル表面に血栓が形成される。また、カテーテル表面への被覆層の形成が不均一になり、このことも、カテーテル表面に血栓を形成させる要因となる。   Moreover, in the particle size distribution, when the total volume percentage of the antibacterial agent particles having a particle size of 0.04 to 0.2 μm exceeds 70%, the antibacterial agent particles having a small particle size dispersed in the antibacterial agent-containing solution increase. Then, the particles are re-aggregated after being pulverized by a pulverizer to form coarse particles having a large particle size. As a result, coarse particles are present in the coating layer formed in the subsequent process, the surface roughness of the coating layer is increased, and when the catheter is used, the antibacterial agent particles fall off from the catheter surface, and the thrombus on the catheter surface. Is formed. Further, the formation of the coating layer on the catheter surface becomes non-uniform, which also causes a thrombus to form on the catheter surface.

さらに、粒度分布において、抗菌剤粒子の最頻径が0.08μm未満であると、前記した粒径が0.04〜0.2μmの抗菌剤粒子の体積%の合計が70%を超えやすくなり、抗菌剤含有溶液中に分散した粒径の小さい抗菌剤粒子が多くなり、粉砕機で粉砕後に再度凝集して粒径の大きい粗大粒子を形成させやすくなる。その結果、後工程で形成される被覆層に粗大粒子が存在しやすくなり、被覆層の表面粗さが大きくなって、カテーテル使用時に、カテーテル表面から抗菌剤粒子が脱落すると共に、カテーテル表面に血栓が形成されやすくなる。また、カテーテル表面における被覆層の形成が不均一になり、血栓が形成されやすくなる。   Furthermore, in the particle size distribution, when the mode diameter of the antibacterial agent particles is less than 0.08 μm, the total of the volume percentages of the antibacterial agent particles having a particle size of 0.04 to 0.2 μm is likely to exceed 70%. The antibacterial particles having a small particle size dispersed in the antibacterial agent-containing solution are increased, and the particles are aggregated again after being pulverized by a pulverizer to easily form coarse particles having a large particle size. As a result, coarse particles are likely to be present in the coating layer formed in the subsequent process, the surface roughness of the coating layer is increased, and antibacterial particles are dropped from the catheter surface during use of the catheter, and thrombus is formed on the catheter surface. Is easily formed. In addition, the coating layer is not uniformly formed on the catheter surface, and thrombi are easily formed.

(付着工程)
付着工程は、カテーテルの少なくとも血管内挿入部位の表面に、前記工程で粒度分布が調製された抗菌剤含有溶液を付着させる工程である。そして、カテーテルの表面への抗菌剤含有溶液の付着方法は、抗菌剤含有溶液中にカテーテルを浸漬させて行なうことが好ましい。また、付着方法としては、浸漬以外に、スプレーコートなどでもよい。また、抗菌剤含有溶液の付着量は、抗菌性カテーテルに要求される抗菌性および血液適合性の度合いによって適宜設定し、浸漬時間、塗布量などを適宜調整することによって制御する。
(Adhesion process)
The attachment step is a step of attaching the antibacterial agent-containing solution whose particle size distribution is prepared in the above step to at least the surface of the intravascular insertion site of the catheter. The method for attaching the antibacterial agent-containing solution to the surface of the catheter is preferably performed by immersing the catheter in the antibacterial agent-containing solution. Moreover, as an adhesion method, spray coating etc. may be used besides immersion. Further, the amount of the antibacterial agent-containing solution attached is appropriately set according to the degree of antibacterial properties and blood compatibility required for the antibacterial catheter, and is controlled by appropriately adjusting the immersion time, the coating amount, and the like.

(乾燥工程)
乾燥工程は、前記工程でカテーテルの表面に付着した抗菌剤含有溶液を乾燥させる工程である。そして、乾燥工程では、乾燥によって抗菌剤含有溶液から溶媒が蒸発して、カテーテルの表面に抗菌剤粒子からなる被覆層が形成される。また、乾燥は、加熱処理、室温放置のいずれで行ってもよく、抗菌剤含有溶液の溶媒種によって適宜選択される。
(Drying process)
A drying process is a process of drying the antibacterial agent containing solution adhering to the surface of the catheter at the said process. And in a drying process, a solvent evaporates from an antibacterial agent containing solution by drying, and the coating layer which consists of antibacterial agent particles on the surface of a catheter is formed. Drying may be performed either by heat treatment or standing at room temperature, and is appropriately selected depending on the solvent type of the antibacterial agent-containing solution.

次に、本発明の実施例などについて説明する。
(実施例No.1、参考例No.7)
銀担持シリカ粒子の粒子粉末(銀含有量20質量%)をN−メチルピロリドン(NMP)に5wt/v%の割合で分散させたところ、分散(攪拌)後は大きな凝集塊が瞬時に沈殿した(未処理液)。この未処理液20mlをジェットミル装置(常光社製)で凝集塊を粉砕(180MPa、800Pass)して抗菌剤含有溶液とし、粒度分布計(COULTER社製)にて粒度分布を測定した。その結果を図2、表1に示す。
Next, examples of the present invention will be described.
(Example No. 1, Reference Example No. 7)
When a particle powder of silver-supported silica particles (silver content 20% by mass) was dispersed in N-methylpyrrolidone (NMP) at a rate of 5 wt / v%, a large agglomerate instantly precipitated after dispersion (stirring). (Untreated liquid). 20 ml of this untreated liquid was pulverized (180 MPa, 800 Pass) with an jet mill device (manufactured by Joko) to obtain an antibacterial agent-containing solution, and the particle size distribution was measured with a particle size distribution meter (manufactured by COULTER). The results are shown in FIG.

この抗菌剤含有溶液をメタノール(Me)で希釈し、N−メチルピロリドンとメタノールの混合溶媒(混合比1:1)で1wt/v%の抗菌剤含有溶液に調製した。次に、ポリウレタン(日本ミラクトン社製、商品名「E990」)で長さ30cmのチューブを成形した(参考例No.7のカテーテルに相当する)。このチューブを抗菌剤含有溶液に浸漬し、その後、乾燥してカテーテル(実施例No.1のカテーテルに相当する)とした。このカテーテルの表面粗さ(算術平均粗さRa)をレーザー顕微鏡にて測定した。その結果を表1に示す。なお、参考例No.7のカテーテルについても、同様にして、表面粗さ(算術平均粗さRa)を測定し、その結果を表1に示す。   This antibacterial agent-containing solution was diluted with methanol (Me) and prepared to a 1 wt / v% antibacterial agent-containing solution with a mixed solvent of N-methylpyrrolidone and methanol (mixing ratio 1: 1). Next, a tube having a length of 30 cm was formed from polyurethane (manufactured by Nippon Milactone Co., Ltd., trade name “E990”) (corresponding to the catheter of Reference Example No. 7). This tube was immersed in an antibacterial agent-containing solution and then dried to obtain a catheter (corresponding to the catheter of Example No. 1). The surface roughness (arithmetic mean roughness Ra) of this catheter was measured with a laser microscope. The results are shown in Table 1. Reference Example No. Similarly, the surface roughness (arithmetic average roughness Ra) of the catheter No. 7 was measured, and the results are shown in Table 1.

(実施例No.2)
銀担持シリカ粒子の粒子粉末(銀含有量20質量%)をテトラハイドロフラン(THF)に5wt/v%の割合で分散させたところ、分散(攪拌)後は大きな凝集塊が瞬時に沈殿した(未処理液)。この未処理液20mlをジェットミル装置(常光社製)で凝集塊を粉砕(100MPa、400Pass)して抗菌剤含有溶液とし、粒度分布計(COULTER社製)にて粒度分布を測定した。その結果を図3、表1に示す。
(Example No. 2)
When a particle powder of silver-supported silica particles (silver content 20% by mass) was dispersed in tetrahydrofuran (THF) at a rate of 5 wt / v%, a large agglomerate instantly precipitated after dispersion (stirring) ( Untreated liquid). 20 ml of this untreated liquid was pulverized (100 MPa, 400 Pass) with an jet mill device (manufactured by Joko) to obtain an antibacterial agent-containing solution, and the particle size distribution was measured with a particle size distribution meter (manufactured by COULTER). The results are shown in FIG.

この抗菌剤含有溶液をTHFで希釈し、1wt/v%の抗菌剤含有溶液に調製した。次に、ポリウレタン(日本ミラクトン社製、商品名「E990」)で長さ30cmのチューブを成形し、このチューブを抗菌剤含有溶液に浸漬し、その後、乾燥してカテーテルとした。このカテーテルの表面粗さ(算術平均粗さRa)をレーザー顕微鏡にて測定した。その結果を表1に示す。   This antibacterial agent-containing solution was diluted with THF to prepare a 1 wt / v% antibacterial agent-containing solution. Next, a tube having a length of 30 cm was formed with polyurethane (manufactured by Nippon Milactone Co., Ltd., trade name “E990”), this tube was immersed in an antibacterial agent-containing solution, and then dried to obtain a catheter. The surface roughness (arithmetic mean roughness Ra) of this catheter was measured with a laser microscope. The results are shown in Table 1.

(比較例No.3)
実施例No.1の未処理液を抗菌剤含有溶液として使用し、実施例No.1と同様にして、カテーテルを作製した。また、未処理液の粒度分布、カテーテルの表面粗さ(算術平均粗さRa)についても、実施例No.1と同様にして測定し、その結果を図4、表1に示す。
(Comparative Example No. 3)
Example No. No. 1 untreated liquid was used as the antibacterial agent-containing solution. In the same manner as in 1, a catheter was prepared. In addition, the particle size distribution of the untreated liquid and the surface roughness of the catheter (arithmetic mean roughness Ra) were also determined in Example No. 1 and the results are shown in FIG.

(比較例No.4)
ビーズミル装置(アイメックス社製)を用いて、実施例No.1の未処理液を粉砕(2000rpm、3時間)したこと以外は、実施例No.1と同様にして抗菌剤含有溶液を調製した。この抗菌剤含有溶液を用いて、実施例No.1と同様にして、カテーテルを作製した。また、抗菌剤含有溶液の粒度分布、カテーテルの表面粗さ(算術平均粗さRa)についても、実施例No.1と同様にして測定し、その結果を図5、表1に示す。なお、この抗菌剤含有溶液は1時間静置すると再凝集が認められた。
(Comparative Example No. 4)
Using a bead mill apparatus (manufactured by Imex), Example No. Example No. 1 except that the untreated liquid of No. 1 was ground (2000 rpm, 3 hours). In the same manner as in 1, an antibacterial agent-containing solution was prepared. Using this antibacterial agent-containing solution, Example No. In the same manner as in 1, a catheter was prepared. In addition, the particle size distribution of the antibacterial agent-containing solution and the surface roughness of the catheter (arithmetic average roughness Ra) are also shown in Example No. 1 and the results are shown in FIG. This antibacterial agent-containing solution was re-agglomerated after standing for 1 hour.

(比較例No.5)
実施例No.2の未処理液を抗菌剤含有溶液として使用し、実施例No.2と同様にして、カテーテルを作製した。また、未処理液の粒度分布、カテーテルの表面粗さ(算術平均粗さRa)についても、実施例No.2と同様にして測定し、その結果を図6、表1に示す。
(Comparative Example No. 5)
Example No. No. 2 untreated liquid was used as the antibacterial agent-containing solution. In the same manner as in 2, a catheter was prepared. In addition, the particle size distribution of the untreated liquid and the surface roughness of the catheter (arithmetic mean roughness Ra) were also determined in Example No. The measurement was performed in the same manner as 2 and the results are shown in FIG.

(比較例No.6)
ジェットミル装置(常光社製)を用いて、実施例No.1の未処理液を粉砕(180MPa、40pass)したこと以外は、実施例No.1と同様にして抗菌剤含有溶液を調製した。この抗菌剤含有溶液を用いて、実施例No.1と同様にして、カテーテルを作製した。また、抗菌剤含有溶液の粒度分布、カテーテルの表面粗さ(算術平均粗さRa)についても、実施例No.1と同様にして測定し、その結果を図7、表1に示す。
(Comparative Example No. 6)
Using a jet mill apparatus (manufactured by Joko), Example No. Example No. 1 except that the untreated liquid of No. 1 was pulverized (180 MPa, 40 pass). In the same manner as in 1, an antibacterial agent-containing solution was prepared. Using this antibacterial agent-containing solution, Example No. In the same manner as in 1, a catheter was prepared. In addition, the particle size distribution of the antibacterial agent-containing solution and the surface roughness of the catheter (arithmetic average roughness Ra) are also shown in Example No. 1 and the results are shown in FIG.

次に、実施例No.1、実施例No.2、比較例No.3〜6、参考例No.7のカテーテルについて、血液適合性を以下の方法で評価し、その結果を表1に示す。   Next, Example No. 1, Example No. 2, Comparative Example No. 3-6, Reference Example No. For 7 catheters, blood compatibility was evaluated by the following method, and the results are shown in Table 1.

[血液適合性]
カテーテルを、図8に示す系にて60minの血液循環実験を行った。循環後、血栓の形成度の指標であるTAT(トロンビン−アンチトロンビンIII複合体)産生量を測定した。TAT産出量の測定値が小さいほど、血栓が形成されにくく、血液適合性に優れていると言える。
[Blood compatibility]
The catheter was subjected to a blood circulation experiment for 60 minutes in the system shown in FIG. After circulation, the amount of TAT (thrombin-antithrombin III complex) produced, which is an index of the degree of thrombus formation, was measured. It can be said that the smaller the measured value of the TAT output, the less the thrombus is formed and the better the blood compatibility.

Figure 0005787566
Figure 0005787566

表1に示すとおり、本発明の要件を満足する実施例のNo.1、No.2は、被覆層が形成されていない参考例No.7、および、本発明の要件を満足しない比較例No.3〜6に比べて、血液適合性において優れていることが確認された。   As shown in Table 1, No. of the example satisfying the requirements of the present invention. 1, no. No. 2 is a reference example No. in which a coating layer is not formed. 7 and Comparative Example No. which does not satisfy the requirements of the present invention. Compared to 3-6, it was confirmed that the blood compatibility was excellent.

1 中心静脈カテーテル
2 本体部
3 先端部
4 ハブ
5 接続チューブ
6 コネクター
DESCRIPTION OF SYMBOLS 1 Central venous catheter 2 Body part 3 Tip part 4 Hub 5 Connection tube 6 Connector

Claims (5)

カテーテルの少なくとも血管内挿入部位の表面に、抗菌剤粒子からなる被覆層が形成された抗菌性カテーテルであって、
前記被覆層を構成する抗菌剤粒子のうち、粒径が0.04〜1.0μmの抗菌剤粒子の体積%の合計が97%以上であり、
前記被覆層の表面の粗さは、算術平均粗さ(Ra)で0.1μm未満であることを特徴とする抗菌性カテーテル。
An antibacterial catheter in which a coating layer made of antibacterial agent particles is formed on the surface of at least the intravascular insertion site of the catheter,
Among the antibacterial agent particles constituting the coating layer, the total volume% of the antibacterial agent particles having a particle size of 0.04 to 1.0 μm is 97% or more,
The antibacterial catheter characterized in that the surface roughness of the coating layer is an arithmetic average roughness (Ra) of less than 0.1 μm.
前記抗菌剤粒子は、銀担持シリカ粒子、ゼオライト銀粒子、銀粒子の少なくともいずれか1つを含むことを特徴とする請求項1に記載の抗菌性カテーテル。   The antibacterial catheter according to claim 1, wherein the antibacterial agent particles include at least one of silver-supported silica particles, zeolite silver particles, and silver particles. 有機溶媒中に抗菌剤粒子を分散させ、粉砕機を用いて前記抗菌剤粒子の粒度分布を調製して抗菌剤含有溶液とする分散粉砕工程と、
カテーテルの少なくとも血管内挿入部位の表面に、前記抗菌剤含有溶液を付着させる付着工程と、
前記カテーテルの表面に付着した前記抗菌剤含有溶液を乾燥させる乾燥工程と、
を含み、
前記分散粉砕工程で調製された粒度分布は、粒径が0.04〜1.0μmの抗菌剤粒子の体積%の合計が97%以上、かつ、粒径が0.04〜0.2μmの抗菌剤粒子の体積%の合計が70%以下であることを特徴とする抗菌性カテーテルの製造方法。
Dispersing and crushing step of dispersing the antibacterial agent particles in an organic solvent, preparing a particle size distribution of the antibacterial agent particles using a pulverizer to obtain an antibacterial agent-containing solution,
An attachment step of attaching the antibacterial agent-containing solution to at least the surface of the intravascular insertion site of the catheter;
A drying step of drying the antibacterial agent-containing solution attached to the surface of the catheter;
Including
The particle size distribution prepared in the dispersion and pulverization step is a total of 97% or more of antibacterial particles having a particle size of 0.04 to 1.0 μm, and an antibacterial having a particle size of 0.04 to 0.2 μm. A method for producing an antibacterial catheter, wherein the total volume% of the agent particles is 70% or less.
前記分散粉砕工程で調製された粒度分布は、前記抗菌剤粒子の体積%が最大値を示す粒径(最頻径)が0.08μm以上であることを特徴とする請求項3に記載の抗菌性カテーテルの製造方法。   4. The antibacterial according to claim 3, wherein the particle size distribution prepared in the dispersion and pulverization step has a particle size (mode) in which the volume% of the antibacterial agent particles has a maximum value of 0.08 μm or more. Method for manufacturing a catheter. 前記抗菌剤粒子が、銀担持シリカ粒子、ゼオライト粒子、銀粒子の少なくともいずれか1つを含むことを特徴とする請求項3または請求項4に記載の抗菌性カテーテルの製造方法。   The method for producing an antibacterial catheter according to claim 3 or 4, wherein the antibacterial agent particles include at least one of silver-carrying silica particles, zeolite particles, and silver particles.
JP2011064607A 2011-03-23 2011-03-23 Antibacterial catheter and method for producing the same Active JP5787566B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011064607A JP5787566B2 (en) 2011-03-23 2011-03-23 Antibacterial catheter and method for producing the same
CN 201220056703 CN202951096U (en) 2011-03-23 2012-02-21 Antibacterial catheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011064607A JP5787566B2 (en) 2011-03-23 2011-03-23 Antibacterial catheter and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012200274A JP2012200274A (en) 2012-10-22
JP5787566B2 true JP5787566B2 (en) 2015-09-30

Family

ID=47181882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011064607A Active JP5787566B2 (en) 2011-03-23 2011-03-23 Antibacterial catheter and method for producing the same

Country Status (2)

Country Link
JP (1) JP5787566B2 (en)
CN (1) CN202951096U (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102090471B1 (en) * 2016-02-11 2020-03-23 (주)아폴론 Method for manufacturing Foley Catheter
KR102152574B1 (en) * 2016-02-11 2020-09-08 (주)아폴론 Composition for Foley Catheter
WO2017138715A1 (en) * 2016-02-11 2017-08-17 주식회사 아폴론 Foley catheter and method for manufacturing same
KR102090477B1 (en) * 2016-02-11 2020-03-23 (주)아폴론 Method for forming Foley for Catheter
CN108601923A (en) * 2016-02-11 2018-09-28 阿波罗恩有限公司 Foley catheter and its manufacturing method
KR102582229B1 (en) * 2021-06-02 2023-09-25 주식회사 메디트 Antibacterial Hand-held Scanner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592920A (en) * 1983-05-20 1986-06-03 Baxter Travenol Laboratories, Inc. Method for the production of an antimicrobial catheter
EP2108383A1 (en) * 2008-04-08 2009-10-14 Bayer MaterialScience AG Medical devices with an anti-bacterial polyurethane urea coating

Also Published As

Publication number Publication date
CN202951096U (en) 2013-05-29
JP2012200274A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5787566B2 (en) Antibacterial catheter and method for producing the same
JP5820804B2 (en) Method for producing antibacterial medical device
Kim et al. Synthesis and characterization of antibacterial Ag− SiO2 nanocomposite
Ghosal et al. Collagen coated electrospun polycaprolactone (PCL) with titanium dioxide (TiO 2) from an environmentally benign solvent: Preliminary physico-chemical studies for skin substitute
Prasanna et al. Sustained release of amoxicillin from hydroxyapatite nanocomposite for bone infections
Lakshman et al. Preparation of silver nanoparticles incorporated electrospun polyurethane nano-fibrous mat for wound dressing
Zhou et al. Synthesis and characterization of silver nanoparticles-doped hydroxyapatite/alginate microparticles with promising cytocompatibility and antibacterial properties
Enayati et al. Size mapping of electric field-assisted production of polycaprolactone particles
Pourshahab et al. Preparation and characterization of spray dried inhalable powders containing chitosan nanoparticles for pulmonary delivery of isoniazid
JP2009511096A (en) Medical device with a polyelectrolyte-containing extrusion
CN106012677B (en) Nano Silver composite hydroxylapatite overlong nanowire anti-bacteria paper
JP6655082B2 (en) Antimicrobial coatings for medical devices and methods of preparing such coatings
CN109957882B (en) Nanofiber membrane and preparation method thereof
CN107441488A (en) Black phosphorus quantum dot composite material and preparation method and application thereof
CN105451713B (en) Silica hydrogel composite material
Maleki et al. Antibacterial Ag containing core‐shell polyvinyl alcohol‐poly (lactic acid) nanofibers for biomedical applications
Bariana et al. Radiofrequency-triggered release for on-demand delivery of therapeutics from titania nanotube drug-eluting implants
EP3436094B1 (en) Anti-microbial medical materials and devices
CN109432013A (en) A kind of florfenicol soluble powder and preparation method thereof
TWI640565B (en) Polymer latex particle composition containing nano silver particles
Saravanabhavan et al. Fabrication of polysulphone/hydroxyapatite nanofiber composite implant and evaluation of their in vitro bioactivity and biocompatibility towards the post-surgical therapy of gastric cancer
Kazemzadeh-Narbat et al. Chitosan nanoparticles as adenosine carriers
JP6490839B2 (en) Medical lead using biostable PVDF-based material
CN111001029A (en) Antibacterial foam dressing and preparation method thereof
CN108157387B (en) Silver nanowire antibacterial aerogel and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R150 Certificate of patent or registration of utility model

Ref document number: 5787566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250