JP5786044B2 - Encoding method, encoding apparatus, decoding method, decoding apparatus, program, and recording medium - Google Patents
Encoding method, encoding apparatus, decoding method, decoding apparatus, program, and recording medium Download PDFInfo
- Publication number
- JP5786044B2 JP5786044B2 JP2013557574A JP2013557574A JP5786044B2 JP 5786044 B2 JP5786044 B2 JP 5786044B2 JP 2013557574 A JP2013557574 A JP 2013557574A JP 2013557574 A JP2013557574 A JP 2013557574A JP 5786044 B2 JP5786044 B2 JP 5786044B2
- Authority
- JP
- Japan
- Prior art keywords
- samples
- signal sequence
- range
- normalized signal
- predetermined value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 189
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 486
- 238000012937 correction Methods 0.000 claims description 291
- 238000013139 quantization Methods 0.000 claims description 143
- 238000012545 processing Methods 0.000 description 80
- 238000006243 chemical reaction Methods 0.000 description 21
- 238000010606 normalization Methods 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 11
- 238000005192 partition Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 230000011218 segmentation Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/032—Quantisation or dequantisation of spectral components
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Description
本発明は、音声や音楽などの音響信号を少ない情報量で符号化するための技術に関し、より詳しくは、量子化精度を向上させる符号化技術に関する。 The present invention relates to a technique for encoding an audio signal such as voice or music with a small amount of information, and more particularly to an encoding technique for improving quantization accuracy.
現在、音声や音楽などの音響信号を離散化したディジタルの入力信号を高能率に符号化する技術として、例えば、入力信号に含まれる5,…,200ms程度の一定間隔の各区間(フレーム)の入力信号系列を処理対象として、1フレームの入力信号系列に時間−周波数変換を適用して得られた周波数領域信号を符号化することが知られている。このような従来技術のうち、非特許文献1に開示されている符号化装置と復号装置の概要を図1に示す。
At present, as a technique for efficiently coding a digital input signal obtained by discretizing an acoustic signal such as voice or music, for example, each interval (frame) of a fixed interval of about 5,. It is known to encode a frequency domain signal obtained by applying time-frequency conversion to an input signal sequence of one frame with an input signal sequence as a processing target. Among such conventional technologies, an outline of an encoding device and a decoding device disclosed in Non-Patent
なお、非特許文献1によるとグローバルゲイン(正規化された入力信号系列の量子化精度に影響を及ぼすゲイン)の量子化値は時間領域で計算されている。しかし、時間領域における信号のエネルギーと周波数領域における信号のエネルギーは等しいため、グローバルゲインの量子化値を周波数領域で求めてもこの結果は時間領域におけるそれと異ならない。従って、ここでは、グローバルゲインの量子化値およびその復号値を周波数領域で計算する場合を例示する。
According to
以下、符号化装置での処理を説明する。
<周波数領域変換部101>
周波数領域変換部101には、時間領域の入力信号x(t)に含まれる連続する複数サンプルからなるフレーム単位の入力時間領域信号系列xF(t)が入力される。周波数領域変換部101は、1フレームの入力時間領域信号系列xF(t)に対応するL点(Lは、正整数で例えば256である)の周波数成分を入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]として出力する。ここで、tは離散時間のインデックス、ωは離散周波数のインデックスを表す。時間−周波数変換方法として、例えばMDCT(Modified Discrete Cosine Transform)またはDCT(Discrete Cosine Transform)を用いることができる。Hereinafter, processing in the encoding device will be described.
<Frequency
The frequency
<正規化部102>
正規化部102には、入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]と、後述するゲイン制御部104で求められた入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]の各成分の量子化精度を決定するゲイン(以下、グローバルゲインという)gが入力される。正規化部102は、入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]の各成分をグローバルゲインgでそれぞれ除することによって、もしくは入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]の各成分にグローバルゲインgの逆数をそれぞれ乗ずることによって、入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]の正規化を行い、正規化済み信号系列XQ(ω) [ω∈{0,…,L-1}]を出力する。<
The
<量子化部103>
量子化部103には、正規化済み信号系列XQ(ω) [ω∈{0,…,L-1}]が入力される。量子化部103は、事前に定められた方法で正規化済み信号系列XQ(ω) [ω∈{0,…,L-1}]の量子化を行い、正規化済み信号系列XQ(ω) [ω∈{0,…,L-1}]の各成分の量子化値による系列である量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]、および量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]に対応する符号である正規化信号符号を生成し、正規化信号符号のビット数(以下、消費ビット数という)を出力する。また、ゲイン制御部104から、量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]と正規化信号符号を出力する指令情報を受けた場合には、量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]と正規化信号符号を出力する。<
The quantizing
<ゲイン制御部104>
ゲイン制御部104には、消費ビット数が入力される。ゲイン制御部104は、消費ビット数が正規化信号符号に対して事前に割り当てられたビット数(以下、規定ビット数という)以下の最大値に近づくようにグローバルゲインgを調整し、調整後のグローバルゲインgを新たなグローバルゲインgとして出力する。グローバルゲインgの調整の一例として、消費ビット数が規定ビット数より大きい場合にはグローバルゲインgを大きくし、そうでなければグローバルゲインgを小さくする処理を例示できる。消費ビット数が規定ビット数以下の最大値となった場合には、量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]と正規化信号符号を出力する指令情報を量子化部103に対して出力する。<Gain
The
<グローバルゲイン符号化部105>
グローバルゲイン符号化部105には、入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]と量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]が入力される。グローバルゲイン符号化部105は、予め設定されたグローバルゲインの量子化値の複数の候補のうち、入力周波数領域信号系列X(ω) [ω∈{0,…,L-1}]と、量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]の各成分とグローバルゲインの量子化値の候補との乗算値による系列と、の間の相関が最大または誤差が最小となるグローバルゲインの量子化値の候補g^に対応する符号をグローバルゲイン符号として出力する。<Global Gain Encoding Unit 105>
The global
符号化装置の出力符号である正規化信号符号とグローバルゲイン符号は、復号装置に向けて送信され、復号装置に入力される。 The normalized signal code and the global gain code, which are output codes of the encoding device, are transmitted to the decoding device and input to the decoding device.
以下、復号装置での処理を説明する。
<グローバルゲイン復号部106>
グローバルゲイン復号部106には、グローバルゲイン符号が入力される。グローバルゲイン復号部106は、グローバルゲイン符号化部105が行う符号化処理に対応する復号処理を適用して当該グローバルゲイン符号を復号し、復号グローバルゲインg^を出力する。Hereinafter, processing in the decoding apparatus will be described.
<Global Gain Decoding Unit 106>
A global gain code is input to the global
<正規化信号復号部107>
正規化信号復号部107には、正規化信号符号が入力される。正規化信号復号部107は、符号化装置の量子化部103で行われる符号化方法と対応する復号方法を適用して当該正規化信号符号を復号し、復号正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]を出力する。<Normalized
A normalized signal code is input to the normalized
<復号周波数成分計算部108>
復号周波数成分計算部108には、復号グローバルゲインg^と復号正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]が入力される。復号周波数成分計算部108は、復号正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]の各成分と復号グローバルゲインg^とをそれぞれ乗算して得られる系列を復号周波数領域信号系列X^(ω) [ω∈{0,…,L-1}]として出力する。<Decoding Frequency
The decoded frequency
<時間領域変換部109>
時間領域変換部109には、復号周波数領域信号系列X^(ω) [ω∈{0,…,L-1}]が入力される。時間領域変換部109は、復号周波数領域信号系列X^(ω) [ω∈{0,…,L-1}]に対して周波数−時間変換を適用して、フレーム単位の出力時間領域信号系列zF(t)を出力する。周波数−時間変換方法は、周波数領域変換部101で用いられた時間−周波数変換方法に対応する逆変換である。上述の例であれば、ここでの周波数−時間変換方法は、IMDCT(Inverse Modified Discrete Cosine Transform)またはIDCT(Inverse Discrete Cosine Transform)である。<Time
Decoded frequency domain signal sequence X ^ (ω) [ω∈ {0,..., L−1}] is input to time
上述のような符号化方法では、グローバルゲインを調整して正規化済み信号系列の量子化の粗さを適宜制御し、このことによって正規化信号符号の符号量である消費ビット数が規定ビット数以下の最大値となるように制御を行っている。このため、規定ビット数より消費ビット数が小さい場合は、正規化済み信号系列のために事前に割り当てられたビット数を十分に生かした符号化処理を行えていないという問題がある。 In the coding method as described above, the global gain is adjusted to appropriately control the coarseness of quantization of the normalized signal sequence, so that the number of bits consumed, which is the code amount of the normalized signal code, is the specified number of bits. Control is performed so that the following maximum value is obtained. For this reason, when the number of bits consumed is smaller than the specified number of bits, there is a problem in that the encoding process that makes full use of the number of bits allocated in advance for the normalized signal sequence cannot be performed.
このような状況に鑑みて、本発明は、正規化済み信号系列の量子化精度を少ない符号量の増加で改善する符号化技術とその復号技術を提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide an encoding technique that improves the quantization accuracy of a normalized signal sequence with a small increase in code amount and a decoding technique thereof.
本発明の一態様による符号化方法は、複数の入力信号サンプルにより構成されるフレーム単位の入力信号系列を符号化する符号化技術であって、入力信号系列に含まれる各入力信号サンプルが正規化された信号による系列を符号化して得られる正規化信号符号と、正規化信号符号に対応する量子化正規化済み信号系列と、を得る正規化信号符号化処理と、入力信号系列に対応するゲインである量子化グローバルゲインと、量子化グローバルゲインに対応するグローバルゲイン符号と、を得るグローバルゲイン符号化処理と、量子化正規化済み信号系列をN個の範囲(Nは2以上の整数)に区分する区分処理と、区分された範囲ごとに量子化グローバルゲインをゲイン補正量で補正して得られる補正ゲインと量子化正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列と入力信号系列との相関が最大又は誤差が最小となる、区分された範囲毎のゲイン補正量を特定するためのゲイン補正量符号を得るゲイン補正量符号化処理とを有し、
区分処理は、
量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
(a)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数と、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数のN分のnと、が最も近付くように、
または、
(b)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数と、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数のN分のnと、が最も近付くように、
または、
(c)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(d)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(e)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以下となる最大のサンプル数となるように、
または、
(f)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以下となる最大のサンプル数となるように、
求め、
量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、量子化正規化済み信号系列の第Nの範囲とすることで、量子化正規化済み信号系列をN個の範囲に区分する
ことにより行なわれる。An encoding method according to an aspect of the present invention is an encoding technique for encoding an input signal sequence in units of frames configured by a plurality of input signal samples, and each input signal sample included in the input signal sequence is normalized. Normalized signal encoding processing for obtaining a normalized signal code obtained by encoding a sequence of the received signal and a quantized normalized signal sequence corresponding to the normalized signal code, and a gain corresponding to the input signal sequence A global gain encoding process for obtaining a quantized global gain and a global gain code corresponding to the quantized global gain, and a quantized normalized signal sequence in N ranges (N is an integer of 2 or more) Segmentation processing to be segmented, correction gain obtained by correcting the quantized global gain with the gain correction amount for each segmented range, and each sample of the quantized normalized signal sequence Gain correction to obtain a gain correction amount code for specifying the gain correction amount for each divided range, in which the correlation between the signal sequence obtained by multiplying the signal value and the input signal sequence is maximum or the error is minimum A quantity encoding process,
Classification processing
The nth range (n is an integer from 1 to N−1) of the quantized normalized signal sequence,
(a) The number of samples whose sample energy is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence, and quantization N of N samples of the number of samples whose sample energy is greater than a predetermined value or more than a predetermined value among all samples included in the normalized signal sequence is closest to
Or
(b) The number of samples whose absolute value of samples is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence, and the quantum So that the absolute value of the sample among all the samples included in the normalized normalized signal sequence is closer to n / N of the number of samples greater than or equal to the predetermined value.
Or
(c) The number of samples whose sample energy is greater than or equal to a predetermined value among all the samples included in the first range to the nth range of the quantized normalized signal sequence is quantized. The sample energy of all the samples included in the normalized signal sequence is the minimum number of samples that is greater than a predetermined value or equal to or greater than n / N of the number of samples greater than or equal to a predetermined value.
Or
(d) Among all the samples included in the first range to the nth range of the quantized normalized signal sequence, the number of samples whose absolute value of the sample is greater than or equal to the predetermined value is The absolute value of the sample among all the samples included in the normalized normalized signal sequence is a minimum number of samples that is greater than a predetermined value or equal to or greater than n / N of the number of samples greater than or equal to a predetermined value.
Or
(e) The number of samples whose sample energy is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence is quantized. Among all samples included in the normalized signal sequence, the maximum sample number is such that the energy of the sample is greater than a predetermined value or less than n / N of the number of samples greater than or equal to a predetermined value.
Or
(f) The number of samples whose absolute value of samples is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence is The absolute value of the sample among all the samples included in the normalized normalized signal sequence is a maximum number of samples that is greater than a predetermined value or equal to or less than n / N of the number of samples greater than or equal to a predetermined value.
Seeking
The quantized normalized signal sequence is determined by setting a range other than the first range to the (N−1) th range in the quantized normalized signal sequence as the Nth range of the quantized normalized signal sequence. Is divided into N ranges.
補正ゲインは、例えば、(1)量子化グローバルゲインとゲイン補正量とを加算した値、(2)量子化グローバルゲインと、量子化正規化済み信号系列のフレーム内の全てのサンプルの値の二乗和を量子化正規化済み信号系列の区分された範囲内の全てのサンプルの値の二乗和で除算した値をゲイン補正量に乗算した値と、を加算した値、(3)量子化グローバルゲインと、量子化正規化済み信号系列のフレーム内のサンプルのエネルギーが所定値より大きいサンプルの個数を量子化正規化済み信号系列の区分された範囲内のサンプルのエネルギーが当該所定値より大きいサンプルの個数で除算した値をゲイン補正量に乗算した値と、を加算した値、のいずれかである。 The correction gain is, for example, (1) a value obtained by adding the quantized global gain and the gain correction amount, and (2) a square of the values of all the samples in the frame of the quantized global gain and the quantized normalized signal sequence. A value obtained by adding the value obtained by dividing the sum by the sum of squares of the values of all samples within the divided range of the quantized normalized signal sequence to the gain correction amount, and (3) a quantized global gain And the number of samples in which the energy of the samples in the frame of the quantized normalized signal sequence is larger than a predetermined value, the energy of the samples in the divided range of the quantized normalized signal sequence is larger than the predetermined value. A value obtained by multiplying the value obtained by dividing the number by the gain correction amount and the value obtained by adding the gain correction amount.
ゲイン補正量は、量子化幅乗算前ゲイン補正量の候補が予め格納されたゲイン補正量コードブックに含まれる量子化幅乗算前ゲイン補正量と、量子化済みグローバルゲインに対応する量子化ステップ幅と、を乗算して得られる値としてもよい。 The gain correction amount includes a pre-quantization width gain correction amount included in a gain correction amount code book in which candidates for pre-quantization width gain correction amounts are stored in advance, and a quantization step width corresponding to a quantized global gain. And a value obtained by multiplying.
本発明の一態様による復号方法は、フレーム単位の符号を復号して出力信号系列を得る復号技術であって、符号に含まれる正規化信号符号を復号して復号正規化済み信号系列を得る正規化信号復号処理と、復号正規化済み信号系列をN個の範囲(Nは2以上の整数)に区分する区分処理と、符号に含まれるゲイン補正量符号を復号して各範囲に対応するゲイン補正量を得るゲイン補正量復号処理と、符号に含まれるグローバルゲイン符号を復号して復号グローバルゲインを得るグローバルゲイン復号処理と、区分された範囲ごとに、復号グローバルゲインをゲイン補正量で補正して得られる補正ゲインと復号正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列を出力信号系列とする復元処理とを有し、
区分処理は、
復号正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
(a)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数と、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数のN分のnと、が最も近付くように、
(b)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数と、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数のN分のnと、が最も近付くように、
(c)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数が、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以上となる最小のサンプル数となるように、
(d)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数が、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以上となる最小のサンプル数となるように、
(e)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数が、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以下となる最大のサンプル数となるように、
(f)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数が、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以下となる最大のサンプル数となるように、
上記の(a)から(f)の何れかの予め定められた区分方法であって、上記復号方法に対応する符号化方法の区分ステップで行われた区分方法により求め、
復号正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、復号正規化済み信号系列の第Nの範囲とする
ことで、復号正規化済み信号系列をN個の範囲に区分する
ことにより行なわれる。
A decoding method according to an aspect of the present invention is a decoding technique for obtaining an output signal sequence by decoding a frame-by-frame code, and decoding a normalized signal code included in the code to obtain a decoded normalized signal sequence Signal processing, segmentation processing that divides the decoded normalized signal sequence into N ranges (N is an integer of 2 or more), and gain corresponding to each range by decoding the gain correction amount code included in the code A gain correction amount decoding process for obtaining a correction amount, a global gain decoding process for obtaining a decoded global gain by decoding a global gain code included in the code, and a decoding global gain is corrected by a gain correction amount for each divided range. And a restoration process in which a signal sequence obtained by multiplying the correction gain obtained by the value of each sample of the decoded normalized signal sequence is an output signal sequence,
Classification processing
The nth range of the decoded normalized signal sequence (n is an integer from 1 to N-1),
(a) Among all samples included in the first range to the nth range of the decoded normalized signal sequence, the number of samples whose sample energy is greater than or equal to a predetermined value and the decoding normalization N of N samples of the number of samples whose sample energy is greater than or equal to or greater than a predetermined value among all the samples included in the completed signal sequence is closest .
( b) The number of samples whose absolute value of samples is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the decoded normalized signal sequence, and the decoding normal So that the absolute value of the sample among all the samples included in the digitized signal sequence is greater than the predetermined value, or n / N of the number of samples greater than or equal to the predetermined value ,
( c) The decoding normalization is performed when the number of samples whose sample energy is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the decoded normalized signal sequence. In order to obtain the minimum number of samples in which the energy of the samples among all the samples included in the completed signal series is greater than a predetermined value or not less than n / N of the number of samples greater than or equal to a predetermined value ,
( d) Among all samples included in the first range to the nth range of the decoded normalized signal sequence, the number of samples whose absolute value of the sample is greater than or equal to the predetermined value is the decoding normal So that the absolute value of the samples among all the samples included in the digitized signal sequence is a minimum number of samples that is greater than a predetermined value or equal to or greater than n / N of the number of samples greater than or equal to a predetermined value .
( e) The number of samples whose sample energy is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the decoded normalized signal sequence is decoded normalization Among all the samples included in the completed signal series, the sample energy is greater than a predetermined value or the maximum number of samples that is n or less of N / N of the number of samples greater than or equal to a predetermined value .
( f) Among all the samples included in the first range to the nth range of the decoded normalized signal sequence, the number of samples whose absolute value of the sample is greater than or equal to the predetermined value is the decoding normal The absolute value of the sample among all the samples included in the digitized signal sequence is greater than the predetermined value or the maximum number of samples that is n or less of N / N of the number of samples greater than or equal to the predetermined value,
(A) to (f) is a predetermined classification method described above, which is obtained by the classification method performed in the coding method classification step corresponding to the decoding method ,
By setting a range other than the range from the first range to the (N−1) th range in the decoded normalized signal sequence as the Nth range of the decoded normalized signal sequence, N decoded normalized signal sequences are obtained. This is done by dividing the range.
補正ゲインは、例えば、(1)復号グローバルゲインとゲイン補正量とを加算した値、(2)復号グローバルゲインと、復号正規化済み信号系列のフレーム内の全てのサンプルの値の二乗和を復号正規化済み信号系列の区分された範囲内の全てのサンプルの値の二乗和で除算した値をゲイン補正量に乗算した値と、を加算した値、(3)復号グローバルゲインと、復号正規化済み信号系列のフレーム内のサンプルのエネルギーが所定値より大きいサンプルの個数を復号正規化済み信号系列の区分された範囲内のサンプルのエネルギーが当該所定値より大きいサンプルの個数で除算した値をゲイン補正量に乗算した値と、を加算した値、のいずれかである。 The correction gain is, for example, (1) a value obtained by adding the decoding global gain and the gain correction amount, and (2) decoding the sum of squares of the values of the decoding global gain and all samples in the frame of the decoded normalized signal sequence. A value obtained by multiplying the gain correction amount by a value obtained by dividing the value of all the samples within the divided range of the normalized signal sequence by the gain correction amount, (3) decoding global gain, and decoding normalization Gain obtained by dividing the number of samples whose energy of samples in a frame of a completed signal sequence is greater than a predetermined value by the number of samples whose samples within a segmented range of the normalized signal sequence are greater than the predetermined value One of a value obtained by multiplying the correction amount and a value obtained by adding the correction amount.
ゲイン補正量は、量子化幅乗算前ゲイン補正量の候補が予め格納されたゲイン補正量コードブックに含まれる量子化幅乗算前ゲイン補正量と、復号グローバルゲインに対応する量子化ステップ幅と、を乗算して得られる値としてもよい。 The gain correction amount includes a gain correction amount before quantization width included in a gain correction amount codebook in which candidates for a gain correction amount before quantization width multiplication are stored in advance, a quantization step width corresponding to a decoded global gain, It is good also as a value obtained by multiplying.
符号を要することなく符号化側と復号側で同一の方法でフレームを複数の範囲に区分し、複数の範囲のそれぞれにおいて、フレームの帯域全体に適用される量子化グローバルゲインを補正することによって、少ない符号量の増加でゲインの量子化精度が向上し、ミュージカルノイズや量子化ノイズなどに起因する音質劣化を軽減できる。 By dividing the frame into a plurality of ranges in the same method on the encoding side and the decoding side without requiring a code, and by correcting the quantized global gain applied to the entire band of the frame in each of the plurality of ranges, A small amount of code increases the gain quantization accuracy, and can reduce sound quality degradation caused by musical noise, quantization noise, and the like.
本発明の実施形態を、図面を参照して説明する。同一構成要素ないし同一処理には同一符号を割り当てて重複説明を省略する場合がある。なお、各実施形態で扱う音響信号は音声や楽音などの音響、映像などの信号である。ここでは音響信号が時間領域信号であることを想定しているが、必要に応じて周知技術によって時間領域信号を周波数領域信号に変換することも、或いは周波数領域信号を時間領域信号に変換することもできる。従って、符号化処理の対象となる信号は、時間領域信号でも周波数領域信号でもよい(以下の説明では、説明を具体的にするため、周波数領域信号を扱う)。符号化処理の対象として入力される信号は複数のサンプルで構成される系列(サンプル系列)であり、符号化処理は通常、フレーム単位で実行されることから、処理対象の信号を入力信号系列と呼称することにする。 Embodiments of the present invention will be described with reference to the drawings. The same components or the same processes may be assigned the same reference numerals and redundant description may be omitted. In addition, the acoustic signal handled in each embodiment is a signal such as a sound, a sound such as a musical sound, and a video. Here, it is assumed that the acoustic signal is a time domain signal. However, the time domain signal may be converted into a frequency domain signal or a frequency domain signal may be converted into a time domain signal by a known technique as necessary. You can also. Therefore, the signal to be encoded may be a time domain signal or a frequency domain signal (in the following description, the frequency domain signal is treated for the sake of concrete explanation). The signal input as the target of the encoding process is a sequence (sample sequence) composed of a plurality of samples, and the encoding process is normally executed in units of frames. I will call it.
例えば図1に示す技術を参考にすると、入力信号系列X(ω) [ω∈{0,…,L-1}]に含まれる各成分、量子化グローバルゲインg^および量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]に含まれる各成分の間の関係は式(1)で表すことができる。ここで、egはグローバルゲインgと量子化グローバルゲインg^との量子化誤差を、eXQは正規化入力信号系列XQ(ω) [ω∈{0,…,L-1}]と量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]に含まれる対応する成分同士(同じωの値の成分同士)の量子化誤差を表している。
通常の量子化では、量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]に対応する符号である正規化信号符号に消費される消費ビット数は入力信号系列に依存し、正規化信号符号用に予め定められた規定ビット数の一部が未使用のビットとして残る場合が多い。そこで、この余った一つまたは複数のビット(以下、余剰ビットという)を量子化誤差egとeXQの低減に利用する。さらに言えば、余剰ビットに限らず、量子化誤差の低減のために事前に用意された一つまたは複数のビットを利用してもよい。以下で説明する実施形態では、余剰ビットまたは事前に用意された一つまたは複数のビットのうち一部または全部を量子化誤差egの低減に利用することを説明する。例えば、余剰ビットまたは事前に用意された一つまたは複数のビットのうち、量子化誤差eXQの低減に使われなかった残りのビットを量子化誤差egの低減に利用することができる。もちろん、量子化誤差egの低減のためだけに利用される一つまたは複数のビットを事前に用意しておいてもよい。以下、量子化誤差egの低減に利用可能なビットを「ゲイン修正ビット」と呼称する。ゲイン修正ビットのビット数をUとする。In normal quantization, the number of bits consumed by a normalized signal code that is a code corresponding to a quantized normalized signal sequence X ^ Q (ω) [ω∈ {0,..., L-1}] is Depending on the input signal sequence, a part of the predetermined number of bits predetermined for the normalized signal code often remains as unused bits. Therefore, the excess one or more bits (hereinafter, referred to as surplus bits) utilizing the reduction of the quantization error e g and e XQ. Furthermore, not only the surplus bits, but also one or a plurality of bits prepared in advance for reducing the quantization error may be used. In the embodiments described below, we describe the application of some or all the reduction of the quantization error e g out of one or more bits which are prepared in surplus bits or advance. For example, among the one or more bits which are prepared in redundancy bits or pre can utilize the remaining bits not used to reduce the quantization error e XQ the reduction of the quantization error e g. Of course, it may be prepared one or more bits used only for reducing the quantization error e g in advance. Hereinafter referred to available bits in reducing the quantization error e g a "gain correction bits". Let U be the number of gain correction bits.
「量子化誤差egを低減する」ことは、換言すると、「量子化グローバルゲインを補正する」ことに他ならない。量子化グローバルゲインの補正に関して、一つのフレームに関する離散周波数のインデックスω∈{0,1,2,…,L-1}の全体、つまり系列全体、に共通の量子化グローバルゲインを補正する方法が考えられる。しかし、音響信号の特性を考慮すると、系列全体に共通の量子化グローバルゲインを補正するよりも、系列全体BをN個(ただし、Nは2以上の予め定められた整数である)の範囲{Bn}n=1 N={B1,…,Bn,…,BN}に区分した後、各範囲に対応するゲインを、量子化グローバルゲインを補正することによって求める方が、音声品質の向上を期待できる。このような観点から、実施形態における適応量子化では、量子化正規化済み信号系列X^Q(ω) [ω∈{0,…,L-1}]の系列全体が複数の範囲に区分される。To "reduce the quantization error e g" is, in other words, "to correct the quantization global gain" especially none other. Regarding the correction of the quantized global gain, there is a method for correcting the quantized global gain common to the entire discrete frequency index ω∈ {0, 1, 2,..., L-1} of one frame, that is, the entire sequence. Conceivable. However, in consideration of the characteristics of the acoustic signal, the range of the entire sequence B is N (where N is a predetermined integer equal to or greater than 2) rather than correcting the quantization global gain common to the entire sequence { B n } n = 1 N = {B 1 ,..., B n ,..., B N }, and then obtaining the gain corresponding to each range by correcting the quantized global gain is better than the voice quality. Can be expected to improve. From such a viewpoint, in the adaptive quantization in the embodiment, the entire sequence of the quantized normalized signal sequence X ^ Q (ω) [ω∈ {0,..., L-1}] is divided into a plurality of ranges. The
符号化装置と復号装置とで同じ信号系列BをN個の範囲に区分するために容易に考えられる方法は、隣接する範囲の境界位置や各範囲に含まれる成分数のような範囲を特定する情報を符号化装置の出力とする方法である。しかし、範囲を特定する情報を出力するためには大量のビット数が必要となる。範囲を特定する情報を符号化装置の出力とすることなく、すなわち、ビットを消費することなく、符号化装置と復号装置とで同じ基準で区分を行なう。また、各範囲に対してなるべく均等にゲイン修正ビット、すなわち、量子化グローバルゲインを修正するための情報量、を与えることを想定し、各範囲に含まれる量子化正規化済み信号系列の成分の情報量がなるべく均等となることが望ましい。そこで、系列区分の基準として「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」を採用する。ここで、「有意」とは、例えば「サンプルの振幅がゼロではない」や「サンプルの振幅の絶対値が予め定められた値より大きいまたは以上である」などと定義することができる。 An easily conceivable method for dividing the same signal sequence B into N ranges by the encoding device and the decoding device is to specify a range such as the boundary position of adjacent ranges and the number of components included in each range. In this method, information is output from the encoding device. However, a large number of bits are required to output information specifying the range. The coding apparatus and the decoding apparatus perform classification according to the same standard without using the information specifying the range as the output of the coding apparatus, that is, without consuming bits. Further, assuming that the gain correction bits, that is, the amount of information for correcting the quantized global gain, are given to each range as evenly as possible, the components of the quantized normalized signal sequence included in each range It is desirable that the amount of information be as uniform as possible. Therefore, the “criteria for classifying so that the number of significant samples included in each range is as equal as possible” is adopted as a criterion for series division. Here, “significant” can be defined as, for example, “the sample amplitude is not zero” or “the absolute value of the sample amplitude is greater than or greater than a predetermined value”.
正規化済み信号系列の量子化においては、正規化済み信号系列に含まれる一部のサンプルのみに符号を割り当てる量子化方法が採用されることが多い。量子化正規化済み信号系列に含まれるサンプルの振幅の平均値が全離散周波数においてほぼ同一であると仮定すると、量子化正規化済み信号系列の各範囲の情報量は、各範囲に含まれる振幅がゼロではないサンプルの個数で近似することができる。従って、「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」を採用すれば、近似的に、各範囲に含まれる量子化正規化済み信号系列の成分の情報量をなるべく均等とすることが可能となる。この基準による具体的な区分方法については、後に詳述する。なお、量子化正規化済み信号系列に含まれるサンプルの振幅が全て同一となるような量子化方法としては、例えば、ITU-T 標準 のG.729に採用されている代数的コードブックを用いた量子化方法が挙げられる。 In quantization of a normalized signal sequence, a quantization method in which codes are assigned only to some samples included in the normalized signal sequence is often employed. Assuming that the average value of the amplitude of the samples included in the quantized normalized signal sequence is almost the same at all discrete frequencies, the amount of information in each range of the quantized normalized signal sequence is the amplitude included in each range. Can be approximated by the number of non-zero samples. Therefore, if the “criteria for classifying so that the number of significant samples included in each range is as equal as possible” is adopted, the information amount of the components of the quantized normalized signal sequence included in each range is approximately calculated. It is possible to make it as uniform as possible. A specific classification method based on this criterion will be described in detail later. For example, an algebraic codebook adopted in G.729 of the ITU-T standard is used as a quantization method in which the amplitudes of the samples included in the quantized normalized signal sequence are all the same. Quantization methods are mentioned.
実施形態の詳細を以下に説明する。 Details of the embodiment will be described below.
《第1実施形態》
第1実施形態の符号化装置1(図2参照)は、正規化信号符号化部120、グローバルゲイン符号化部105、ゲイン補正量符号化部140、区分部150を含む。図1に示す符号化装置1では、区分部150はゲイン補正量符号化部140の構成要素として図示されているが、後述の説明から容易に推測されるように、区分部150がゲイン補正量符号化部140と異なる構成要素であってもよい。符号化装置1は、必要に応じて、周波数領域変換部101と合成部160を含んでもよい。<< First Embodiment >>
The encoding apparatus 1 (see FIG. 2) of the first embodiment includes a normalized signal encoding unit 120, a global
まず、符号化装置1(encoder)が行う符号化処理を説明する(図3参照)。 First, an encoding process performed by the encoding device 1 (encoder) will be described (see FIG. 3).
ここでは、符号化装置1の入力信号系列は、フレーム単位の音響信号x(t)に対応するL点(Lは、正整数で例えば256である)の周波数成分である入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]であるとして説明する。ここで、tは離散時間のインデックス、ωは離散周波数のインデックス、LminはL点の周波数成分のうちの最小の離散周波数のインデックス、LmaxはL点の周波数成分のうちの最大の離散周波数のインデックス、を表す。ただし、フレーム単位の音響信号x(t)そのものを符号化装置1の入力信号系列としてもよいし、フレーム単位の音響信号x(t)に対して線形予測分析をした残差信号を符号化装置1の入力信号系列としてもよいし、その残差信号に対応するL点(Lは、正整数で例えば256である)の周波数成分を入力信号系列としてもよい。Here, the input signal sequence of the
<周波数領域変換部101>
符号化装置1は、符号化装置1の前処理部として、または符号化装置1内に、周波数領域変換部101を備えてもよい。この場合は、周波数領域変換部101がフレーム単位の時間領域の音響信号x(t)に対応するL点(Lは、正整数で例えば256である)の周波数成分を生成して入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]として出力する。時間−周波数変換方法として、例えばMDCT(Modified Discrete Cosine Transform)やDCT(Discrete Cosine Transform)を用いることができる。この場合も、フレーム単位の時間領域の音響信号に代えて、フレーム単位の時間領域の音響信号を線形予測分析して得られる残差信号をx(t)としてもよい。<Frequency
The
<正規化信号符号化部120>
正規化信号符号化部120は、フレーム単位の入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]の各成分が正規化された信号による系列を符号化して得られる正規化信号符号と、この正規化信号符号に対応する量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を出力する(ステップS1e)。<Normalized signal encoding unit 120>
The normalized signal encoding unit 120 encodes a sequence based on a signal obtained by normalizing each component of the input signal sequence X (ω) [ω∈ {L min ,..., L max }] in units of frames. The quantized signal code and the quantized normalized signal sequence X ^ Q (ω) [ω∈ {L min ,..., L max }] corresponding to the normalized signal code are output (step S1e).
正規化信号符号化部120は、例えば、図1の正規化部102、量子化部103、ゲイン制御部104により実現される。正規化部102、量子化部103、ゲイン制御部104のそれぞれは、[背景技術]欄で説明した通りに動作する。
The normalized signal encoding unit 120 is realized by, for example, the
<グローバルゲイン符号化部105>
グローバルゲイン符号化部105が、入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]に対応するゲインである量子化グローバルゲインg^と、量子化グローバルゲインg^に対応するグローバルゲイン符号とを得る(ステップS2e)。また、グローバルゲイン符号化部105は、必要に応じて量子化グローバルゲインg^に対応する量子化ステップ幅も得る。<Global
The global
グローバルゲイン符号化部105は、例えば、[背景技術]欄で説明した通りに動作する。
The global
また、例えば、グローバルゲイン符号化部105は、量子化グローバルゲインの候補とその候補に対応するグローバルゲイン符号の組を複数組格納したテーブルを備え、正規化信号符号化部120で得られたグローバルゲインgと最も近い量子化グローバルゲインの候補を量子化グローバルゲインg^とし、その候補に対応するグローバルゲイン符号を出力してもよい。
In addition, for example, the global
要は、グローバルゲイン符号化部105は、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の各成分とゲインとを乗算して得られる信号系列と入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]との相関が最大または誤差が最小となるような基準で求められた量子化グローバルゲインg^とこの量子化グローバルゲインに対応するグローバルゲイン符号を求めて出力すればよい。In short, the global
なお、ゲイン補正量符号化部140が量子化グローバルゲインg^に対応する量子化ステップ幅を用いた処理を行う場合は、量子化グローバルゲインg^に対応する量子化ステップ幅もゲイン補正量符号化部140に対して出力される。 When the gain correction amount encoding unit 140 performs processing using the quantization step width corresponding to the quantized global gain 量子, the quantization step width corresponding to the quantized global gain ^ is also the gain correction amount code. Is output to the conversion unit 140.
<区分部150>
区分部150が、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を、「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」で、N個の範囲(ただし、Nは2以上の予め定められた整数である)に区分する(ステップS3e)。既述の説明と整合させると、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の離散周波数インデックスの集合を{Lmin,…,Lmax}として、量子化正規化済み信号系列X^Q(ω)[ω∈{Lmin,…,Lmax}]が系列全体Bに相当し、区分部150は、量子化正規化済み信号系列X^Q(ω)[ω∈{Lmin,…,Lmax}]を、「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」で、N個の範囲{Bn}n=1 N={B1,…,Bn,…,BN}に区分する。この「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」で区分する区分処理の詳細は後述する。この区分処理で得られるN個の範囲への区分に関する情報(以下、区分情報という)は区分部150から出力されゲイン補正量符号化部140に提供される。<
The
<ゲイン補正量符号化部140>
ゲイン補正量符号化部140には、入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]と、量子化グローバルゲインg^と、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]と区分情報が入力される。ゲイン補正量符号化部140は、図示しない記憶部に記憶されているゲイン補正量コードブックを用いて、量子化グローバルゲインをゲイン補正量で区分された範囲ごとに補正して得られる補正ゲインと量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の各サンプルの値とを乗算して得られる信号系列と入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]との相関が最大または誤差が最小となる、区分された範囲毎のゲイン補正量を特定するための符号であるゲイン補正量符号を出力する(ステップS4e)。<Gain Correction Amount Encoding Unit 140>
The gain correction amount encoding unit 140 includes an input signal sequence X (ω) [ω∈ {L min ,..., L max }], a quantized global gain g ^, and a quantized normalized signal sequence X ^ Q. (ω) [ω∈ {L min ,..., L max }] and classification information are input. The gain correction amount encoding unit 140 uses a gain correction amount code book stored in a storage unit (not shown) to correct the quantization global gain for each range divided by the gain correction amount, Quantized normalized signal sequence X ^ Q (ω) [ω∈ {L min ,..., L max }] multiplied by the value of each sample and the input signal sequence X (ω) [ω A gain correction amount code, which is a code for specifying the gain correction amount for each divided range, in which the correlation with ε {L min ,..., L max }] is maximum or the error is minimum is output (step S4e). ).
さらに、必要に応じて、合成部160が、正規化信号符号と、ゲイン補正量符号と、グローバルゲイン符号をまとめたビットストリームを出力する。ビットストリームは復号装置2へ伝送される。
Furthermore, as necessary, the
<区分部150が行なう区分処理の詳細>
「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」での区分処理は、例えば、量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
(a)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数と、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のnと、が最も近付くように、
または、
(b)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数と、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数のN分のnと、が最も近付くように、
または、
(c)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(d)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(e)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以下となる最大のサンプル数となるように、
または、
(f)量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以下となる最大のサンプル数となるように、
求め、
量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、量子化正規化済み信号系列の第Nの範囲とすることで、量子化正規化済み信号系列をN個の範囲に区分することにより行なわれる。<Details of Sorting Process Performed by Sorting
For example, the sorting process based on the “criteria for sorting so that the number of significant samples included in each range is as equal as possible” is, for example, the nth range (n is 1 to N−1) of the quantized normalized signal sequence. Each integer)
(a) The number of samples whose sample energy is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence, and the quantum N of N samples of the number of samples whose sample energy is greater than or equal to or greater than a predetermined value among all samples included in the normalized normalized signal sequence,
Or
(b) the number of samples whose absolute value of samples is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence; N of N of the number of samples whose absolute value of samples is greater than or equal to or greater than a predetermined value among all samples included in the quantized normalized signal sequence is closest to
Or
(c) The number of samples whose sample energy is greater than or equal to a predetermined value among all the samples included in the first range to the nth range of the quantized normalized signal sequence is quantum Among all the samples included in the normalized normalized signal sequence, the energy of the sample is greater than the predetermined value or the minimum number of samples that is not less than n / N of the number of samples that is greater than or equal to the predetermined value.
Or
(d) The number of samples whose absolute value of samples is greater than or equal to a predetermined value among all samples included in the first range to the n-th range of the quantized normalized signal sequence, The absolute value of the sample among all samples included in the quantized normalized signal sequence is set to a minimum number of samples that is n or more of N / N of the number of samples that are greater than or equal to a predetermined value. ,
Or
(e) The number of samples whose sample energy is greater than or equal to a predetermined value among all the samples included in the first range to the nth range of the quantized normalized signal sequence is quantum So that the maximum number of samples becomes n or less of N / N of the number of samples whose sample energy is greater than a predetermined value or greater than or equal to a predetermined value among all samples included in the normalized normalized signal sequence,
Or
(f) The number of samples whose absolute value of samples is greater than or equal to a predetermined value among all samples included in the first range to the n-th range of the quantized normalized signal sequence, The absolute value of the sample among all the samples included in the quantized normalized signal sequence is set to a maximum number of samples that is n or less of N / N of the number of samples that are greater than or equal to the predetermined value. ,
Seeking
The quantized normalized signal sequence is determined by setting a range other than the first range to the (N−1) th range in the quantized normalized signal sequence as the Nth range of the quantized normalized signal sequence. Is divided into N ranges.
上記に例示した区分処理は、「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」による区分を、各範囲を逐次的に決定していく方法によって実現するものである。上記に例示した区分処理によれば、少ない演算処理量で「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」による区分を実現できる。 The classification process exemplified above realizes the classification based on the “criteria for classifying so that the number of significant samples included in each range is as equal as possible” by a method of sequentially determining each range. . According to the classification process exemplified above, it is possible to realize classification according to “a criterion for classifying so that the number of significant samples included in each range is as equal as possible” with a small amount of calculation processing.
[区分処理の第1例]
区分処理の第1例を図4と図5と図6を用いて説明する。第1例の区分処理は上記の(a)に対応する。第1例の区分処理は、量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数と、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のnと、が最も近付くように求め、量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、量子化正規化済み信号系列の第Nの範囲とすることで、量子化正規化済み信号系列をN個の範囲に区分する処理である。[First example of classification processing]
A first example of the sorting process will be described with reference to FIGS. 4, 5, and 6. FIG. The sorting process of the first example corresponds to the above (a). The division processing of the first example is performed by changing the nth range (n is an integer from 1 to N−1) of the quantized normalized signal sequence to the nth range of the quantized normalized signal sequence. The number of samples whose sample energy is greater than or equal to or greater than or equal to a predetermined value among all the samples included up to the range of, and the sample energy of all samples included in the quantized normalized signal sequence The number N of samples that are greater than or equal to a predetermined value is determined so as to be closest to N, and the first range of the quantized normalized signal sequence is not within the N-1th range. Is defined as the Nth range of the quantized normalized signal sequence, thereby dividing the quantized normalized signal sequence into N ranges.
[[区分処理の第1例の具体例1:2つの範囲に区分する例]]
図4は、2つの範囲に区分する例、すなわち、N=2の場合の例である。区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をX^Q(ω) [ω∈{Lmin,…,Lmid-1}]とX^Q(ω) [ω∈{Lmid,…,Lmax}]の2つの範囲に区分する例、具体的には、第1の範囲である低域と第2の範囲である高域との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるL midを決定する場合の例である。[[Example of first example of sorting process 1: Example of sorting into two ranges]]
FIG. 4 shows an example of dividing into two ranges, that is, an example where N = 2. Quantization normalized signal sequence X ^ Q (ω) [ω∈ {L min , ..., L max }] to be classified is changed to X ^ Q (ω) [ω∈ {L min , ..., L mid -1}. ] And X ^ Q (ω) [ω∈ {L mid ,..., L max }] are divided into two ranges, specifically, the first range is the low range and the second range. In this example, L mid , which is the sample number on the lowest frequency side of the second range, is determined as information representing the boundary with the high frequency range.
まず、各インデックスωについてfcount(ω)を式(2)によって定める。各インデックスωについてのfcount(ω)には、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]のインデックスωに対応するサンプルのエネルギー|X^Q(ω)|2が所定値より大きいサンプルに対して「サンプルのエネルギー|X^Q(ω)|が所定値より大きい」ことを表す情報として1を設定し、それ以外のサンプルに対して「サンプルのエネルギー|X^Q(ω)|が所定値より大きくない」ことを表す情報として0を設定する。この例では所定値を任意に予め定めた微小量ε(εは0以上の値)とする。
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の2分の1と、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmid-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmid-1)との差分値(差の絶対値)が最小となるように、第2の範囲の最も低域側にあるサンプル番号であるLmidを求める。すなわち、Lmidは式(3)によって求まる。これにより第1の範囲がX^Q [ω∈{Lmin,…,Lmid-1}]と決定する。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲以外の範囲、すなわち、X^Q [ω∈{Lmid,…,Lmax}]を第2の範囲とする。Then, quantized normalized signal sequence X ^ Q [ω∈ {L min , ..., L max}] first range outside the range of, namely, X ^ Q [ω∈ {L mid, ..., L max }] Is the second range.
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は2つの範囲に区分される。As described above, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is divided into two ranges.
区分部150が出力する区分情報は、Lmidであってもよいし、Lmidに予め定めた値を演算した値であってもよいし、第1の範囲のサンプル数Lmid-1−Lmin+1であってもよいし、第2の範囲のサンプル数Lmax−Lmid+1であってもよいし、要は、第1の範囲と第2の範囲とを特定できる情報であれば何でもよい。Sorting
[[区分処理の第1例の具体例2:4個の範囲に区分する例]]
図5は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を4個の範囲に区分する例、具体的には、第1の範囲と第2の範囲との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるL(1)を決定し、第2の範囲と第3の範囲との境界を表す情報として第3の範囲の最も低域側にあるサンプル番号であるL(2)を決定し、第3の範囲と第4の範囲との境界を表す情報として第4の範囲の最も低域側にあるサンプル番号であるL(3)を決定する例である。[[Specific example 2: First example of sorting processing: Example of sorting into four ranges]]
FIG. 5 shows an example of dividing the quantized normalized signal sequence X ^ Q (ω) [ω∈ {L min ,..., L max }] to be divided into four ranges, specifically, the first L (1) , which is the lowest sample number of the second range, is determined as information indicating the boundary between the second range and the second range, and the boundary between the second range and the third range is determined. L (2) , which is the sample number on the lowest side of the third range, is determined as information to be expressed, and the lowest range of the fourth range is set as information indicating the boundary between the third range and the fourth range. This is an example of determining L (3) which is the sample number on the side.
まず、各インデックスωについてfcount(ω)を式(2)によって定める。First, for each index ω, f count (ω) is determined by equation (2).
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の1と、量子化正規化済み信号系列の第1の範囲にに含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,L(1)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(1)-1)との差分値(差の絶対値)が最小となるように求めたL(1)を第2の範囲の最も低域側にあるサンプル番号とする。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。Next, all samples X ^ Q contained in the quantized normalized signal sequence (ω) [ω∈ {L min , ..., L max}] number f count energy sample is larger samples than the predetermined value among the (L min ) + ... + f count (L max ) and all samples X ^ Q (ω) [ω∈ {L included in the first range of the quantized normalized signal sequence min , ..., L (1) -1}], the difference value (difference) from the number of samples f count (L min ) + ... + f count (L (1) -1) where the sample energy is greater than a predetermined value L (1) obtained so as to minimize the absolute value of (2) is the sample number on the lowest side of the second range. Thereby, X ^ Q [ω∈ {L min ,..., L (1) −1}] is determined as the first range.
また、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の2(すなわち、2分の1)と、量子化正規化済み信号系列の第1の範囲から第2の範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(2)-1)との差分値(差の絶対値)が最小となるように求めたL(2)を第3の範囲の最も低域側にあるサンプル番号とする。これにより、X^Q [ω∈{L(1),…,L(2)-1}]が第2の範囲として定まる。Also, the number of samples f count (where the sample energy is greater than a predetermined value among all the samples X ^ Q (ω) [ω∈ {L min ,..., L max }] included in the quantized normalized signal sequence f count ( L min ) +... + F count (L max ) (ie, half) and all of the quantized normalized signal sequences included in the first range to the second range. Find the number of samples whose sample energy is greater than the specified value f count (L min ) + ... + f count (L (2) -1) so that the difference value (absolute value of the difference) is minimized. Let L (2) be the sample number on the lowest side of the third range. Thereby, X ^ Q [ω∈ {L (1) ,..., L (2) −1}] is determined as the second range.
また、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の3と、量子化正規化済み信号系列の第1の範囲から第3の範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(3)-1)との差分値(差の絶対値)が最小となるように求めたL(3)を第4の範囲の最も低域側にあるサンプル番号とする。これにより、X^Q [ω∈{L(2),…,L(3)-1}]が第3の範囲として定まる。Also, the number of samples f count (where the sample energy is greater than a predetermined value among all the samples X ^ Q (ω) [ω∈ {L min ,..., L max }] included in the quantized normalized signal sequence f count ( L min ) +... + F count (L max ) and the energy of the sample is predetermined among all samples included in the quantized normalized signal sequence from the first range to the third range. The number of samples larger than the value f count (L min ) + ... + f count (L (3) -1) and L (3) obtained so as to minimize the difference value (absolute value of the difference ) The sample number on the lowest side of the range of. Thereby, X ^ Q [ω∈ {L (2) ,..., L (3) −1}] is determined as the third range.
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第3の範囲以外の範囲、すなわち、X^Q [ω∈{L(3),…,Lmax}]を第4の範囲とする。Then, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is in a range other than the first to third ranges, that is, X ^ Q [ω∈ {L ( 3) ,..., L max }] is the fourth range.
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は4個の範囲に区分される。As described above, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is divided into four ranges.
区分部150が出力する区分情報は、L(1)とL(2)とL(3)であってもよいし、L(1)とL(2)とL(3)のそれぞれに予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、4個の範囲の全てを特定できる情報であれば何でもよい。Sorting
[[区分処理の第1例の一般化:N個の範囲に区分する例]]
図6は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をN個の範囲に区分する例、具体的には、第nの範囲と第n+1の範囲との境界を表す情報として第n+1の範囲の最も低域側にあるサンプル番号であるL(n)を決定する例である。以下では、LminをL(0)として説明する。[[Generalization of the first example of sorting processing: Example of sorting into N ranges]]
FIG. 6 shows an example of dividing the quantized normalized signal sequence X ^ Q (ω) [ω∈ {L min ,..., L max }] to be divided into N ranges, specifically, the nth In this example, L (n) , which is a sample number on the lowest side of the (n + 1) th range, is determined as information indicating the boundary between the (n + 1) th range and the (n + 1) th range. In the following description, L min is assumed to be L (0) .
まず、各インデックスωについてfcount(ω)を式(2)によって定める。First, for each index ω, f count (ω) is determined by equation (2).
次に、n=1からN−1のそれぞれのnについて、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)のN分のnと、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,L(n)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(n)-1)との差分値(差の絶対値)が最小となるように求めたL(n)を第n+1の範囲の最も低域側にあるサンプル番号とする。これにより、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲として定まる。Next, for each n of n = 1 to N−1, out of all samples X ^ Q (ω) [ω∈ {L min ,..., L max }] included in the quantized normalized signal sequence The number of samples whose sample energy is greater than a predetermined value f count (L min ) +... + F count (L max ), n / N, and the first range to the nth range of the quantized normalized signal sequence Of all samples X ^ Q (ω) [ω∈ {L min ,..., L (n) −1}] included in the number of samples f count (L min ) + ... L (n) obtained so that the difference value (absolute value) from + f count (L (n) -1) is minimized is set to the sample number on the lowest side of the ( n + 1 ) th range. . Thereby, X ^ Q [ω∈ {L (n−1) ,..., L (n) −1}] is determined as the nth range.
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第N−1の範囲以外の範囲、すなわち、X^Q [ω∈{L(N-1),…,Lmax}]を第Nの範囲とする。Then, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is in a range other than the first range to the (N−1) th range, that is, X ^ Q [ω∈ { L (N−1) ,..., L max }] is the Nth range.
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]はN個の範囲に区分される。As described above, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is divided into N ranges.
区分部150が出力する区分情報は、L(n)(nは1からN−1までの各整数)であってもよいし、L(n)(nは1からN−1までの各整数)に予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、N個の範囲の全てを特定できる情報であれば何でもよい。Sorting
なお、「量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値以上であるサンプルの個数と、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値以上であるサンプルの個数のN分のnと、が最も近付くように、」n=1からN−1のそれぞれのnについて、第nの範囲を定める場合は、式(2)中の「<」を「≦」に置き換えればよい。
Note that “the number of samples whose sample energy is equal to or greater than a predetermined value among all samples included in the first range to the n-th range of the quantized normalized signal sequence, and the quantized normalized signal sequence N = 1 /
[区分処理の第2例]
区分処理の第2例は上記の(b)に対応する。第2例の区分処理は、第1例の区分処理における「サンプルのエネルギー|X^Q(ω)|2」を「サンプルの絶対値|X^Q(ω)|」に置き換えた以外は、第1例の区分処理と同じ方法である。第2例の区分処理によれば、第1例の区分処理で行なう二乗計算を省略できる分、第1例の区分処理よりも少ない演算処理量で区分処理を行なうことが可能となる。[Second example of classification processing]
The second example of the sorting process corresponds to the above (b). In the classification process of the second example, “sample energy | X ^ Q (ω) | 2 ” in the classification process of the first example is replaced with “absolute value of sample | X ^ Q (ω) |”. This is the same method as the sorting process in the first example. According to the sorting process of the second example, it is possible to perform the sorting process with a smaller amount of calculation processing than the sorting process of the first example because the square calculation performed in the sorting process of the first example can be omitted.
[区分処理の第3例]
区分処理の第3例を図7と図8と図9を用いて説明する。第3例の区分処理は上記の(c)に対応する。第3例の区分処理は、量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以上となる最小のサンプル数となるように求め、量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、量子化正規化済み信号系列の第Nの範囲とすることで、量子化正規化済み信号系列をN個の範囲に区分する処理である。[Third example of classification processing]
A third example of the sorting process will be described with reference to FIGS. 7, 8, and 9. FIG. The classification process of the third example corresponds to the above (c). The division processing of the third example is performed by changing the nth range (n is an integer from 1 to N-1) of the quantized normalized signal sequence to the nth range of the quantized normalized signal sequence. The number of samples whose sample energy is greater than or equal to or greater than or equal to a predetermined value among all samples included up to the range of is the sample energy of all samples included in the quantized normalized signal sequence. The minimum number of samples that is greater than or equal to n / N of the number of samples that is greater than or equal to a predetermined value is obtained, and from the first range of the quantized normalized signal sequence, the N− This is a process of dividing the quantized normalized signal sequence into N ranges by setting a range other than 1 as the Nth range of the quantized normalized signal sequence.
[[区分処理の第3例の具体例1:2つの範囲に区分する例]]
図7は、2つの範囲に区分する例、すなわち、N=2の場合の例である。区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をX^Q(ω) [ω∈{Lmin,…,Lmid-1}]とX^Q(ω) [ω∈{Lmid,…,Lmax}]の2つの範囲に区分する例、具体的には、第1の範囲である低域と第2の範囲である高域との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるLmidを決定する場合の例である。[[Specific example of the third example of sorting processing 1: Example of sorting into two ranges]]
FIG. 7 shows an example of dividing into two ranges, that is, an example in the case of N = 2. Quantization normalized signal sequence X ^ Q (ω) [ω∈ {L min , ..., L max }] to be classified is changed to X ^ Q (ω) [ω∈ {L min , ..., L mid -1}. ] And X ^ Q (ω) [ω∈ {L mid ,..., L max }] are divided into two ranges, specifically, the first range is the low range and the second range. In this example, L mid , which is the sample number on the lowest frequency side of the second range, is determined as information representing the boundary with the high frequency range.
まず、各インデックスωについてfcount(ω)を式(2)によって定める。First, for each index ω, f count (ω) is determined by equation (2).
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)を求める。Next, all samples X ^ Q contained in the quantized normalized signal sequence (ω) [ω∈ {L min , ..., L max}] number f count energy sample is larger samples than the predetermined value among the Calculate (L min ) + ... + f count (L max ).
次に、離散周波数のインデックスωの番号kをLminから順に増やしながらLminから当該インデクスkまでの量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(k)が(fcount(Lmin)+…+fcount(Lmax))/2以上であるか否かを判定し、初めてfcount(Lmin)+…+fcount(k)が (fcount(Lmin)+…+fcount(Lmax))/2以上となる離散周波数のインデックスkまでを第1の範囲とし、当該インデックスkに1を加算したものを第2の範囲の最も低域側にあるサンプル番号であるインデックスL midとして出力する。これにより第1の範囲がX^Q [ω∈{Lmin,…,Lmid-1}]と決定する。Next, the number k of the discrete frequency index ω is increased from L min in order, and the sample energy is greater than a predetermined value among all samples included in the quantized normalized signal sequence from L min to the index k. number f count (L min) + ... + f count (k) is (f count (L min) + ... + f count (L max)) / 2 greater than or equal whether whether it is determined, for the first time f count ( L min ) + ... + f count (k) is defined as the first range up to a discrete frequency index k where (f count (L min ) + ... + f count (L max )) / 2 or more, and the
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲以外の範囲、すなわち、X^Q [ω∈{Lmid,…,Lmax}]を第2の範囲とする。Then, quantized normalized signal sequence X ^ Q [ω∈ {L min , ..., L max}] first range outside the range of, namely, X ^ Q [ω∈ {L mid, ..., L max }] Is the second range.
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は2つの範囲に区分される。As described above, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is divided into two ranges.
区分部150が出力する区分情報は、L midであってもよいし、L midに予め定めた値を演算した値であってもよいし、第1の範囲のサンプル数Lmid−Lminであってもよいし、第2の範囲のサンプル数Lmax−Lmid+1であってもよいし、要は、第1の範囲と第2の範囲とを特定できる情報であれば何でもよい。Sorting
[[区分処理の第3例の具体例2:4個の範囲に区分する例]]
図8は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を4個の範囲に区分する例、具体的には、第1の範囲と第2の範囲との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるL(1)を決定し、第2の範囲と第3の範囲との境界を表す情報として第3の範囲の最も低域側にあるサンプル番号であるL(2)を決定し、第3の範囲と第4の範囲との境界を表す情報として第4の範囲の最も低域側にあるサンプル番号であるL(3)を決定する例である。[[Specific example 2 of the third example of sorting processing: Example of sorting into four ranges]]
FIG. 8 shows an example in which the quantized normalized signal sequence X ^ Q (ω) [ω∈ {L min ,..., L max }] to be classified is divided into four ranges, specifically, the first L (1) , which is the lowest sample number of the second range, is determined as information indicating the boundary between the second range and the second range, and the boundary between the second range and the third range is determined. L (2) , which is the sample number on the lowest side of the third range, is determined as information to be expressed, and the lowest range of the fourth range is set as information indicating the boundary between the third range and the fourth range. This is an example of determining L (3) which is the sample number on the side.
まず、各インデックスωについてfcount(ω)を式(2)によって定める。First, for each index ω, f count (ω) is determined by equation (2).
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)を求める。Next, all samples X ^ Q contained in the quantized normalized signal sequence (ω) [ω∈ {L min , ..., L max}] number f count energy sample is larger samples than the predetermined value among the Calculate (L min ) + ... + f count (L max ).
次に、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(1)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(1)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の1以上であり、かつ、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルから第1の範囲の最も高域側にある1つのサンプルを除いた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(1)-2}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(1)-2)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の1より小さい、L(1)を第2の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{Lmin,…,L (1)-1}]が第1の範囲として定まる。Next, the energy of the sample among all the samples X ^ Q (ω) [ω∈ {L min , ..., L (1) -1}] included in the first range of the quantized normalized signal sequence is The number of samples greater than a predetermined value f count (L min ) +... + F count (L (1) −1) is equal to all samples X ^ Q (ω) [ω∈ {L min, ..., L max } number f count (L min) of the sample energy is greater than a predetermined value of a sample of the + ... is the + f count (
次に、量子化正規化済み信号系列の第1と第2の範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(2)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(2)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の2分の1以上であり、かつ、量子化正規化済み信号系列の第1と第2の範囲に含まれる全てのサンプルから第2の範囲の最も高域側にある1つのサンプルを除いた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(2)-2}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(2)-2)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の2分の1より小さい、L(2)を第3の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{L(1),…,L (2)-1}]が第2の範囲として定まる。Next, out of all samples X ^ Q (ω) [ω∈ {L min , ..., L (2) -1}] included in the first and second ranges of the quantized normalized signal sequence The number of samples whose count energy is larger than a predetermined value f count (L min ) + ... + f count (L (2) −1) is all samples X ^ Q (ω) included in the quantized normalized signal sequence [ω∈ {L min, ..., L max}] number f count (L min) of the sample energy is greater than a predetermined value of a sample of the + ... is the + f count (L max) 1 or 2 minutes of In addition, all samples X included in the signal sequence obtained by excluding one sample on the highest frequency side of the second range from all samples included in the first and second ranges of the quantized normalized signal sequence ^ Q (ω) [ω∈ {L min , ..., L (2) -2}] The number of samples whose sample energy is greater than a predetermined value f count (L min ) + ... + f count (L (2 ) -2) is quantized All samples X ^ Q included in-normalized pre signal sequence (ω) [ω∈ {L min , ..., L max}] number of samples energy of the sample is greater than a predetermined value among the f count (L min) + ... + f count (L max ) smaller than one half, L (2) is obtained as the sample number on the lowest side of the third range. Thereby, X ^ Q [ω∈ {L (1) ,..., L (2) −1}] is determined as the second range.
次に、量子化正規化済み信号系列の第1と第2と第3の範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(3)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(3)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の3以上であり、かつ、量子化正規化済み信号系列の第1と第2と第3の範囲に含まれる全てのサンプルから第3の範囲の最も高域側にある1つのサンプルを除いた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(3)-2}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(3)-2)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の3より小さい、L(3)を第4の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{L(2),…,L (3)-1}]が第3の範囲として定まる。Next, all samples X ^ Q (ω) [ω∈ {L min , ..., L (3) -1}] included in the first, second and third ranges of the quantized normalized signal sequence The number of samples with a sample energy greater than a predetermined value f count (L min ) + ... + f count (L (3) -1) is all samples X ^ Q included in the quantized normalized signal sequence (ω) [ω∈ {L min , ..., L max}] number f count (L min) of the energy is larger samples than a predetermined value of a sample of the + ... + f count (L max ) 3 or more quarters of And a signal sequence obtained by excluding one sample on the highest frequency side of the third range from all samples included in the first, second, and third ranges of the quantized normalized signal sequence Number of samples f count (L min ) + ... + of all samples X ^ Q (ω) [ω∈ {L min , ..., L (3) -2}] whose sample energy is greater than a predetermined value f count (L (3) - 2) is the number f of samples whose sample energy is greater than a predetermined value among all samples X ^ Q (ω) [ω∈ {L min ,..., L max }] included in the quantized normalized signal sequence f L (3), which is smaller than three- fourths of count (L min ) +... + f count (L max ), is obtained as the sample number on the lowest side of the fourth range. Thereby, X ^ Q [ω∈ {L (2) ,..., L (3) −1}] is determined as the third range.
これら処理は、具体的には例えば、以下により実現できる。 Specifically, these processes can be realized by, for example, the following.
まず、各インデックスωについてfcount(ω)を式(2)によって定める。そして、fcount(Lmin)+…+fcount(Lmax)をFとする。First, for each index ω, f count (ω) is determined by equation (2). Then, let f count (L min ) +... + F count (L max ) be F.
次に、iをLminから順に1ずつ増やしながら式(4)を満たすか否かを判断していき、式(4)を満たすiに1を加算したものをL(1)として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
さらに、iをLminから順に1ずつ増やしながら式(5)を満たすか否かを判断していき、式(5)を満たすiに1を加算したものをL(2)として求める。これにより、X^Q [ω∈{L(1),…,L(2)-1}]が第2の範囲として定まる。
さらに、iをLminから順に1ずつ増やしながら式(6)を満たすか否かを判断していき、式(6)を満たすiに1を加算したものをL(3)として求める。これにより、X^Q [ω∈{L(2),…,L(3)-1}]が第3の範囲として定まる。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第3の範囲以外の範囲、すなわち、X^Q [ω∈{L(3),…,Lmax}]を第4の範囲とする。Then, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is in a range other than the first to third ranges, that is, X ^ Q [ω∈ {L ( 3) ,..., L max }] is the fourth range.
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は4個の範囲に区分される。As described above, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is divided into four ranges.
区分部150が出力する区分情報は、L(1)とL(2)とL(3)であってもよいし、L(1)とL(2)とL(3)のそれぞれに予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、4個の範囲の全てを特定できる情報であれば何でもよい。Sorting
[[区分処理の第3例の一般化:N個の範囲に区分する例]]
図9は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をN個の範囲に区分する例、具体的には、第nの範囲と第n+1の範囲との境界を表す情報として第n+1の範囲の最も低域側にあるサンプル番号であるL(n)を決定する例である。[[Generalization of the third example of segmentation: Example of segmenting into N ranges]]
FIG. 9 shows an example of dividing the quantized normalized signal sequence X ^ Q (ω) [ω∈ {L min ,..., L max }] to be divided into N ranges, specifically, the nth In this example, L (n) , which is a sample number on the lowest side of the (n + 1) th range, is determined as information indicating the boundary between the (n + 1) th range and the (n + 1) th range.
まず、各インデックスωについてfcount(ω)を式(2)によって定める。First, for each index ω, f count (ω) is determined by equation (2).
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)を求める。Next, all samples X ^ Q contained in the quantized normalized signal sequence (ω) [ω∈ {L min , ..., L max}] number f count energy sample is larger samples than the predetermined value among the Calculate (L min ) + ... + f count (L max ).
次に、n=1からN−1のそれぞれのnについて、量子化正規化済み信号系列の第1の範囲から第nの範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(n)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(n)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)のN分のn以上であり、かつ、量子化正規化済み信号系列の第1の範囲から第nの範囲に含まれる全てのサンプルから第nの範囲の最も高域側にある1つのサンプルを除いた信号系列X^Q(ω)[ω∈{Lmin,…,L(n)-2}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(n)-2)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)のN分のnより小さい、L(n)を第n+1の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲、n=2からN−1のそれぞれのnについて、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲、として定まる。Next, for each n from n = 1 to N−1, all samples X ^ Q (ω) [ω∈ {L included in the first range to the nth range of the quantized normalized signal sequence. min ,..., L (n) -1}], the number of samples whose sample energy is greater than a predetermined value fcount ( Lmin ) + ... + fcount (L (n) -1) is quantized and normalized. Number of samples whose sample energy is greater than a predetermined value among all samples X ^ Q (ω) [ω∈ {L min ,..., L max }] included in the completed signal sequence f count (L min ) +. The highest frequency side of the nth range from all samples included in the first range to the nth range of the quantized normalized signal sequence that is not less than n / N of f count (L max ) In the signal sequence X ^ Q (ω) [ω∈ {L min ,..., L (n) −2}] excluding one sample in the number of samples f count ( L min ) +... + F count (L (n) −2) are all samples X ^ Q (ω) [ω∈ {L min ,…, L max }] included in the quantized normalized signal sequence The number of samples whose sample energy is greater than a predetermined value f count (L min ) +... + F count (L max ) is smaller than n of N, and L (n) is the lowest side of the ( n + 1 ) th range. As the sample number in As a result, X ^ Q [ω∈ {L min ,..., L (1) -1}] is X ^ Q [ω∈ {L for each n in the first range, n = 2 to
この処理は、具体的には例えば、以下により実現できる。 Specifically, this processing can be realized by, for example, the following.
まず、各インデックスωについてfcount(ω)を式(2)によって定める。そして、fcount(Lmin)+…+fcount(Lmax)をFとする。First, for each index ω, f count (ω) is determined by equation (2). Then, let f count (L min ) +... + F count (L max ) be F.
次に、n=1について、iをLminから順に1ずつ増やしながら式(7)を満たすか否かを判断していき、式(7)を満たすiに1を加算したものをL(1)として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
さらに、n=2からN−1のそれぞれのnについて、iをL(n-1)から順に1ずつ増やしながら式(7)を満たすか否かを判断していき、式(7)を満たすiに1を加算したものをL(n)として求める処理をnが小さい順に繰り返す。以上の処理により、n=2からN−1のそれぞれのnについて、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲として定まる。Further, for each n of n = 2 to N−1, it is determined whether or not Expression (7) is satisfied while i is increased by 1 sequentially from L (n−1) , and Expression (7) is satisfied. The process of obtaining the value obtained by adding 1 to i as L (n) is repeated in the order of increasing n. With the above processing, X ^ Q [ωε {L (n−1) ,..., L (n) −1 }] is determined as the nth range for each n from n = 2 to
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第N−1の範囲以外の範囲、すなわち、X^Q [ω∈{L(n),…,Lmax}]を第Nの範囲とする。Then, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is in a range other than the first range to the (N−1) th range, that is, X ^ Q [ω∈ { L (n) ,..., L max }] is the Nth range.
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]はN個の範囲に区分される。As described above, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is divided into N ranges.
区分部150が出力する区分情報は、L(n)(nは1からN−1までの各整数)であってもよいし、L(n)(nは1からN−1までの各整数)に予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、N個の範囲の全てを特定できる情報であれば何でもよい。Sorting
なお、「量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値以上であるサンプルの個数のN分のn以上となる最小のサンプル数となるように」n=1からN−1のそれぞれのnについて、第nの範囲を定める場合は、式(2)中の「<」を「≦」に置き換えればよい。 Note that “the number of samples whose sample energy is equal to or greater than a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence is the quantized normalized signal sequence. So that the sample energy is the minimum number of samples equal to or greater than n / N of the number of samples whose energy is equal to or greater than a predetermined value among all the samples included in “n = 1 to N−1, In order to define the n-th range, “<” in formula (2) may be replaced with “≦”.
[区分処理の第4例]
区分処理の第4例は上記の(d)に対応する。第4例の区分処理は、第3例の区分処理における「サンプルのエネルギー|X^Q(ω)|2」を「サンプルの絶対値|X^Q(ω)|」に置き換えた以外は、第3例の区分処理と同じ方法である。第4例の区分処理によれば、第3例の区分処理で行なう二乗計算を省略できる分、第3例の区分処理よりも少ない演算処理量で区分処理を行なうことが可能となる。[Fourth example of sorting]
The fourth example of the sorting process corresponds to the above (d). In the classification process of the fourth example, except that “sample energy | X ^ Q (ω) | 2 ” in the classification process of the third example is replaced with “absolute value of sample | X ^ Q (ω) |”, This is the same method as the sorting process in the third example. According to the classification process of the fourth example, it is possible to perform the classification process with a smaller calculation processing amount than the classification process of the third example because the square calculation performed in the classification process of the third example can be omitted.
[区分処理の第5例]
区分処理の第5例を図10と図11と図12を用いて説明する。第5例の区分処理は上記の(e)に対応する。第5例の区分処理は、量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以下となる最大のサンプル数となるように求め、量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、量子化正規化済み信号系列の第Nの範囲とすることで、量子化正規化済み信号系列をN個の範囲に区分する処理である。[Fifth example of classification processing]
A fifth example of the sorting process will be described with reference to FIG. 10, FIG. 11, and FIG. The classification process of the fifth example corresponds to the above (e). The partition processing of the fifth example includes the nth range (n is an integer from 1 to N-1) of the quantized normalized signal sequence, and the nth range from the first range of the quantized normalized signal sequence. The number of samples whose sample energy is greater than or equal to or greater than or equal to a predetermined value among all samples included up to the range of is the sample energy of all samples included in the quantized normalized signal sequence. The number of samples that is greater than the predetermined value or greater than or equal to the predetermined value is determined to be the maximum number of samples that is n or less of N, and the N−th to (N−) th from the first range of the quantized normalized signal sequence. This is a process of dividing the quantized normalized signal sequence into N ranges by setting a range other than 1 as the Nth range of the quantized normalized signal sequence.
[[区分処理の第5例の具体例1:2つの範囲に区分する例]]
図10は、2つの範囲に区分する例、すなわち、N=2の場合の例である。区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をX^Q(ω) [ω∈{Lmin,…,Lmid-1}]とX^Q(ω) [ω∈{Lmid,…,Lmax}]の2つの範囲に区分する例、具体的には、第1の範囲である低域と第2の範囲である高域との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるLmidを決定する場合の例である。[[Specific Example of Fifth Example of Sorting Process 1: Example of Classifying into Two Ranges]]
FIG. 10 shows an example of dividing into two ranges, that is, an example where N = 2. Quantization normalized signal sequence X ^ Q (ω) [ω∈ {L min , ..., L max }] to be classified is changed to X ^ Q (ω) [ω∈ {L min , ..., L mid -1}. ] And X ^ Q (ω) [ω∈ {L mid ,..., L max }] are divided into two ranges, specifically, the first range is the low range and the second range. In this example, L mid , which is the sample number on the lowest frequency side of the second range, is determined as information representing the boundary with the high frequency range.
まず、各インデックスωについてfcount(ω)を式(2)によって定める。First, for each index ω, f count (ω) is determined by equation (2).
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)を求める。Next, all samples X ^ Q contained in the quantized normalized signal sequence (ω) [ω∈ {L min , ..., L max}] number f count energy sample is larger samples than the predetermined value among the Calculate (L min ) + ... + f count (L max ).
次に、離散周波数のインデックスωの番号kをLminから順に増やしながらLminから当該インデクスkまでの量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(k)が(fcount(Lmin)+…+fcount(Lmax))/2より大であるか否かを判定し、初めてfcount(Lmin)+…+fcount(k)が (fcount(Lmin)+…+fcount(Lmax))/2より大となる離散周波数のインデックスkより1小さいk-1までを第1の範囲とし、当該インデックスkを第2の範囲の最も低域側にあるサンプル番号であるインデックスL midとして出力する。これにより第1の範囲がX^Q [ω∈{Lmin,…,Lmid-1}]と決定する。Next, the number k of the discrete frequency index ω is increased from L min in order, and the sample energy is greater than a predetermined value among all samples included in the quantized normalized signal sequence from L min to the index k. number f count (L min) + ... + f count (k) is (f count (L min) + ... + f count (L max)) / 2 than it is determined whether or not large, for the first time f count (L min ) + ... + f count (k) is k-1 less than the index k of the discrete frequency where (f count (L min ) + ... + f count (L max )) / 2 is greater than The index k is output as the index L mid which is the sample number on the lowest side of the second range. Accordingly, the first range is determined as X ^ Q [ω∈ {L min ,..., L mid −1}].
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲以外の範囲、すなわち、X^Q [ω∈{Lmid,…,Lmax}]を第2の範囲とする。Then, quantized normalized signal sequence X ^ Q [ω∈ {L min , ..., L max}] first range outside the range of, namely, X ^ Q [ω∈ {L mid, ..., L max }] Is the second range.
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は2つの範囲に区分される。As described above, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is divided into two ranges.
区分部150が出力する区分情報は、Lmidであってもよいし、Lmidに予め定めた値を演算した値であってもよいし、第1の範囲のサンプル数Lmid−Lminであってもよいし、第2の範囲のサンプル数Lmax−Lmid+1であってもよいし、要は、第1の範囲と第2の範囲とを特定できる情報であれば何でもよい。Sorting
[[区分処理の第5例の具体例2:4個の範囲に区分する例]]
図11は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を4個の範囲に区分する例、具体的には、第1の範囲と第2の範囲との境界を表す情報として第2の範囲の最も低域側にあるサンプル番号であるL(1)を決定し、第2の範囲と第3の範囲との境界を表す情報として第3の範囲の最も低域側にあるサンプル番号であるL(2)を決定し、第3の範囲と第4の範囲との境界を表す情報として第4の範囲の最も低域側にあるサンプル番号であるL(3)を決定する例である。[[Specific example 2 of the fifth example of sorting processing: Example of sorting into four ranges]]
FIG. 11 shows an example of dividing the quantized normalized signal sequence X ^ Q (ω) [ω∈ {L min ,..., L max }] to be divided into four ranges, specifically, the first L (1) , which is the lowest sample number of the second range, is determined as information indicating the boundary between the second range and the second range, and the boundary between the second range and the third range is determined. L (2) , which is the sample number on the lowest side of the third range, is determined as information to be expressed, and the lowest range of the fourth range is set as information indicating the boundary between the third range and the fourth range. This is an example of determining L (3) which is the sample number on the side.
まず、各インデックスωについてfcount(ω)を式(2)によって定める。First, for each index ω, f count (ω) is determined by equation (2).
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)を求める。Next, all samples X ^ Q contained in the quantized normalized signal sequence (ω) [ω∈ {L min , ..., L max}] number f count energy sample is larger samples than the predetermined value among the Calculate (L min ) + ... + f count (L max ).
次に、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルに第2の範囲の最も低域側にある1つのサンプルを加えた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(1)}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(1))が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の1より大きく、かつ、量子化正規化済み信号系列の第1の範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(1)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(1)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の1以下となる、L(1)を第2の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{Lmin,…,L (1)-1}]が第1の範囲として定まる。Next, all samples X ^ Q included in the signal sequence obtained by adding all samples included in the first range of the quantized normalized signal sequence to one sample located on the lowest side of the second range. The number of samples f count (L min ) +... + f count (L (1) ) of (ω) [ω∈ {L min ,..., L (1) }] is greater than a predetermined value, all samples X ^ Q contained in the quantized normalized signal sequence (ω) [ω∈ {L min , ..., L max}] number of samples energy of the sample is greater than a predetermined value among the f count (L min ) +... + F count (L max ) greater than one-fourth and all samples X ^ Q (ω) [ω∈ {L min included in the first range of the quantized normalized signal sequence , ..., L (1) -1}], the number of samples whose sample energy is greater than a predetermined value f count (L min ) + ... + f count (L (1) -1) is quantized and normalized. Signal system All samples X ^ Q contained in the (ω) [ω∈ {L min , ..., L max}] number f count energy sample is larger samples than the predetermined value among the (L min) + ... + f count ( L (1), which is equal to or less than a quarter of L max ), is obtained as the sample number on the lowest side of the second range. Thereby, X ^ Q [ω∈ {L min ,..., L (1) −1}] is determined as the first range.
次に、量子化正規化済み信号系列の第1と第2の範囲に含まれる全てのサンプルに第3の範囲の最も低域側にある1つのサンプルを加えた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(2)}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(2))が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の2分の1より大きく、かつ、量子化正規化済み信号系列の第1と第2の範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(2)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(2)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の2分の1以下となる、L(2)を第3の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{L(1),…,L (2)-1}]が第2の範囲として定まる。Next, all samples included in the signal sequence obtained by adding one sample on the lowest side of the third range to all samples included in the first and second ranges of the quantized normalized signal sequence Number of samples in which X ^ Q (ω) [ω∈ {L min , ..., L (2) }] has a sample energy greater than a predetermined value f count (L min ) + ... + f count (L (2) ) Is the number of samples X count ( Q count) of all samples X ^ Q (ω) [ω∈ {L min ,..., L max }] included in the quantized normalized signal sequence f count. (L min ) + ... + f count (L max ) greater than one half and all samples X ^ Q (ω) included in the first and second ranges of the quantized normalized signal sequence Among [ω∈ {L min , ..., L (2) -1}], the number of samples f count (L min ) + ... + f count (L (2) -1) whose sample energy is greater than a predetermined value is , Quantized regular All samples X ^ Q (ω) [ω∈ {L min, ..., L max}] contained in the finished signal sequence number of samples energy of the sample is greater than a predetermined value among the f count (L min) + ... + L (2), which is equal to or less than half of f count (L max ), is obtained as the sample number on the lowest side of the third range. Thereby, X ^ Q [ω∈ {L (1) ,..., L (2) −1}] is determined as the second range.
次に、量子化正規化済み信号系列の第1と第2と第3の範囲に含まれる全てのサンプルに第4の範囲の最も低域側にある1つのサンプルを加えた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(3)}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(3))が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の3より大きく、かつ、量子化正規化済み信号系列の第1と第2と第3の範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(3)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(3)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)の4分の3以下となる、L(3)を第4の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{L(2),…,L (3)-1}]が第3の範囲として定まる。Next, it is included in the signal sequence obtained by adding all samples included in the first, second, and third ranges of the quantized normalized signal sequence to one sample located on the lowest side of the fourth range. Of all samples X ^ Q (ω) [ω∈ {L min , ..., L (3) }], the number of samples whose sample energy is greater than a predetermined value f count (L min ) + ... + f count (L (3) ) is a sample of all samples X ^ Q (ω) [ω∈ {L min ,..., L max }] included in the quantized normalized signal sequence. All samples greater than three quarters of the number f count (L min ) +... + F count (L max ) and included in the first, second and third ranges of the quantized normalized signal sequence The number of samples in which X ^ Q (ω) [ω∈ {L min , ..., L (3) -1}] has a sample energy greater than a predetermined value f count (L min ) + ... + f count (L ( 3) -1) All samples X ^ Q contained in the quantized normalized signal sequence (ω) [ω∈ {L min , ..., L max}] number of samples energy of the sample is greater than a predetermined value among the f count (L min ) +... + F count (L max ), which is equal to or less than three quarters, L (3) is obtained as the sample number on the lowest side of the fourth range. Thereby, X ^ Q [ω∈ {L (2) ,..., L (3) −1}] is determined as the third range.
この処理は、具体的には例えば、以下により実現できる。 Specifically, this processing can be realized by, for example, the following.
まず、各インデックスωについてfcount(ω)を式(2)によって定める。そして、fcount(Lmin)+…+fcount(Lmax)をFとする。First, for each index ω, f count (ω) is determined by equation (2). Then, let f count (L min ) +... + F count (L max ) be F.
次に、iをLminから順に1ずつ増やしながら式(8)を満たすか否かを判断していき、式(8)を満たすiに1を加算したものをL(1)として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
さらに、iをLminから順に1ずつ増やしながら式(9)を満たすか否かを判断していき、式(9)を満たすiに1を加算したものをL(2)として求める。これにより、X^Q [ω∈{L(1),…,L(2)-1}]が第2の範囲として定まる。
さらに、iをLminから順に1ずつ増やしながら式(10)を満たすか否かを判断していき、式(10)を満たすiに1を加算したものをL(3)として求める。これにより、X^Q [ω∈{L(2),…,L(3)-1}]が第3の範囲として定まる。
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第3の範囲以外の範囲、すなわち、X^Q [ω∈{L(3),…,Lmax}]を第4の範囲とする。Then, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is in a range other than the first to third ranges, that is, X ^ Q [ω∈ {L ( 3) ,..., L max }] is the fourth range.
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]は4個の範囲に区分される。As described above, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is divided into four ranges.
区分部150が出力する区分情報は、L(1)とL(2)とL(3)であってもよいし、L(1)とL(2)とL(3)のそれぞれに予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、4個の範囲の全てを特定できる情報であれば何でもよい。Sorting
[[区分処理の第5例の一般化:N個の範囲に区分する例]]
図12は、区分対象の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]をN個の範囲に区分する例、具体的には、第nの範囲と第n+1の範囲との境界を表す情報として第n+1の範囲の最も低域側にあるサンプル番号であるL(n)を決定する例である。[[Generalization of the fifth example of classification processing: Example of dividing into N ranges]]
FIG. 12 shows an example of dividing the quantized normalized signal sequence X ^ Q (ω) [ω∈ {L min ,..., L max }] to be divided into N ranges, specifically, the nth In this example, L (n) , which is a sample number on the lowest side of the (n + 1) th range, is determined as information indicating the boundary between the (n + 1) th range and the (n + 1) th range.
まず、各インデックスωについてfcount(ω)を式(2)によって定める。First, for each index ω, f count (ω) is determined by equation (2).
次に、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)を求める。Next, all samples X ^ Q contained in the quantized normalized signal sequence (ω) [ω∈ {L min , ..., L max}] number f count energy sample is larger samples than the predetermined value among the Calculate (L min ) + ... + f count (L max ).
次に、n=1からN−1のそれぞれのnについて、量子化正規化済み信号系列の第1の範囲から第nの範囲に含まれる全てのサンプルに第n+1の範囲の最も低域側にある1つのサンプルを加えた信号系列に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(n)}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(n))が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)のN分のnより大きく、かつ、量子化正規化済み信号系列の第1の範囲から第nの範囲に含まれる全てのサンプルX^Q(ω)[ω∈{Lmin,…,L(n)-1}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(L(n)-1)が、量子化正規化済み信号系列に含まれる全てのサンプルX^Q(ω) [ω∈{Lmin,…,Lmax}]のうちサンプルのエネルギーが所定値より大きいサンプルの個数fcount(Lmin)+…+fcount(Lmax)のN分のn以下となる、L(n)を第n+1の範囲の最も低域側にあるサンプル番号として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲、n=2からN−1のそれぞれのnについて、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲、として定まる。Next, for each n of n = 1 to N−1, all samples included in the first range to the nth range of the quantized normalized signal sequence are moved to the lowest side of the n + 1th range. The number f of samples whose sample energy is greater than a predetermined value among all the samples X ^ Q (ω) [ω∈ {L min ,..., L (n) }] included in the signal sequence obtained by adding one sample f count (L min ) + ... + f count (L (n) ) is all samples X ^ Q (ω) [ω∈ {L min , ..., L max }] included in the quantized normalized signal sequence the first range of n content of greater than n, and quantized normalized signal sequence number energy of the sample is larger samples than the predetermined value f count (L min) + ... + f count (L max) of Out of all the samples X ^ Q (ω) [ω∈ {L min , ..., L (n) -1}] included in the n-th range, the sample energy is larger than a predetermined value The number of samples f count (L min ) + ... + f count (L (n) −1) is equal to all samples X ^ Q (ω) [ω∈ {L min , ..., L max}] energy of the sample is less than or equal to n divided by n of the number of larger samples than the predetermined value f count (L min) + ... + f count (L max) of the, L (n) of the Obtained as the sample number at the lowest side of the range of n + 1. As a result, X ^ Q [ω∈ {L min ,..., L (1) -1}] is X ^ Q [ω∈ {L for each n in the first range, n = 2 to
この処理は、具体的には例えば、以下により実現できる。 Specifically, this processing can be realized by, for example, the following.
まず、各インデックスωについてfcount(ω)を式(2)によって定める。そして、fcount(Lmin)+…+fcount(Lmax)をFとする。First, for each index ω, f count (ω) is determined by equation (2). Then, let f count (L min ) +... + F count (L max ) be F.
次に、n=1について、iをLminから順に1ずつ増やしながら式(11)を満たすか否かを判断していき、式(11)を満たすiに1を加算したものをL(1)として求める。これにより、X^Q [ω∈{Lmin,…,L(1)-1}]が第1の範囲として定まる。
さらに、n=2からN−1のそれぞれのnについて、iをL(n-1)から順に1ずつ増やしながら式(11)を満たすか否かを判断していき、式(11)を満たすiに1を加算したものをL(n)として求める処理をnが小さい順に繰り返す。以上の処理により、n=2からN−1のそれぞれのnについて、X^Q [ω∈{L(n-1),…,L(n)-1}]が第nの範囲として定まる。Further, for each n from n = 2 to N−1, it is determined whether or not the expression (11) is satisfied while increasing i by 1 sequentially from L (n−1) , and the expression (11) is satisfied. The process of obtaining the value obtained by adding 1 to i as L (n) is repeated in the order of increasing n. With the above processing, X ^ Q [ωε {L (n−1) ,..., L (n) −1 }] is determined as the nth range for each n from n = 2 to
そして、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]の第1の範囲から第N−1の範囲以外の範囲、すなわち、X^Q [ω∈{L(N-1),…,Lmax}]を第Nの範囲とする。Then, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is in a range other than the first range to the (N−1) th range, that is, X ^ Q [ω∈ { L (N−1) ,..., L max }] is the Nth range.
以上により、量子化正規化済み信号系列X^Q [ω∈{Lmin,…,Lmax}]はN個の範囲に区分される。As described above, the quantized normalized signal sequence X ^ Q [ω∈ {L min ,..., L max }] is divided into N ranges.
区分部150が出力する区分情報は、L(n)(nは1からN−1までの各整数)であってもよいし、L(n)(nは1からN−1までの各整数)に予め定めた値を演算した値であってもよいし、各範囲のサンプル数であってもよいし、要は、N個の範囲の全てを特定できる情報であれば何でもよい。Sorting
なお、「量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値以上であるサンプルの個数が、量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値以上であるサンプルの個数のN分のn以下となる最大のサンプル数となるように」n=1からN−1のそれぞれのnについて、第nの範囲を定める場合は、式(2)中の「<」を「≦」に置き換えればよい。 Note that “the number of samples whose sample energy is equal to or greater than a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence is the quantized normalized signal sequence. So that the maximum number of samples becomes n or less of N / N of the number of samples whose sample energy is equal to or greater than a predetermined value among all the samples included in “n = 1 to N−1, In order to define the n-th range, “<” in formula (2) may be replaced with “≦”.
[区分処理の第6例]
区分処理の第6例は上記の(f)に対応する。第6例の区分処理は、第5例の区分処理における「サンプルのエネルギー|X^Q(ω)|2」を「サンプルの絶対値|X^Q(ω)|」に置き換えた以外は、第5例の区分処理と同じ方法である。第6例の区分処理によれば、第5例の区分処理で行なう二乗計算を省略できる分、第5例の区分処理よりも少ない演算処理量で区分処理を行なうことが可能となる。[Sixth example of classification processing]
The sixth example of the sorting process corresponds to the above (f). In the classification process of the sixth example, “sample energy | X ^ Q (ω) | 2 ” in the classification process of the fifth example is replaced with “absolute value of sample | X ^ Q (ω) |”. This is the same method as the sorting process in the fifth example. According to the sorting process of the sixth example, it is possible to perform the sorting process with a smaller calculation processing amount than the sorting process of the fifth example, because the square calculation performed in the sorting process of the fifth example can be omitted.
<ゲイン補正量符号化部140が行なう処理の詳細>
ゲイン補正量符号化部140は、図示しない記憶部に記憶されているゲイン補正量コードブックを用いて、区分された範囲ごとに量子化グローバルゲインg^をゲイン補正量で補正して得られる補正ゲインと量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]の各サンプルの値とを乗算して得られる信号系列と入力信号系列X(ω) [ω∈{Lmin,…,Lmax}]との相関が最大または誤差が最小となる、区分された範囲毎のゲイン補正量を特定する符号であるゲイン補正量符号を出力する。<Details of Processing Performed by Gain Correction Amount Encoding Unit 140>
The gain correction amount encoding unit 140 uses a gain correction amount codebook stored in a storage unit (not shown) to correct the quantized global gain g ^ for each divided range with a gain correction amount. The signal sequence obtained by multiplying the gain and the value of each sample of the quantized normalized signal sequence X ^ Q (ω) [ω∈ {L min ,..., L max }] and the input signal sequence X (ω) A gain correction amount code, which is a code for specifying a gain correction amount for each divided range, in which the correlation with [ωε {L min ,..., L max }] is maximum or the error is minimum is output.
[ゲイン補正量符号化処理の第1例]
ゲイン補正量符号化処理の第1例は、量子化グローバルゲインg^とゲイン補正量とを加算したものを補正ゲインとする例である。[First example of gain correction amount encoding process]
The first example of the gain correction amount encoding process is an example in which the gain obtained by adding the quantized global gain g ^ and the gain correction amount is used as the correction gain.
[[ゲイン補正量符号化処理の第1例の具体例1:2つの範囲に区分されている場合の例]]
量子化正規化済み信号系列が2つの範囲に区分されている場合について説明する。[[Specific example 1 of first example of gain correction amount encoding processing: Example in case of being divided into two ranges]]
A case where the quantized normalized signal sequence is divided into two ranges will be described.
図示しない記憶部には、第1の範囲のゲイン補正量の候補Δlow(m)と第2の範囲のゲイン補正量の候補Δhigh(m)とこれらのゲイン補正量の候補を特定する符号idx(m)との組がM個(Mは2以上の予め定められた整数)格納されている。具体的には、Δlow(1)とΔhigh(1)とidx(1)との組、Δlow(2)とΔhigh(2)とidx(2)との組、・・・、Δlow(M)とΔhigh(M)とidx(M)との組、がゲイン補正量コードブックとして記憶部に格納されている。In a storage unit (not shown), a gain correction amount candidate Δ low (m) in the first range, a gain correction amount candidate Δ high (m) in the second range, and codes for specifying these gain correction amount candidates M sets of idx (m) are stored (M is a predetermined integer of 2 or more). Specifically, a set of Δ low (1), Δ high (1) and idx (1), a set of Δ low (2), Δ high (2) and idx (2), ..., Δ A set of low (M), Δ high (M), and idx (M) is stored in the storage unit as a gain correction amount codebook.
ゲイン補正量符号化部140は、まず、1からMのそれぞれのmについて、量子化グローバルゲインg^と第1の範囲のゲイン補正量の候補Δlow(m)とを加算して得られる値と第1の範囲の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmid-1}]の各サンプルの値とを乗算して得られる信号系列と第1の範囲の入力信号系列X(ω) [ω∈{Lmin,…,Lmid-1}]との対応するサンプル同士の値の差の二乗和と、量子化グローバルゲインg^と第2の範囲のゲイン補正量の候補Δhigh(m)とを加算して得られる値と第2の範囲の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmid,…,Lmax}]の各サンプルの値とを乗算して得られる信号系列と第2の範囲の入力信号系列X(ω) [ω∈{Lmid,…,Lmax}]との対応するサンプル同士の値の差の二乗和と、の加算値を求める。加算値は式(12)で求まる。
次に、この加算値が最小となるmに対応する符号idx(m)をゲイン補正量符号idxとして出力する。すなわち、ゲイン補正量符号idxは式(13)により求まる。
なお、式(13)は誤差が最小となる基準でのベクトル量子化に対応するものであるが、相関が最大となる基準でのベクトル量子化、誤差が最小または相関が最大となる基準でのスカラ量子化などの手法を適用してもよいのは当然のことである。 Note that equation (13) corresponds to vector quantization based on the criterion that minimizes the error, but vector quantization based on the criterion that maximizes the correlation, and the criterion based on the criterion that minimizes the error or maximizes the correlation. Of course, a technique such as scalar quantization may be applied.
[[ゲイン補正量符号化処理の第1例の具体例2:4個の範囲に区分されている場合の例]]
量子化正規化済み信号系列が4個の範囲に区分されている場合について説明する。[[Specific example 2 of first example of gain correction amount encoding process: Example when divided into four ranges]]
A case where the quantized normalized signal sequence is divided into four ranges will be described.
図示しない記憶部には、第1の範囲のゲイン補正量の候補Δ1(m)と第2の範囲のゲイン補正量の候補Δ2(m)と第3の範囲のゲイン補正量の候補Δ3(m)と第4の範囲のゲイン補正量の候補Δ4(m)とこれらのゲイン補正量の候補を特定する符号idx(m)との組がM個(Mは2以上の予め定められた整数)格納されている。具体的には、Δ1(1)とΔ2(1)とΔ3(1)とΔ4(1)とidx(1)との組、Δ1(2)とΔ2(2)とΔ3(2)とΔ4(2)とidx(2)との組、・・・、Δ1(M)とΔ2(M)とΔ3(M)とΔ4(M)とidx(M)との組、がゲイン補正量コードブックとして記憶部に格納されている。In a storage unit (not shown), a gain correction amount candidate Δ 1 (m) in the first range, a gain correction amount candidate Δ 2 (m) in the second range, and a gain correction amount candidate Δ in the third range are stored. 3 (m) and the fourth range of gain correction amount candidates Δ 4 (m) and M sets of codes idx (m) for specifying these gain correction amount candidates (M is a predetermined value of 2 or more) Stored integer). Specifically, Δ 1 (1), Δ 2 (1), Δ 3 (1), Δ 4 (1), and idx (1) pairs, Δ 1 (2), Δ 2 (2), and Δ 3 (2), Δ 4 (2), and idx (2), ..., Δ 1 (M), Δ 2 (M), Δ 3 (M), Δ 4 (M), and idx (M ) Is stored in the storage unit as a gain correction amount code book.
ゲイン補正量符号化部は、まず、1からMのそれぞれのmについて、量子化グローバルゲインg^と第1の範囲のゲイン補正量の候補Δ1(m)とを加算して得られる値と第1の範囲の量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,L(1)-1}]の各サンプルの値とを乗算して得られる信号系列と第1の範囲の入力信号系列X(ω) [ω∈{Lmin,…,L(1)-1}]との対応するサンプル同士の値の差の二乗和と、量子化グローバルゲインg^と第2の範囲のゲイン補正量の候補Δ2(m)とを加算して得られる値と第2の範囲の量子化正規化済み信号系列X^Q(ω) [ω∈{L(1),…,L(2)-1}]の各サンプルの値とを乗算して得られる信号系列と第2の範囲の入力信号系列X(ω) [ω∈{L(1),…,L(2)-1}]との対応するサンプル同士の値の差の二乗和と、量子化グローバルゲインg^と第3の範囲のゲイン補正量の候補Δ3(m)とを加算して得られる値と第3の範囲の量子化正規化済み信号系列X^Q(ω) [ω∈{L(2),…,L(3)-1}]の各サンプルの値とを乗算して得られる信号系列と第3の範囲の入力信号系列X(ω) [ω∈{L(2),…,L(3)-1}]との対応するサンプル同士の値の差の二乗和と、量子化グローバルゲインg^と第4の範囲のゲイン補正量の候補Δ4(m)とを加算して得られる値と第4の範囲の量子化正規化済み信号系列X^Q(ω) [ω∈{L(3),…,Lmax}]の各サンプルの値とを乗算して得られる信号系列と第4の範囲の入力信号系列X(ω) [ω∈{L(3),…,Lmax}]との対応するサンプル同士の値の差の二乗和と、の加算値を求める。加算値は式(14)で求まる。
次に、この加算値が最小となるmに対応する符号idx(m)をゲイン補正量符号idxとして出力する。すなわち、ゲイン補正量符号idxは式(15)により求まる。
なお、式(15)は誤差が最小となる基準でのベクトル量子化に対応するものであるが、相関が最大となる基準でのベクトル量子化、誤差が最小または相関が最大となる基準でのスカラ量子化などの手法を適用してもよいのは当然のことである。 Equation (15) corresponds to the vector quantization based on the criterion that minimizes the error, but the vector quantization based on the criterion that maximizes the correlation and the criterion based on the criterion that minimizes the error or maximizes the correlation. Of course, a technique such as scalar quantization may be applied.
[[ゲイン補正量符号化処理の第1例の一般化:N個の範囲に区分されている場合の例]]
量子化正規化済み信号系列がN個の範囲に区分されている場合について説明する。以下では、LminをL(0)、LmaxをL(N)−1、として説明する。[[Generalization of the first example of the gain correction amount encoding process: an example in the case of being divided into N ranges]]
A case where the quantized normalized signal sequence is divided into N ranges will be described. In the following description, it is assumed that L min is L (0) and L max is L (N) −1.
図示しない記憶部には、第1の範囲から第Nの範囲それぞれのゲイン補正量の候補Δ1(m),…,ΔN(m)とこれらのゲイン補正量の候補を特定する符号idx(m)との組がM個(Mは2以上の予め定められた整数)格納されている。具体的には、Δ1(1),…,ΔN(1)とidx(1)との組、Δ1(2),…,ΔN(2)とidx(2)との組、・・・、Δ1(M),…,ΔN(M)とidx(M)との組、がゲイン補正量コードブックとして記憶部に格納されている。In a storage unit (not shown), gain correction amount candidates Δ 1 (m),..., Δ N (m) in the first to Nth ranges and codes idx () for specifying these gain correction amount candidates M sets (m) are stored (M is a predetermined integer of 2 or more). Specifically, a set of Δ 1 (1), ..., Δ N (1) and idx (1), a set of Δ 1 (2), ..., Δ N (2) and idx (2), ..., Δ 1 (M),..., Δ N (M) and idx (M) are stored in the storage unit as a gain correction amount code book.
ゲイン補正量符号化部は、まず、1からMのそれぞれのmについて、第1の範囲から第Nの範囲のそれぞれについての量子化グローバルゲインg^と第nの範囲のゲイン補正量の候補Δn(m)とを加算して得られる値と第nの範囲の量子化正規化済み信号系列X^Q(ω) [ω∈{L(n-1),…,L(n)-1}]の各サンプルの値とを乗算して得られる信号系列と第1の範囲の入力信号系列X(ω) [ω∈{L(n-1),…,L(n)-1}]との対応するサンプル同士の値の差の二乗和、の第1の範囲から第Nの範囲の全てについての加算値を求める。加算値は式(16)で求まる。
次に、この加算値が最小となるmに対応する符号idx(m)をゲイン補正量符号idxとして出力する。すなわち、ゲイン補正量符号idxは式(17)により求まる。
なお、式(17)は誤差が最小となる基準でのベクトル量子化に対応するものであるが、相関が最大となる基準でのベクトル量子化、誤差が最小または相関が最大となる基準でのスカラ量子化などの手法を適用してもよいのは当然のことである。 Note that equation (17) corresponds to vector quantization based on the criterion that minimizes the error. However, the vector quantization based on the criterion that maximizes the correlation and the criterion based on the criterion that minimizes the error or maximizes the correlation. Of course, a technique such as scalar quantization may be applied.
[ゲイン補正量符号化処理の第2例:パワー比の乗算]
ゲイン補正量符号化処理の第2例は、量子化グローバルゲインg^と、量子化正規化済み信号系列のフレーム内の全てのサンプルの値の二乗和を量子化正規化済み信号系列の区分された範囲内の全てのサンプルの値の二乗和で除算した値をゲイン補正量に乗算した値と、を加算したものを補正ゲインとする例である。[Second Example of Gain Correction Amount Encoding Processing: Power Ratio Multiplication]
In the second example of the gain correction amount encoding process, the quantized global gain g ^ and the square sum of the values of all samples in the frame of the quantized normalized signal sequence are divided into quantized normalized signal sequences. In this example, a value obtained by multiplying the gain correction amount by a value obtained by dividing the value of all the samples within the range by the sum of squares is used as the correction gain.
量子化正規化済み信号系列がN個の範囲に区分されている場合について説明する。以下では、LminをL(0)、LmaxをL(N)−1、として説明する。A case where the quantized normalized signal sequence is divided into N ranges will be described. In the following description, it is assumed that L min is L (0) and L max is L (N) −1.
図示しない記憶部には、第1例と同様に、第1の範囲から第Nの範囲それぞれのゲイン補正量の候補Δ1(m),…,ΔN(m)とこれらのゲイン補正量の候補を特定する符号idx(m)との組がM個(Mは2以上の予め定められた整数)格納されている。具体的には、Δ1(1),…,ΔN(1)とidx(1)との組、Δ1(2),…,ΔN(2)とidx(2)との組、・・・、Δ1(M),…,ΔN(M)とidx(M)との組、がゲイン補正量コードブックとして記憶部に格納されている。Similarly to the first example, the storage unit (not shown) stores the gain correction amount candidates Δ 1 (m),..., Δ N (m) of the first to Nth ranges and the gain correction amounts. M sets (M is a predetermined integer equal to or greater than 2) are stored with a set of codes idx (m) for specifying candidates. Specifically, a set of Δ 1 (1), ..., Δ N (1) and idx (1), a set of Δ 1 (2), ..., Δ N (2) and idx (2), ..., Δ 1 (M),..., Δ N (M) and idx (M) are stored in the storage unit as a gain correction amount code book.
第1の範囲から第Nの範囲それぞれについて、量子化正規化済み信号系列のフレーム内の全てのサンプルX^Q(ω) [ω∈{L(0),…,L(N)-1}]の値の二乗和を量子化正規化済み信号系列の区分された範囲内の全てのサンプルX^Q(ω) [ω∈{L(n-1),…,L(n)-1}]の値の二乗和で除算した値をs(n)としたとき、ゲイン補正量符号化部は、まず、1からMのそれぞれのmについて、第1の範囲から第Nの範囲のそれぞれについての、量子化グローバルゲインg^と、第nの範囲のゲイン補正量の候補Δn(m)とs(n)との乗算値と、を加算して得られる値と第nの範囲の量子化正規化済み信号系列X^Q(ω) [ω∈{L(n-1),…,L(n)-1}]の各サンプルの値とを乗算して得られる信号系列と第1の範囲の入力信号系列X(ω) [ω∈{L(n-1),…,L(n)-1}]との対応するサンプル同士の値の差の二乗和、の第1の範囲から第Nの範囲の全てについての加算値を求める。s(n)は式(18)で求まる。また、加算値は式(19)で求まる。
次に、この加算値が最小となるmに対応する符号idx(m)をゲイン補正量符号idxとして出力する。すなわち、ゲイン補正量符号idxは式(20)により求まる。
なお、式(20)は誤差が最小となる基準でのベクトル量子化に対応するものであるが、相関が最大となる基準でのベクトル量子化、誤差が最小または相関が最大となる基準でのスカラ量子化などの手法を適用してもよいのは当然のことである。 Note that equation (20) corresponds to vector quantization based on the criterion that minimizes the error, but vector quantization based on the criterion that maximizes the correlation, and the criterion based on the criterion that minimizes the error or maximizes the correlation. Of course, a technique such as scalar quantization may be applied.
[ゲイン補正量符号化処理の第3例:サンプル数の比の乗算]
ゲイン補正量符号化処理の第3例は、量子化グローバルゲインg^と、量子化正規化済み信号系列のフレーム内のサンプルのエネルギーが所定値より大きいサンプルの個数を上記量子化正規化済み信号系列の区分された範囲内のサンプルのエネルギーが所定値より大きいサンプルの個数で除算した値をゲイン補正量に乗算した値と、を加算したものを補正ゲインとする例である。[Third Example of Gain Correction Amount Encoding Processing: Multiplication by Ratio of Number of Samples]
In the third example of the gain correction amount encoding process, the quantized global gain g ^ and the number of samples in which the energy of the sample in the frame of the quantized normalized signal sequence is larger than a predetermined value This is an example in which a correction gain is obtained by adding a value obtained by multiplying a gain correction amount by a value obtained by dividing the energy of a sample within a series-divided range by the number of samples greater than a predetermined value.
量子化正規化済み信号系列がN個の範囲に区分されている場合について説明する。以下では、LminをL(0)、LmaxをL(N)−1、として説明する。A case where the quantized normalized signal sequence is divided into N ranges will be described. In the following description, it is assumed that L min is L (0) and L max is L (N) −1.
図示しない記憶部には、第1例と同様に、第1の範囲から第Nの範囲それぞれのゲイン補正量の候補Δ1(m),…,ΔN(m)とこれらのゲイン補正量の候補を特定する符号idx(m)との組がM個(Mは2以上の予め定められた整数)格納されている。具体的には、Δ1(1),…,ΔN(1)とidx(1)との組、Δ1(2),…,ΔN(2)とidx(2)との組、・・・、Δ1(M),…,ΔN(M)とidx(M)との組、がゲイン補正量コードブックとして記憶部に格納されている。Similarly to the first example, the storage unit (not shown) stores the gain correction amount candidates Δ 1 (m),..., Δ N (m) of the first to Nth ranges and the gain correction amounts. M sets (M is a predetermined integer equal to or greater than 2) are stored with a set of codes idx (m) for specifying candidates. Specifically, a set of Δ 1 (1), ..., Δ N (1) and idx (1), a set of Δ 1 (2), ..., Δ N (2) and idx (2), ..., Δ 1 (M),..., Δ N (M) and idx (M) are stored in the storage unit as a gain correction amount code book.
第1の範囲から第Nの範囲のそれぞれについて、量子化正規化済み信号系列の区分された範囲内の全てのサンプルX^Q(ω) [ω∈{L(n-1),…,L(n)-1}]のうちの、エネルギーが所定値より大きいサンプルの個数c(n)を求める。また、c(1)からc(N)の総和を求める。この総和は、量子化正規化済み信号系列の全てのサンプルX^Q(ω) [ω∈{L(0),…,L(N)-1}]のうちの、エネルギーが所定値より大きいサンプルの個数である。所定値は、0であっても、0以上の値であってもよく、また、量子化グローバルゲインg^と所定の値αとを乗算したものであってもよい。For each of the first range to the Nth range, all samples X ^ Q (ω) [ω∈ {L (n−1) ,..., L within the partitioned range of the quantized normalized signal sequence (n) -1}], the number of samples c (n) whose energy is greater than a predetermined value is obtained. Further, the sum of c (1) to c (N) is obtained. This sum is the energy of all samples X ^ Q (ω) [ω∈ {L (0) ,..., L (N) -1}] of the quantized normalized signal sequence whose energy is greater than a predetermined value. This is the number of samples. The predetermined value may be 0 or a value greater than or equal to 0, or may be a value obtained by multiplying the quantized global gain g ^ by a predetermined value α.
第1の範囲から第Nの範囲のそれぞれについて、c(1)からc(N)の総和をc(n)で除算した値をs(n)として求める。s(n)は式(21)で求まる。
ゲイン補正量符号化部140は、まず、1からMのそれぞれのmについて、第1の範囲から第Nの範囲のそれぞれについての、量子化グローバルゲインg^と、第nの範囲のゲイン補正量の候補Δn(m)とs(n)との乗算値と、を加算して得られる値と第nの範囲の量子化正規化済み信号系列X^Q(ω) [ω∈{L(n-1),…,L(n)-1}]の各サンプルの値とを乗算して得られる信号系列と第1の範囲の入力信号系列X(ω) [ω∈{L(n-1),…,L(n)-1}]との対応するサンプル同士の値の差の二乗和、の第1の範囲から第Nの範囲の全てについての加算値を求める。加算値は式(22)で求まる。
次に、この加算値が最小となるmに対応する符号idx(m)をゲイン補正量符号idxとして出力する。すなわち、ゲイン補正量符号idxは式(23)により求まる。
なお、式(23)は誤差が最小となる基準でのベクトル量子化に対応するものであるが、相関が最大となる基準でのベクトル量子化、誤差が最小または相関が最大となる基準でのスカラ量子化などの手法を適用してもよいのは当然のことである。 Note that equation (23) corresponds to vector quantization based on the criterion that minimizes the error, but vector quantization based on the criterion that maximizes the correlation, and the criterion based on the criterion that minimizes the error or maximizes the correlation. Of course, a technique such as scalar quantization may be applied.
[ゲイン補正量符号化処理の第4例:量子化ステップ幅の関係]
ゲイン補正量符号化処理の第4例は、量子化グローバルゲインg^に対応する量子化ステップ幅に依存したゲイン補正量を求め、量子化グローバルゲインg^とゲイン補正量とを加算したものを補正ゲインとする例である。[Fourth Example of Gain Correction Amount Encoding Processing: Relationship of Quantization Step Width]
In the fourth example of the gain correction amount encoding process, the gain correction amount depending on the quantization step width corresponding to the quantized global gain g ^ is obtained, and the sum of the quantized global gain g ^ and the gain correction amount is obtained. This is an example of a correction gain.
量子化正規化済み信号系列がN個の範囲に区分されている場合について説明する。以下では、LminをL(0)、LmaxをL(N)-1、として説明する。A case where the quantized normalized signal sequence is divided into N ranges will be described. In the following description, it is assumed that L min is L (0) and L max is L (N) −1.
図示しない記憶部には、第1の範囲から第Nの範囲それぞれの量子化幅乗算前ゲイン補正量の候補Δ1(m),…,ΔN(m)とこれらの量子化幅乗算前ゲイン補正量の候補を特定する符号idx(m)との組がM個(Mは2以上の予め定められた整数)格納されている。具体的には、Δ1(1),…,ΔN(1)とidx(1)との組、Δ1(2),…,ΔN(2)とidx(2)との組、・・・、Δ1(M),…,ΔN(M)とidx(M)との組、がゲイン補正量コードブックとして記憶部に格納されている。In a storage unit (not shown), the pre-quantization width multiplication gain candidates Δ 1 (m),..., Δ N (m) of the first range to the Nth range and their pre-quantization width multiplication gains are stored. M sets (M is a predetermined integer equal to or greater than 2) are stored as M sets of codes idx (m) that specify correction amount candidates. Specifically, a set of Δ 1 (1), ..., Δ N (1) and idx (1), a set of Δ 1 (2), ..., Δ N (2) and idx (2), ..., Δ 1 (M),..., Δ N (M) and idx (M) are stored in the storage unit as a gain correction amount code book.
ゲイン補正量符号化処理の第4例では、例えば、図示しない記憶部に格納しておくゲイン補正量コードブックに含まれる量子化幅乗算前ゲイン補正量の候補Δn(m)の全ての値の絶対値を1未満としておく。即ち、ゲイン補正量コードブックには、量子化幅乗算前ゲイン補正量の候補をΔn(m)として格納しておく。量子化グローバルゲインg^に対応する量子化ステップ幅stepを用いて、ゲイン補正量符号化部140は、まず、1からMのそれぞれのmについて、第1の範囲から第Nの範囲のそれぞれについての、量子化グローバルゲインg^と、第nの範囲の量子化幅乗算前ゲイン補正量の候補Δn(m)と量子化ステップ幅stepとの乗算値と、を加算して得られる値と第nの範囲の量子化正規化済み信号系列X^Q(ω) [ω∈{L(n-1),…,L(n)-1}]の各サンプルの値とを乗算して得られる信号系列と第nの範囲の入力信号系列X(ω) [ω∈{L(n-1),…,L(n)-1}]との対応するサンプル同士の値の差の二乗和、の第1の範囲から第Nの範囲の全てについての加算値を求める。加算値は式(24)で求まる。
次に、この加算値が最小となるmに対応する符号idx(m)をゲイン補正量符号idxとして出力する。すなわち、ゲイン補正量符号idxは式(25)により求まる。
なお、式(25)は誤差が最小となる基準でのベクトル量子化に対応するものであるが、相関が最大となる基準でのベクトル量子化、誤差が最小または相関が最大となる基準でのスカラ量子化などの手法を適用してもよいのは当然のことである。 Note that equation (25) corresponds to vector quantization based on the criterion that minimizes the error, but vector quantization based on the criterion that maximizes the correlation, Of course, a technique such as scalar quantization may be applied.
ゲイン補正量符号化処理の第4例では、量子化グローバルゲインg^に対応する量子化ステップ幅stepとは、グローバルゲイン符号化部105における量子化グローバルゲインの隣接する候補間の差分値である。例えば、この量子化ステップ幅stepと絶対値が1未満である量子化幅乗算前ゲイン補正量の候補Δn(m)との積を量子化グローバルゲインg^に加算したものとなるように量子化グローバルゲインを補正することで、量子化グローバルゲインg^をゲイン補正量で補正して得られる補正ゲインが、量子化グローバルゲインg^とこれに隣接する量子化グローバルゲインの候補との間となるようにできる。In the fourth example of the gain correction amount encoding process, the quantization step width step corresponding to the quantized global gain g ^ is a difference value between adjacent candidates of the quantized global gain in the
なお、例えば、図示しない記憶部に格納しておくゲイン補正量コードブックに含まれる量子化幅乗算前ゲイン補正量の候補Δn(m) は、学習により生成されることもある。この場合は、量子化幅乗算前ゲイン補正量の候補Δn(m)に1未満でないものが含まれる可能性もある。ただし、たとえ量子化幅乗算前ゲイン補正量の候補Δn(m)に1未満でないものが含まれていたとしても、量子化ステップ幅stepと量子化幅乗算前ゲイン補正量の候補Δn(m)との積を量子化グローバルゲインg^に加算したものとなるように量子化グローバルゲインを補正することで、量子化グローバルゲインg^とこれに隣接する量子化グローバルゲインの候補との距離、すなわち、量子化ステップ幅に依存した補正を量子化グローバルゲインに対して行うことが可能となる。For example, the pre-quantization width multiplication gain candidate Δ n (m) included in the gain correction amount codebook stored in a storage unit (not shown) may be generated by learning. In this case, but it may also include those that are not less than 1 candidate before quantization width multiplied gain correction amount Δ n (m). However, even contain even those that are not less than 1 to the quantization width multiplied before gain correction amount candidate delta n (m), the candidate quantization step width step and the quantization width multiplied before gain correction amount delta n ( The distance between the quantized global gain g ^ and the adjacent quantized global gain candidates is corrected by correcting the quantized global gain so that the product of m) is added to the quantized global gain g ^. That is, correction depending on the quantization step width can be performed on the quantization global gain.
[ゲイン補正量符号化処理の第4例の変形例]
第4例の変形例は、量子化グローバルゲインg^に対応する量子化ステップ幅に依存したゲイン補正量を求め、量子化グローバルゲインg^と、量子化正規化済み信号系列のフレーム内の全てのサンプルの値の二乗和を量子化正規化済み信号系列の区分された範囲内の全てのサンプルの値の二乗和で除算した値をゲイン補正量に乗算した値と、を加算したものを補正ゲインとするか、または、量子化グローバルゲインg^と、量子化正規化済み信号系列のフレーム内のサンプルのエネルギーが所定値より大きいサンプルの個数を上記量子化正規化済み信号系列の区分された範囲内のサンプルのエネルギーが所定値より大きいサンプルの個数で除算した値をゲイン補正量に乗算した値と、を加算したものを補正ゲインとする例である。[Modification of Fourth Example of Gain Correction Amount Encoding Processing]
The modified example of the fourth example obtains a gain correction amount depending on the quantization step width corresponding to the quantized global gain g ^, and the quantized global gain g ^ and all the quantized normalized signal sequences in the frame. Corrected by adding the gain correction amount multiplied by the value obtained by dividing the sum of squares of the sample values by the sum of squares of the values of all the samples in the divided range of the quantized normalized signal sequence. Either the gain or the quantized global gain g ^ and the number of samples in which the energy of the sample in the frame of the quantized normalized signal sequence is greater than a predetermined value is divided into the quantized normalized signal sequence. In this example, the gain obtained by adding the gain correction amount to the value obtained by dividing the energy of the sample within the range by the number of samples larger than a predetermined value is used as the correction gain.
具体的には、例えば、図示しない記憶部に格納しておくゲイン補正量コードブックに含まれる量子化幅乗算前ゲイン補正量の候補Δn(m)の全ての値の絶対値を1/N未満としておく。すなわち、ゲイン補正量コードブックには、量子化幅乗算前ゲイン補正量の候補をΔn(m)として格納しておく。そして、第4例の式(24)に代えて第2例または第3例のs(n)を用いた式(26)により加算値を求め、第4例の式(25)に代えて式(27)によりゲイン補正量符号idxを求める。
なお、式(27)は誤差が最小となる基準でのベクトル量子化に対応するものであるが、相関が最大となる基準でのベクトル量子化、誤差が最小または相関が最大となる基準でのスカラ量子化などの手法を適用してもよいのは当然のことである。 Note that equation (27) corresponds to vector quantization based on the criterion that minimizes the error, but vector quantization based on the criterion that maximizes the correlation, and the criterion based on the criterion that minimizes the error or maximizes the correlation. Of course, a technique such as scalar quantization may be applied.
第2例または第3例のs(n)の平均値はNである。そこで、例えば、量子化ステップ幅stepと絶対値が1/N未満である量子化幅乗算前ゲイン補正量の候補Δn(m)と平均値がNであるs(n)との積を量子化グローバルゲインg^に加算したものとなるように量子化グローバルゲインを補正することで、量子化グローバルゲインg^をゲイン補正量で補正して得られるゲインが、量子化グローバルゲインg^とこれに隣接する量子化グローバルゲインの候補との間となるようにできる。The average value of s (n) in the second example or the third example is N. Therefore, for example, the product of the quantization step width step and the candidate Δ n (m) of the gain correction amount before the quantization width whose absolute value is less than 1 / N and s (n) whose average value is N is quantized. By correcting the quantized global gain so that it is added to the quantized global gain g ^, the gain obtained by correcting the quantized global gain g ^ with the gain correction amount is the quantized global gain g ^. It is possible to be between quantized global gain candidates adjacent to.
なお、例えば、図示しない記憶部に格納しておくゲイン補正量コードブックに含まれる量子化幅乗算前ゲイン補正量の候補Δn(m) は、学習により生成されることもある。この場合は、量子化幅乗算前ゲイン補正量の候補Δn(m)に1/N未満でないものが含まれる可能性がある。ただし、たとえ量子化幅乗算前ゲイン補正量の候補Δn(m)に1/N未満でないものが含まれていたとしても、量子化ステップ幅stepと量子化幅乗算前ゲイン補正量の候補Δn(m)とs(n)との積を量子化グローバルゲインg^に加算したものとなるように量子化グローバルゲインを補正することで、量子化グローバルゲインg^とこれに隣接する量子化グローバルゲインの候補との距離、すなわち、量子化ステップ幅に依存した補正を量子化グローバルゲインに対して行うことが可能となる。For example, the pre-quantization width multiplication gain candidate Δ n (m) included in the gain correction amount codebook stored in a storage unit (not shown) may be generated by learning. In this case, there is a possibility that the gain correction amount candidate before quantization width multiplication Δ n (m) is not less than 1 / N. However, even if the gain correction amount candidate Δ n (m) before quantization width multiplication is not less than 1 / N, the quantization step width step and the gain correction amount candidate Δ before quantization width multiplication Δ By correcting the quantized global gain so that the product of n (m) and s (n) is added to the quantized global gain g ^, the quantized global gain g ^ and the adjacent quantized gain Correction depending on the distance to the global gain candidate, that is, the quantization step width can be performed on the quantized global gain.
なお、符号化装置1から復号装置2へビットストリームを伝送する実施構成に限定されず、例えば、合成部160によって得られた情報を記録媒体に記録し、当該記録媒体から読み出された当該情報が復号装置2に入力される実施構成も許容される。
In addition, it is not limited to the implementation structure which transmits a bit stream from the
第1実施形態の復号装置2(図13参照)は、正規化信号復号部107、グローバルゲイン復号部106、ゲイン補正量復号部230、復号信号系列生成部250、区分部260を含む。復号装置2は必要に応じて分離部210、時間領域変換部270を含んでもよい。
The decoding device 2 (see FIG. 13) of the first embodiment includes a normalized
以下、復号装置2(decoder)での処理を説明する(図14参照)。 Hereinafter, processing in the decoding device 2 (decoder) will be described (see FIG. 14).
符号化装置1から送信されたビットストリームは復号装置2に入力される。分離部210が、ビットストリームから、正規化信号符号と、グローバルゲイン符号と、ゲイン補正量符号を取り出す。
The bit stream transmitted from the
<正規化信号復号部107>
正規化信号復号部107には、正規化信号符号が入力される。正規化信号復号部107が、符号化装置1の正規化信号符号化部120が行う符号化方法と対応する復号方法を適用して、正規化信号符号を復号して復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を得る(ステップS1d)。この例では、符号化装置1に対応して説明を行なうため、ωは離散周波数のインデックスを表すものとし、L点の離散周波数の各成分をω=LminからLmaxのそれぞれで表すものとする。正規化信号復号部107は、[背景技術]欄で説明した図1の正規化信号復号部107と同じ動作をする。<Normalized
A normalized signal code is input to the normalized
<区分部260>
区分部260が、復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を、「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」で、N個の範囲(ただし、Nは2以上の予め定められた整数である)に区分する(ステップS2d)。既述の説明と整合させると、復号正規化済み信号系列X^Q(ω)の離散周波数インデックスの集合を{Lmin,…,Lmax}として、復号正規化済み信号系列X^Q(ω)[ω∈{Lmin,…,Lmax}]が系列全体Bに相当し、区分部260は、復号正規化済み信号系列X^Q(ω)[ω∈{Lmin,…,Lmax}]をN個の範囲{Bn}n=1 N={B1,…,Bn,…,BN}に区分する。この区分処理の詳細は後述する。この区分処理で得られるN個の範囲の全てを特定できる情報である区分情報は復号信号系列生成部250に提供される。<
The
区分数Nは、符号化装置1の区分部150における区分数Nと共通の値となるように、例えば符号化装置1の区分部150と復号装置2の区分部260とに予め設定されている。
The number of partitions N is set in advance in, for example, the
区分部260が復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]に対して行なう区分処理は、符号化装置1の区分部150が量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]に対して行なう区分処理と同一の処理が行われるように、符号化装置1の区分部150と復号装置2の区分部260との間で予め設定されている。The partitioning process performed by the segmenting
<区分部260が行なう区分処理の詳細>
区分部260が復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]に対して行なう区分処理は、符号化装置1の区分部150が量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]に対して行なう区分処理と同一である。すなわち、「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」での区分処理は、例えば、復号規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
(a)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数と、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のnと、が最も近付くように、
または、
(b)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数と、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数のN分のnと、が最も近付くように、
または、
(c)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数が、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(d)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数が、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(e)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数が、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以下となる最大のサンプル数となるように、
または、
(f)復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数が、復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上であるサンプルの個数のN分のn以下となる最大のサンプル数となるように、
求め、
復号正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、復号正規化済み信号系列の第Nの範囲とする
ことで、復号正規化済み信号系列をN個の範囲に区分する
ことにより行なわれる。<Details of Sorting Process Performed by Sorting
The partitioning process performed by the segmenting
(a) The number of samples whose sample energy is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the decoded normalized signal sequence, and the decoding normal N of N samples of the number of samples whose sample energy is greater than or equal to or greater than a predetermined value among all the samples included in the digitized signal sequence is closest.
Or
(b) The number of samples whose absolute value of samples is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the decoded normalized signal sequence, and decoding N of N samples of the number of samples whose absolute value of samples is greater than or equal to or greater than a predetermined value among all samples included in the normalized signal sequence is closest to
Or
(c) The number of samples whose sample energy is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the decoded normalized signal sequence is the decoding normal Among all samples included in the digitized signal sequence, so that the sample energy is the minimum number of samples that is greater than or equal to n / N of the number of samples that is greater than or equal to a predetermined value.
Or
(d) The number of samples whose absolute value of samples is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the decoded normalized signal sequence is decoded The absolute value of the sample among all the samples included in the normalized signal sequence is the minimum number of samples that is n or more of N / N of the number of samples that is greater than or equal to the predetermined value.
Or
(e) The number of samples whose sample energy is greater than or equal to a predetermined value among all samples included in the first range to the n-th range of the decoded normalized signal sequence is the decoding normal The maximum number of samples is less than n / N of the number of samples whose sample energy is greater than or equal to or greater than a predetermined value among all the samples included in the digitized signal sequence.
Or
(f) The number of samples whose absolute value of samples is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the decoded normalized signal sequence is decoded The absolute value of the sample among all the samples included in the normalized signal sequence is the maximum number of samples that is n or less than N / N of the number of samples that is greater than or equal to the predetermined value.
Seeking
By setting a range other than the range from the first range to the (N−1) th range in the decoded normalized signal sequence as the Nth range of the decoded normalized signal sequence, N decoded normalized signal sequences are obtained. This is done by dividing the range.
上記に例示した区分処理は、「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」による区分を、各範囲を逐次的に決定していく方法によって実現するものである。上記に例示した区分処理によれば、少ない演算処理量で「各範囲に含まれる有意のサンプルの個数がなるべく等しくなるように区分する基準」による区分を実現できる。 The classification process exemplified above realizes the classification based on the “criteria for classifying so that the number of significant samples included in each range is as equal as possible” by a method of sequentially determining each range. . According to the classification process exemplified above, it is possible to realize classification according to “a criterion for classifying so that the number of significant samples included in each range is as equal as possible” with a small amount of calculation processing.
区分部260が行なう区分処理の具体例は、符号化装置1の区分部150が行う区分処理の具体例である「区分処理の第1例」から「区分処理の第6例」のそれぞれの具体例中の、量子化正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]を復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]に置き換えたものである。Specific examples of the sorting process performed by the
<ゲイン補正量復号部230>
ゲイン補正量復号部230には、ゲイン補正量符号が入力される。ゲイン補正量復号部230は、ゲイン補正量符号を復号して、区分された各範囲に対応するゲイン補正量を得る(ステップS3d)。<Gain correction
A gain correction amount code is input to the gain correction
復号正規化済み信号系列がN個の範囲に区分されている場合について説明する。図示しない記憶部には、第1の範囲から第Nの範囲それぞれのゲイン補正量の候補Δ1(m),…,ΔN(m)とこれらのゲイン補正量の候補を特定する符号idx(m)との組がM個(Mは2以上の予め定められた整数)格納されている。具体的には、Δ1(1),…,ΔN(1)とidx(1)との組、Δ1(2),…,ΔN(2)とidx(2)との組、・・・、Δ1(M),…,ΔN(M)とidx(M)との組、がゲイン補正量コードブックとして記憶部に格納されている。記憶部に格納されているゲイン補正量コードブックは、符号化装置1の記憶部に格納されているゲイン補正量コードブックと同一とする。A case where the decoded normalized signal sequence is divided into N ranges will be described. In a storage unit (not shown), gain correction amount candidates Δ 1 (m),..., Δ N (m) in the first to Nth ranges and codes idx () for specifying these gain correction amount candidates M sets (m) are stored (M is a predetermined integer of 2 or more). Specifically, a set of Δ 1 (1), ..., Δ N (1) and idx (1), a set of Δ 1 (2), ..., Δ N (2) and idx (2), ..., Δ 1 (M),..., Δ N (M) and idx (M) are stored in the storage unit as a gain correction amount code book. The gain correction amount code book stored in the storage unit is the same as the gain correction amount code book stored in the storage unit of the
ゲイン補正量復号部230は、ゲイン補正量コードブックを参照して、ゲイン補正量コードブック内でゲイン補正量符号idxと同じ符号であるidx(I)と対応付けられている第1の範囲から第Nの範囲の各範囲に対応するゲイン補正量Δ1(I),…,ΔN(I)を得る。The gain correction
上記の例はベクトル量子化の復号処理を行なう例であるが、ゲイン補正量復号部230が行う復号処理は、要はゲイン補正量符号化部140が行う符号化処理に対応する処理であれば、ベクトル量子化の復号処理であってもスカラ量子化の復号処理であってもよい。
The above example is an example of performing the vector quantization decoding process, but the decoding process performed by the gain correction
<グローバルゲイン復号部>
グローバルゲイン復号部106には、グローバルゲイン符号が入力される。グローバルゲイン復号部160は、当該グローバルゲイン符号を復号し、復号グローバルゲインg^を出力する(ステップS4d)。グローバルゲイン復号部106が行う復号処理は、グローバルゲイン復号部106が行う復号処理は、グローバルゲイン符号化部105が行う符号化処理に対応する処理であり、[背景技術]欄のグローバルゲイン復号部106でも説明した通りの周知技術である。<Global gain decoding unit>
A global gain code is input to the global
<復号信号系列生成部250>
復号信号系列生成部250には、復号正規化済み信号系列X^Q(ω)と、ゲイン補正量Δn(I)と、復号グローバルゲインg^と、区分情報が入力される。復号信号系列生成部250は、区分部260における<ステップS2d>の処理で得られた範囲ごとに、復号グローバルゲインg^をゲイン補正量Δn(I)で補正して得られる補正ゲインと復号正規化済み信号系列X^Q(ω)の各サンプルの値とを乗算して得られる信号系列を出力信号系列X^(ω)として出力する(ステップS5d)。この出力信号系列X^(ω)は、符号化装置1の入力信号系列X(ω)と対応するものであるので、復号信号系列とも言える。<Decoded signal
The decoded signal
[復号信号系列生成部の第1例]
復号信号系列生成処理の第1例は、復号グローバルゲインg^とゲイン補正量とを加算したものを補正ゲインとする例である。[First Example of Decoded Signal Sequence Generation Unit]
The first example of the decoded signal sequence generation processing is an example in which a correction gain is obtained by adding the decoded global gain g ^ and the gain correction amount.
復号正規化済み信号系列がN個の範囲に区分されている場合について説明する。復号信号系列生成部250には、復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]と、ゲイン補正量Δn(I) [n∈{1,…,N}]と、復号グローバルゲインg^と、区分情報が入力される。以下では、区分情報により特定される第nの範囲の最も低域側にあるサンプル番号をL(n-1)、LminをL(0)、LmaxをL(N)-1、として説明する。A case where the decoded normalized signal sequence is divided into N ranges will be described. The decoded signal
区分部260で得られた第1の範囲から第Nの範囲のそれぞれを第nの範囲とすると、第nの範囲の出力信号系列X^(ω) [ω∈{L(n-1),…,L(n)-1}]は、復号グローバルゲインg^をゲイン補正量Δn(I)で補正して得られる補正ゲインと復号正規化済み信号系列X^Q(ω)の各サンプルの値とを乗算して得られる。すなわち、第nの範囲の出力信号系列X^(ω) [ω∈{L(n-1),…,L(n)-1}]の各サンプル値は、式(28)により得られる。
X^(ω)=(g^+Δn(I))X^Q(ω) …(28)When each of the first range to the Nth range obtained by the dividing
X ^ (ω) = (g ^ + Δ n (I)) X ^ Q (ω) (28)
第1の範囲から第Nの範囲の各範囲について式(28)により出力信号系列X^(ω) [ω∈{L(0),…,L(1)-1}]、X^(ω) [ω∈{L(1),…,L(2)-1}]、・・・、X^(ω) [ω∈{L(N-1),…,L(N)-1}]の各サンプル値を得ることにより、出力信号系列X^(ω) [ω∈{L(0),…,L(N)-1}]、すなわち、X^(ω) [ω∈{Lmin,…,Lmax}]が得られる。For each range from the first range to the Nth range, the output signal sequence X ^ (ω) [ω∈ {L (0) ,..., L (1) −1}], X ^ (ω ) [Ω∈ {L (1) , ..., L (2) -1}], ..., X ^ (ω) [ω∈ {L (N-1) , ..., L (N) -1} ], The output signal sequence X ^ (ω) [ω∈ {L (0) ,..., L (N) −1}], that is, X ^ (ω) [ω∈ {L min ,..., L max }].
[復号信号系列生成処理の第2例:パワー比の乗算]
復号信号系列生成処理の第2例は、復号グローバルゲインg^と、復号正規化済み信号系列のフレーム内の全てのサンプルの値の二乗和を復号正規化済み信号系列の区分された範囲内の全てのサンプルの値の二乗和で除算した値をゲイン補正量に乗算した値と、を加算したものを補正ゲインとする例である。[Second Example of Decoded Signal Sequence Generation Processing: Power Ratio Multiplication]
In the second example of the decoded signal sequence generation process, the decoded global gain g ^ and the sum of squares of the values of all the samples in the frame of the decoded normalized signal sequence are included in the divided range of the decoded normalized signal sequence. In this example, a value obtained by multiplying a value obtained by dividing the value of all the samples by the sum of squares by a gain correction amount is added as a correction gain.
復号正規化済み信号系列がN個の範囲に区分されている場合について説明する。復号信号系列生成部250には、復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]と、ゲイン補正量Δn(I) [n∈{1,…,N}]と、復号グローバルゲインg^と、区分情報が入力される。以下では、区分情報により特定される第nの範囲の最も低域側にあるサンプル番号をL(n-1)、LminをL(0)、LmaxをL(N)-1、区分部260で得られた第1の範囲から第Nの範囲のそれぞれを第nの範囲として説明する。A case where the decoded normalized signal sequence is divided into N ranges will be described. The decoded signal
まず、第1の範囲から第Nの範囲のそれぞれについて、復号正規化済み信号系列のフレーム内の全てのサンプルX^Q(ω) [ω∈{L(0),…,L(N)-1}]の値の二乗和を復号正規化済み信号系列の区分された範囲内の全てのサンプルX^Q(ω) [ω∈{L(n-1),…,L(n)-1}]の値の二乗和で除算した値をs(n)として求める。s(n)は式(29)で求まる。
さらに、第1の範囲から第Nの範囲のそれぞれについて、復号グローバルゲインg^と、第nの範囲のゲイン補正量Δn(I)とs(n)との乗算値と、を加算して得られる値と第nの範囲の復号正規化済み信号系列X^Q(ω) [ω∈{L(n-1),…,L(n)-1}]の各サンプルの値とを乗算して得られる信号系列を第nの範囲の出力信号系列X^(ω) [ω∈{L(n-1),…,L(n)-1}]とする。すなわち、第nの範囲の出力信号系列X^(ω) [ω∈{L(n-1),…,L(n)-1}]の各サンプル値は、式(30)により得られる。
X^(ω)=(g^+s(n)Δn(I))X^Q(ω) …(30)Further, for each of the first range to the Nth range, the decoding global gain g ^ and the multiplication value of the nth range gain correction amount Δ n (I) and s (n) are added. Multiply the obtained value by the value of each sample of the decoded normalized signal sequence X ^ Q (ω) [ω∈ {L (n-1) , ..., L (n) -1}] in the n-th range The signal sequence obtained in this way is the output signal sequence X ^ (ω) [ω∈ {L (n−1) ,..., L (n) −1}] in the n-th range . That is, each sample value of the output signal sequence X ^ (ω) [ω∈ {L (n−1) ,..., L (n) −1}] in the n-th range is obtained by Expression (30).
X ^ (ω) = (g ^ + s (n) Δ n (I)) X ^ Q (ω) (30)
第1の範囲から第Nの範囲の各範囲について式(30)により出力信号系列X^(ω) [ω∈{L(0),…,L(1)-1}]、X^(ω) [ω∈{L(1),…,L(2)-1}]、・・・、X^(ω) [ω∈{L(N-1),…,L(N)-1}]の各サンプル値を得ることにより、出力信号系列X^(ω) [ω∈{L(0),…,L(N)-1}]、すなわち、X^(ω) [ω∈{Lmin,…,Lmax}]が得られる。For each range from the first range to the Nth range, the output signal sequence X ^ (ω) [ω∈ {L (0) ,..., L (1) -1}], X ^ (ω ) [Ω∈ {L (1) , ..., L (2) -1}], ..., X ^ (ω) [ω∈ {L (N-1) , ..., L (N) -1} ], The output signal sequence X ^ (ω) [ω∈ {L (0) ,..., L (N) −1}], that is, X ^ (ω) [ω∈ {L min ,..., L max }].
[復号信号系列生成処理の第3例:サンプル数の比の乗算]
復号信号系列生成処理の第3例は、復号グローバルゲインg^と、復号正規化済み信号系列のフレーム内のサンプルのエネルギーが所定値より大きいサンプルの個数を上記復号正規化済み信号系列の区分された範囲内のサンプルのエネルギーが所定値より大きいサンプルの個数で除算した値をゲイン補正量に乗算した値と、を加算したものを補正ゲインとする例である。[Third example of decoded signal sequence generation processing: multiplication of ratio of number of samples]
In the third example of the decoded signal sequence generation process, the decoded global gain g ^ and the number of samples in which the energy of the samples in the frame of the decoded normalized signal sequence is larger than a predetermined value are classified into the decoded normalized signal sequence. In this example, the gain obtained by adding the value obtained by multiplying the gain correction amount by the value obtained by dividing the energy of the sample within the range by the number of samples larger than the predetermined value is used as the correction gain.
復号正規化済み信号系列がN個の範囲に区分されている場合について説明する。復号信号系列生成部250には、復号正規化済み信号系列X^Q(ω) [ω∈{Lmin,…,Lmax}]と、ゲイン補正量Δn(I) [n∈{1,…,N}]と、復号グローバルゲインg^と、区分情報が入力される。以下では、区分情報により特定される第nの範囲の最も低域側にあるサンプル番号をL(n-1)、LminをL(0)、LmaxをL(N)-1、区分部260で得られた第1の範囲から第Nの範囲のそれぞれを第nの範囲として説明する。A case where the decoded normalized signal sequence is divided into N ranges will be described. The decoded signal
まず、第1の範囲から第Nの範囲のそれぞれについて、復号正規化済み信号系列の区分された範囲内の全てのサンプルX^Q(ω) [ω∈{L(n-1),…,L(n)-1}]のうちの、エネルギーが所定値より大きいサンプルの個数c(n)を求める。また、c(1)からc(N)の総和を求める。この総和は、復号正規化済み信号系列の全てのサンプルX^Q(ω) [ω∈{L(0),…,L(N)-1}]のうちの、エネルギーが所定値より大きいサンプルの個数である。所定値は、0であっても、0以上の値であってもよく、また、復号グローバルゲインg^と所定の値αとを乗算したものであってもよい。First, for each of the first range to the Nth range, all samples X ^ Q (ω) [ω∈ {L (n−1) ,. L (n) -1}], the number of samples c (n) whose energy is greater than a predetermined value is obtained. Further, the sum of c (1) to c (N) is obtained. This sum is a sample of all samples X ^ Q (ω) [ω∈ {L (0) ,..., L (N) -1}] of the decoded normalized signal sequence whose energy is greater than a predetermined value. The number of The predetermined value may be 0 or a value greater than or equal to 0, or may be a value obtained by multiplying the decoded global gain g ^ by a predetermined value α.
次に、第1の範囲から第Nの範囲のそれぞれについて、c(1)からc(N)の総和をc(n)で除算した値をs(n)として求める。s(n)は式(31)で求まる。
さらに、第1の範囲から第Nの範囲のそれぞれについて、復号グローバルゲインg^と、第nの範囲のゲイン補正量Δn(I)とs(n)との乗算値と、を加算して得られる値と第nの範囲の復号正規化済み信号系列X^Q(ω) [ω∈{L(n-1),…,L(n)-1}]の各サンプルの値とを乗算して得られる信号系列を第nの範囲の出力信号系列X^(ω) [ω∈{L(n-1),…,L(n)-1}]とする。すなわち、第nの範囲の出力信号系列X^(ω) [ω∈{L(n-1),…,L(n)-1}]の各サンプル値は、式(32)により得られる。
X^(ω)=(g^+s(n)Δn(I))X^Q(ω) (32)Further, for each of the first range to the Nth range, the decoding global gain g ^ and the multiplication value of the nth range gain correction amount Δ n (I) and s (n) are added. Multiply the obtained value by the value of each sample of the decoded normalized signal sequence X ^ Q (ω) [ω∈ {L (n-1) , ..., L (n) -1}] in the n-th range The signal sequence obtained in this way is the output signal sequence X ^ (ω) [ω∈ {L (n−1) ,..., L (n) −1}] in the n-th range . That is, each sample value of the output signal sequence X ^ (ω) [ω∈ {L (n−1) ,..., L (n) −1}] in the n-th range is obtained by Expression (32).
X ^ (ω) = (g ^ + s (n) Δ n (I)) X ^ Q (ω) (32)
第1の範囲から第Nの範囲の各範囲について式(32)により出力信号系列X^(ω) [ω∈{L(0),…,L(1)-1}]、X^(ω) [ω∈{L(1),…,L(2)-1}]、・・・、X^(ω) [ω∈{L(N-1),…,L(N)-1}]の各サンプル値を得ることにより、出力信号系列X^(ω) [ω∈{L(0),…,L(N)-1}]、すなわち、X^(ω) [ω∈{Lmin,…,Lmax}]が得られる。For each range from the first range to the Nth range, the output signal sequence X ^ (ω) [ω∈ {L (0) ,..., L (1) −1}], X ^ (ω ) [Ω∈ {L (1) , ..., L (2) -1}], ..., X ^ (ω) [ω∈ {L (N-1) , ..., L (N) -1} ], The output signal sequence X ^ (ω) [ω∈ {L (0) ,..., L (N) −1}], that is, X ^ (ω) [ω∈ {L min ,..., L max }].
[復号信号系列生成処理の第4例:量子化ステップ幅の関係]
復号信号系列生成処理の第4例は、復号グローバルゲインg^に対応する量子化ステップ幅に依存したゲイン補正量を求め、復号グローバルゲインg^とゲイン補正量とを加算したものを補正ゲインとする例である。[Fourth Example of Decoded Signal Sequence Generation Processing: Relationship of Quantization Step Width]
In the fourth example of the decoded signal sequence generation process, a gain correction amount depending on the quantization step width corresponding to the decoded global gain g ^ is obtained, and the sum of the decoded global gain g ^ and the gain correction amount is obtained as a correction gain. This is an example.
復号正規化済み信号系列がN個の範囲に区分されている場合について説明する。以下では、区分情報により特定される第nの範囲の最も低域側にあるサンプル番号をL(n-1)、LminをL(0)、LmaxをL(N)-1、として説明する。A case where the decoded normalized signal sequence is divided into N ranges will be described. In the following description, the sample number on the lowest side of the nth range specified by the classification information is L (n-1) , L min is L (0) , and L max is L (N) -1. To do.
図示しない記憶部には、第1の範囲から第Nの範囲それぞれの量子化幅乗算前ゲイン補正量の候補Δ1(m),…,ΔN(m)とこれらの量子化幅乗算前ゲイン補正量の候補を特定する符号idx(m)との組がM個(Mは2以上の予め定められた整数)格納されている。具体的には、Δ1(1),…,ΔN(1)とidx(1)との組、Δ1(2),…,ΔN(2)とidx(2)との組、・・・、Δ1(M),…,ΔN(M)とidx(M)との組、がゲイン補正量コードブックとして記憶部に格納されている。In a storage unit (not shown), the pre-quantization width multiplication gain candidates Δ 1 (m),..., Δ N (m) of the first range to the Nth range and their pre-quantization width multiplication gains are stored. M sets (M is a predetermined integer equal to or greater than 2) are stored as M sets of codes idx (m) that specify correction amount candidates. Specifically, a set of Δ 1 (1), ..., Δ N (1) and idx (1), a set of Δ 1 (2), ..., Δ N (2) and idx (2), ..., Δ 1 (M),..., Δ N (M) and idx (M) are stored in the storage unit as a gain correction amount code book.
復号信号系列生成部250が第4例の復号信号系列生成処理を行う場合は、例えば、図示しない記憶部に格納しておくゲイン補正量コードブックに含まれる量子化幅乗算前ゲイン補正量の候補Δn(m)の全ての値の絶対値を1未満としておく。もちろん、記憶部に格納されているゲイン補正量コードブックは、符号化装置1の記憶部に格納されているゲイン補正量コードブックと同一とする。そして、復号信号系列生成部250が第4例の復号信号系列生成処理を行う場合は、ゲイン補正量復号部230は、ゲイン補正量コードブックを参照して、ゲイン補正量コードブック内でゲイン補正量符号idxと同じ符号であるidx(I)と対応付けられている第1の範囲から第Nの範囲の各範囲に対応する量子化幅乗算前ゲイン補正量Δ1(I),…,ΔN(I)を得る。When the decoded signal
復号信号系列生成部250は、グローバルゲイン復号部106における復号グローバルゲインg^の量子化ステップ幅stepを用いて、第1の範囲から第Nの範囲のそれぞれについて、復号グローバルゲインg^と、第nの範囲の量子化幅乗算前ゲイン補正量Δn(I)と量子化ステップ幅stepとの乗算値と、を加算して得られる値と第nの範囲の復号正規化済み信号系列X^Q(ω) [ω∈{L(n-1),…,L(n)-1}]の各サンプルの値とを乗算して得られる信号系列を第nの範囲の出力信号系列X^(ω) [ω∈{L(n-1),…,L(n)-1}]とする。すなわち、第nの範囲の出力信号系列X^(ω) [ω∈{L(n-1),…,L(n)-1}]の各サンプル値は、式(33)により得られる。
X^(ω)=(g^+stepΔn(I))X^Q(ω) …(33)The decoded signal
X ^ (ω) = (g ^ + stepΔ n (I)) X ^ Q (ω) (33)
第1の範囲から第Nの範囲の各範囲について式(33)により出力信号系列X^(ω) [ω∈{L(0),…,L(1)-1}]、X^(ω) [ω∈{L(1),…,L(2)-1}]、・・・、X^(ω) [ω∈{L(N-1),…,L(N)-1}]の各サンプル値を得ることにより、出力信号系列X^(ω) [ω∈{L(0),…,L(N)-1}]、すなわち、X^(ω) [ω∈{Lmin,…,Lmax}]が得られる。For each range from the first range to the Nth range, the output signal sequence X ^ (ω) [ω∈ {L (0) ,..., L (1) −1}], X ^ (ω ) [Ω∈ {L (1) , ..., L (2) -1}], ..., X ^ (ω) [ω∈ {L (N-1) , ..., L (N) -1} ], The output signal sequence X ^ (ω) [ω∈ {L (0) ,..., L (N) −1}], that is, X ^ (ω) [ω∈ {L min ,..., L max }].
復号信号系列生成処理の第4例では、復号グローバルゲインg^に対応する量子化ステップ幅stepとは、グローバルゲイン復号部106における復号グローバルゲインと隣接する候補間の差分値である。例えば、この量子化ステップ幅stepと絶対値が1未満であるΔn(I)との積を復号グローバルゲインg^に加算したものとなるように復号グローバルゲインを補正することで、復号グローバルゲインg^をゲイン補正量で補正して得られるゲインが、復号グローバルゲインg^とこれに隣接する復号グローバルゲインの候補との間となるようにできる。In the fourth example of the decoded signal sequence generation process, the quantization step width step corresponding to the decoded global gain g ^ is a difference value between the decoded global gain and the adjacent candidates in the global
なお、例えば、図示しない記憶部に格納しておく量子化幅乗算前ゲイン補正量の候補Δn(m) は、学習により生成されることもある。この場合は、量子化幅乗算前ゲイン補正量の候補Δn(m)に1未満でないものが含まれる可能性もある。ただし、たとえ量子化幅乗算前ゲイン補正量の候補Δn(m)に1未満でないものが含まれていたとしても、量子化ステップ幅stepと量子化幅乗算前ゲイン補正量の候補Δn(m)との積を復号グローバルゲインg^に加算したものとなるように復号グローバルゲインを補正することで、復号グローバルゲインg^とこれに隣接する復号グローバルゲインの候補との距離、すなわち、量子化ステップ幅に依存した補正を復号グローバルゲインに対して行うことが可能となる。For example, the pre-quantization width multiplication gain correction amount candidate Δ n (m) stored in a storage unit (not shown) may be generated by learning. In this case, but it may also include those that are not less than 1 candidate before quantization width multiplied gain correction amount Δ n (m). However, even contain even those that are not less than 1 to the quantization width multiplied before gain correction amount candidate delta n (m), the candidate quantization step width step and the quantization width multiplied before gain correction amount delta n ( By correcting the decoding global gain so that the product of m) is added to the decoding global gain g ^, the distance between the decoding global gain g ^ and the decoding global gain candidate adjacent thereto, that is, the quantum It is possible to perform correction depending on the conversion step width on the decoded global gain.
[復号信号系列生成処理の第4例の変形例]
第4例の変形例は、復号グローバルゲインg^に対応する量子化ステップ幅に依存したゲイン補正量を求め、復号グローバルゲインg^と、復号正規化済み信号系列のフレーム内の全てのサンプルの値の二乗和を復号正規化済み信号系列の区分された範囲内の全てのサンプルの値の二乗和で除算した値をゲイン補正量に乗算した値と、を加算したものを補正ゲインとするか、または、復号正規化済み信号系列のフレーム内のサンプルのエネルギーが所定値より大きいサンプルの個数を上記復号正規化済み信号系列の区分された範囲内のサンプルのエネルギーが所定値より大きいサンプルの個数で除算した値をゲイン補正量に乗算した値と、を加算したものを補正ゲインとする例である。[Modification of Fourth Example of Decoded Signal Sequence Generation Processing]
The modified example of the fourth example obtains a gain correction amount depending on the quantization step width corresponding to the decoded global gain g ^, and calculates the decoded global gain g ^ and all the samples in the frame of the decoded normalized signal sequence. Whether the value obtained by dividing the sum of squares of the values by the sum of squares of the values of all the samples within the divided range of the decoded normalized signal sequence and the value obtained by multiplying the gain correction amount is used as the correction gain. Or, the number of samples whose energy of samples in a frame of the decoded normalized signal sequence is larger than a predetermined value is the number of samples whose energy of samples in the divided range of the decoded normalized signal sequence is larger than a predetermined value. In this example, a value obtained by multiplying the value obtained by dividing the gain correction amount by the gain correction amount is used as the correction gain.
図示しない記憶部には、第1の範囲から第Nの範囲それぞれの量子化幅乗算前ゲイン補正量の候補Δ1(m),…,ΔN(m)とこれらの量子化幅乗算前ゲイン補正量の候補を特定する符号idx(m)との組がM個(Mは2以上の予め定められた整数)格納されている。具体的には、Δ1(1),…,ΔN(1)とidx(1)との組、Δ1(2),…,ΔN(2)とidx(2)との組、・・・、Δ1(M),…,ΔN(M)とidx(M)との組、がゲイン補正量コードブックとして記憶部に格納されている。In a storage unit (not shown), the pre-quantization width multiplication gain candidates Δ 1 (m),..., Δ N (m) of the first range to the Nth range and their pre-quantization width multiplication gains are stored. M sets (M is a predetermined integer equal to or greater than 2) are stored as M sets of codes idx (m) that specify correction amount candidates. Specifically, a set of Δ 1 (1), ..., Δ N (1) and idx (1), a set of Δ 1 (2), ..., Δ N (2) and idx (2), ..., Δ 1 (M),..., Δ N (M) and idx (M) are stored in the storage unit as a gain correction amount code book.
具体的には、例えば、図示しない記憶部に格納しておくゲイン補正量コードブックに含まれる量子化幅乗算前ゲイン補正量の候補Δn(m)の全ての値の絶対値を1/N未満としておく。もちろん、記憶部に格納されているゲイン補正量コードブックは、符号化装置1の記憶部に格納されているゲイン補正量コードブックと同一とする。そして、復号信号系列生成部250が第4例の変形例の復号信号系列生成処理を行う場合は、ゲイン補正量復号部230は、ゲイン補正量コードブックを参照して、ゲイン補正量コードブック内でゲイン補正量符号idxと同じ符号であるidx(I)と対応付けられている第1の範囲から第Nの範囲の各範囲に対応する量子化幅乗算前ゲイン補正量Δ1(I),…,ΔN(I)を得る。Specifically, for example, the absolute values of all the values of the gain correction amount candidates Δ n (m) before quantization width multiplication included in the gain correction amount codebook stored in a storage unit (not shown) are set to 1 / N Keep it below. Of course, the gain correction amount code book stored in the storage unit is the same as the gain correction amount code book stored in the storage unit of the
そして、第4例の式(33)に代えて第2例または第3例のs(n)を用いた式(34)により第nの範囲の出力信号系列X^(ω) [ω∈{L(n-1),…,L(n)-1}]の各サンプルの値を得る。
X^(ω)=(g^+step s(n) Δn(I))X^Q(ω) …(34)Then, instead of the expression (33) of the fourth example, the output signal sequence X ^ (ω) [ω∈ {in the nth range is obtained by the expression (34) using s (n) of the second example or the third example. L (n−1) ,..., L (n) −1}] are obtained.
X ^ (ω) = (g ^ + step s (n) Δ n (I)) X ^ Q (ω) (34)
第1の範囲から第Nの範囲の各範囲について式(34)により出力信号系列X^(ω) [ω∈{L(0),…,L(1)-1}]、X^(ω) [ω∈{L(1),…,L(2)-1}]、・・・、X^(ω) [ω∈{L(N-1),…,L(N)-1}]の各サンプルの値を得ることにより、出力信号系列X^(ω) [ω∈{L(0),…,L(N)-1}]、すなわち、X^(ω) [ω∈{Lmin,…,Lmax}]が得られる。For each range from the first range to the Nth range, the output signal sequence X ^ (ω) [ω∈ {L (0) ,..., L (1) -1}], X ^ (ω ) [Ω∈ {L (1) , ..., L (2) -1}], ..., X ^ (ω) [ω∈ {L (N-1) , ..., L (N) -1} ], The output signal sequence X ^ (ω) [ω∈ {L (0) ,..., L (N) −1}], that is, X ^ (ω) [ω∈ { L min ,..., L max }] is obtained.
第2例または第3例のs(n)の平均値はNである。そこで、例えば、量子化ステップ幅stepと絶対値が1/N未満である量子化幅乗算前ゲイン補正量の候補Δn(m)と平均値がNであるs(n)との積を復号グローバルゲインg^に加算したものとなるように復号グローバルゲインを補正することで、復号グローバルゲインg^をゲイン補正量で補正して得られるゲインが、復号グローバルゲインg^とこれに隣接する復号グローバルゲインの候補との間となるようにできる。The average value of s (n) in the second example or the third example is N. Therefore, for example, the product of the quantization step width step, the candidate Δ n (m) of the gain correction amount before the quantization width whose absolute value is less than 1 / N, and s (n) whose average value is N is decoded. By correcting the decoding global gain so as to be added to the global gain g ^, the gain obtained by correcting the decoding global gain g ^ with the gain correction amount is the decoding global gain g ^ and the decoding adjacent to the decoding global gain g ^. Can be between global gain candidates.
なお、例えば、図示しない記憶部に格納しておくゲイン補正量コードブックに含まれる量子化幅乗算前ゲイン補正量の候補Δn(m) は、学習により生成されることもある。この場合は、量子化幅乗算前ゲイン補正量の候補Δn(m)に1/N未満でないものが含まれる可能性がある。ただし、たとえ量子化幅乗算前ゲイン補正量の候補Δn(m)に1/N未満でないものが含まれていたとしても、量子化ステップ幅stepと量子化幅乗算前ゲイン補正量の候補Δn(m)とs(n)との積を復号グローバルゲインg^に加算したものとなるように復号グローバルゲインを補正することで、復号グローバルゲインg^とこれに隣接する復号グローバルゲインの候補との距離、すなわち、量子化ステップ幅に依存した補正を復号グローバルゲインに対して行うことが可能となる。For example, the pre-quantization width multiplication gain candidate Δ n (m) included in the gain correction amount codebook stored in a storage unit (not shown) may be generated by learning. In this case, there is a possibility that the gain correction amount candidate before quantization width multiplication Δ n (m) is not less than 1 / N. However, even if the gain correction amount candidate Δ n (m) before quantization width multiplication is not less than 1 / N, the quantization step width step and the gain correction amount candidate Δ before quantization width multiplication Δ By correcting the decoding global gain so that the product of n (m) and s (n) is added to the decoding global gain g ^, the decoding global gain g ^ and a decoding global gain candidate adjacent thereto are corrected. It is possible to perform correction on the decoded global gain depending on the distance between the decoded global gain and the quantization step width.
<時間領域変換部270>
必要に応じて備える時間領域変換部270には、出力信号系列X^(ω)が入力される。時間領域変換部270は、出力信号系列X^(ω)に対して周波数−時間変換を適用して、フレーム単位の時間領域信号系列zF(t)を出力する。周波数−時間変換方法は、周波数領域変換部101で用いられた時間−周波数変換方法に対応する逆変換である。上述の例であれば、ここでの周波数−時間変換方法は、IMDCT(Inverse Modified Discrete Cosine Transform)またはIDCT(Inverse Discrete Cosine Transform)である。<Time domain conversion unit 270>
The output signal sequence X ^ (ω) is input to the time domain conversion unit 270 provided as necessary. The time domain transform unit 270 applies a frequency-time transform to the output signal sequence X ^ (ω) and outputs a time domain signal sequence z F (t) in units of frames. The frequency-time conversion method is an inverse conversion corresponding to the time-frequency conversion method used in the frequency
《第2実施形態》
第2実施形態は、ゲイン補正量符号に、正規化信号符号の余剰ビットを用いる形態である。<< Second Embodiment >>
In the second embodiment, the surplus bits of the normalized signal code are used as the gain correction amount code.
正規化信号符号化部120が[背景技術]欄で説明した正規化部102と量子化部103とゲイン制御部104により構成される場合などでは、消費ビット数が規定ビット数より少なくなる場合がある。
When the normalized signal encoding unit 120 is configured by the
第2実施形態の符号化装置1では、正規化信号符号化部120が、規定ビット数から消費ビット数を減算して得られる余剰ビット数Uをゲイン補正量符号化部140に対して出力するようにする。また、ゲイン補正量符号化部140は、入力された余剰ビット数Uに基づいて、Uビットのゲイン補正量符号を出力するようにする。具体的には、ゲイン補正量符号化部140で用いるゲイン補正量の候補数Mを2Uとし、各ゲイン補正量の候補を特定する符号idx(m)をUビットとすればよい。In the
第2実施形態の復号装置2では、正規化信号復号部107が、正規化信号符号のビット数の最大値として規定されている規定ビット数から実際の正規化信号符号のビット数である消費ビット数を減算して得られる余剰ビット数Uをゲイン補正量復号部230に対して出力するようにする。また、ゲイン補正量復号部230は入力されたUビットのゲイン補正量符号を復号できるようにする。具体的には、ゲイン補正量復号部230で用いるゲイン補正量コードブックに含まれるゲイン補正量の候補数Mを2Uとし、各ゲイン補正量の候補を特定する符号idx(m)をUビットとしておき、Uビットのゲイン補正量符号idx と同じ符号であるidx(I)を得られるようにすればよい。In the
第2実施形態の符号化装置1及び復号装置2によれば、正規化信号符号のために用意されたものの実際には正規化信号符号には用いられなかったビットをゲイン補正量符号に用いることで、与えられたビットを有効に活用した符号化及び復号を行うことが可能となる。
According to the
《第3実施形態》
第3実施形態は、区分された範囲の数Nに対応する情報を符号化装置1から復号装置2に伝える例である。<< Third Embodiment >>
The third embodiment is an example in which information corresponding to the number N of divided ranges is transmitted from the
符号化装置1の区分部150は、何らかの基準や区分部150の外から伝えられた情報により区分後の範囲数Nを決定し、区分後の範囲の数がNとなるように区分処理を行う。符号化装置1の区分部150は、区分後の範囲の数であるNを特定できる補助符号も出力する。復号装置2の区分部260には、補助符号が入力され、区分後の範囲の数が補助符号により特定される数Nとなるように、区分処理を行なう。
The
以上の各実施形態の他、本発明である符号化装置、符号化方法、復号装置、復号方法は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。また、上記実施形態において説明した処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されるとしてもよい。 In addition to the above embodiments, the encoding device, the encoding method, the decoding device, and the decoding method according to the present invention are not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention. Is possible. In addition, the processing described in the above embodiment may be executed not only in time series according to the order of description but also in parallel or individually as required by the processing capability of the apparatus that executes the processing. .
また、上記符号化装置/上記復号装置における処理機能をコンピュータによって実現する場合、符号化装置/復号装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記符号化装置/上記復号装置における処理機能がコンピュータ上で実現される。 When the processing functions in the encoding device / decoding device are realized by a computer, the processing contents of the functions that the encoding device / decoding device should have are described by a program. By executing this program on a computer, the processing functions of the encoding device / decoding device are realized on the computer.
この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。具体的には、例えば、磁気記録装置として、ハードディスク装置、フレキシブルディスク、磁気テープ等を、光ディスクとして、DVD(Digital Versatile Disc)、DVD−RAM(Random Access Memory)、CD−ROM(Compact Disc Read Only Memory)、CD−R(Recordable)/RW(ReWritable)等を、光磁気記録媒体として、MO(Magneto-Optical disc)等を、半導体メモリとしてEEP−ROM(Electronically Erasable and Programmable-Read Only Memory)等を用いることができる。 The program describing the processing contents can be recorded on a computer-readable recording medium. As the computer-readable recording medium, for example, any recording medium such as a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory may be used. Specifically, for example, as a magnetic recording device, a hard disk device, a flexible disk, a magnetic tape or the like, and as an optical disk, a DVD (Digital Versatile Disc), a DVD-RAM (Random Access Memory), a CD-ROM (Compact Disc Read Only). Memory), CD-R (Recordable) / RW (ReWritable), etc., magneto-optical recording medium, MO (Magneto-Optical disc), etc., semiconductor memory, EEP-ROM (Electronically Erasable and Programmable-Read Only Memory), etc. Can be used.
また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD−ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。 The program is distributed by selling, transferring, or lending a portable recording medium such as a DVD or CD-ROM in which the program is recorded. Furthermore, the program may be distributed by storing the program in a storage device of the server computer and transferring the program from the server computer to another computer via a network.
このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記録媒体に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。 A computer that executes such a program first stores, for example, a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. When executing the process, the computer reads a program stored in its own recording medium and executes a process according to the read program. As another execution form of the program, the computer may directly read the program from a portable recording medium and execute processing according to the program, and the program is transferred from the server computer to the computer. Each time, the processing according to the received program may be executed sequentially. Also, the program is not transferred from the server computer to the computer, and the above-described processing is executed by a so-called ASP (Application Service Provider) type service that realizes the processing function only by the execution instruction and result acquisition. It is good. Note that the program in this embodiment includes information that is used for processing by an electronic computer and that conforms to the program (data that is not a direct command to the computer but has a property that defines the processing of the computer).
また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、符号化装置、復号装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。 In this embodiment, the encoding device and the decoding device are configured by executing a predetermined program on the computer. However, at least a part of the processing contents may be realized by hardware. Good.
Claims (14)
上記入力信号系列に含まれる各入力信号サンプルが正規化された信号による系列を符号化して得られる正規化信号符号と、上記正規化信号符号に対応する量子化正規化済み信号系列と、を得る正規化信号符号化ステップと、
上記入力信号系列に対応するゲインである量子化グローバルゲインと、上記量子化グローバルゲインに対応するグローバルゲイン符号と、を得るグローバルゲイン符号化ステップと、
上記量子化正規化済み信号系列をN個の範囲(Nは2以上の整数)に区分する区分ステップと、
区分された範囲ごとに上記量子化グローバルゲインをゲイン補正量で補正して得られる補正ゲインと上記量子化正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列と上記入力信号系列との相関が最大又は誤差が最小となる、区分された範囲毎のゲイン補正量を特定するためのゲイン補正量符号を得るゲイン補正量符号化ステップと
を有し、
上記区分ステップは、
上記量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
(a)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数と、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のnと、が最も近付くように、
または、
(b)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数と、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のnと、が最も近付くように、
または、
(c)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数が、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(d)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数が、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(e)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数が、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以下となる最大のサンプル数となるように、
または、
(f)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数が、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以下となる最大のサンプル数となるように、
求め、
上記量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、
上記量子化正規化済み信号系列の第Nの範囲とする
ことで、上記量子化正規化済み信号系列をN個の範囲に区分する
ことにより行なわれる
符号化方法。 In an encoding method for encoding an input signal sequence in a frame unit composed of a plurality of input signal samples,
A normalized signal code obtained by encoding a sequence of signals obtained by normalizing each input signal sample included in the input signal sequence, and a quantized normalized signal sequence corresponding to the normalized signal code are obtained. A normalized signal encoding step;
A global gain encoding step for obtaining a quantized global gain corresponding to the input signal sequence and a global gain code corresponding to the quantized global gain;
A dividing step of dividing the quantized normalized signal sequence into N ranges (N is an integer of 2 or more);
A signal sequence obtained by multiplying a correction gain obtained by correcting the quantized global gain with a gain correction amount for each divided range, and a value of each sample of the quantized normalized signal sequence, and the input signal A gain correction amount encoding step for obtaining a gain correction amount code for specifying a gain correction amount for each of the divided ranges in which the correlation with the series is maximum or the error is minimum;
The above classification steps are:
The nth range (n is an integer from 1 to N-1) of the quantized normalized signal sequence,
(a) the number of samples whose sample energy is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence; Among all samples included in the quantized normalized signal sequence, n of N times the number of samples whose sample energy is greater than or equal to or greater than the predetermined value is closest.
Or
(b) the number of samples whose absolute value of samples is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence; The absolute value of the sample among all the samples included in the quantized normalized signal sequence is closest to n / N of the number of samples greater than or equal to the predetermined value.
Or
(c) Of all the samples included in the first range to the nth range of the quantized normalized signal sequence, the number of samples whose sample energy is greater than or equal to a predetermined value is The sample energy of all the samples included in the quantized normalized signal sequence is the minimum number of samples that is greater than the predetermined value or equal to or more than n / N of the number of samples greater than or equal to the predetermined value.
Or
(d) Of all the samples included in the first range to the nth range of the quantized normalized signal sequence, the number of samples whose absolute value of the sample is greater than or equal to a predetermined value is Of all the samples included in the quantized normalized signal sequence, the absolute value of the samples is greater than the predetermined value or the minimum number of samples that is not less than n / N of the number of samples greater than or equal to the predetermined value. In addition,
Or
(e) The number of samples whose sample energy is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence is Among all samples included in the quantized normalized signal sequence, the energy of the samples is greater than the predetermined value or the maximum number of samples that is n or less of N / N of the number of samples greater than or equal to the predetermined value.
Or
(f) The number of samples whose absolute value of samples is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence, The absolute value of the sample among all the samples included in the quantized normalized signal sequence is the maximum number of samples that is greater than the predetermined value or equal to or less than n / N of the number of samples greater than or equal to the predetermined value. In addition,
Seeking
A range other than the first range to the (N-1) th range in the quantized normalized signal sequence is
An encoding method performed by dividing the quantized normalized signal sequence into N ranges by setting the quantized normalized signal sequence to an Nth range.
上記補正ゲインは、上記量子化グローバルゲインと上記ゲイン補正量とを加算した値である
ことを特徴とする符号化方法。 The encoding method according to claim 1, comprising:
The encoding method, wherein the correction gain is a value obtained by adding the quantization global gain and the gain correction amount.
上記補正ゲインは、上記量子化グローバルゲインと、上記量子化正規化済み信号系列のフレーム内の全てのサンプルの値の二乗和を上記量子化正規化済み信号系列の区分された範囲内の全てのサンプルの値の二乗和で除算した値を上記ゲイン補正量に乗算した値と、を加算した値である
ことを特徴とする符号化方法。 The encoding method according to claim 1, comprising:
The correction gain is the sum of squares of the values of all the samples in the frame of the quantized normalized signal sequence and the quantized global gain and all the values within the divided range of the quantized normalized signal sequence. A coding method, wherein the gain correction amount is multiplied by a value obtained by dividing the sample value by the sum of squares, and a value obtained by adding the gain correction amount.
上記補正ゲインは、上記量子化グローバルゲインと、上記量子化正規化済み信号系列のフレーム内のサンプルのエネルギーが所定値より大きいサンプルの個数を上記量子化正規化済み信号系列の区分された範囲内のサンプルのエネルギーが上記所定値より大きいサンプルの個数で除算した値をゲイン補正量に乗算した値と、を加算した値である
ことを特徴とする符号化方法。 The encoding method according to claim 1, comprising:
The correction gain includes the quantization global gain and the number of samples in which the energy of the sample in the frame of the quantized normalized signal sequence is greater than a predetermined value within the divided range of the quantized normalized signal sequence. A coding method, wherein the gain correction amount is multiplied by a value obtained by dividing the sample energy by the number of samples larger than the predetermined value.
上記ゲイン補正量は、量子化幅乗算前ゲイン補正量の候補が予め格納されたゲイン補正量コードブックに含まれる量子化幅乗算前ゲイン補正量と、上記量子化グローバルゲインに対応する量子化ステップ幅と、を乗算して得られる値である
ことを特徴とする符号化方法。 An encoding method according to any one of claims 2 to 4, comprising:
The gain correction amount includes a pre-quantization width gain correction amount included in a gain correction amount codebook in which candidates for pre-quantization width gain correction amounts are stored in advance, and a quantization step corresponding to the quantized global gain. A coding method characterized by being a value obtained by multiplying a width by a width.
上記符号に含まれる正規化信号符号を復号して、復号正規化済み信号系列を得る正規化信号復号ステップと、
上記復号正規化済み信号系列をN個の範囲(Nは2以上の整数)に区分する区分ステップと、
上記符号に含まれるゲイン補正量符号を復号して上記各範囲に対応するゲイン補正量を得るゲイン補正量復号ステップと、
上記符号に含まれるグローバルゲイン符号を復号して復号グローバルゲインを得るグローバルゲイン復号ステップと、
上記区分された範囲ごとに、上記復号グローバルゲインを上記ゲイン補正量で補正して得られる補正ゲインと上記復号正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列を出力信号系列とする復号信号系列生成ステップと
を有し、
上記区分ステップは、
上記復号正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
(a)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数と、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のnと、が最も近付くように、
(b)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数と、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のnと、が最も近付くように、
(c)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数が、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以上となる最小のサンプル数となるように、
(d)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数が、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以上となる最小のサンプル数となるように、
(e)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数が、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以下となる最大のサンプル数となるように、
(f)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数が、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以下となる最大のサンプル数となるように、
上記の(a)から(f)の何れかの予め定められた区分方法であって、上記復号方法に対応する符号化方法の区分ステップで行われた区分方法により求め、
上記復号正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、上
記復号正規化済み信号系列の第Nの範囲とする
ことで、上記復号正規化済み信号系列をN個の範囲に区分する
ことにより行なわれる
復号方法。 In a decoding method for obtaining an output signal sequence by decoding a code in frame units,
A normalized signal decoding step of decoding a normalized signal code included in the code to obtain a decoded normalized signal sequence;
A dividing step of dividing the decoded normalized signal sequence into N ranges (N is an integer of 2 or more);
A gain correction amount decoding step for decoding a gain correction amount code included in the code to obtain a gain correction amount corresponding to each of the ranges;
A global gain decoding step of obtaining a decoded global gain by decoding a global gain code included in the code;
For each of the divided ranges, a signal sequence obtained by multiplying the correction gain obtained by correcting the decoded global gain with the gain correction amount and the value of each sample of the decoded normalized signal sequence is an output signal. A decoded signal sequence generation step as a sequence,
The above classification steps are:
The nth range (n is an integer from 1 to N-1) of the decoded normalized signal sequence,
(a) out of all samples included in the first range to the n-th range of the decoded normalized signal sequence, the number of samples whose sample energy is greater than or equal to a predetermined value, and the decoding N of N samples of the number of samples whose sample energy is greater than or equal to or greater than the predetermined value among all the samples included in the normalized signal sequence is closest to
(b) out of all samples included in the first range to the n-th range of the decoded normalized signal sequence, the number of samples whose absolute value of samples is greater than or equal to a predetermined value, and The absolute value of the sample among all the samples included in the decoded normalized signal sequence is closest to n / N of the number of samples greater than or equal to the predetermined value,
(c) Of all the samples included in the first range to the n-th range of the decoded normalized signal sequence, the number of samples whose sample energy is greater than or equal to a predetermined value is The sample energy of all the samples included in the normalized signal sequence is the minimum number of samples that is greater than the predetermined value or equal to or greater than n / N of the number of samples greater than or equal to the predetermined value.
(d) Among all the samples included in the first range to the n-th range of the decoded normalized signal sequence, the number of samples whose absolute value of the sample is greater than or equal to a predetermined value is The absolute value of the sample among all the samples included in the decoded normalized signal sequence is the minimum number of samples that is greater than the predetermined value or equal to or more than n / N of the number of samples greater than or equal to the predetermined value.
(e) Of all the samples included in the first range to the n-th range of the decoded normalized signal sequence, the number of samples whose sample energy is greater than or equal to a predetermined value is The sample number of all the samples included in the normalized signal sequence is the maximum number of samples that is greater than the predetermined value or less than or equal to n / N of the number of samples greater than or equal to the predetermined value.
(f) Of all the samples included in the first range to the n-th range of the decoded normalized signal sequence, the number of samples whose absolute value of the samples is greater than or equal to a predetermined value is The absolute value of the sample among all the samples included in the decoded normalized signal sequence is the maximum number of samples that is greater than the predetermined value or less than or equal to n of N of the number of samples greater than or equal to the predetermined value.
(A) to (f) is a predetermined classification method described above, which is obtained by the classification method performed in the coding method classification step corresponding to the decoding method,
By setting a range other than the first range to the (N−1) th range in the decoded normalized signal sequence as the Nth range of the decoded normalized signal sequence, the decoded normalized signal sequence A decoding method performed by dividing N into N ranges.
上記補正ゲインは、上記復号グローバルゲインと上記ゲイン補正量とを加算した値である
ことを特徴とする復号方法。 The decoding method according to claim 6, wherein
The decoding method, wherein the correction gain is a value obtained by adding the decoding global gain and the gain correction amount.
上記補正ゲインは、上記復号グローバルゲインと、上記復号正規化済み信号系列のフレーム内の全てのサンプルの値の二乗和を上記復号正規化済み信号系列の区分された範囲内の全てのサンプルの値の二乗和で除算した値を上記ゲイン補正量に乗算した値と、を加算した値である
ことを特徴とする復号方法。 The decoding method according to claim 6, wherein
The correction gain is the sum of squares of the values of all the samples in the frame of the decoded normalized signal sequence and the values of all the samples in the divided range of the decoded normalized signal sequence. And a value obtained by multiplying the value obtained by dividing the sum of squares by the gain correction amount, and a decoding method.
上記補正ゲインは、上記復号グローバルゲインと、上記復号正規化済み信号系列のフレーム内のサンプルのエネルギーが所定値より大きいサンプルの個数を上記復号正規化済み信号系列の区分された範囲内のサンプルのエネルギーが上記所定値より大きいサンプルの個数で除算した値を上記ゲイン補正量に乗算した値と、を加算した値である
ことを特徴とする復号方法。 The decoding method according to claim 6, wherein
The correction gain is the number of samples in which the energy of the sample in the frame of the decoded normalized signal sequence is larger than a predetermined value, and the number of samples in the divided range of the decoded normalized signal sequence. A decoding method, wherein a value obtained by dividing the gain correction amount by a value obtained by dividing energy by the number of samples larger than the predetermined value is added.
上記ゲイン補正量は、量子化幅乗算前ゲイン補正量の候補が予め格納されたゲイン補正量コードブックに含まれる量子化幅乗算前ゲイン補正量と、上記復号グローバルゲインに対応する量子化ステップ幅と、を乗算して得られる値である
ことを特徴とする復号方法。 A decoding method according to any one of claims 7 to 9,
The gain correction amount includes a pre-quantization width gain correction amount included in a gain correction amount codebook in which candidates for pre-quantization width multiplication correction amount are stored in advance, and a quantization step width corresponding to the decoded global gain. And a value obtained by multiplying.
上記入力信号系列に含まれる各入力信号サンプルが正規化された信号による系列を符号化して得られる正規化信号符号と、上記正規化信号符号に対応する量子化正規化済み信号系列と、を得る正規化信号符号化部と、
上記入力信号系列に対応するゲインである量子化グローバルゲインと、上記量子化グローバルゲインに対応するグローバルゲイン符号と、を得るグローバルゲイン符号化部と、
上記量子化正規化済み信号系列をN個の範囲(Nは2以上の整数)に区分する区分部と、
区分された範囲ごとに上記量子化グローバルゲインをゲイン補正量で補正して得られる補正ゲインと上記量子化正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列と上記入力信号系列との相関が最大又は誤差が最小となる、区分された範囲毎のゲイン補正量を特定するためのゲイン補正量符号を得るゲイン補正量符号化部と
を有し、
上記区分部は、
上記量子化正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
(a)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数と、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のnと、が最も近付くように、
または、
(b)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数と、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの上記絶対値が所定値より大きいかまたは所定値以上のサンプルの個数のN分のnと、が最も近付くように、
または、
(c)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数が、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(d)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数が、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以上となる最小のサンプル数となるように、
または、
(e)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数が、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以下となる最大のサンプル数となるように、
または、
(f)上記量子化正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数が、上記量子化正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以下となる最大のサンプル数となるように、
求め、
上記量子化正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、
上記量子化正規化済み信号系列の第Nの範囲とする
ことで、上記量子化正規化済み信号系列をN個の範囲に区分するものである、
符号化装置。 An encoding device that encodes an input signal sequence in frame units composed of a plurality of input signal samples,
A normalized signal code obtained by encoding a sequence of signals obtained by normalizing each input signal sample included in the input signal sequence, and a quantized normalized signal sequence corresponding to the normalized signal code are obtained. A normalized signal encoding unit;
A global gain encoding unit for obtaining a quantized global gain corresponding to the input signal sequence and a global gain code corresponding to the quantized global gain;
A section for dividing the quantized normalized signal sequence into N ranges (N is an integer of 2 or more);
A signal sequence obtained by multiplying a correction gain obtained by correcting the quantized global gain with a gain correction amount for each divided range, and a value of each sample of the quantized normalized signal sequence, and the input signal A gain correction amount encoding unit for obtaining a gain correction amount code for specifying a gain correction amount for each of the divided ranges in which the correlation with the series is maximum or the error is minimum;
The above section is
The nth range (n is an integer from 1 to N-1) of the quantized normalized signal sequence,
(a) the number of samples whose sample energy is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence; Among all samples included in the quantized normalized signal sequence, n of N times the number of samples whose sample energy is greater than or equal to or greater than the predetermined value is closest.
Or
(b) the number of samples whose absolute value of samples is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence; Among the samples included in the quantized normalized signal sequence, the absolute value of the samples is greater than a predetermined value or n / N of the number of samples greater than or equal to a predetermined value so as to be closest to each other.
Or
(c) Of all the samples included in the first range to the nth range of the quantized normalized signal sequence, the number of samples whose sample energy is greater than or equal to a predetermined value is The sample energy of all the samples included in the quantized normalized signal sequence is the minimum number of samples that is greater than the predetermined value or equal to or more than n / N of the number of samples greater than or equal to the predetermined value.
Or
(d) Of all the samples included in the first range to the nth range of the quantized normalized signal sequence, the number of samples whose absolute value of the sample is greater than or equal to a predetermined value is Of all the samples included in the quantized normalized signal sequence, the absolute value of the samples is greater than the predetermined value or the minimum number of samples that is not less than n / N of the number of samples greater than or equal to the predetermined value. In addition,
Or
(e) The number of samples whose sample energy is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence is Among all samples included in the quantized normalized signal sequence, the energy of the samples is greater than the predetermined value or the maximum number of samples that is n or less of N / N of the number of samples greater than or equal to the predetermined value.
Or
(f) The number of samples whose absolute value of samples is greater than or equal to a predetermined value among all samples included in the first range to the nth range of the quantized normalized signal sequence, The absolute value of the sample among all the samples included in the quantized normalized signal sequence is the maximum number of samples that is greater than the predetermined value or equal to or less than n / N of the number of samples greater than or equal to the predetermined value. In addition,
Seeking
A range other than the first range to the (N-1) th range in the quantized normalized signal sequence is
By setting the quantized normalized signal sequence to the Nth range, the quantized normalized signal sequence is divided into N ranges.
Encoding device.
上記符号に含まれる正規化信号符号を復号して、復号正規化済み信号系列を得る正規化信号復号部と、
上記復号正規化済み信号系列をN個の範囲(Nは2以上の整数)に区分する区分部と、
上記符号に含まれるゲイン補正量符号を復号して上記各範囲に対応するゲイン補正量を得るゲイン補正量復号部と、
上記符号に含まれるグローバルゲイン符号を復号して復号グローバルゲインを得るグローバルゲイン復号部と、
上記区分された範囲ごとに、上記復号グローバルゲインを上記ゲイン補正量で補正して得られる補正ゲインと上記復号正規化済み信号系列の各サンプルの値とを乗算して得られる信号系列を出力信号系列とする復号信号系列生成部と
を有し、
上記区分部は、
上記復号正規化済み信号系列の第nの範囲(nは1からN−1までの各整数)を、
(a)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数と、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のnと、が最も近付くように、
(b)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数と、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のnと、が最も近付くように、
(c)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数が、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以上となる最小のサンプル数となるように、
(d)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数が、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以上となる最小のサンプル数となるように、
(e)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルのエネルギーが所定値より大きいかまたは所定値以上のサンプルの個数が、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルのエネルギーが上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以下となる最大のサンプル数となるように、
(f)上記復号正規化済み信号系列の第1の範囲から第nの範囲までに含まれる全てのサンプルのうちサンプルの絶対値が所定値より大きいかまたは所定値以上のサンプルの個数が、上記復号正規化済み信号系列に含まれる全てのサンプルのうちサンプルの絶対値が上記所定値より大きいかまたは所定値以上のサンプルの個数のN分のn以下となる最大のサンプル数となるように、
上記の(a)から(f)の何れかの予め定められた区分方法であって、上記復号装置に対応する符号化装置の区分部で行われた区分方法により求め、
上記復号正規化済み信号系列のうちの第1の範囲から第N−1の範囲以外の範囲を、上
記復号正規化済み信号系列の第Nの範囲とする
ことで、上記復号正規化済み信号系列をN個の範囲に区分するものである、
復号装置。 A decoding device that decodes a frame unit code to obtain an output signal sequence,
A normalized signal decoding unit for decoding a normalized signal code included in the code to obtain a decoded normalized signal sequence;
A section for dividing the decoded normalized signal sequence into N ranges (N is an integer of 2 or more);
A gain correction amount decoding unit for decoding a gain correction amount code included in the code to obtain a gain correction amount corresponding to each of the ranges;
A global gain decoding unit for decoding the global gain code included in the code to obtain a decoded global gain;
For each of the divided ranges, a signal sequence obtained by multiplying the correction gain obtained by correcting the decoded global gain with the gain correction amount and the value of each sample of the decoded normalized signal sequence is an output signal. A decoded signal sequence generation unit as a sequence,
The above section is
The nth range (n is an integer from 1 to N-1) of the decoded normalized signal sequence,
(a) out of all samples included in the first range to the n-th range of the decoded normalized signal sequence, the number of samples whose sample energy is greater than or equal to a predetermined value, and the decoding N of N samples of the number of samples whose sample energy is greater than or equal to or greater than the predetermined value among all the samples included in the normalized signal sequence is closest to
(b) out of all samples included in the first range to the n-th range of the decoded normalized signal sequence, the number of samples whose absolute value of samples is greater than or equal to a predetermined value, and The absolute value of the sample among all the samples included in the decoded normalized signal sequence is closest to n / N of the number of samples greater than or equal to the predetermined value,
(c) Of all the samples included in the first range to the n-th range of the decoded normalized signal sequence, the number of samples whose sample energy is greater than or equal to a predetermined value is The sample energy of all the samples included in the normalized signal sequence is the minimum number of samples that is greater than the predetermined value or equal to or greater than n / N of the number of samples greater than or equal to the predetermined value.
(d) Among all the samples included in the first range to the n-th range of the decoded normalized signal sequence, the number of samples whose absolute value of the sample is greater than or equal to a predetermined value is The absolute value of the sample among all the samples included in the decoded normalized signal sequence is the minimum number of samples that is greater than the predetermined value or equal to or more than n / N of the number of samples greater than or equal to the predetermined value.
(e) Of all the samples included in the first range to the n-th range of the decoded normalized signal sequence, the number of samples whose sample energy is greater than or equal to a predetermined value is The sample number of all the samples included in the normalized signal sequence is the maximum number of samples that is greater than the predetermined value or less than or equal to n / N of the number of samples greater than or equal to the predetermined value.
(f) Of all the samples included in the first range to the n-th range of the decoded normalized signal sequence, the number of samples whose absolute value of the samples is greater than or equal to a predetermined value is The absolute value of the sample among all the samples included in the decoded normalized signal sequence is the maximum number of samples that is greater than the predetermined value or less than or equal to n of N of the number of samples greater than or equal to the predetermined value.
(A) to (f) is a predetermined classification method described above, which is obtained by a classification method performed by a classification unit of an encoding device corresponding to the decoding device ,
By setting a range other than the first range to the (N−1) th range in the decoded normalized signal sequence as the Nth range of the decoded normalized signal sequence, the decoded normalized signal sequence Is divided into N ranges,
Decoding device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013557574A JP5786044B2 (en) | 2012-02-07 | 2013-02-07 | Encoding method, encoding apparatus, decoding method, decoding apparatus, program, and recording medium |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012024176 | 2012-02-07 | ||
JP2012024176 | 2012-02-07 | ||
PCT/JP2013/052914 WO2013118835A1 (en) | 2012-02-07 | 2013-02-07 | Encoding method, encoding device, decoding method, decoding device, program, and recording medium |
JP2013557574A JP5786044B2 (en) | 2012-02-07 | 2013-02-07 | Encoding method, encoding apparatus, decoding method, decoding apparatus, program, and recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013118835A1 JPWO2013118835A1 (en) | 2015-05-11 |
JP5786044B2 true JP5786044B2 (en) | 2015-09-30 |
Family
ID=48947590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013557574A Active JP5786044B2 (en) | 2012-02-07 | 2013-02-07 | Encoding method, encoding apparatus, decoding method, decoding apparatus, program, and recording medium |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5786044B2 (en) |
WO (1) | WO2013118835A1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005004113A1 (en) * | 2003-06-30 | 2005-01-13 | Fujitsu Limited | Audio encoding device |
JP4301091B2 (en) * | 2004-06-23 | 2009-07-22 | 日本ビクター株式会社 | Acoustic signal encoding device |
-
2013
- 2013-02-07 JP JP2013557574A patent/JP5786044B2/en active Active
- 2013-02-07 WO PCT/JP2013/052914 patent/WO2013118835A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JPWO2013118835A1 (en) | 2015-05-11 |
WO2013118835A1 (en) | 2013-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070106502A1 (en) | Adaptive time/frequency-based audio encoding and decoding apparatuses and methods | |
JP5596800B2 (en) | Coding method, periodic feature value determination method, periodic feature value determination device, program | |
US8665945B2 (en) | Encoding method, decoding method, encoding device, decoding device, program, and recording medium | |
JP5613781B2 (en) | Encoding method, decoding method, encoding device, decoding device, program, and recording medium | |
JP6457552B2 (en) | Encoding device, decoding device, method and program thereof | |
JP5663461B2 (en) | Encoding method, encoding apparatus, program, and recording medium | |
JP5786044B2 (en) | Encoding method, encoding apparatus, decoding method, decoding apparatus, program, and recording medium | |
JP6224827B2 (en) | Apparatus and method for audio signal envelope coding, processing and decoding by modeling cumulative sum representation using distributed quantization and coding | |
JP6224233B2 (en) | Apparatus and method for audio signal envelope coding, processing and decoding by dividing audio signal envelope using distributed quantization and coding | |
JP5734519B2 (en) | Encoding method, encoding apparatus, decoding method, decoding apparatus, program, and recording medium | |
JP5800920B2 (en) | Encoding method, encoding apparatus, decoding method, decoding apparatus, program, and recording medium | |
CN110291583B (en) | System and method for long-term prediction in an audio codec | |
JP2011009860A (en) | Encoding method, decoding method, encoder, decoder, and program | |
JP5320508B2 (en) | Encoding device, decoding device, these methods, program, and recording medium | |
JP5840101B2 (en) | Encoding method, encoding apparatus, decoding method, decoding apparatus, program, and recording medium | |
JP5738480B2 (en) | Encoding method, encoding apparatus, decoding method, decoding apparatus, and program | |
JP5635213B2 (en) | Encoding method, encoding apparatus, decoding method, decoding apparatus, program, and recording medium | |
WO2013002238A1 (en) | Encoding method, device, program, and recording medium | |
JP5714172B2 (en) | Encoding apparatus, method, program, and recording medium | |
JPWO2018225412A1 (en) | Encoding device, decoding device, smoothing device, inverse smoothing device, their methods, and programs | |
WO2013129439A1 (en) | Encoding device, encoding method, program and recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150623 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150721 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150727 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5786044 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |