JP5785666B1 - Antibacterial floor - Google Patents
Antibacterial floor Download PDFInfo
- Publication number
- JP5785666B1 JP5785666B1 JP2015010717A JP2015010717A JP5785666B1 JP 5785666 B1 JP5785666 B1 JP 5785666B1 JP 2015010717 A JP2015010717 A JP 2015010717A JP 2015010717 A JP2015010717 A JP 2015010717A JP 5785666 B1 JP5785666 B1 JP 5785666B1
- Authority
- JP
- Japan
- Prior art keywords
- resin
- antibacterial
- floor surface
- noble metal
- fulvic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/16—Heavy metals; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/14—Paints containing biocides, e.g. fungicides, insecticides or pesticides
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/02—Flooring or floor layers composed of a number of similar elements
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Architecture (AREA)
- Plant Pathology (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Dentistry (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Inorganic Chemistry (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Toxicology (AREA)
- Paints Or Removers (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Floor Finish (AREA)
Abstract
【課題】 水酸基に反応性を有する樹脂を主剤とし、塗布後の塗膜の表面部分に貴金属抗菌成分を高濃度に存在させるフローリング用の抗菌性塗料を塗布して、表面部分に貴金属抗菌成分を高濃度に存在させた抗菌性床面を提供する。【解決手段】 本発明は、樹脂原料と、貴金属塩と、フルボ酸と、樹脂硬化手段と、を含む水性エマルジョンであり、前記貴金属塩が、銅塩、銀塩、及び白金塩から選ばれる群のうちの1以上であることを特徴とする。【選択図】 なしPROBLEM TO BE SOLVED: To apply an antibacterial paint for flooring in which a precious metal antibacterial component is present at a high concentration on a surface portion of a coated film after application of a resin having hydroxyl group reactivity, and the surface portion is coated with a noble metal antibacterial component. Provide an antibacterial floor surface present at a high concentration. The present invention is an aqueous emulsion comprising a resin raw material, a noble metal salt, a fulvic acid, and a resin curing means, wherein the noble metal salt is selected from the group consisting of a copper salt, a silver salt, and a platinum salt. It is one or more of these. [Selection figure] None
Description
本発明は、抗菌性床面に係り、より詳しくは、貴金属抗菌成分を表面部分に高濃度に分布させた抗菌性床面に関する。 The present invention relates to an antibacterial floor surface, and more particularly to an antibacterial floor surface in which a noble metal antibacterial component is distributed at a high concentration on a surface portion.
抗菌性を有する床面は、従来から、病院、飲食店、学校、幼稚園、保育所、公共施設、ペットを飼う家庭等、多くの場所で求められていた。
また、近年の生活様式の変化や建築材料の進歩によって、一般住宅の床にフローリングが取り入れられるようになってきた。しかし、日本人には畳での生活習慣が強く残っており、直接床に座ったり、寝転んだり、または乳幼児が床を這ったりすることがあるために、床面の清潔性及び安全性が強く求められ、抗菌性を備えたフローリング床の開発に対する要望が高まってきた。
Conventionally, antibacterial floors have been sought in many places such as hospitals, restaurants, schools, kindergartens, nurseries, public facilities, and households that keep pets.
In addition, due to recent changes in lifestyle and advances in building materials, flooring has been incorporated into the floors of ordinary houses. However, Japanese people have a strong lifestyle in tatami mats, and they can sit directly on the floor, lie down, or infants can hit the floor. There has been an increasing demand for the development of flooring floors with antibacterial properties.
抗菌性を有する床材としては、例えば特許文献1には、合成抗菌性物質を添加した床を含む内装材が開示されているが、抗菌剤の効果及び持続性が充分ではない。
また、特許文献2には、高分子樹脂に光触媒の粉末を添加した塗料が開示され、特許文献3には、銅、銀、白金などの貴金属イオン或は貴金属イオンを還元した貴金属ナノコロイドをゼオライトに吸着させた粉末を添加した塗料が開示されている。
しかし、特許文献2及び特許文献3に記載された塗料は、抗菌成分は優れた抗菌活性を示すものの、抗菌剤粉末の比重が塗料より重いために抗菌剤が塗膜の内部に沈んでしまって、表面における抗菌剤の濃度が低くなり、床面は充分な抗菌活性を示すことができないという問題点を有する。
As an antibacterial flooring material, for example, Patent Document 1 discloses an interior material including a floor to which a synthetic antibacterial substance is added, but the effect and sustainability of the antibacterial agent are not sufficient.
Patent Document 2 discloses a paint in which a photocatalyst powder is added to a polymer resin, and Patent Document 3 discloses a noble metal ion such as copper, silver or platinum or a noble metal nanocolloid obtained by reducing a noble metal ion as a zeolite. A coating material to which powder adsorbed on is added is disclosed.
However, in the paints described in Patent Document 2 and Patent Document 3, although the antibacterial component exhibits excellent antibacterial activity, the antibacterial agent sinks inside the coating because the specific gravity of the antibacterial agent powder is heavier than the paint. The concentration of the antibacterial agent on the surface is lowered, and the floor surface has a problem that it cannot exhibit sufficient antibacterial activity.
特許文献4には、粒径5μm以下である炭酸銀微粒子を含み、銀の含有量が14〜88質量%である抗菌性樹脂膜用塗料を、例えば3μmの厚さに塗布して熱交換器の内部に使用する例が記載されている。このような薄膜は、抗菌性粉末が塗膜の底に沈むことはないが、摩擦によって塗膜が容易に磨滅してしまう可能性がある。特許文献4に記載された塗料は高価な貴金属を多く含むので、厚く塗布して床材とすることは経済的に困難である。
更に、高濃度の炭酸銀を含む薄膜は、物理的特性が悪くなる可能性があると共に、炭酸銀は光によって黄色〜暗褐色に変化するので、床面の外観を悪化させる可能性がある。
In Patent Document 4, an antibacterial resin film coating material containing silver carbonate fine particles having a particle size of 5 μm or less and having a silver content of 14 to 88% by mass is applied to a thickness of, for example, 3 μm. An example of use inside is described. In such a thin film, the antibacterial powder does not sink to the bottom of the coating film, but the coating film may be easily worn away by friction. Since the paint described in Patent Document 4 contains a lot of expensive noble metals, it is economically difficult to apply a thick coating to form a flooring.
Furthermore, a thin film containing a high concentration of silver carbonate may deteriorate physical properties, and silver carbonate changes from yellow to dark brown by light, which may deteriorate the appearance of the floor surface.
特許文献5には、直鎖状ポリアルキレンイミン鎖と、親水性セグメントと、エポキシ樹脂残基と、の3種類のセグメントを有する高分子化合物が水中で形成するエマルジョン中に、金属ナノ粒子を含有する金属ナノ粒子分散体が開示されている。しかし、この金属ナノ粒子分散体は、複雑な構造の4官能基性のエポキシ樹脂残基を用いた複雑な成分構成であって、床用の汎用塗料として用いるのには問題がある。特許文献5に、表面部分に貴金属を高濃度に存在させることは、記載されていない。 Patent Document 5 contains metal nanoparticles in an emulsion formed in water by a polymer compound having three types of segments, a linear polyalkyleneimine chain, a hydrophilic segment, and an epoxy resin residue. Disclosed are metal nanoparticle dispersions. However, this metal nanoparticle dispersion has a complicated component structure using a tetrafunctional epoxy resin residue having a complicated structure, and there is a problem in using it as a general-purpose paint for floors. Patent Document 5 does not describe the presence of a high concentration of noble metal on the surface portion.
家庭用のフローリング材としては、塗膜の美しさ及び堅牢性のほかに、ホルムアルデヒドや有機溶媒を放出しない、有害物質を含まず子供が舐めても大丈夫である、或は床面が適当な摩擦を有して滑りすぎない、といった広範な安全性が求められている。 As a flooring material for home use, in addition to the beauty and robustness of the coating film, it does not release formaldehyde and organic solvents, does not contain harmful substances, and can be licked by children, or the floor surface has an appropriate friction There is a need for a wide range of safety such as having no slippage.
本発明は、かかる課題を解決するためになされたものであって、塗布後の塗膜の表面部分に貴金属抗菌成分を高濃度に存在させることができるフローリング用の抗菌性塗料、及び前記塗料を塗布して、表面部分に貴金属抗菌成分を高濃度に存在させたことを特徴とする抗菌性床面を提供することを課題とする。 The present invention has been made in order to solve the above-described problems, and includes an antibacterial paint for flooring capable of causing a noble metal antibacterial component to be present in a high concentration on a surface portion of a coated film after coating, and the paint. It is an object of the present invention to provide an antibacterial floor characterized by applying a precious metal antibacterial component in a high concentration on the surface portion.
また本発明は、表面が美しく、シミや傷がつきにくく、堅牢で、人が靴で歩きまわっても摩耗することがなく、ホルムアルデヒドや有機溶媒を放出せず、有害物質を含まないので子供が舐めても安全であり、且つ適度の表面抵抗を有して滑りにくい抗菌性床面を提供することを目的とする。 In addition, the present invention has a beautiful surface, is resistant to spots and scratches, is robust, does not wear even when people walk on shoes, does not release formaldehyde or organic solvents, and does not contain harmful substances. An object of the present invention is to provide an antibacterial floor which is safe even when licked and has a moderate surface resistance and is hard to slip.
かかる課題を解決するための本発明の抗菌性床面は、水酸基に反応性を有する樹脂原料と、貴金属塩と、フルボ酸と、樹脂硬化手段と、を含む水性エマルジョンであるフローリング用抗菌性塗料を、塗布、乾燥、及び重合・硬化させて形成し、前記フローリング用抗菌性塗料を塗布、乾燥、重合・硬化させて形成した床材の重量1kgに対して、前記貴金属塩を、10 −7 乃至10 −4 [モル/kg床材]含み、前記床材中の前記貴金属塩のモル当量と、フルボ酸のカルボキシル基当量と、の比が、1:10乃至1:100の範囲内であることを特徴とする。
An antibacterial floor surface of the present invention for solving such a problem is an antibacterial paint for flooring which is an aqueous emulsion containing a resin raw material having reactivity with a hydroxyl group, a noble metal salt, fulvic acid, and a resin curing means. Is applied, dried, polymerized and cured, and the precious metal salt is 10 −7 per 1 kg of the flooring weight formed by applying, drying, polymerizing and curing the antibacterial paint for flooring. To 10 −4 [mol / kg flooring], and the ratio of the molar equivalent of the noble metal salt in the flooring to the carboxyl group equivalent of fulvic acid is in the range of 1:10 to 1: 100. It is characterized by that.
本発明は、貴金属塩が、銅塩、銀塩、及び白金塩からなる群のうちの1以上であることが好ましく、貴金属塩の中では、銀塩がより好ましい。 In the present invention, the noble metal salt is preferably one or more of the group consisting of a copper salt, a silver salt, and a platinum salt, and among the noble metal salts, a silver salt is more preferred.
本発明は、フローリング用抗菌性塗料を塗布、乾燥、重合・硬化させて形成した床材の重量1kgに対して、貴金属塩を、10−7乃至10−4[モル/kg床材]含み、前記床材中の貴金属塩のモル当量と、フルボ酸のカルボキシル基当量と、の比が1:10乃至1:100の範囲内であることが好ましい。 The present invention includes a precious metal salt of 10 −7 to 10 −4 [mol / kg flooring material] with respect to 1 kg of the flooring weight formed by applying, drying, polymerizing and curing an antibacterial paint for flooring, The ratio of the molar equivalent of the noble metal salt in the flooring to the carboxyl group equivalent of fulvic acid is preferably in the range of 1:10 to 1: 100.
また、本発明は、前記樹脂原料が、エポキシ樹脂、シリコーン樹脂、ポリウレタン樹脂、及びポリエステル樹脂からなる群のうちの1以上の原料のモノマー、プレポリマー、及び混合プレポリマーのうちの1以上であることを特徴とし、前記樹脂原料は、エポキシ樹脂又はシリコーン樹脂であることがより好ましい。
また、前記フローリング用抗菌性塗料が、更に、分散剤を含むことを特徴とし、前記分散剤は、ポリビニルピロリドンであることがより好ましい。
更に、前記樹脂原料が更に親水性のセグメント樹脂を含むことが好ましく、前記親水性セグメント樹脂は、ポリオキシアルキレン樹脂であることがより好ましい。
Further, the present invention is the resin raw material, is one or more of epoxy resins, silicone resins, one or more raw monomers of the group consisting of polyurethane resins, and polyester resins, prepolymers, and mixtures prepolymer More preferably, the resin material is an epoxy resin or a silicone resin.
The antibacterial coating material for flooring further includes a dispersant, and the dispersant is more preferably polyvinylpyrrolidone.
Furthermore, the resin material further preferably contains a hydrophilic segment resin, and the hydrophilic segment resin is more preferably a polyoxyalkylene resin.
本発明の抗菌性床面は、水酸基に反応性を有する樹脂原料と、貴金属塩と、フルボ酸と、樹脂硬化手段と、を含むフローリング用抗菌性塗料を床面に塗布することによって、塗装後の塗膜の表面部分にフルボ酸及び貴金属抗菌成分が他の部分より高濃度に存在するようになり、フルボ酸と貴金属抗菌剤との作用によって強力な抗菌、抗カビ、及び抗ウィルス作用を有する抗菌性床面を製造することができる。 The antibacterial floor surface of the present invention is obtained by applying a flooring antibacterial paint containing a resin raw material having reactivity to a hydroxyl group, a noble metal salt, fulvic acid, and a resin curing means to the floor surface. Fulvic acid and noble metal antibacterial components are present in higher concentrations on the surface of the coating film than other parts, and have strong antibacterial, antifungal and antiviral effects due to the action of fulvic acid and noble metal antibacterial agents. An antibacterial floor can be produced.
本発明の抗菌性床面は、貴金属抗菌成分が塗装後の塗膜の表面部分に他の部分より高濃度に存在することによって、高価な貴金属塩の使用量を削減することができる。
本発明の抗菌性床面は、表面に抗菌剤の薄膜をコートしたものではなく、床材そのものの表面部分が抗菌性を有するので、床面の上を人が靴で歩きまわっても摩耗することが少なく、効果が長持ちするという特徴を有する。
The antibacterial floor surface of the present invention can reduce the amount of expensive noble metal salt used because the noble metal antibacterial component is present in the surface portion of the coated film at a higher concentration than other portions.
The antibacterial floor surface of the present invention is not coated with a thin film of an antibacterial agent on the surface, and the surface portion of the flooring material itself has antibacterial properties, so it wears even when a person walks on the floor surface with shoes. There are few features, and the effect is long lasting.
また本発明は、エポキシ樹脂、シリコーン樹脂、ポリウレタン樹脂、又はポリエステル樹脂を主剤とすることによって、美麗で堅牢性に優れると共に、ホルムアルデヒドや有機溶媒等の有害な気体を放出せず、子供が舐めても無害であるという優れた安全性を有した抗菌性床面を提供する。より好ましくは、エポキシ樹脂又はシリコーン樹脂を主剤とすることによって、他の高分子樹脂よりも大きい滑り抵抗係数を有し滑りにくくより安全な抗菌性床面を提供することができる。 In addition, the present invention uses an epoxy resin, a silicone resin, a polyurethane resin, or a polyester resin as a main ingredient, so that it is beautiful and excellent in robustness, does not emit harmful gases such as formaldehyde and organic solvents, and is licked by children. It provides an antibacterial floor with excellent safety that it is harmless. More preferably, by using an epoxy resin or a silicone resin as a main ingredient, it is possible to provide a safe antibacterial floor surface that has a slip resistance coefficient larger than that of other polymer resins and is less slippery.
以下に、本発明の抗菌性床面について詳細に説明する。
本発明の抗菌性床面は、水酸基に反応性を有する樹脂原料と、貴金属塩と、フルボ酸と、樹脂硬化手段と、を混合した水性エマルジョンであることが好ましい。
Hereinafter, the antibacterial floor surface of the present invention will be described in detail.
The antibacterial floor surface of the present invention is preferably an aqueous emulsion obtained by mixing a resin raw material having reactivity with a hydroxyl group, a noble metal salt, fulvic acid, and a resin curing means.
本発明は、貴金属イオンに対してキレート能を有するフルボ酸を樹脂の表面部分に結合させ、フルボ酸に貴金属イオンを結合させると共に、フルボ酸の還元力で貴金属イオンを還元して、樹脂の表面部分に貴金属ナノコロイドを他の部分よりも高濃度に存在させ、貴金属ナノコロイドとフルボ酸とによる強力な抗菌、抗カビ、及び抗ウィルス活性を有する機能性床面を提供する。 The present invention binds a fulvic acid having a chelating ability to a noble metal ion to the surface portion of the resin, binds the noble metal ion to the fulvic acid, and reduces the noble metal ion by the reducing power of the fulvic acid, thereby reducing the surface of the resin. A part of which noble metal nanocolloid is present in a higher concentration than the other part provides a functional floor surface having strong antibacterial, antifungal and antiviral activity due to the noble metal nanocolloid and fulvic acid.
本発明において使用する貴金属塩は、銅塩、銀塩、及び白金塩から選ばれる群のうちの1以上を含むことが好ましく、より好ましい例として、銀塩を挙げることができる。銀塩を還元した銀は、強力な抗菌、抗カビ作用を有すると共に、貴金属アレルギーのアレルゲンになりにくく、食器の素材として用いられてきた安全な金属である。 The noble metal salt used in the present invention preferably contains one or more members selected from the group consisting of a copper salt, a silver salt, and a platinum salt, and more preferred examples include silver salts. Silver obtained by reducing silver salt has a strong antibacterial and antifungal action and is a safe metal that has been used as a tableware material because it is less likely to become an allergen of precious metal allergy.
また本発明の金属塩は、銅、銀、及び白金を含むイオン性化合物、錯塩、及びテトラクロロ白金酸塩、及びヘキサクロロ白金酸塩を含むことができる。
貴金属を陽イオンとする貴金属塩の陰イオンは、強酸の塩として塩酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩、テトラフロロホウ酸塩、及びヘキサフロロリン酸塩を例示することができ、また、弱酸の塩として酢酸塩、ギ酸塩、炭酸塩を例示することができるが、これらに限定されるものではない。これらの塩は、水溶性であることが好ましいが、微粉末として用いることもでき、また脂肪族アミン等の可溶化剤を加えることによって錯塩を形成して水に溶解するものであれば、それも好ましく用いることができる。
Moreover, the metal salt of this invention can contain the ionic compound containing copper, silver, and platinum, a complex salt, tetrachloroplatinate, and hexachloroplatinate.
Anions of noble metal salts with noble metals as cations should be exemplified as hydrochlorides, nitrates, perchlorates, sulfates, phosphates, tetrafluoroborates, and hexafluorophosphates as strong acid salts. Examples of the weak acid salt include acetate, formate, and carbonate, but the salt is not limited thereto. These salts are preferably water-soluble, but can also be used as fine powders, as long as they can be dissolved in water by forming complex salts by adding solubilizers such as aliphatic amines. Can also be preferably used.
本発明の抗菌性床面は、エポキシ樹脂、シリコーン樹脂、ポリウレタン樹脂、又はポリエステル樹脂を主剤とすることが好ましい。これらの樹脂の原料であるモノマー及びオリゴマーは、水酸基に反応性を有すると共に、生成した樹脂は硬度が高く、無色透明であって、光沢のある表面を形成するので、美麗、堅牢で、ホルムアルデヒドや有機溶媒等の気体を放出せず、且つ乳幼児が舐めても安全であるという優れた安全性を有する。より好ましい例としてエポキシ樹脂及びシリコーン樹脂を挙げることができる。エポキシ樹脂及びシリコーン樹脂は、大きい滑り抵抗係数を有し、表面が滑りにくくて安全であるという特徴を更に有する。 The antibacterial floor surface of the present invention is preferably based on an epoxy resin, a silicone resin, a polyurethane resin, or a polyester resin. The monomers and oligomers that are the raw materials of these resins are reactive to hydroxyl groups, and the resulting resin is high in hardness, colorless and transparent, and forms a glossy surface. It has excellent safety that it does not release gases such as organic solvents and is safe even if an infant licks it. More preferable examples include an epoxy resin and a silicone resin. Epoxy resins and silicone resins further have the characteristic that they have a large slip resistance coefficient, and the surface is hard to slip and is safe.
本発明において使用する樹脂原料は、モノマー又はプレポリマーが重合し、ネットワーク化してポリマー化する熱硬化性樹脂である。また、本発明は、モノマー、プレポリマー、又は樹脂硬化手段として、他の高分子樹脂を含有する複合樹脂も含むことができる。 The resin raw material used in the present invention is a thermosetting resin in which a monomer or a prepolymer is polymerized and networked to be polymerized. The present invention can also include a composite resin containing another polymer resin as a monomer, prepolymer, or resin curing means.
本発明の、水酸基に反応性を有する樹脂原料は、市販されているもの、又は合成可能なものであって、且つ本発明に使用可能なものであれば、特に限定されない。また、本発明の目的に叶うものであれば、他の高分子樹脂を添加又は共重合して用いることもできる。 The resin raw material having reactivity with a hydroxyl group of the present invention is not particularly limited as long as it is commercially available or can be synthesized and can be used in the present invention. In addition, other polymer resins may be added or copolymerized as long as they meet the object of the present invention.
本発明の水酸基に反応性を有する樹脂原料の形態は、水等の親水性溶媒に分散させた水性のエマルジョンであることが好ましい。水性のエマルジョンを使用することによって、フルボ酸及び貴金属塩を床面の表面部分に高濃度に分散させることができる。
モノマー又はプレポリマーの水性エマルジョンと、樹脂硬化手段と、を混合し、所望によっては硬化促進剤、分散剤、セグメント樹脂等を添加し、更に必要に応じて加熱等の高分子化処理を行って床面に塗布することによって、抗菌性床面を製造することができる。それぞれの樹脂原料を重合させて高分子化させる方法については、公知の方法を用いることができるので、詳細な説明は省略する。
The form of the resin raw material having reactivity with the hydroxyl group of the present invention is preferably an aqueous emulsion dispersed in a hydrophilic solvent such as water. By using an aqueous emulsion, the fulvic acid and the noble metal salt can be dispersed at a high concentration on the surface portion of the floor surface.
A monomer or prepolymer aqueous emulsion and a resin curing means are mixed, and if desired, a curing accelerator, a dispersant, a segment resin, etc. are added, and if necessary, polymerizing treatment such as heating is performed. By applying to the floor surface, an antibacterial floor surface can be produced. Since a known method can be used for polymerizing each resin material to polymerize, detailed description is omitted.
本発明において使用するフルボ酸は、腐植土からの抽出物として得られるフミン物質の1種であって、化学大辞典(共立出版社、1964年)によれば、「土壌又は石炭質から稀アルカリでフミン酸を抽出し無機酸で沈殿させるとき、酸性上澄み液に黄色ないし橙黄色を与える物質で、水、エタノールに可溶の無定形物質」であって、単一の化学構造式を有するものではなく「原料及び採取条件により組成、分子量が広範囲に変化し定一しない」ものである。 The fulvic acid used in the present invention is one of humic substances obtained as an extract from humus soil, and according to the Dictionary of Chemistry (Kyoritsu Shuppansha, 1964) A substance that gives yellow or orange yellow color to the acidic supernatant when it is extracted with humic acid and precipitated with an inorganic acid. It is an amorphous substance that is soluble in water and ethanol, and has a single chemical structural formula. Rather than “the composition and molecular weight vary widely depending on the raw materials and sampling conditions”.
本発明において使用するフルボ酸の製造方法は特に限定されないが、例えば非特許文献1に記載された方法で製造した粗フルボ酸又は精製フルボ酸を使用することができる。
本発明は、精製フルボ酸を使用することがより好ましく、粗フルボ酸を使用する場合は、使用前に陽イオン交換樹脂を用いて混在する陽イオンを除去してから使用することが望ましい。
Although the manufacturing method of the fulvic acid used in this invention is not specifically limited, For example, the crude fulvic acid manufactured by the method described in the nonpatent literature 1 or refined fulvic acid can be used.
In the present invention, it is more preferable to use purified fulvic acid, and when using crude fulvic acid, it is desirable to use it after removing cations mixed with a cation exchange resin before use.
非特許文献1に記載された方法で得られる精製フルボ酸は水溶液なので、フルボ酸の含有量はフルボ酸のカルボキシル基当量から推定することが好ましい。カルボキシル基当量は、単位量のフルボ酸中に存在するカルボキシル基のモル当量数であって、[モル数/単位量]で表わすことができる。カルボキシル基当量は、例えば中和滴定法や標準品との比較による分光光度法によって求めることができる。 Since the purified fulvic acid obtained by the method described in Non-Patent Document 1 is an aqueous solution, the content of fulvic acid is preferably estimated from the carboxyl group equivalent of fulvic acid. The carboxyl group equivalent is the number of mole equivalents of carboxyl groups present in a unit amount of fulvic acid, and can be represented by [number of moles / unit amount]. The carboxyl group equivalent can be determined by, for example, a neutralization titration method or a spectrophotometric method by comparison with a standard product.
特許文献6が開示するフルボ酸の推定構造式を下記(化1)に示す。
特許文献6に記載されたフルボ酸の構造式は、推定構造式であるが、他の報告も参照して検討すると、フルボ酸は、共通の部分構造として、構造が強固で平面的な縮合ベンゼン環及び立体配座変化の自由度が高い炭素鎖を有する疎水性部分と、多くのカルボキシル基及び水酸基を有する親水性部分と、を有する。このためフルボ酸は、樹脂原料の水性エマルジョンに添加されると、油性の樹脂原料と水との界面に分布すると推定される。 The structural formula of fulvic acid described in Patent Document 6 is a presumed structural formula. However, when studied with reference to other reports, fulvic acid is a condensed partial benzene having a strong structure as a common partial structure. It has a hydrophobic part having a carbon chain with a high degree of freedom of ring and conformational change, and a hydrophilic part having many carboxyl groups and hydroxyl groups. For this reason, when fulvic acid is added to the aqueous emulsion of the resin raw material, it is estimated that it is distributed at the interface between the oily resin raw material and water.
非特許文献1は、ゲルろ過法のデータから、フルボ酸は分子量が主に700〜5000の範囲であって、還元力及び金属元素イオンに対するキレート能を有しており、Cu>Zn>Mnの強さの順位でキレートを形成すること、及び還元性を有することを報告している。フルボ酸が銅、銀、白金を含む金属元素に対してキレート能を有することは周知のことである。
天然界において、フルボ酸はキレート作用によって金属元素イオンを山から河川を経由して海に運搬する役割を果たしている。
また、フルボ酸は特許文献7に記載されているように抗菌性を有する。
Non-patent document 1 shows that fulvic acid has a molecular weight mainly in the range of 700 to 5000, has a reducing power and a chelating ability for metal element ions, and Cu>Zn> Mn. It is reported that chelates are formed in order of strength and that they have reducibility. It is well known that fulvic acid has a chelating ability for metal elements including copper, silver and platinum.
In nature, fulvic acid plays a role in carrying metal element ions from mountains through rivers to the sea by chelating action.
Further, fulvic acid has antibacterial properties as described in Patent Document 7.
本発明の抗菌性塗料は、所望によって樹脂硬化手段を含むことができる。
ここで、樹脂硬化手段は、反応して樹脂中に取り込まれる物質、反応開始剤や反応促進剤のように生成する樹脂中には取り込まれない物質、及び特段の物質を用いずに、風乾、加熱、及び紫外線照射のような手段によって樹脂原料を重合・硬化させる手段の何れをも含むことができる。
本願で用いる樹脂硬化手段(物質)は、市販されているもの、又は合成可能なものであって本発明に使用可能なものであればその種類は特に限定されない。
The antibacterial paint of the present invention can include a resin curing means as desired.
Here, the resin curing means is a substance that reacts and is taken into the resin, a substance that is not taken into the produced resin such as a reaction initiator or a reaction accelerator, and air-drying without using a special substance, Any of means for polymerizing and curing the resin raw material by means such as heating and ultraviolet irradiation can be included.
The resin curing means (substance) used in the present application is not particularly limited as long as it is commercially available or can be synthesized and used in the present invention.
特許文献5には、金属塩の金属の質量に対して0.2〜1.0倍のポリビニルピロリドン、を保護材として添加することにより貴金属ナノコロイド粒子を形成して金属コロイド溶液を製造する工程が開示されている。
また、特許文献5には、エポキシ樹脂硬化剤の脂肪族ポリアミンとしてポリエチレンイミンを用い、親水セグメントとしてポリオキシアルキレン樹脂を添加することが開示されている。本発明は、所望に応じてこれらの知見を応用することができる。
In Patent Document 5, a process for producing a metal colloid solution by forming noble metal nanocolloid particles by adding 0.2 to 1.0 times polyvinyl pyrrolidone as a protective material to the metal mass of a metal salt. Is disclosed.
Patent Document 5 discloses that polyethyleneimine is used as an aliphatic polyamine of an epoxy resin curing agent and a polyoxyalkylene resin is added as a hydrophilic segment. The present invention can apply these findings as desired.
即ち、本発明のフローリング用抗菌性塗料は、床面の表面部分に貴金属を安定に分散させる目的で、分散剤を含むことができる。本発明で用いる分散剤は、市販されているもの、又は合成可能なものであって、金属ナノコロイドを分散・安定化させ、且つ本発明に使用可能なものであれば、その種類は特に限定されないが、好ましい具体例としてポリビニルピロリドンを挙げることができる。 That is, the antibacterial paint for flooring of the present invention can contain a dispersant for the purpose of stably dispersing the noble metal on the surface portion of the floor surface. The type of the dispersing agent used in the present invention is not particularly limited as long as it is commercially available or can be synthesized, and can disperse and stabilize the metal nanocolloid and can be used in the present invention. Although not preferred, polyvinylpyrrolidone can be mentioned as a preferred specific example.
本発明のフローリング用抗菌性塗料は、床面に貴金属を高濃度に存在させる目的で、更に親水性セグメント樹脂を含むことができる。本発明で用いる親水性セグメント樹脂は、市販されているもの又は合成可能なものであって、本発明に使用可能なものであれば、その種類は特に限定されないが、好ましい親水性セグメント樹脂の具体例としてポリオキシアルキレン樹脂を挙げることができる。 The antibacterial coating material for flooring of the present invention can further contain a hydrophilic segment resin for the purpose of causing the noble metal to exist at a high concentration on the floor surface. The hydrophilic segment resin used in the present invention is not particularly limited as long as it is commercially available or can be synthesized and can be used in the present invention. Examples include polyoxyalkylene resins.
本発明は、抗菌性塗料を塗布、乾燥、及び硬化させて形成した抗菌性床面の重量1kgに対して、貴金属塩10−7乃至10−4[モル/kg床材]を含むことが好ましい。貴金属塩の量が10−7[モル/kg床材]より少ないと充分な抗菌性が得られず、10−4[モル/kg床材]より多くても、それ以上の効果が得られないので、経済的に好ましくない。 The present invention preferably contains noble metal salts 10 −7 to 10 −4 [mol / kg flooring material] with respect to 1 kg of the weight of the antibacterial floor formed by applying, drying and curing the antibacterial paint. . If the amount of the noble metal salt is less than 10 −7 [mol / kg flooring], sufficient antibacterial properties cannot be obtained, and if it is more than 10 −4 [mol / kg flooring], no further effect can be obtained. So it is not economically preferable.
また本発明は、貴金属塩のモル当量とフルボ酸のカルボキシル基当量との比が1:10乃至1:100の範囲内であることが好ましい。貴金属塩のモル当量とフルボ酸のカルボキシル基当量との比が1:10以下では、貴金属を床面の表面部分に高濃度に存在させるというフルボ酸の効果を充分に発揮することができず、貴金属塩のモル当量に対してフルボ酸のカルボキシル基当量との比が1:100以上になるように加えても、それ以上の効果が得られないので、経済的に好ましくない。 In the present invention, the molar ratio of the noble metal salt to the carboxyl group equivalent of the fulvic acid is preferably in the range of 1:10 to 1: 100. When the ratio of the molar equivalent of the noble metal salt to the carboxyl group equivalent of the fulvic acid is 1:10 or less, the effect of the fulvic acid for allowing the noble metal to be present at a high concentration in the surface portion of the floor surface cannot be sufficiently exhibited. Even if it is added so that the ratio of the carboxyl group equivalent of the fulvic acid to the molar equivalent of the noble metal salt is 1: 100 or more, no further effect is obtained, which is economically undesirable.
フルボ酸を用いて貴金属を樹脂の表面部分に高濃度の存在させる方法は、フルボ酸をメディエーターとする、生化学の分野で多用させる手法に習ったものである。
即ち、フルボ酸の水溶液を、水酸基に反応性を有する樹脂原料の水性エマルジョンに添加すると、フルボ酸は、樹脂原料粒子と水との界面に付着すると共に、フルボ酸の水酸基の一部は、樹脂原料のモノマー又はオリゴマーと反応して結合する。
The method of using a fulvic acid to make a noble metal present at a high concentration on the surface of the resin is a method that is frequently used in the field of biochemistry using fulvic acid as a mediator.
That is, when an aqueous solution of fulvic acid is added to an aqueous emulsion of a resin raw material having reactivity with a hydroxyl group, fulvic acid adheres to the interface between the resin raw material particles and water, and a part of the hydroxyl group of fulvic acid is a resin. It reacts and bonds with the monomer or oligomer of the raw material.
水性エマルジョンの樹脂原料にフルボ酸と貴金属塩と樹脂硬化手段を混合すると、樹脂が硬化手段で架橋ネットワーク化される。この際、モノマー又はオリゴマーが結合したフルボ酸は、フルボ酸の水酸基に結合した樹脂原料のモノマー又はオリゴマーがアンカー分子となって樹脂部分と結合する。
フルボ酸は分子量が大きいので、(例えば酵素のように、)アンカー分子と結合しても、分子の立体的な配座及び金属イオンに対するキレート能を保持したままで樹脂の表面部分と結合することができる。
When a fulvic acid, a noble metal salt, and a resin curing means are mixed with a resin raw material of an aqueous emulsion, the resin is crosslinked by the curing means. At this time, the fulvic acid to which the monomer or oligomer is bonded is bonded to the resin portion by using the monomer or oligomer of the resin raw material bonded to the hydroxyl group of fulvic acid as an anchor molecule.
Because fulvic acid has a large molecular weight, it binds to the surface part of the resin while retaining the steric conformation of the molecule and the ability to chelate metal ions even when bound to an anchor molecule (such as an enzyme). Can do.
またフルボ酸の親水性の部分が水相に親和してフルボ酸が樹脂原料粒子の表面部分に牽引されて、フルボ酸が樹脂の表面に近い部分に固定され、銀塩もフルボ酸にキレート結合されて樹脂の表面部分に分散され、貴金属塩が徐々に還元されて貴金属ナノコロイドになる。この際、硬化剤として分子内に2以上のアミノ基を有する脂肪族アミンを用いると、貴金属塩と樹脂硬化剤とがアンミン錯体を形成して分子内酸化還元反応が円滑に進行することがある。
また、別途に少量の樹脂原料とフルボ酸との結合体を形成させた後に、残部の樹脂原料と樹脂硬化手段を加えて全量にすることができるし、還元剤を追加して貴金属塩を還元して貴金属ナノコロイド化を促進することもできる。
In addition, the hydrophilic part of fulvic acid has affinity with the aqueous phase and fulvic acid is pulled by the surface part of the resin raw material particles, so that fulvic acid is fixed to the part near the surface of the resin, and the silver salt is chelate-bonded to fulvic acid. Then, it is dispersed on the surface portion of the resin, and the noble metal salt is gradually reduced to become a noble metal nanocolloid. In this case, if an aliphatic amine having two or more amino groups in the molecule is used as the curing agent, the noble metal salt and the resin curing agent may form an ammine complex, and the intramolecular redox reaction may proceed smoothly. .
In addition, after a small amount of resin raw material and fulvic acid are formed separately, the remaining resin raw material and resin curing means can be added to make a total amount, and a reducing agent can be added to reduce the noble metal salt. Thus, pre-metal nanocolloidization can be promoted.
(製造例1)精製フルボ酸水溶液の製造
0.1M水酸化ナトリウム水溶液と0.1Mリン酸1水素2ナトリウム水溶液の等量混合液20Lに、腐食土1.0kgを加えて50℃で24時間緩やかに撹拌した後ろ過した。ろ液に3M硫酸を加えてpH1とし、室温に24時間放置した後、遠心分離してフミン酸画分を除去し、粗フルボ酸を得た。
粗フルボ酸を1.0kgの活性炭を充填したカラムに通じてフルボ酸を吸着させ、活性炭カラムを水洗した後に0.1M水酸化ナトリウム水溶液を用いて5〜10mL/minの速さで抽出し、褐色の抽出液をアンバーライトIRA400(H−type)のカラムを通過させて、黄色ないし橙黄色の精製フルボ酸水溶液0.75Lを得た。得られた精製フルボ酸水溶液のカルボキシル基当量は、中和滴定法によって、35.6ミリカルボキシル基当量/Lであった。
(Production Example 1) Production of purified aqueous fulvic acid solution To 20 L of a mixed solution of 0.1 M sodium hydroxide aqueous solution and 0.1 M aqueous solution of sodium dihydrogen phosphate, 1.0 kg of corrosive earth was added and the mixture was stirred at 50 ° C. for 24 hours. After gently stirring, it was filtered. The filtrate was adjusted to pH 1 by adding 3 M sulfuric acid, and allowed to stand at room temperature for 24 hours, and then centrifuged to remove the humic acid fraction to obtain crude fulvic acid.
The crude fulvic acid is passed through a column packed with 1.0 kg of activated carbon to adsorb the fulvic acid, and the activated carbon column is washed with water and then extracted with a 0.1 M aqueous sodium hydroxide solution at a rate of 5 to 10 mL / min. The brown extract was passed through a column of Amberlite IRA400 (H-type) to obtain 0.75 L of a yellow to orange yellow purified fulvic acid aqueous solution. The resulting purified fulvic acid aqueous solution had a carboxyl group equivalent of 35.6 millicarboxyl group equivalent / L by neutralization titration.
(実施例1)銀イオン及びフルボ酸を添加したエポキシ樹脂原料の製造
エポキシ樹脂プレポリマー0.1kgに製造例1で得た精製フルボ酸水溶液56.2mL(2.0ミリカルボキシル基当量)と、0.1M硝酸銀水溶液1mL(0.1ミリモル)と、を加えて均一になるまで撹拌した後、室温に24時間放置し、銀イオン及びフルボ酸を添加したエポキシ樹脂原料を製造した。
(Example 1) Production of epoxy resin raw material to which silver ions and fulvic acid were added 56.2 mL (2.0 millicarboxyl group equivalent) of purified fulvic acid aqueous solution obtained in Production Example 1 to 0.1 kg of epoxy resin prepolymer, 1 mL (0.1 mmol) of 0.1 M silver nitrate aqueous solution was added and stirred until uniform, and then allowed to stand at room temperature for 24 hours to produce an epoxy resin raw material to which silver ions and fulvic acid were added.
(実施例2)フローリング用抗菌性塗料原料の製造
実施例1で製造した銀イオン及びフルボ酸を添加したエポキシ樹脂原料に、エポキシ樹脂プレポリマー0.9kg、所定量のエポキシ樹脂硬化剤、及び水1Lを加え、均一になるまで高速撹拌し乳化してフローリング用抗菌性塗料を製造した。エポキシ樹脂硬化剤の量は、製品カタログに記載された値(本実施例では、エポキシ樹脂プレポリマーの重量を100重量部としたときに40重量部のエポキシ樹脂硬化剤)を用いた。
(Example 2) Production of antibacterial paint raw material for flooring To epoxy resin raw material to which silver ion and fulvic acid produced in Example 1 were added, 0.9 kg of epoxy resin prepolymer, a predetermined amount of epoxy resin curing agent, and water 1 L was added, and the mixture was stirred at high speed until uniform and emulsified to produce an antibacterial paint for flooring. As the amount of the epoxy resin curing agent, the value described in the product catalog (in this example, 40 parts by weight of the epoxy resin curing agent when the weight of the epoxy resin prepolymer is 100 parts by weight) was used.
(実施例3)
実施例2で製造したフローリング用抗菌性塗料を、7m2の床面になるように噴霧法により均一に塗布し、乾燥させて抗菌性床面を製造した。塗装後の塗膜の厚さは0.2mmであった。
(Example 3)
The antibacterial paint for flooring produced in Example 2 was uniformly applied by a spraying method so as to be a floor surface of 7 m 2 and dried to produce an antibacterial floor surface. The thickness of the coated film after painting was 0.2 mm.
(比較例1)
実施例2、3と同様に、但しフルボ酸水溶液の代わりに同じ容量の水を加えて比較例1のフローリング用抗菌性塗料を製造した。
(Comparative Example 1)
The antibacterial paint for flooring of Comparative Example 1 was produced in the same manner as in Examples 2 and 3, except that the same volume of water was added instead of the fulvic acid aqueous solution.
(比較例2)
比較例1のフローリング用抗菌性シリコーン塗料を用いて、実施例3と同様の操作で、比較例2のフローリング用抗菌性塗料を製造した。
(Comparative Example 2)
Using the antibacterial silicone paint for flooring of Comparative Example 1, the antibacterial paint for flooring of Comparative Example 2 was produced in the same manner as in Example 3.
(銀鏡反応)
製造例1で製造した35.6ミリカルボキシル基当量/Lの精製フルボ酸水溶液56.2mL(2ミリカルボキシル基当量)を凍結乾燥して377mgの黄褐色粉末を得た(粉末フルボ酸は、5.3カルボキシル基当量/kg−粉末)。
この粉末を水4mLに溶解し、0.1M硝酸銀4mLに濃アンモニア水を加えて作成したトレンス試薬を加え、50℃に加温すると、10分後に銀鏡の形成が認められ、フルボ酸は銀イオンを金属銀に還元する還元力を有することが示された。
(Silver mirror reaction)
56.2 mL (2 millicarboxyl group equivalent) of a 35.6 millicarboxyl group equivalent / L purified fulvic acid aqueous solution produced in Production Example 1 was lyophilized to obtain 377 mg of a tan powder (powdered fulvic acid was 5 .3 carboxyl group equivalent / kg-powder).
Dissolve this powder in 4 mL of water, add a torence reagent prepared by adding concentrated ammonia water to 4 mL of 0.1 M silver nitrate, and warm to 50 ° C., forming a silver mirror after 10 minutes. It has been shown to have a reducing power to reduce the metal to silver metal.
(銀ナノコロイド生成試験)
製造例1で製造した35.6ミリカルボキシル基当量/Lの精製フルボ酸水溶液56.2mL(2.0ミリカルボキシルキ当量)に、0.1M硝酸銀水溶液1mLを加えて均一になるまで撹拌した後、25gのポリエチレンイミンと、10gのポリビニルピロリドンと、を加え、均一になるまで撹拌した。この溶液のプラズモン吸収スペクトルを測定したところ、400nmにプラズモン吸収スペクトルのピークが認められ、銀ナノコロイド粒子の生成を確認した。
(Silver nano colloid production test)
After adding 1 mL of 0.1 M silver nitrate aqueous solution to 56.2 mL (2.0 millicarboxyl equivalent) of the purified fulvic acid aqueous solution of 35.6 millicarboxyl group equivalent / L produced in Production Example 1, and stirring until uniform. 25 g of polyethyleneimine and 10 g of polyvinyl pyrrolidone were added and stirred until uniform. When the plasmon absorption spectrum of this solution was measured, a peak of the plasmon absorption spectrum was observed at 400 nm, confirming the formation of silver nanocolloid particles.
(銀ナノコロイドの分布)
実施例3で製造した抗菌性床面(厚さ0.2mm)を表面と平行に研磨し、研磨カスが混ざり合わないように注意しながら分取し、表面側から略均等に第1分画〜第5分画に分割した。
各分画10mgを液体培地4mLに懸濁し、倍々希釈による液体培地希釈法によって各分画の抗菌力を比較した。
(試験結果)
使用培地:標準液体培地、栄研化学製薬
試験菌: Bacillus subutilis natto (納豆から採取)
(Distribution of silver nanocolloid)
The antibacterial floor surface (thickness 0.2 mm) produced in Example 3 was ground in parallel with the surface, and was collected with care so as not to mix abrasive debris. -Divided into fifth fractions.
10 mg of each fraction was suspended in 4 mL of liquid medium, and the antibacterial activity of each fraction was compared by a liquid medium dilution method by doubling dilution.
(Test results)
Medium used: Standard liquid medium, Eiken Chemical Co., Ltd. Test bacteria: Bacillus subtilis natto (collected from natto)
実施例3で製造した抗菌性床面の研磨カスは、表面に近い第1分画及び第2分画の研磨カスが強い抗菌力を示し、銀コロイドが表面部分に高濃度に存在していることが示された。
The antibacterial floor polishing residue produced in Example 3 shows strong antibacterial activity in the first and second fraction polishing residues close to the surface, and the silver colloid is present at a high concentration in the surface portion. It was shown that.
(抗菌性試験)
試験機関:財団法人日本食品分析センター
実施例3及び比較例2で製造した抗菌性床面の抗菌力試験を、JIS Z 2801:2000「抗菌加工製品−抗菌性試験方法・抗菌効果」 5.2 プラスチック製品などの試験方法に従って行った。結果を表2に示す。
表2に示すように、本発明の抗菌性床面は、腸炎ビブリオ菌、メチシリン耐性ブドウ球に強い抗菌性を示すことが示された。
(Antimicrobial test)
Testing organization: Japan Food Analysis Center Foundation Antibacterial activity test of antibacterial floor produced in Example 3 and Comparative Example 2 was conducted according to JIS Z 2801: 2000 “Antimicrobial Processed Products-Antibacterial Testing Method / Antimicrobial Effect” 5.2. The test was conducted according to a test method for plastic products. The results are shown in Table 2.
As shown in Table 2, the antibacterial floor surface of the present invention was shown to exhibit strong antibacterial properties against Vibrio parahaemolyticus and methicillin-resistant staphylococci.
(カビ抵抗性試験)
試験機関:財団法人日本食品分析センター
実施例3及び比較例2で製造した抗菌性床面のカビ抵抗性試験を、JIS Z 2911:2010「カビ抵抗性試験方法」塗料の試験 に従って一週間の培養試験を行った。
試験結果によれば、本発明の抗菌性床面は、白癬菌に対して強い抗カビ性を有することが示された。
(試験結果)
試験菌:Trichophyton rubrum TIMM 2659(白癬菌)
試験結果
実施例3:試験片に菌糸の発育が認められない。
試験例2:菌糸の発育部分の面積は、全面積の1/3を超えない。
無処理 :菌糸の発育部分の面積は、全面積の1/3を超える。
(Mold resistance test)
Testing institute: Japan Food Analysis Center Foundation Antifungal flooring produced in Example 3 and Comparative Example 2 was tested for one week according to JIS Z 2911: 2010 “Fung resistance test method” paint test A test was conducted.
According to the test results, it was shown that the antibacterial floor surface of the present invention has strong antifungal properties against ringworm.
(Test results)
Test bacteria: Trichophyton rubrum TIMM 2659 (Rhabdoniae)
Test Results Example 3: Mycelium growth is not observed on the test piece.
Test Example 2: The area of the mycelial growth part does not exceed 1/3 of the total area.
Untreated: The area of the mycelium growth part exceeds 1/3 of the total area.
(抗ウィルス性試験)
試験機関:財団法人日本食品分析センター
試験ウィルス:
Feline calicivirus F−9 ATCC VR−782
(ネコカリシウィルス)
試験概要:実施例3及び比較例2で製造した抗菌性シリコーン樹脂床面に、ネコカリシ
ウィルスの浮遊液を10倍に希釈して作用させ、0.5、1、3、及び24時間後に作用液を1000倍に希釈してのウィルス感染価を測定した。
使用細胞:CRFK細胞(大日本製薬株式会社)
ウィルス感染価の測定:細胞増殖培地を用い、マイクロプレート内で単層培養し培養液
を除去した試験細胞に、細胞維持培地と作用液を加え、炭酸ガスインキュベーター内で4〜7日培養後、細胞の形態変化を観測し、50%組織培養感染量(TCID50)を算出して作用液1mL当たりのウィルス感染価に換算した。
(試験結果):結果を表3に示す。
(Antiviral test)
Testing organization: Japan Food Research Center Foundation Test virus:
Feline calicivirus F-9 ATCC VR-782
(Feline calicivirus)
Outline of the test: The suspension of feline calicivirus was allowed to act on the antibacterial silicone resin floor surface produced in Example 3 and Comparative Example 2 10 times, and acted after 0.5, 1, 3, and 24 hours. The virus infectivity was measured after diluting the solution 1000 times.
Cells used: CRFK cells (Dainippon Pharmaceutical Co., Ltd.)
Measurement of virus infectivity titer: A cell maintenance medium and a working fluid were added to a test cell which had been cultured in a monolayer in a microplate using a cell growth medium and the culture medium was removed, and cultured for 4 to 7 days in a carbon dioxide incubator. The change in cell morphology was observed, and the 50% tissue culture infectious dose (TCID 50 ) was calculated and converted to the virus infection titer per mL of working fluid.
(Test results): The results are shown in Table 3.
表3に示すように、本発明の抗菌性床面は、ノロウィルスの代替ウィルスであるネコカリシウィルスに対して、強い増殖阻止作用を示した。
As shown in Table 3, the antibacterial floor surface of the present invention exhibited a strong growth inhibitory action against feline calicivirus, which is a substitute virus for Norovirus.
(滑り性試験)
試験機関:財団法人建材試験センター
実施例3で製造した抗菌性床面の滑り性試験を、JIS A 1454(高
分子系張り床材試験方法) 6.14 滑り試験 に従って行った。
(試験結果)
実施例3の滑り抵抗係数 1.25
比較例2の滑り抵抗係数 1.25
ポリウレタン樹脂の滑り抵抗係数 0.98
(Slip test)
Testing organization: Building Materials Testing Center
The slip test of the antibacterial floor produced in Example 3 was conducted according to JIS A 1454 (high
(Molecular-based tension flooring test method) 6.14 Sliding test
(Test results)
Slip resistance coefficient of Example 3 1.25
Slip resistance coefficient of Comparative Example 2 1.25
Sliding resistance coefficient of polyurethane resin 0.98
以上、本発明に関する好ましい実施形態を説明したが、本発明は前記実施形態に限定されず、本発明の属する技術範囲を逸脱しない範囲での全ての変更が含まれる。 As mentioned above, although preferred embodiment regarding this invention was described, this invention is not limited to the said embodiment, All the changes in the range which does not deviate from the technical scope to which this invention belongs are included.
Claims (9)
前記フローリング用抗菌性塗料を塗布、乾燥、重合・硬化させて形成した床材の重量1kgに対して、前記貴金属塩を、10 −7 乃至10 −4 [モル/kg床材]含み、前記床材中の前記貴金属塩のモル当量と、フルボ酸のカルボキシル基当量と、の比が、1:10乃至1:100の範囲内であることを特徴とする抗菌性床面。 Forming an antibacterial paint for flooring, which is an aqueous emulsion containing a resin raw material having reactivity with a hydroxyl group, a noble metal salt, fulvic acid, and a resin curing means, by applying, drying, and polymerizing / curing ,
Applying the flooring antibacterial coating, drying, relative to the weight 1kg of flooring which is formed by polymerizing and curing, the noble metal salt comprises 10 -7 to 10 -4 [mol / kg flooring, the floor The antibacterial floor surface , wherein a ratio between a molar equivalent of the noble metal salt in the material and a carboxyl group equivalent of fulvic acid is within a range of 1:10 to 1: 100 .
The antibacterial floor surface according to claim 8, wherein the hydrophilic segment resin is a polyoxyalkylene resin.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015010717A JP5785666B1 (en) | 2015-01-22 | 2015-01-22 | Antibacterial floor |
PCT/JP2016/051610 WO2016117620A1 (en) | 2015-01-22 | 2016-01-20 | Antibacterial flooring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015010717A JP5785666B1 (en) | 2015-01-22 | 2015-01-22 | Antibacterial floor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5785666B1 true JP5785666B1 (en) | 2015-09-30 |
JP2016132977A JP2016132977A (en) | 2016-07-25 |
Family
ID=54207138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015010717A Active JP5785666B1 (en) | 2015-01-22 | 2015-01-22 | Antibacterial floor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5785666B1 (en) |
WO (1) | WO2016117620A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5947445B1 (en) * | 2015-08-11 | 2016-07-06 | 大木 彬 | Oil-based antibacterial paint for flooring and method for producing antibacterial floor |
JP7073593B1 (en) * | 2022-01-19 | 2022-05-23 | 大木 彬 | Antibacterial, antifungal, antiviral disinfectant composition |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108753098A (en) * | 2018-04-26 | 2018-11-06 | 苏州宇江建材有限公司 | A kind of high intensity shrinkage-void water-base epoxy floor coating and preparation method thereof |
CN113498790A (en) * | 2021-07-02 | 2021-10-15 | 上海鑫灵精细化工有限公司 | Functional group immobilized nano-silver material, and preparation method and application thereof |
KR102704669B1 (en) * | 2021-10-14 | 2024-09-09 | 전찬영 | Eco-friendly aqueous coating composition with antiviral, antibacterial, antifungal and Far-infrared radiation properties |
JP2023180157A (en) * | 2022-06-08 | 2023-12-20 | 東洋製罐グループホールディングス株式会社 | Antiviral coating composition, coating film, and article |
JP7417665B2 (en) * | 2022-06-08 | 2024-01-18 | 東洋製罐グループホールディングス株式会社 | Antiviral aerosol compositions, coatings, and articles |
JP7361965B1 (en) * | 2023-03-23 | 2023-10-16 | 彬 大木 | A two-component emulsion coating agent having antiviral activity, antifungal activity, and antibacterial activity including coronaviruses, and a method for sterilizing viruses, molds, and bacteria including coronaviruses. |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3177106B2 (en) * | 1994-10-11 | 2001-06-18 | 株式会社フジタ | Infection prevention facility |
US6478946B1 (en) * | 1996-01-05 | 2002-11-12 | The Chemins Company, Inc. | Method of producing fulvic, humic, and ulmic acid for use as an electrolyte in producing ionized bactereacides from precious metals and method of producing ionized bactereacides from precious metals and organic acids |
JPH11315001A (en) * | 1998-04-30 | 1999-11-16 | Nikko:Kk | Antimicrobial liquid and its production |
JP2004149748A (en) * | 2002-10-30 | 2004-05-27 | Sc Act:Kk | Method for producing addition material for polymeric material, etc., taking advantage of property of humic substance and method for using said activity |
JP2008007451A (en) * | 2006-06-28 | 2008-01-17 | Ray & Company Inc | Sterilizer |
JP2009292788A (en) * | 2008-06-09 | 2009-12-17 | Mikio Sugimoto | Method for producing liquid metal chelate compound and metal chelate compound |
JP4599476B2 (en) * | 2009-06-08 | 2010-12-15 | 香川県 | Paper with antibacterial function |
-
2015
- 2015-01-22 JP JP2015010717A patent/JP5785666B1/en active Active
-
2016
- 2016-01-20 WO PCT/JP2016/051610 patent/WO2016117620A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5947445B1 (en) * | 2015-08-11 | 2016-07-06 | 大木 彬 | Oil-based antibacterial paint for flooring and method for producing antibacterial floor |
JP7073593B1 (en) * | 2022-01-19 | 2022-05-23 | 大木 彬 | Antibacterial, antifungal, antiviral disinfectant composition |
Also Published As
Publication number | Publication date |
---|---|
WO2016117620A1 (en) | 2016-07-28 |
JP2016132977A (en) | 2016-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5785666B1 (en) | Antibacterial floor | |
Pizzi | Tannins: Prospectives and actual industrial applications | |
Ajiboye et al. | Graphitic carbon nitride-based catalysts and their applications: A review | |
Soto et al. | Functionalized mesoporous silica via an aminosilane surfactant ion exchange reaction: controlled scaffold design and nitric oxide release | |
Gehring et al. | Sunlight-triggered nanoparticle synergy: teamwork of reactive oxygen species and nitric oxide released from mesoporous organosilica with advanced antibacterial activity | |
Subhan et al. | Sodium alginate grafted poly (N-vinyl formamide-co-acrylic acid)-bentonite clay hybrid hydrogel for sorptive removal of methylene green from wastewater | |
Joshi et al. | Utilization of polypyrrole/ZnO nanocomposite in the adsorptive removal of Cu 2+, Pb 2+ and Cd 2+ ions from wastewater | |
Mohammad et al. | Enhanced biological activity and biosorption performance of trimethyl chitosan-loaded cerium oxide particles | |
Bhatti et al. | Magnetizing calixarene: Azo dye removal from aqueous media by Fe3O4 nanoparticles fabricated with carboxylic-substituted calix [4] arene | |
Ruggiero et al. | Incorporation of the zosteric sodium salt in silica nanocapsules: synthesis and characterization of new fillers for antifouling coatings | |
Terangpi et al. | Improved removal of hexavalent chromium from 10 mg/L solution by new micron sized polymer clusters of aniline formaldehyde condensate | |
JP5947445B1 (en) | Oil-based antibacterial paint for flooring and method for producing antibacterial floor | |
Zhao et al. | Gallol‐Tethered Injectable AuNP Hydrogel with Desirable Self‐Healing and Catalytic Properties | |
Kazeminava et al. | A facile approach to incorporate silver nanoparticles into solvent-free synthesized PEG-based hydrogels for antibacterial and catalytical applications | |
Fu et al. | Studying adsorption and cellular toxicity of boron nitride nanostructure versus melphalan anti-ovarian cancer drug | |
Vidovix et al. | Efficient performance of copper oxide nanoparticles synthesized with pomegranate leaf extract for neutral red dye adsorption | |
Arkas et al. | Two completely different biomimetic reactions mediated by the same matrix producing inorganic/organic/inorganic hybrid nanoparticles | |
Zhao et al. | pH-responsive intelligent antibacterial coatings based on 2D-COF for controlled release of capsaicin | |
Kaur et al. | Monodispersed silica nanoparticles incorporated nanocomposites of gelatin and psyllium for sequestration of noxious pollutants | |
Aliabadi et al. | Removal of rhodamine B from aqueous solution by almond shell biosorbent | |
An et al. | An experimental application of four types of chitosan bead for removal of cationic and anionic pollutants | |
KR101259867B1 (en) | A absorbent comprising hydrophobic mesoporous material for removal of harmful pharmaceuticals from aqueous environment | |
Demadis et al. | Naturally derived and synthetic polymers as biomimetic enhancers of silicic acid solubility in (bio) silicification processes | |
Malik et al. | An overview of paclitaxel and molecular imprinted polymers capped with quantum dots as an alternative approach for paclitaxel extraction and detection | |
Hassanzadeh-Afruzi et al. | High adsorption capability of chlorpyrifos and Congo red in aqueous samples by a functionalized dextrin/graphene oxide composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150721 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150724 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5785666 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |