JP5787094B2 - Die for press working - Google Patents

Die for press working Download PDF

Info

Publication number
JP5787094B2
JP5787094B2 JP2012026028A JP2012026028A JP5787094B2 JP 5787094 B2 JP5787094 B2 JP 5787094B2 JP 2012026028 A JP2012026028 A JP 2012026028A JP 2012026028 A JP2012026028 A JP 2012026028A JP 5787094 B2 JP5787094 B2 JP 5787094B2
Authority
JP
Japan
Prior art keywords
die
punch
flow path
press working
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012026028A
Other languages
Japanese (ja)
Other versions
JP2013163187A (en
Inventor
正訓 高橋
正訓 高橋
日向野 哲
哲 日向野
拓矢 久保
拓矢 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012026028A priority Critical patent/JP5787094B2/en
Priority to US13/756,713 priority patent/US20130205862A1/en
Priority to CN201310050733.1A priority patent/CN103639288A/en
Publication of JP2013163187A publication Critical patent/JP2013163187A/en
Application granted granted Critical
Publication of JP5787094B2 publication Critical patent/JP5787094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies
    • B21D22/286Deep-drawing of cylindrical articles using consecutive dies with lubricating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/01Selection of materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、アルミニウム合金製の缶胴を作製するためのドライプレス加工用の金型に好適なプレス加工用金型に関する。   The present invention relates to a press working die suitable for a dry press working die for producing an aluminum alloy can body.

従来から、ダイヤモンド膜やDLC(ダイヤモンド・ライク・カーボン)膜などの炭素膜を施した金型は、高潤滑の表面を持つため、金属の加工においてオイルレス・洗浄レスとしたプレス成型などのドライプレス加工を行えることが注目されている。上記炭素膜は、表面の水素による終端によって非炭素固溶性の合金との間で高い滑り特性を持ち、被加工合金による凝着を抑制し得ることが知られている。   Conventionally, dies with a carbon film such as diamond film or DLC (Diamond Like Carbon) film have a highly lubricated surface. It is attracting attention that it can be pressed. It is known that the carbon film has high slip characteristics with a non-carbon solid-soluble alloy due to termination of hydrogen on the surface and can suppress adhesion due to the alloy to be processed.

これら炭素膜は主にタングステンカーバイドを主成分とする超硬合金の上に種付け処理を施し、直接ダイヤモンドやDLCの膜をCVD法等の気相合成によって蒸着することで作製されている(特許文献1〜3を参照)。例えば、特許文献1では、金属素板に対して絞り加工後、しごき加工を施す絞りしごき加工法において、しごき加工における少なくとも最終段のしごきパスのダイスとして、ダイス基材における金属素板に接する側の面にDLC膜の表面粗さRaが0.05μm以下とされたダイスを用いる絞りしごき加工法が提案されている。   These carbon films are produced by seeding a cemented carbide mainly composed of tungsten carbide and directly depositing a diamond or DLC film by vapor phase synthesis such as CVD (Patent Document). 1-3). For example, in Patent Document 1, in a drawing and ironing method in which ironing is performed after drawing a metal base plate, at least the final stage of the ironing pass in the ironing process is a side that contacts the metal base plate in the die base material. A drawing ironing method using a die having a surface roughness Ra of the DLC film of 0.05 μm or less on the surface is proposed.

特開平10−137861号公報Japanese Patent Laid-Open No. 10-137861 特開平09−314253号公報JP 09-314253 A 特開平11−277160号公報JP-A-11-277160

上記従来の技術には、以下の課題が残されている。
すなわち、上記特許文献に記載の技術では、高い加工率で合金を成形する場合、金型と被加工合金との間で高温(局所的には300℃以上)に成らざるを得ず、そのような高温の状態であれば、いかに金型の表面を平滑にしていようとも、炭素膜の動摩擦係数が高くなって被加工合金の凝着・堆積が避けられなかった。特に、300℃以上になると金型表面の炭素膜において、水素が離脱して滑り特性が悪化し、上記凝着が生じ易くなってしまう問題があった。このため、一般的にはこの現象を避けるために、成形時に冷却潤滑剤を放射することによって金型と被加工合金との間に冷却潤滑剤を介在させているが、非循環の大量の冷却潤滑剤が必要なため、製造コストが増大してしまうという不都合があった。
The following problems remain in the conventional technology.
That is, in the technique described in the above-mentioned patent document, when an alloy is formed at a high processing rate, it must be at a high temperature (300 ° C. or more locally) between the mold and the alloy to be processed. Under such a high temperature condition, no matter how smooth the surface of the mold is, the dynamic friction coefficient of the carbon film becomes high, and adhesion and deposition of the alloy to be processed cannot be avoided. In particular, when the temperature is higher than 300 ° C., there is a problem that hydrogen is separated from the carbon film on the surface of the mold, the slip characteristics are deteriorated, and the adhesion tends to occur. For this reason, in general, in order to avoid this phenomenon, a cooling lubricant is interposed between the mold and the alloy to be processed by radiating a cooling lubricant during molding. Since a lubricant is required, there is a disadvantage that the manufacturing cost increases.

本発明は、前述の課題に鑑みてなされたもので、大量の冷却潤滑剤を用いずに凝着を抑制し、良好な成形加工が可能なプレス加工用金型を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a press working mold capable of suppressing adhesion without using a large amount of cooling lubricant and capable of performing a favorable forming process. .

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係るプレス加工用金型は、プレス加工用の金型であって、被加工材を成形加工するパンチ部とダイ部とを備え、前記パンチ部の外周面及び先端面と前記ダイ部の内周面とに、その表面粗さRaが0.05μm以下とされた炭素膜が被覆され、前記パンチ部の内部に冷却媒体が流通可能なパンチ内冷媒流路が形成されていると共に、前記ダイ部の内部に冷却媒体が流通可能なダイ内冷媒流路が形成されており、前記パンチ部が、円柱状に形成され、前記パンチ内冷媒流路が、前記パンチ部の中心軸上に形成され先端が前記パンチ部の先端部に配された中心流路部と、該中心流路部の先端に基端が接続され互いに等角度間隔で放射状に延在して形成された複数の放射流路部と、これら放射流路部の先端に基端が接続され前記パンチ部の外周面の近傍に前記中心軸に沿って形成された複数の外周流路部とを有していることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the press working die according to the first invention is a press working die, and includes a punch portion and a die portion for forming a workpiece, and an outer peripheral surface and a front end surface of the punch portion. And a carbon film having a surface roughness Ra of 0.05 μm or less is coated on the inner peripheral surface of the die portion, and a coolant flow passage in the punch through which a cooling medium can flow is formed inside the punch portion. In addition, an in-die refrigerant flow path through which a cooling medium can flow is formed inside the die part, the punch part is formed in a columnar shape, and the in-punch refrigerant flow path is formed on the punch part. A central flow path portion formed on the central axis and having a distal end disposed at the distal end portion of the punch portion, and a proximal end connected to the distal end of the central flow path portion and extending radially at equal angular intervals. Before the base end is connected to the tip of these radiation flow path sections. Characterized in that it comprises a plurality of peripheral channels section formed along the central axis in the vicinity of the outer peripheral surface of the punch unit.

このプレス加工用金型では、パンチ部の内部に冷却媒体が流通可能なパンチ内冷媒流路が形成されていると共に、ダイ部の内部に冷却媒体が流通可能なダイ内冷媒流路が形成されているので、大量の冷却潤滑剤を用いなくても内部を流通する冷却媒体によりパンチ部及びダイ部を表面の炭素膜と共に内部から効率的に冷却することができる。したがって、パンチ内冷媒流路及びダイ内冷媒流路を流通させる冷却媒体は、容易に循環させることができ、パンチ部及びダイ部をアクティブに冷却するための循環媒体として必要分だけ用意することで済む。また、アクティブ冷却方式とすることができ、循環する冷却媒体の温度を常時監視することで、成形加工時の温度管理を、従来よりも厳密に行うことが可能になる。これにより、金型の熱膨張/収縮などによる製造上の不安定要因を排除することも可能になる。
なお、炭素膜の表面粗さRaを0.05μm以下に設定しているのは、Raが0.05μmを超えると、加工時に十分な滑り特性が得られず、被加工合金の凝着、堆積等が発生するおそれがあるためである。
In this press working mold, a coolant flow channel in the punch through which the cooling medium can flow is formed inside the punch portion, and a coolant flow channel in the die through which the cooling medium can flow is formed inside the die portion. Therefore, the punch part and the die part can be efficiently cooled from the inside together with the carbon film on the surface by the cooling medium circulating inside without using a large amount of cooling lubricant. Therefore, the cooling medium flowing through the in-punch refrigerant flow path and the in-die refrigerant flow path can be easily circulated, and by preparing the necessary amount as a circulation medium for actively cooling the punch section and the die section. That's it. In addition, an active cooling system can be used, and by constantly monitoring the temperature of the circulating cooling medium, temperature management during molding can be performed more strictly than in the past. This makes it possible to eliminate manufacturing instability factors due to thermal expansion / contraction of the mold.
Note that the surface roughness Ra of the carbon film is set to 0.05 μm or less. If Ra exceeds 0.05 μm, sufficient slip characteristics cannot be obtained during processing, and adhesion and deposition of the alloy to be processed. This is because there is a risk of occurrence of the above.

また、このプレス加工用金型では、パンチ内冷媒流路が、上記中心流路部と、上記複数の放射流路部と、上記複数の外周流路部とを有しているので、冷却媒体が、まず中心流路部によりパンチ部の中心に供給された後、先端側で複数の放射流路部により放射状に広がって流通し、さらに複数の外周流路部により外周近傍を流れることで、先端面及び外周面の炭素膜を効率的に冷却することができる。また、パンチ部を、中心軸を中心にした対称に冷却することができ、同一断面の最外周において温度の均一性を得ることができ、熱膨張/収縮による金型の形態不均一の発生を抑制でき、加工時の抵抗の増大、それによる被加工合金の凝着や堆積を防ぐことができる。   Further, in this press working mold, the coolant flow path in the punch has the central flow path section, the plurality of radiation flow path sections, and the plurality of outer peripheral flow path sections, so that the cooling medium First, after being supplied to the center of the punch portion by the central flow passage portion, it circulates radially through the plurality of radial flow passage portions on the tip side, and further flows in the vicinity of the outer periphery by the plurality of outer peripheral flow passage portions, The carbon film on the front end surface and the outer peripheral surface can be efficiently cooled. In addition, the punch part can be cooled symmetrically about the central axis, temperature uniformity can be obtained at the outermost periphery of the same cross section, and non-uniformity of mold shape due to thermal expansion / contraction can occur. It is possible to suppress the increase in resistance during processing, thereby preventing adhesion and deposition of the alloy to be processed.

第2の発明に係るプレス加工用金型は、第1の発明において、前記ダイ部が、円環状に形成され、前記ダイ内冷媒流路が、前記ダイ部の周方向に沿って円環状に形成されていることを特徴とする。
すなわち、このプレス加工用金型では、ダイ部が、円環状に形成され、ダイ内冷媒流路が、ダイ部の周方向に沿って円環状に形成されているので、ダイ部の内周面に形成された炭素膜を効率的に冷却することができる。
According to a second aspect of the present invention, there is provided a press working mold according to the first aspect, wherein the die portion is formed in an annular shape, and the in-die refrigerant flow path is formed in an annular shape along a circumferential direction of the die portion. It is formed.
That is, in this press working mold, the die portion is formed in an annular shape, and the in-die refrigerant flow path is formed in an annular shape along the circumferential direction of the die portion. The carbon film formed on the substrate can be efficiently cooled.

第3の発明に係るプレス加工用金型は、第1又は第2の発明において、前記前記パンチ内冷媒流路内及び前記ダイ内冷媒流路内に前記冷却媒体を供給する冷媒供給源を備え、該冷媒供給源が、前記パンチ内冷媒流路内及び前記ダイ内冷媒流路内を流れる前記冷却媒体を、レイノルズ数が3000以上の乱流で流通させることを特徴とする。
すなわち、このプレス加工用金型では、冷媒供給源が、パンチ内冷媒流路内及びダイ内冷媒流路内を流れる冷却媒体を、レイノルズ数が3000以上の乱流で流通させるので、層流の場合に比べて流路内に温度分布ができ難く、流路全体で均一的な冷却が可能になる。
A press working mold according to a third aspect of the present invention includes the refrigerant supply source for supplying the cooling medium into the in-punch refrigerant flow path and the in-die refrigerant flow path in the first or second invention. The coolant supply source circulates the cooling medium flowing in the in-punch coolant channel and the in-die coolant channel in a turbulent flow having a Reynolds number of 3000 or more.
That is, in this press working mold, the refrigerant supply source circulates the cooling medium flowing in the in-punch refrigerant channel and the in-die refrigerant channel in a turbulent flow having a Reynolds number of 3000 or more. Compared to the case, the temperature distribution in the flow path is less likely to occur, and uniform cooling can be achieved throughout the flow path.

第4の発明に係るプレス加工用金型は、第1から第3のいずれかの発明において、前記前記パンチ内冷媒流路内及び前記ダイ内冷媒流路内に前記冷却媒体を供給する冷媒供給源を備え、該冷媒供給源が、前記冷却媒体を流通させて前記炭素膜の温度を300℃未満に制御することを特徴とする。
すなわち、このプレス加工用金型では、冷媒供給源が、冷却媒体を流通させて炭素膜の温度を300℃未満に制御するので、炭素膜から水素が離脱することを防ぎ、安定した高い滑り特性を維持することができる。
The press working mold according to a fourth aspect of the present invention is the coolant supply for supplying the cooling medium into the coolant flow channel in the punch and the coolant flow channel in the die in any one of the first to third aspects of the invention. The refrigerant supply source controls the temperature of the carbon film to be less than 300 ° C. by circulating the cooling medium.
In other words, in this press working mold, the coolant supply source circulates the cooling medium and controls the temperature of the carbon film to less than 300 ° C., thus preventing the hydrogen from detaching from the carbon film, and stable and high slip characteristics. Can be maintained.

第5の発明に係るプレス加工用金型は、第1から第4のいずれかの発明において、前記パンチ部が、外周面及び先端面に前記炭素膜が形成され超硬合金で形成された有底円筒状の外側基体と、該外側基体の内側に設けられていると共に前記パンチ内冷媒流路が内部に形成され銅又は銅合金で形成された内側基体とを備えていることを特徴とする。
すなわち、このプレス加工用金型では、外側基体の内側に設けられていると共にパンチ内冷媒流路が内部に形成され銅又は銅合金で形成された内側基体を備えているので、熱伝導性の高い銅又は銅合金の内側基体を介して冷却媒体との熱交換を行い、効率的に外側基体及び炭素膜を冷却することができる。
According to a fifth aspect of the present invention, there is provided a press working mold according to any one of the first to fourth aspects, wherein the punch portion is formed of a cemented carbide with the carbon film formed on the outer peripheral surface and the tip surface. A bottom cylindrical outer base body and an inner base body that is provided inside the outer base body and is formed of copper or a copper alloy in which the coolant flow path in the punch is formed. .
That is, in this press working mold, since it is provided inside the outer base body and the coolant passage in the punch is formed inside and includes the inner base body formed of copper or a copper alloy, it has a heat conductive property. Heat exchange with the cooling medium can be performed through the inner substrate of high copper or copper alloy, and the outer substrate and the carbon film can be efficiently cooled.

第6の発明に係るプレス加工用金型は、第1から第5のいずれかの発明において、前記被加工材が、アルミニウム合金薄板であり、該アルミニウム合金薄板に対して絞りしごき加工を行うドライプレス加工用金型であることを特徴とする。
すなわち、このプレス加工用金型は、アルミニウム合金薄板に対して絞りしごき(DI:Drawing and Ironing)加工を行うドライプレス加工用金型であるので、低コスト、低環境負荷で安定した製品品質のアルミニウム合金製缶胴を作製することができる。
According to a sixth aspect of the present invention, there is provided a press working die according to any one of the first to fifth aspects, wherein the work material is an aluminum alloy thin plate, and a dry ironing process is performed on the aluminum alloy thin plate. It is a die for press working.
In other words, this press working mold is a dry press working mold that performs drawing and ironing (DI) on an aluminum alloy thin plate, so that the product quality is stable with low cost and low environmental load. An aluminum alloy can body can be produced.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係るプレス加工用金型によれば、パンチ部の内部に冷却媒体が流通可能なパンチ内冷媒流路が形成されていると共に、ダイ部の内部に冷却媒体が流通可能なダイ内冷媒流路が形成されているので、大量の冷却潤滑剤を用いなくても内部を流通する冷却媒体によりパンチ部及びダイ部を表面の炭素膜と共に内部から効率的に冷却することができる。
したがって、本発明のプレス加工用金型をアルミニウム缶のDIプロセス等においてドライプレス加工用の金型に適用することができ、凝着を抑制することによる製品品質の安定化を図ることができると共に、冷却潤滑剤を大量に使わずに済む低コストで省資源/省エネルギープロセスを実現可能である。
The present invention has the following effects.
In other words, according to the press working mold according to the present invention, the die coolant passage in which the cooling medium can be circulated is formed in the punch portion, and the cooling medium in the punch is formed in the punch portion. Since the inner refrigerant flow path is formed, the punch portion and the die portion can be efficiently cooled from the inside together with the carbon film on the surface by the cooling medium circulating inside without using a large amount of cooling lubricant.
Therefore, the die for press working of the present invention can be applied to a die for dry pressing in the DI process of an aluminum can, and the product quality can be stabilized by suppressing adhesion. Therefore, it is possible to realize a resource saving / energy saving process at a low cost without using a large amount of cooling lubricant.

本発明に係るプレス加工用金型の一実施形態において、加工時の金型を示す断面図である。In one Embodiment of the metal mold | die for press work which concerns on this invention, it is sectional drawing which shows the metal mold | die at the time of a process. 本実施形態において、パンチ部を示す放射流路部における断面図である。In this embodiment, it is sectional drawing in the radiation flow path part which shows a punch part. 本実施形態において、ダイ部の外側円環部を示すダイ内冷媒流路における断面図である。In this embodiment, it is sectional drawing in the refrigerant | coolant flow path in die | dye which shows the outer side ring part of die | dye part.

以下、本発明に係るプレス加工用金型の一実施形態を、図1から図3を参照しながら説明する。なお、以下の説明に用いる各図面では、各部を認識可能又は認識容易な大きさとするために必要に応じて縮尺を適宜変更している部分がある。   Hereinafter, an embodiment of a press working mold according to the present invention will be described with reference to FIGS. 1 to 3. In each drawing used in the following description, there is a part where the scale is appropriately changed as necessary in order to make each part recognizable or easily recognizable.

本実施形態のプレス加工用金型1は、図1から図3に示すように、被加工材Wとしてアルミニウム合金薄板を用い、該アルミニウム合金薄板に対してDI加工を行うドライプレス加工用の金型であって、被加工材Wを成形加工するパンチ部2とダイ部3とを備え、パンチ部2の外周面及び先端面とダイ部3の内周面とに、その表面粗さRaが0.05μm以下とされた炭素膜4が被覆されている。
また、上記パンチ部2の内部には、冷却媒体Lが流通可能なパンチ内冷媒流路5が形成されていると共に、ダイ部3の内部には、冷却媒体Lが流通可能なダイ内冷媒流路6が形成されている。
As shown in FIGS. 1 to 3, the press working mold 1 according to the present embodiment uses an aluminum alloy thin plate as a workpiece W, and performs a DI working on the aluminum alloy thin plate. The die includes a punch portion 2 and a die portion 3 for forming the workpiece W, and the outer surface of the punch portion 2 and the tip surface thereof and the inner surface of the die portion 3 have a surface roughness Ra. A carbon film 4 having a thickness of 0.05 μm or less is coated.
Further, an in-punch refrigerant flow path 5 through which the cooling medium L can flow is formed inside the punch section 2, and an in-die refrigerant flow through which the cooling medium L can flow is formed inside the die section 3. A path 6 is formed.

上記パンチ部2は、円柱状に形成され、パンチ内冷媒流路5が、パンチ部2の中心軸上に形成され先端がパンチ部2の先端部に配された中心流路部5aと、該中心流路部5aの先端に基端が接続され互いに等角度間隔で放射状に延在して形成された複数の放射流路部5bと、これら放射流路部5bの先端に基端が接続されパンチ部2の外周面の近傍に中心軸に沿って形成された複数の外周流路部5cとを有している。   The punch portion 2 is formed in a columnar shape, and the in-punch refrigerant flow passage 5 is formed on the central axis of the punch portion 2, and a central flow passage portion 5 a having a distal end disposed at the distal end portion of the punch portion 2, A proximal end is connected to the distal end of the central flow path portion 5a and a plurality of radial flow path portions 5b formed radially extending at equal angular intervals from each other, and a proximal end is connected to the distal ends of these radial flow path portions 5b. A plurality of outer peripheral flow path portions 5 c formed along the central axis are provided in the vicinity of the outer peripheral surface of the punch portion 2.

このパンチ部2は、外周面及び先端面に炭素膜4が形成され超硬合金で形成された有底円筒状の外側基体7と、該外側基体7の内側に設けられていると共にパンチ内冷媒流路5が内部に形成され銅又は銅合金で形成された内側基体8とを備えている。すなわち、DI加工時に被加工材Wに直接当接する部分である外側基体7の外周面及び先端面に炭素膜4が形成されている。   The punch portion 2 is provided with a bottomed cylindrical outer base body 7 formed of a cemented carbide with a carbon film 4 formed on the outer peripheral surface and the front end surface thereof, and is provided inside the outer base body 7 and also includes a refrigerant in the punch. A flow path 5 is formed inside and includes an inner base body 8 formed of copper or a copper alloy. That is, the carbon film 4 is formed on the outer peripheral surface and the front end surface of the outer base body 7 which are portions that directly contact the workpiece W during DI processing.

上記ダイ部3は、円環状に形成され、ダイ内冷媒流路6が、ダイ部3の周方向に沿って円環状に形成されている。
このダイ部3は、内周面に炭素膜4が形成され超硬合金で形成された円環状の内側円環部9と、該内側円環部9の外周に設けられていると共にダイ内冷媒流路6が内部に形成され、ステンレス(SUS)など鉄系材料で形成された外側円環部10とを備えている。すなわち、DI加工時に被加工材Wに直接当接する部分である内側円環部9の内周面に炭素膜4が形成されている。
The die portion 3 is formed in an annular shape, and the in-die refrigerant flow path 6 is formed in an annular shape along the circumferential direction of the die portion 3.
The die portion 3 is provided with an annular inner ring portion 9 formed of a cemented carbide with a carbon film 4 formed on the inner peripheral surface, and provided on the outer periphery of the inner ring portion 9 and also has an in-die refrigerant. A flow path 6 is formed inside and includes an outer annular portion 10 made of an iron-based material such as stainless steel (SUS). That is, the carbon film 4 is formed on the inner peripheral surface of the inner annular portion 9 that is a portion that directly contacts the workpiece W during DI processing.

また、このプレス加工用金型1は、パンチ内冷媒流路5内及びダイ内冷媒流路6内に冷却媒体Lを供給する冷媒供給源11を備えている。
該冷媒供給源11は、パンチ内冷媒流路5内及びダイ内冷媒流路6内を流れる冷却媒体Lを、レイノルズ数が3000以上の乱流で流通させるように流速を制御する機能を有している。すなわち、冷媒供給源11は、各冷媒流路の内径が例えば直径5mmに設定されている場合、冷却媒体Lの流速を0.5m/s以上に設定して、レイノルズ数:3000以上の乱流とする。なお、この例の冷却媒体Lは、30℃の冷却水が採用される。
The press working mold 1 includes a refrigerant supply source 11 that supplies the cooling medium L into the in-punch refrigerant flow path 5 and the in-die refrigerant flow path 6.
The refrigerant supply source 11 has a function of controlling the flow velocity so that the cooling medium L flowing in the in-punch refrigerant flow path 5 and the in-die refrigerant flow path 6 flows in a turbulent flow having a Reynolds number of 3000 or more. ing. That is, the refrigerant supply source 11 sets the flow velocity of the cooling medium L to 0.5 m / s or more when the inner diameter of each refrigerant flow path is set to 5 mm, for example, and turbulent flow with a Reynolds number of 3000 or more. And In addition, the cooling medium L of this example employs 30 ° C. cooling water.

さらに、この冷媒供給源11は、冷却媒体Lを循環、流通させて炭素膜4の温度を300℃未満に制御する機能も有している。すなわち、冷媒供給源11は、循環させている冷却媒体Lの温度を測定する温度センサ等の温度検出機能を有しており、冷却媒体Lの温度を常時監視して該温度から推定される炭素膜4での温度が300℃以上にならないように冷却媒体Lの温度や流速をコントロールする制御機構を有している。   Furthermore, the refrigerant supply source 11 also has a function of controlling the temperature of the carbon film 4 to less than 300 ° C. by circulating and circulating the cooling medium L. In other words, the refrigerant supply source 11 has a temperature detection function such as a temperature sensor that measures the temperature of the circulating cooling medium L, and the carbon that is constantly estimated by monitoring the temperature of the cooling medium L. A control mechanism for controlling the temperature and flow rate of the cooling medium L is provided so that the temperature at the film 4 does not exceed 300 ° C.

上記超硬合金は、例えばタングステンカーバイド(WC)を主材としてバインダとしてCoなどを10%未満含むものやバインダのないWCが採用される。これらの超硬合金は、炭素膜4の付着強度を低下させる表面近傍のCoを化学処理によって除去し、その上に気相合成によって炭素膜4が成膜される。   As the cemented carbide, for example, tungsten carbide (WC) as a main material and a binder containing less than 10% of Co or the like or WC without a binder are adopted. In these cemented carbides, Co in the vicinity of the surface that lowers the adhesion strength of the carbon film 4 is removed by chemical treatment, and the carbon film 4 is formed thereon by vapor phase synthesis.

上記炭素膜4は、DLC膜や多結晶ダイヤモンド膜であり、本実施形態ではダイヤモンド膜を採用している。これらの炭素膜4を合成した段階では、最表面の起伏はRaで数μm程度になっている。これを例えば波長360nm以下のパルスレーザ光を用いて研磨し、Ra≦0.05μmにする。すなわち、上記炭素膜4は、表面粗さRaが0.05μm以下となるようにレーザ光で研磨されている。   The carbon film 4 is a DLC film or a polycrystalline diamond film, and a diamond film is employed in this embodiment. At the stage where these carbon films 4 are synthesized, the undulation on the outermost surface is about several μm in Ra. This is polished by using, for example, a pulsed laser beam having a wavelength of 360 nm or less so that Ra ≦ 0.05 μm. That is, the carbon film 4 is polished with laser light so that the surface roughness Ra is 0.05 μm or less.

このプレス加工用金型1では、図1に示すように、カップ成形された被加工材W内に上記パンチ部2を挿入した状態でダイ部3内に押し込められ、被加工材Wの絞りしごき加工が複数段で行われ、缶胴が作製される。この際、冷媒供給源11から各冷媒流路に冷却冷媒Lが上記条件で供給されてパンチ部2及びダイ部3の炭素膜4が適切に冷却される。   In this press working mold 1, as shown in FIG. 1, the punch part 2 is inserted into the cup-formed work material W and pushed into the die part 3, and the work material W is drawn and ironed. Processing is performed in a plurality of stages to produce a can body. At this time, the cooling refrigerant L is supplied from the refrigerant supply source 11 to each refrigerant flow path under the above conditions, and the carbon film 4 of the punch part 2 and the die part 3 is appropriately cooled.

このように本実施形態のプレス加工用金型1では、パンチ部2の内部に冷却媒体Lが流通可能なパンチ内冷媒流路5が形成されていると共に、ダイ部3の内部に冷却媒体Lが流通可能なダイ内冷媒流路6が形成されているので、大量の冷却潤滑剤を用いなくても内部を流通する冷却媒体Lによりパンチ部2及びダイ部3を表面の炭素膜4と共に内部から効率的に冷却することができる。すなわち、金型内部を水冷することにより、加工時に発生する金型表面の炭素膜4の温度上昇を防ぎ、被加工材Wとの摺動特性を維持することができる。   Thus, in the press working mold 1 of the present embodiment, the in-punch refrigerant flow path 5 through which the cooling medium L can flow is formed inside the punch part 2, and the cooling medium L is inside the die part 3. Is formed so that the punch part 2 and the die part 3 can be placed together with the carbon film 4 on the surface by the cooling medium L which circulates inside without using a large amount of cooling lubricant. Can be efficiently cooled. That is, by cooling the inside of the mold with water, the temperature rise of the carbon film 4 on the mold surface that occurs during processing can be prevented, and the sliding characteristics with the workpiece W can be maintained.

パンチ内冷媒流路5及びダイ内冷媒流路6を流通させる冷却媒体Lは、容易に循環させることができ、パンチ部2及びダイ部3をアクティブに冷却するための循環媒体として必要分だけ用意することで済む。また、アクティブ冷却方式とすることができ、循環する冷却媒体Lの温度を常時監視することで、成形加工時の温度管理を、従来よりも厳密に行うことが可能になる。これにより、金型の熱膨張/収縮などによる製造上の不安定要因を排除することも可能になる。   The cooling medium L that circulates through the in-punch refrigerant flow path 5 and the in-die refrigerant flow path 6 can be easily circulated, and is provided as much as necessary as a circulation medium for actively cooling the punch section 2 and the die section 3. Just do it. Moreover, it can be set as an active cooling system, and by always monitoring the temperature of the circulating cooling medium L, temperature management at the time of molding can be performed more strictly than in the past. This makes it possible to eliminate manufacturing instability factors due to thermal expansion / contraction of the mold.

また、パンチ内冷媒流路5が、上記中心流路部5aと、上記複数の放射流路部5bと、上記複数の外周流路部5cとを有しているので、冷却媒体Lが、まず中心流路部5aによりパンチ部2の中心に供給された後、先端側で複数の放射流路部5bにより放射状に広がって流通し、さらに複数の外周流路部5cにより外周近傍を流れることで、先端面及び外周面の炭素膜4を効率的に冷却することができる。また、パンチ部2を、中心軸を中心にした対称に冷却することができ、同一断面の最外周において温度の均一性を得ることができ、熱膨張/収縮による金型の形態不均一の発生を抑制でき、加工時の抵抗の増大、それによる被加工合金の凝着や堆積を防ぐことができる。   Moreover, since the coolant flow channel 5 in the punch has the central flow channel portion 5a, the plurality of radiation flow channel portions 5b, and the plurality of outer peripheral flow channel portions 5c, the cooling medium L is After being supplied to the center of the punch portion 2 by the central flow passage portion 5a, it circulates radially through the plurality of radial flow passage portions 5b on the tip side, and further flows in the vicinity of the outer periphery by the plurality of outer peripheral flow passage portions 5c. The carbon film 4 on the front end surface and the outer peripheral surface can be efficiently cooled. In addition, the punch portion 2 can be cooled symmetrically about the central axis, temperature uniformity can be obtained at the outermost periphery of the same cross section, and non-uniformity of mold shape due to thermal expansion / contraction can occur. It is possible to suppress the increase in resistance during processing, thereby preventing adhesion and deposition of the alloy to be processed.

さらに、ダイ部3が、円環状に形成され、ダイ内冷媒流路6が、ダイ部3の周方向に沿って円環状に形成されているので、ダイ部3の内周面に形成された炭素膜4を効率的に冷却することができる。
また、冷媒供給源11が、パンチ内冷媒流路5内及びダイ内冷媒流路6内を流れる冷却媒体Lを、レイノルズ数が3000以上の乱流で流通させるので、層流の場合に比べて流路内に温度分布ができ難く、流路全体で均一的な冷却が可能になる。
Furthermore, since the die part 3 is formed in an annular shape and the in-die refrigerant flow path 6 is formed in an annular shape along the circumferential direction of the die part 3, the die part 3 is formed on the inner peripheral surface of the die part 3. The carbon film 4 can be efficiently cooled.
Further, since the coolant supply source 11 circulates the cooling medium L flowing in the in-punch coolant channel 5 and the in-die coolant channel 6 in a turbulent flow having a Reynolds number of 3000 or more, compared to the case of laminar flow. It is difficult to create a temperature distribution in the flow path, and uniform cooling can be achieved throughout the flow path.

また、冷媒供給源11が、冷却媒体Lを流通させて炭素膜4の温度を300℃未満に制御するので、炭素膜4から水素が離脱することを防ぎ、安定した高い滑り特性を維持することができる。
さらに、外側基体7の内側に設けられていると共にパンチ内冷媒流路5が内部に形成され銅又は銅合金で形成された内側基体8を備えているので、熱伝導性の高い銅又は銅合金の内側基体8を介して冷却媒体Lとの熱交換を行い、効率的に外側基体7及び炭素膜4を冷却することができる。
Moreover, since the coolant supply source 11 distribute | circulates the cooling medium L and controls the temperature of the carbon film 4 to less than 300 degreeC, it prevents that hydrogen detaches | leaves from the carbon film 4, and maintains the stable high slip characteristic. Can do.
Furthermore, since the inner base 8 is provided inside the outer base 7 and the coolant passage 5 in the punch is formed inside and formed of copper or copper alloy, the copper or copper alloy having high thermal conductivity is provided. The heat exchange with the cooling medium L is performed through the inner substrate 8, and the outer substrate 7 and the carbon film 4 can be efficiently cooled.

したがって、本実施形態のプレス加工用金型1は、アルミニウム合金薄板に対してDI加工を行うドライプレス加工用金型とすることで、低コストで安定した製品品質のアルミニウム合金製缶胴を作製することができる。   Therefore, the press working mold 1 of the present embodiment is a dry press working mold that performs DI processing on an aluminum alloy thin plate, thereby producing a low-cost and stable product quality aluminum alloy can body. can do.

次に、上記実施形態のプレス加工用金型を用いてDI加工を行い、評価した結果について説明する。
用いたプレス加工用金型は、加工の際に直接作用する部分であるパンチ部の外側基体及びダイ部の内側円環部を、Coを6%含有する超硬合金とし、その上に多結晶ダイヤモンドを気相合成によって炭素膜を被覆した。
Next, the results of performing DI processing using the press working mold of the above embodiment and evaluating it will be described.
The press mold used is a cemented carbide containing 6% Co on the outer base of the punch part and the inner annular part of the die part, which are parts that directly act during processing, and is polycrystalline on it. Diamond was coated with carbon film by vapor phase synthesis.

また、被覆した多結晶ダイヤモンドの炭素膜を、波長262nm,10kHzのパルスレーザー光を用いて研磨し、Ra<0.03μmに研磨した。
なお、炭素膜の表面粗さ(表面起伏)測定は、光学顕微鏡、電子顕微鏡、レーザー顕微鏡を用いた。また、炭素膜の構造評価は、ラマン分光法を用いて測定した。
The coated polycrystalline diamond carbon film was polished using a pulsed laser beam having a wavelength of 262 nm and 10 kHz to polish to Ra <0.03 μm.
In addition, the optical roughness, the electron microscope, and the laser microscope were used for the surface roughness (surface undulation) measurement of the carbon film. The structural evaluation of the carbon film was measured using Raman spectroscopy.

さらに、各冷媒流路の径は3mmであり、冷却媒体を25℃の水とし、断面平均速度1m/sの乱流状態で流通させながらアルミニウム合金の加工率40%のしごき加工を行った。また、比較として、冷却媒体を流通させない場合でも、同様にしごき加工を行った。
これらの結果、冷却媒体を流通させなかった場合、連続しごき加工においてアルミニウム合金の凝着及び堆積が確認されたが、冷却冷媒を循環させて金型の冷却を行った場合は、凝着、堆積とも確認できなかった。
Furthermore, the diameter of each refrigerant flow path was 3 mm, the cooling medium was 25 ° C., and ironing was performed with an aluminum alloy processing rate of 40% while flowing in a turbulent flow state with a cross-sectional average speed of 1 m / s. For comparison, ironing was performed in the same manner even when the cooling medium was not circulated.
As a result, when the cooling medium was not circulated, adhesion and deposition of the aluminum alloy were confirmed in continuous ironing, but when the mold was cooled by circulating the cooling refrigerant, adhesion and deposition were observed. Neither could be confirmed.

なお、本発明の技術範囲は上記実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.

1…プレス加工用金型、2…パンチ部、3…ダイ部、4…炭素膜、5…パンチ内冷媒流路、5a…中心流路部、5b…放射流路部、5c…外周流路部、6…ダイ内冷媒流路、7…外側基体、8…内側基体、11…冷媒供給源、L…冷却媒体、W…被加工材   DESCRIPTION OF SYMBOLS 1 ... Die for press work, 2 ... Punch part, 3 ... Die part, 4 ... Carbon film, 5 ... Refrigerant flow path in punch, 5a ... Central flow path part, 5b ... Radiation flow path part, 5c ... Outer periphery flow path 6, refrigerant flow path in die, 7 outer side substrate, 8 inner substrate, 11 refrigerant supply source, L cooling medium, W work material

Claims (6)

プレス加工用の金型であって、
被加工材を成形加工するパンチ部とダイ部とを備え、
前記パンチ部の外周面及び先端面と前記ダイ部の内周面とに、その表面粗さRaが0.05μm以下とされた炭素膜が被覆され、
前記パンチ部の内部に冷却媒体が流通可能なパンチ内冷媒流路が形成されていると共に、前記ダイ部の内部に冷却媒体が流通可能なダイ内冷媒流路が形成されており、
前記パンチ部が、円柱状に形成され、
前記パンチ内冷媒流路が、前記パンチ部の中心軸上に形成され先端が前記パンチ部の先端部に配された中心流路部と、
該中心流路部の先端に基端が接続され互いに等角度間隔で放射状に延在して形成された複数の放射流路部と、
これら放射流路部の先端に基端が接続され前記パンチ部の外周面の近傍に前記中心軸に沿って形成された複数の外周流路部とを有していることを特徴とするプレス加工用金型。
A mold for press working,
It has a punch part and a die part that mold the workpiece,
The outer peripheral surface and tip surface of the punch portion and the inner peripheral surface of the die portion are coated with a carbon film whose surface roughness Ra is 0.05 μm or less,
A coolant flow path in the punch through which the cooling medium can flow is formed inside the punch section, and a coolant flow path in the die through which the cooling medium can flow is formed inside the die section,
The punch portion is formed in a columnar shape,
A central flow path portion in which the coolant flow path in the punch is formed on a central axis of the punch portion, and a tip is disposed at a tip portion of the punch portion;
A plurality of radiation flow path portions formed by extending proximally from each other at an equiangular interval with a base end connected to the distal end of the central flow path portion;
A press working characterized in that a base end is connected to the distal ends of these radiation flow path portions and a plurality of outer flow path portions formed along the central axis in the vicinity of the outer peripheral surface of the punch portion. Mold.
請求項1に記載のプレス加工用金型において、
前記ダイ部が、円環状に形成され、
前記ダイ内冷媒流路が、前記ダイ部の周方向に沿って円環状に形成されていることを特徴とするプレス加工用金型。
The press working die according to claim 1,
The die part is formed in an annular shape,
The die for press working, wherein the in-die refrigerant flow path is formed in an annular shape along a circumferential direction of the die portion.
請求項1又は2に記載のプレス加工用金型において、
前記前記パンチ内冷媒流路内及び前記ダイ内冷媒流路内に前記冷却媒体を供給する冷媒供給源を備え、
該冷媒供給源が、前記パンチ内冷媒流路内及び前記ダイ内冷媒流路内を流れる前記冷却媒体を、レイノルズ数が3000以上の乱流で流通させることを特徴とするプレス加工用金型。
The press working die according to claim 1 or 2,
A coolant supply source for supplying the cooling medium into the coolant channel in the punch and the coolant channel in the die;
The press working die, wherein the coolant supply source circulates the cooling medium flowing in the in-punch coolant channel and the in-die coolant channel in a turbulent flow having a Reynolds number of 3000 or more.
請求項1から3のいずれか一項に記載のプレス加工用金型において、
前記前記パンチ内冷媒流路内及び前記ダイ内冷媒流路内に前記冷却媒体を供給する冷媒供給源を備え、
該冷媒供給源が、前記冷却媒体を流通させて前記炭素膜の温度を300℃未満に制御することを特徴とするプレス加工用金型。
In the metal mold | die for press work as described in any one of Claim 1 to 3,
A refrigerant supply source for supplying the cooling medium into the refrigerant flow path in the punch and the refrigerant flow path in the die;
The press working mold, wherein the coolant supply source controls the temperature of the carbon film to be less than 300 ° C. by circulating the cooling medium.
請求項1から4のいずれか一項に記載のプレス加工用金型において、
前記パンチ部が、外周面及び先端面に前記炭素膜が形成され超硬合金で形成された有底円筒状の外側基体と、
該外側基体の内側に設けられていると共に前記パンチ内冷媒流路が内部に形成され銅又は銅合金で形成された内側基体とを備えていることを特徴とするプレス加工用金型。
In the metal mold | die for press work as described in any one of Claim 1 to 4,
The punched portion has a bottomed cylindrical outer base body formed of a cemented carbide with the carbon film formed on the outer peripheral surface and the tip surface;
A press working die, comprising: an inner base provided inside the outer base and having an in-punch coolant flow path formed therein and formed of copper or a copper alloy.
請求項1から5のいずれか一項に記載のプレス加工用金型において、
前記被加工材が、アルミニウム合金薄板であり、
該アルミニウム合金薄板に対して絞りしごき加工を行うドライプレス加工用金型であることを特徴とするプレス加工用金型。
In the metal mold | die for press work as described in any one of Claim 1 to 5,
The workpiece is an aluminum alloy thin plate,
A die for press working, which is a die for dry press working for drawing and ironing the aluminum alloy thin plate.
JP2012026028A 2012-02-09 2012-02-09 Die for press working Expired - Fee Related JP5787094B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012026028A JP5787094B2 (en) 2012-02-09 2012-02-09 Die for press working
US13/756,713 US20130205862A1 (en) 2012-02-09 2013-02-01 Die for press working
CN201310050733.1A CN103639288A (en) 2012-02-09 2013-02-08 Metal die for press working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026028A JP5787094B2 (en) 2012-02-09 2012-02-09 Die for press working

Publications (2)

Publication Number Publication Date
JP2013163187A JP2013163187A (en) 2013-08-22
JP5787094B2 true JP5787094B2 (en) 2015-09-30

Family

ID=48944512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026028A Expired - Fee Related JP5787094B2 (en) 2012-02-09 2012-02-09 Die for press working

Country Status (3)

Country Link
US (1) US20130205862A1 (en)
JP (1) JP5787094B2 (en)
CN (1) CN103639288A (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9327372B2 (en) 2011-08-10 2016-05-03 Timothy J. Farnham Clamp rod assembly
US9254514B2 (en) * 2012-05-02 2016-02-09 Farnham Enterprises, Llc Methods and processes of manufacturing two piece cans
US10195656B2 (en) * 2013-09-12 2019-02-05 Nippon Steel & Sumitomo Metal Corporation Cooling method for hot press forming and hot press forming apparatus
US20150246383A1 (en) * 2014-02-28 2015-09-03 Ford Motor Company System and process for producing a metallic article
AR105391A1 (en) * 2015-07-27 2017-09-27 Constellium Neuf-Brisach PROCESS OF EMBUTIDO AND ESTIRADO OF THE OPTIMIZED WALL OF ALUMINUM CONTAINERS
CN107921518B (en) * 2015-08-26 2020-05-08 东洋制罐集团控股株式会社 Die for ironing and die block
JP6371333B2 (en) 2016-05-20 2018-08-08 株式会社不二機販 Aluminum adhesion prevention method
KR20210130271A (en) 2016-10-25 2021-10-29 토요 세이칸 가부시키가이샤 Aluminum can
JP2018070181A (en) * 2016-10-25 2018-05-10 東洋製罐株式会社 Aluminum can
JP6875824B2 (en) * 2016-10-25 2021-05-26 東洋製罐グループホールディングス株式会社 Squeezing blank can
US10377508B2 (en) * 2016-11-29 2019-08-13 The Boeing Company Enhanced tooling for interference-fit fasteners
CN106881417A (en) * 2017-04-18 2017-06-23 苏州汇程精密模具有限公司 It is a kind of with the stamping mold stripper plate with refrigerating function
CN111065470A (en) * 2017-09-01 2020-04-24 日本精工株式会社 Cold stamping forming device and cold stamping forming method
JP7155568B2 (en) * 2018-03-26 2022-10-19 東洋製罐グループホールディングス株式会社 metal work
US11045857B2 (en) * 2018-05-23 2021-06-29 Pride Engineering, Llc Fluid-cooled ToolPack
CN113039025B (en) * 2018-10-31 2024-01-12 东洋制罐集团控股株式会社 Machining jig, machining method, and method for manufacturing seamless can body
JP7363023B2 (en) 2018-10-31 2023-10-18 東洋製罐グループホールディングス株式会社 Pressing mold and pressing method
JP7521224B2 (en) 2020-03-27 2024-07-24 東洋製罐グループホールディングス株式会社 Manufacturing method of bottomed cylindrical body
US20230122197A1 (en) * 2020-03-27 2023-04-20 Toyo Seikan Group Holdings, Ltd. Method for manufacturing bottomed cylindrical body
JP7521225B2 (en) * 2020-03-27 2024-07-24 東洋製罐グループホールディングス株式会社 Manufacturing method of bottomed cylindrical body
JP2022020125A (en) * 2020-07-20 2022-02-01 東洋製罐株式会社 Aluminum seamless can washing method and washing device
WO2024058263A1 (en) * 2022-09-16 2024-03-21 ダイキン工業株式会社 Method for manufacturing heat exchanger
JP7492181B2 (en) 2022-09-16 2024-05-29 ダイキン工業株式会社 Heat exchanger manufacturing method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2778494A (en) * 1951-12-31 1957-01-22 Kreidler Alfred Extrusion apparatus for thin-walled hollow tubing
JP2550845B2 (en) * 1992-11-10 1996-11-06 東洋製罐株式会社 Seamless can body manufacturing method
JPH08117837A (en) * 1994-10-28 1996-05-14 Ube Ind Ltd Extruder of extrusion press
GB9507204D0 (en) * 1995-04-07 1995-05-31 Metal Box Plc Base forming of can bodies
JP3548337B2 (en) * 1996-05-31 2004-07-28 京セラ株式会社 Metal plastic working parts
JPH10137861A (en) * 1996-11-05 1998-05-26 Sky Alum Co Ltd Drawing and ironing method
JPH10326854A (en) * 1998-03-18 1998-12-08 Osaka Diamond Ind Co Ltd Die punch for bending lead frame
JPH11277160A (en) * 1998-03-27 1999-10-12 Asahi Seiki Mfg Co Ltd Diamond-coated drawing die for press
CN2429278Y (en) * 2000-06-14 2001-05-09 周水军 Drawing die with diamond membrane for manufacturing metal casing for electronic components
JP3929282B2 (en) * 2001-10-29 2007-06-13 大和製罐株式会社 Apparatus and method for producing resin-coated metal seamless can body
US7805970B2 (en) * 2003-10-15 2010-10-05 Crown Packaging Technology, Inc. Can manufacture
JP4627147B2 (en) * 2004-03-31 2011-02-09 大和製罐株式会社 Manufacturing method and manufacturing apparatus for resin-coated metal seamless can
JP3938170B2 (en) * 2004-08-17 2007-06-27 東洋製罐株式会社 Die cooling method and structure in drawing and ironing.
JP2006055860A (en) * 2004-08-17 2006-03-02 Toyo Seikan Kaisha Ltd Method and structure for cooling punch in drawing/ironing
US7290587B2 (en) * 2004-08-30 2007-11-06 General Motors Corporation Die thermal management through coolant flow control
JP2005297070A (en) * 2005-06-17 2005-10-27 Toyo Seikan Kaisha Ltd Method for producing resin-coated aluminum seamless can body
MX2009003114A (en) * 2006-10-25 2009-06-08 Tdy Ind Inc Articles having improved resistance to thermal cracking.
CN201728284U (en) * 2010-05-21 2011-02-02 李固加 Hardware punching die
CN202097305U (en) * 2011-06-21 2012-01-04 范志远 Durable hardware stamping mould

Also Published As

Publication number Publication date
CN103639288A (en) 2014-03-19
JP2013163187A (en) 2013-08-22
US20130205862A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5787094B2 (en) Die for press working
TWI739758B (en) Ironing die and die module
US10259736B2 (en) Methods and apparatus for forming a glass ribbon
US6892793B2 (en) Caster roll
CN103826773B (en) The coating component of sliding properties excellence
CA2465034C (en) Internally cooled punch
CN111747182B (en) Tempering roller, transport assembly and vacuum assembly
CN108779542A (en) Clad steel sheet with small and uniform coating microstructure and clad steel sheet manufacturing method
JP6667641B2 (en) Plating apparatus and plating method
CN105200391A (en) Preparation method of diamond-coated drawing mold for water lubrication
JP2018069256A (en) Drawing-and-squeezing can
JP2009184859A (en) Metallic member, producing apparatus of dlc film, and producing method of metallic member
US6971174B2 (en) Method of manufacturing a caster roll
US12036597B2 (en) Jig for metal plastic working
EP0445944A2 (en) Improvements relating to calendar and embossing bowls
JPH09272960A (en) Top roll for hot-dip metal plating equipment
CN106167894B (en) Flexible CVD Diamond Films With hot Flame equipment and method
JP5353310B2 (en) Vanadium-containing coating and mold or cutting tool coated with vanadium-containing coating
JP5230506B2 (en) Method for producing extruded aluminum
JP2005131649A (en) Method for ironing resin-coated metal can, and die for ironing
JP2017133092A (en) Steel material with low-friction layer
TW202404153A (en) Roller for use in a dry coating process for producing electrodes
JPH0889870A (en) Coating bar
JP2020069505A (en) Jig for machining and machining method
SU1325094A1 (en) Method of heat treatment of wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150714

R150 Certificate of patent or registration of utility model

Ref document number: 5787094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees