JP5783558B2 - Automotive air conditioner - Google Patents

Automotive air conditioner Download PDF

Info

Publication number
JP5783558B2
JP5783558B2 JP2011091604A JP2011091604A JP5783558B2 JP 5783558 B2 JP5783558 B2 JP 5783558B2 JP 2011091604 A JP2011091604 A JP 2011091604A JP 2011091604 A JP2011091604 A JP 2011091604A JP 5783558 B2 JP5783558 B2 JP 5783558B2
Authority
JP
Japan
Prior art keywords
air
vehicle
flow path
ventilation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011091604A
Other languages
Japanese (ja)
Other versions
JP2012224135A (en
Inventor
琢昌 渡邊
琢昌 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Heat Use Technology
Original Assignee
Yokohama Heat Use Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Heat Use Technology filed Critical Yokohama Heat Use Technology
Priority to JP2011091604A priority Critical patent/JP5783558B2/en
Publication of JP2012224135A publication Critical patent/JP2012224135A/en
Application granted granted Critical
Publication of JP5783558B2 publication Critical patent/JP5783558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、電気自動車やハイブリッド自動車、あるいはプラグインハイブリッド自動車、燃料電池自動車等において、フロントウインドウ等の結露(曇り)を防止すると共に、車室内暖房を行う自動車用空調装置に関する。 The present invention relates to an automobile air conditioner that prevents condensation (fogging) of a front window and the like and heats the interior of a vehicle in an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a fuel cell vehicle, and the like.

近年、化石燃料の使用に伴う温室効果ガスである二酸化炭素の排出量を削減すべく、走行時において化石燃料を全く使用しない電気自動車や、燃費を大幅に改善したハイブリッド自動車、あるいはプラグインハイブリッド自動車等の導入が進展している。
しかしながら、これらの自動車では外気温度が低温となる場合に、車内暖房やウインドウガラスの結露防止などのために、車載バッテリーからの電力を使用すると走行可能距離が短縮してしまうという問題がある。
In recent years, electric vehicles that do not use fossil fuels at the time of driving, hybrid vehicles that have greatly improved fuel efficiency, or plug-in hybrid vehicles to reduce the emission of carbon dioxide, a greenhouse gas associated with the use of fossil fuels Etc. are making progress.
However, in these automobiles, when the outside air temperature is low, there is a problem that the travelable distance is shortened when electric power from the in-vehicle battery is used for heating the inside of the car or preventing condensation on the window glass.

また、車内冷房には圧縮式冷凍装置を用いるが、処理対象空気の露点温度が目的とする室温より高い場合には、処理対象空気を露点温度以下まで冷却する際、処理対象空気からの結露が発生する。このため、圧縮式冷凍装置の負荷が増大すると共に、低温度までの冷却に伴う冷凍効率の低下が発生し、電力消費量が増大する。これらの結果、車載バッテリーからの電力消費量が増大し、走行可能距離が短縮してしまうという問題がある。 In addition, a compression refrigeration system is used for cooling the interior of the vehicle.If the dew point temperature of the processing target air is higher than the target room temperature, condensation from the processing target air may occur when the processing target air is cooled below the dew point temperature. Occur. For this reason, while the load of a compression-type refrigeration apparatus increases, the refrigerating efficiency falls by cooling to low temperature, and electric power consumption increases. As a result, there is a problem that the power consumption from the in-vehicle battery increases and the travelable distance is shortened.

これら問題の解決のために車載バッテリーの容量を増大して、1充電あたりの走行可能距離を確保する方策が採られるが、車両重量の増大やバッテリーコストの増大等を招いてしまう。 In order to solve these problems, measures are taken to increase the capacity of the in-vehicle battery and ensure the travelable distance per charge, but this leads to an increase in vehicle weight, an increase in battery cost, and the like.

このような問題を解決するには、車載バッテリーからの給電に多くを依存しない車内暖房やウインドウの防曇手段、あるいは車内冷房時の水蒸気凝縮潜熱負荷の低減手段が有効となる。 In order to solve such problems, in-vehicle heating and window anti-fogging means that do not depend much on the power supplied from the vehicle-mounted battery, or means for reducing the steam condensation latent heat load during cooling of the inside of the car are effective.

例えば、外気が5℃、相対湿度60%(絶対湿度2.6g/kg)の条件で、車内の空気重量が4.8kgの空間に乗員3名が乗車すると、人間の不感常泄量(水蒸気発散量)は、一人当たり毎時約30gであるから、車内空気の絶対湿度は空気1kg当たり毎時18.8gの割合で上昇する。このため、ウインドウガラス近傍において、空気温度が5℃に近づくとウインドウガラスに結露が発生する。5℃空気の飽和水蒸気量は空気1kgあたり5.4gであるから、運転開始から遅くとも9分程度で相対湿度100%となり、ウインドウガラスが曇り始める。 For example, if three occupants get into a space where the air weight in the vehicle is 4.8 kg under conditions of 5 ° C. outside air and 60% relative humidity (2.6 g / kg absolute humidity), human insensitive normal excretion (water vapor) Since the amount of divergence is about 30 g per person per hour, the absolute humidity of the air inside the vehicle rises at a rate of 18.8 g per hour per kg of air. For this reason, when the air temperature approaches 5 ° C. in the vicinity of the window glass, condensation occurs on the window glass. Since the saturated water vapor amount of 5 ° C. air is 5.4 g per kg of air, the relative humidity becomes 100% at the latest about 9 minutes from the start of operation, and the window glass starts to become cloudy.

自動車ウインドウ等の結露(曇り)防止策として、近年、自動車用空調装置に除湿材を使用するデシカント空調技術が提案されている。デシカント空調技術は除湿材による水分吸湿作用を利用するものであるが、一定量の水分を吸湿した除湿材は、低相対湿度の高温空気による再生が必要である。
例えば下記特許文献1では、除湿材を担持した通気型ロータの再生に、車載のヒートポンプからの温風を利用する電気自動車用空調システムが記載されている。
In recent years, a desiccant air-conditioning technology that uses a dehumidifying material for an air-conditioner for automobiles has been proposed as a measure for preventing condensation (clouding) of automobile windows and the like. The desiccant air-conditioning technology uses the moisture-absorbing action of the dehumidifying material, but the dehumidifying material that absorbs a certain amount of moisture needs to be regenerated with high-temperature air having a low relative humidity.
For example, Patent Document 1 below describes an air conditioning system for an electric vehicle that uses hot air from an in-vehicle heat pump to regenerate a ventilation rotor carrying a dehumidifying material.

また、下記特許文献2では、処理対象空気の除湿負荷軽減を目的に自動車の空調システムに除湿材を内包する吸湿容器を設置し、圧縮式冷凍装置による冷却除湿の負荷を軽減する空調システムが記載されている。 Further, Patent Document 2 below describes an air conditioning system in which a moisture absorption container containing a dehumidifying material is installed in an air conditioning system of an automobile for the purpose of reducing a dehumidifying load of processing target air, thereby reducing a cooling and dehumidifying load by a compression refrigeration apparatus. Has been.

また、下記特許文献3では、電気自動車の暖房時の電力負荷を軽減するために、車載バッテリーの充電時に温水製造を併せて行う蓄熱手段を用いる空調システムが記載されている。 Further, Patent Document 3 below describes an air conditioning system that uses heat storage means that performs hot water production when charging an on-vehicle battery in order to reduce the power load during heating of the electric vehicle.

特開2009−154862JP2009-154862 特開平8−67136JP-A-8-67136 特開平5−270252JP-A-5-270252

前記特許文献1記載の電気自動車用空調システムでは、除湿材を担持した通気型ロータを通過する空気流路を2分割した上で、一方の流路で処理対象空気を除湿し、他方の流路を通過する空気を車載ヒートポンプで加熱した後に通気型ロータを通過させることで、除湿材を再生する構成を用いている。このため、処理対象空気と再生空気の流路に跨る通気型ロータを回転させる装置や、2つの流路を流れる空気の混合を防止するシールが必要となるなど、装置全体が複雑で大型化する問題を有している。また、外気温度が低下する場合、ヒートポンプによる温風製造能力が低下するので、除湿材の再生が十分ではなく、車載バッテリーからの給電による空気の追加加熱が必要となるなどの問題がある。 In the electric vehicle air conditioning system described in Patent Document 1, the air flow path passing through the ventilation rotor carrying the dehumidifying material is divided into two, and then the air to be treated is dehumidified in one flow path, and the other flow path is formed. A configuration in which the dehumidifying material is regenerated by heating the air passing through the vehicle with an in-vehicle heat pump and then passing through the ventilation type rotor is used. For this reason, the entire apparatus is complicated and large in size, such as a device that rotates a ventilation rotor that straddles the flow path of processing target air and regeneration air, and a seal that prevents mixing of air flowing through the two flow paths. Have a problem. Further, when the outside air temperature is lowered, the hot air production capability by the heat pump is lowered, so that there is a problem that regeneration of the dehumidifying material is not sufficient and additional heating of the air by power feeding from the in-vehicle battery is required.

前記特許文献2記載の自動車用空調システムでは、除湿材再生に車載バッテリーからの電力、あるいは車載発電装置からの電力を用いることから、電気自動車等における走行可能距離の低下対策には無益である。 In the air conditioning system for automobiles described in Patent Document 2, since power from an in-vehicle battery or electric power from an in-vehicle power generation device is used for regeneration of the dehumidifying material, it is useless for measures for reducing the travelable distance in an electric vehicle or the like.

前記特許文献3記載の電気自動車用空調システムでは、暖房のために電気自動車に蓄熱装置を搭載し、ここから温熱の供給を受け、温風製造のための電力消費を低減するシステムが紹介されている。しかしながら、蓄熱装置の蓄熱量が限定的であるため、運転初期の温風製造は可能であるが、長時間の連続温風製造が出来ないという問題がある。 In the electric vehicle air-conditioning system described in Patent Document 3, a system for installing a heat storage device in an electric vehicle for heating, receiving a supply of warm heat from this, and reducing power consumption for producing warm air is introduced. Yes. However, since the heat storage amount of the heat storage device is limited, it is possible to produce hot air at the initial stage of operation, but there is a problem that continuous hot air production for a long time cannot be performed.

また、自動車ウインドウ等の結露(曇り)防止策として、除湿材を活用するデシカント空調技術を用いるにおいて、除湿材の吸湿特性は基本的に該除湿材を再生する際の再生空気の条件と、該除湿材が処理対象空気から水分を吸湿する際の処理対象空気の条件により決定されることを認識する必要がある。
すなわち、なるべく相対湿度の低い再生空気にて除湿材を再生し、該除湿材を用いて処理対象空気から水分を吸湿する際には、該処理対象空気の相対湿度を高めることが肝要である。一般に普及しているデシカント空調装置では、この考え方から、圧縮式冷凍機にて冷熱を製造し、この冷熱を用いて処理対象空気を冷却した後に除湿材を通過させるプレクール処理が実施されている。
しかしながら、電気自動車等では車載バッテリーからの電力を用いたプレクール処理は、電気自動車等における走行可能距離の低下対策としては全く意味を持たない。
Further, as a measure for preventing condensation (clouding) of automobile windows, etc., in using a desiccant air conditioning technology that utilizes a dehumidifying material, the moisture absorption characteristics of the dehumidifying material are basically the conditions of the regenerated air when the dehumidifying material is regenerated, and the It is necessary to recognize that the dehumidifying material is determined by the conditions of the processing target air when moisture is absorbed from the processing target air.
That is, when the dehumidifying material is regenerated with regenerated air having as low a relative humidity as possible and moisture is absorbed from the processing target air using the dehumidifying material, it is important to increase the relative humidity of the processing target air. In general desiccant air conditioners that are widely used, a precooling process is performed in which cold heat is produced by a compression-type refrigerator, the air to be treated is cooled using the cold heat, and then a dehumidifying material is passed through.
However, in an electric vehicle or the like, the precool process using the electric power from the on-board battery has no meaning as a countermeasure for reducing the travelable distance in the electric vehicle or the like.

本発明は、このような従来の技術的問題点を解決し、電気自動車等の走行時において、ウインドウガラスの防曇や車室内暖房のために使用される車載バッテリーからの電力を抑制すると共に、軽量で使い勝手に優れ、かつ経済的な自動車用空調装置の提供を課題とする。
The present invention solves such conventional technical problems and suppresses electric power from an in-vehicle battery used for anti-fogging of a window glass and heating of a vehicle interior during traveling of an electric vehicle or the like, The objective is to provide an automotive air conditioner that is lightweight, easy to use and economical.

本発明によれば、蓄電された電力を電動機の動力源として走行する電気自動車やハイブリッド自動車、あるいはプラグインハイブリッド自動車等であって、その車体内部に、水分吸湿作用を有する除湿材を内包する除湿ユニットを1セットあるいは複数セット配置し、該自動車等の走行時においては、乗員等が発する水蒸気(不感常泄)を、該除湿ユニット内の該除湿材に吸湿させる際に、処理対象空気と外気との熱交換を実施できる構成とした。
また、除湿材は処理対象空気から水分(水蒸気)を吸湿すると吸湿熱を発する特性がある。例えば、1kgの処理対象空気から1gの水分を吸湿すると、処理対象空気の温度は約2.5℃上昇する。
本発明では、外気との熱交換により低温化した処理対象空気の温度回復メカニズムとして、この吸湿熱を活用することで、効果的に絶対湿度を低減すると共に処理対象空気の温度回復を可能としている。
According to the present invention, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, or the like that travels using stored electric power as a power source of an electric motor, and includes a dehumidifying material having a moisture-absorbing action inside the vehicle body. One or a plurality of units are arranged, and when the automobile is running, when the dehumidifying material in the dehumidifying unit absorbs water vapor (insensitive normal excretion) generated by a passenger or the like, the air to be treated and the outside air It was set as the structure which can implement heat exchange with.
Further, the dehumidifying material has a characteristic of generating heat of moisture absorption when moisture (water vapor) is absorbed from the air to be treated. For example, when 1 g of moisture is absorbed from 1 kg of the processing target air, the temperature of the processing target air rises by about 2.5 ° C.
In the present invention, by utilizing this hygroscopic heat as a temperature recovery mechanism of the air to be treated that has been lowered by heat exchange with the outside air, the absolute humidity can be effectively reduced and the temperature of the air to be treated can be recovered. .

すなわち、本発明では外気温度が車内温度より低い場合に、処理対象となる車内空気を外気と熱交換させることで低温化し、処理対象空気の相対湿度を上昇させた後に除湿材へ導く構成とした。これにより、高相対湿度領域で除湿材が示す高い吸湿率(乾燥状態にある除湿材重量に対する吸湿水分の重量割合)が確保出来るので除湿材の水分吸湿量が増加し、より大量の水分吸湿が可能となっている。 That is, in the present invention, when the outside air temperature is lower than the vehicle interior temperature, the interior air to be treated is reduced in temperature by exchanging heat with the outside air, and the relative humidity of the treatment object air is increased and then guided to the dehumidifying material. . This ensures a high moisture absorption rate (weight ratio of moisture absorption to the weight of the dehumidification material in the dry state) that the dehumidification material exhibits in the high relative humidity region, so that the moisture absorption amount of the dehumidification material increases and a larger amount of moisture absorption is achieved. It is possible.

また、本発明では、除湿材の吸湿性能が低下した段階で、除湿材あるいは該除湿材を内包する除湿ユニットを自動車用空調装置から取り外し可能な構成としたので、水分吸湿後の除湿材を車体外部で再生する際に相対湿度の低い再生空気を使用することが可能である。その結果、除湿材はより大量の水分吸湿が可能となっている。 Further, in the present invention, the dehumidifying material or the dehumidifying unit containing the dehumidifying material is removable from the vehicle air conditioner when the moisture absorbing performance of the dehumidifying material is lowered. When regenerating outside, it is possible to use regenerated air having a low relative humidity. As a result, the dehumidifying material can absorb a larger amount of moisture.

さらに、除湿材あるいは該除湿材を内包する除湿ユニットを自動車用空調装置から取り外し可能な構成としたので、再生済みの除湿材あるいは除湿ユニットを任意のタイミングで自動車用空調装置にセットできるため、再生済みの除湿材あるいは除湿ユニットを複数用意することで連続的なフロントウインドウの防曇や車内暖房が可能となった。 Furthermore, since the dehumidifying material or the dehumidifying unit containing the dehumidifying material is configured to be detachable from the automobile air conditioner, the recycled dehumidifying material or dehumidifying unit can be set in the automobile air conditioner at any timing. By preparing multiple dehumidifying materials or dehumidifying units, continuous anti-fogging of the front window and heating of the vehicle interior became possible.

また、該除湿材あるいは該除湿ユニットの再生に際して、ゴミ焼却場等の未利用熱を利用して相対湿度の低い高温空気を製造し、これを除湿材の再生に用いることで環境負荷の低いエネルギーが使用可能となる。この再生手段を活用することで、更なる地球温暖化対策の推進が可能となった。
In addition, when the dehumidifying material or the dehumidifying unit is regenerated, high-temperature air having a low relative humidity is produced using unused heat from a garbage incinerator, etc., and this is used for regenerating the dehumidifying material, thereby reducing the environmental load. Can be used. By utilizing this regeneration means, it became possible to further promote global warming countermeasures.

以上説明したとおり本発明による自動車用空調装置を用いれば、自動車走行時に乗員から発する不感常泄(水蒸気)を除湿材が効果的に吸湿するので、低相対湿度で比較的高温の空気を、送風手段(ファン)動力のみで製造することが可能となる。 As described above, if the air conditioner for automobiles according to the present invention is used, the dehumidifying material effectively absorbs insensitive normal excretion (water vapor) emitted from the occupant when the automobile is running. It becomes possible to manufacture only by means (fan) power.

また、夏季には除湿材の水分吸湿作用により車内空気の絶対湿度を低くできるので、圧縮式冷凍装置内での結露(水分凝縮)量を低減でき、圧縮式冷凍装置の運転効率を高められる。これにより、圧縮式冷凍装置の消費電力削減や装置の小型化・軽量化も可能となる。 Further, since the absolute humidity of the air inside the vehicle can be lowered by the moisture absorption action of the dehumidifying material in summer, the amount of condensation (moisture condensation) in the compression refrigeration apparatus can be reduced, and the operation efficiency of the compression refrigeration apparatus can be increased. As a result, the power consumption of the compression refrigeration apparatus can be reduced, and the apparatus can be reduced in size and weight.

通常、除湿材は周辺空気の相対湿度が高いほど大量の水蒸気を吸湿する特性を有する。水分の吸湿率は相対湿度0%から相対湿度100%の範囲で相対湿度の上昇に伴い増大する。従って、除湿材が処理対象空気から水分を吸湿する際に、処理対象空気の相対湿度を高めることは同一除湿材による水分吸湿量を増大させる有効な手段となる。 Usually, the dehumidifying material has a characteristic of absorbing a large amount of water vapor as the relative humidity of the surrounding air is higher. The moisture absorption rate of moisture increases as the relative humidity increases in the range of 0% relative humidity to 100% relative humidity. Therefore, when the dehumidifying material absorbs moisture from the processing target air, increasing the relative humidity of the processing target air is an effective means for increasing the moisture absorption by the same dehumidifying material.

要するに、再生済みの除湿材による水分吸湿能力を増大させるには、除湿材を通過する処理対象空気の相対湿度を上げることが有効であるから、本発明では外気温が車室内の空気温度より低い条件時に、熱交換手段を用いて、外気による処理対象空気の低温化を行い、処理対象空気の相対湿度を高めた後に除湿材へ導く構成としている。 In short, it is effective to increase the relative humidity of the air to be treated that passes through the dehumidifying material in order to increase the moisture absorption capacity of the regenerated dehumidifying material. Therefore, in the present invention, the outside air temperature is lower than the air temperature in the passenger compartment. Under the conditions, the heat treatment means is used to lower the temperature of the air to be treated by the outside air, and after increasing the relative humidity of the air to be treated, the structure is guided to the dehumidifying material.

処理対象空気を外気との熱交換手段で低温化することで、除湿材は乗員が発する水蒸気(不感常泄)を大量に吸湿できるので、同一重量の除湿材であっても、フロントウインドウ等に発生する水蒸気の凝縮(結露)を長時間にわたり防止する自動車用空調装置が可能となった。
By reducing the temperature of the air to be treated with heat exchange means with the outside air, the dehumidifying material can absorb a large amount of water vapor (insensitive normal excretion) generated by the occupant. An automotive air conditioner that prevents condensation (condensation) of the generated water vapor for a long time has become possible.

第一の発明に係る自動車用空調装置の構成概略図である。1 is a schematic configuration diagram of an automotive air conditioner according to a first invention. 第二の発明に係る自動車用空調装置の構成概略図である。It is a structure schematic diagram of the air conditioner for motor vehicles based on 2nd invention. 第二の発明に係る自動車用空調装置の改良構成概略図である。It is the improved structure schematic of the air conditioner for motor vehicles based on 2nd invention. 第一の発明に係る自動車用空調装置の改良構成概略図である。It is an improved configuration schematic diagram of the automotive air conditioner according to the first invention. 第二の発明に係る自動車用空調装置の改良構成概略図である。It is the improved structure schematic of the air conditioner for motor vehicles based on 2nd invention. 代表的除湿材の水分吸着特性を示す吸着等温線図例である。It is an example of an adsorption isotherm showing the moisture adsorption characteristics of a typical dehumidifying material. 本発明による自動車空調装置が車室内空気から水分を吸湿する行程における車室内空気の特性変化図である。It is a characteristic change figure of the interior air of a vehicle in the process in which the automobile air conditioner by the present invention absorbs moisture from the interior air.

以下、本発明の実施の形態について図面を参照しながら詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1ならびに図4は本発明による第1の実施例による自動車用空調装置の概略構成図である。
図1に示すように、車室内空気は送風手段(ファン)4により流路5aから流入し、流路5bを経由し車室外空気との熱交換手段(熱交換器)9を経た後、流路5cを経由して、除湿ユニット1内に導かれる。除湿ユニット1内には除湿材2が設置されている。除湿材2を通過した車室内空気は流路5dおよび流路6aを経由して、噴出手段(防曇ノズル)6bからフロントウインドウ等の車室側の内面10へ向けて噴射される構成である。
1 and 4 are schematic configuration diagrams of an automotive air conditioner according to a first embodiment of the present invention.
As shown in FIG. 1, the vehicle interior air flows from the flow path 5a by the air blowing means (fan) 4, passes through the flow path 5b, passes through the heat exchange means (heat exchanger) 9 with the vehicle exterior air, and then flows. It is guided into the dehumidifying unit 1 via the path 5c. A dehumidifying material 2 is installed in the dehumidifying unit 1. The vehicle interior air that has passed through the dehumidifying material 2 is jetted from the jetting means (antifogging nozzle) 6b toward the inner surface 10 on the vehicle cabin side such as a front window via the flow channel 5d and the flow channel 6a. .

図4は本発明による第1の実施例の変形例である。送風手段4の下流に流路切替え手段8を設置し、制御装置12は、図示されない車室内空気温度の検出手段41と外気温度の検出手段42からの温度計測結果を受信し、車室内空気温度が外気温度より高い場合に、流路切替え手段8を作動させ、車室内空気が車室外に設置されている熱交換手段9を経由した後に、除湿ユニット1へ流入する流路構成を形成し、車室内空気温度が外気温度より高く無い場合には、車室内空気が熱交換手段9をバイパスして流れるように設置したバイパス通風手段5eを経由して、除湿ユニット1へ導く構成としている。 FIG. 4 shows a modification of the first embodiment according to the present invention. The flow path switching means 8 is installed downstream of the air blowing means 4, and the control device 12 receives the temperature measurement results from the vehicle interior air temperature detection means 41 and the outside air temperature detection means 42 (not shown), and the vehicle interior air temperature. When the air temperature is higher than the outside air temperature, the flow path switching means 8 is operated to form a flow path configuration in which the vehicle interior air flows into the dehumidifying unit 1 after passing through the heat exchange means 9 installed outside the vehicle interior. When the vehicle interior air temperature is not higher than the outside air temperature, the vehicle interior air is guided to the dehumidifying unit 1 via the bypass ventilation means 5e installed so as to flow through the heat exchange means 9 by bypass.

本発明では除湿材2を除湿ユニット1から取り外し可能な構成としているが、あるいは、除湿材2を内包する除湿ユニット1を流路5c、流路5dから切り離し可能な構成としても良い。 In the present invention, the dehumidifying material 2 is configured to be removable from the dehumidifying unit 1, or alternatively, the dehumidifying unit 1 containing the dehumidifying material 2 may be configured to be separated from the flow path 5c and the flow path 5d.

また、図1および図4では、送風手段4は熱交換手段9の上流側に設置されているが、送風手段4を除湿材2の直前に設置することで、除湿ユニット1の内部に送風手段4と除湿材2を内包させても良い。 In FIGS. 1 and 4, the air blowing unit 4 is installed on the upstream side of the heat exchanging unit 9, but the air blowing unit 4 is installed immediately before the dehumidifying material 2, so that the air blowing unit 4 is placed inside the dehumidifying unit 1. 4 and the dehumidifying material 2 may be included.

図7は車室内空気が、外気との熱交換手段9により冷却された後に、除湿材2を通過し、絶対湿度が低下すると共に温度上昇する行程を示した事例である。 FIG. 7 shows an example of a process in which the passenger compartment air passes through the dehumidifying material 2 after being cooled by the heat exchange means 9 with the outside air, and the absolute humidity decreases and the temperature increases.

次に、除湿材の吸湿特性について説明する。
図6は代表的除湿材の吸着等温線の例である。図は横軸に処理対象空気の相対湿度をとり、縦軸に吸湿率をとって除湿材の特性を示している。
吸湿率とは乾燥状態にある除湿材の重量に対し、除湿材が吸湿できる水分重量の割合を示す価である。横軸に示す相対湿度の上昇と共に、吸湿率が上昇していることが判る。
要するに、相対湿度の低い空気で除湿材を再生(乾燥)した後に、この除湿材を高い相対湿度の空気と接触させると除湿材は空気中から水分を吸湿するから、除湿材の水分吸湿量(重量)は、再生時と吸湿時の吸湿率の差分に除湿材の乾燥時重量を掛けることで算出される。
Next, the moisture absorption characteristics of the dehumidifying material will be described.
FIG. 6 is an example of an adsorption isotherm of a typical dehumidifying material. In the figure, the horizontal axis represents the relative humidity of the air to be treated, and the vertical axis represents the moisture absorption rate.
The moisture absorption is a value indicating the ratio of the weight of moisture that can be absorbed by the dehumidifying material to the weight of the dehumidifying material in a dry state. It can be seen that the moisture absorption rate increases as the relative humidity shown on the horizontal axis increases.
In short, after regenerating (drying) the dehumidifying material with air with a low relative humidity, when the dehumidifying material is brought into contact with air with a high relative humidity, the dehumidifying material absorbs moisture from the air. (Weight) is calculated by multiplying the difference between the moisture absorption rates during regeneration and moisture absorption by the weight of the dehumidifying material during drying.

次に本発明による処理対象空気の状態変化例について、図7の湿り空気線図により説明する。
車室内空気(20℃、相対湿度45%、絶対湿度約6.5g/kg)は送風手段4にて送気され、熱交換手段9を通過した後に約12℃、相対湿度75%(絶対湿度は変化無し)となる。この車室内空気は、除湿材2を通過する際に、ほぼ等エンタルピー変化の吸湿作用を受ける。図7の例では、除湿材通過後は約20℃、相対湿度20%、絶対湿度は約3.0g/kgとなっている。
すなわち、除湿材2を通過することで車室内空気の絶対湿度は約3.5g/kgほど低下し、空気温度は約8℃上昇している。
Next, an example of the state change of the air to be processed according to the present invention will be described with reference to the wet air diagram of FIG.
Car interior air (20 ° C., relative humidity 45%, absolute humidity about 6.5 g / kg) is sent by the air blowing means 4 and after passing through the heat exchanging means 9, it is about 12 ° C. and relative humidity 75% (absolute humidity). No change). When the vehicle interior air passes through the dehumidifying material 2, the vehicle interior air is substantially subjected to a hygroscopic effect of an isoenthalpy change. In the example of FIG. 7, after passing through the dehumidifying material, the relative humidity is about 20 ° C., the relative humidity is 20%, and the absolute humidity is about 3.0 g / kg.
That is, by passing through the dehumidifying material 2, the absolute humidity of the passenger compartment air is reduced by about 3.5 g / kg, and the air temperature is increased by about 8 ° C.

除湿材を通過した低相対湿度の空気は、通風ダクト5dならびに6aを経由し、噴出手段(防曇ノズル)6bからフロントウインドウ10へ向けて噴出され、フロントウインドウ10の車室面に形成される曇りの発生防止や除去に貢献すると共に、車内暖房にも貢献することが判る。 The low relative humidity air that has passed through the dehumidifying material is jetted from the jetting means (anti-fogging nozzle) 6b toward the front window 10 through the ventilation ducts 5d and 6a, and is formed on the passenger compartment surface of the front window 10. It can be seen that it contributes to the prevention and removal of fogging and also to heating the interior of the car.

除湿材2は通過空気からの吸湿を行うに連れて、その吸湿能力が減退するので、時期を見て除湿材2を再生済みの除湿材2と交換する必要がある。 As the dehumidifying material 2 absorbs moisture from the passing air, its hygroscopic capacity decreases. Therefore, it is necessary to replace the dehumidifying material 2 with the regenerated dehumidifying material 2 according to the timing.

例えば、除湿材2として図6に示す高分子収着剤を使用し、これを外部の乾燥工場などで相対湿度10%の空気で再生した後に自動車用空調装置へ設置した状態を考える。車内に3名の人間が乗車しているとする。
乗員3名からの不感常泄量は毎時約90gであるから、3時間程度の電気自動車の使用では約270g程度の水分量を除湿材2が処理すれば良い。車室内空気が熱交換手段9により冷却され、相対湿度70%になるとして、図6の吸着等温線図より、相対湿度70%での吸湿率は68%、相対湿度10%での吸湿率は13%であるから、吸湿率差は55%となる。処理する水分量は270gであるから、約490g(270÷0.55)の高分子収着剤を除湿材2として用いれば良いことが判る。
また、通過空気は除湿材2により通過空気1kgあたり平均3.5gの水分を吸湿されることから、通過空気量は1時間あたり26kg(=90÷3.5)として設計すれば良い。この通過空気量は毎時22立方メートル程度である。
490gの高分子収着剤を有する除湿材2の体積は1.6リットル程度であるから、除湿材の通風断面を10センチ×15センチ(面積0.015平方メートル)とすれば、除湿材の奥行きは約11センチメートルであり、通過する空気の平均面流速は0.4m/sec程度となる。
除湿材が示す性能は、除湿材の形状には余り影響されないことが判っているので、除湿材の寸法は設置される空間の形状から選定すれば良く、また、実際には、余裕を見て除湿材の体積を多めに選定すれば良い。
For example, let us consider a state in which the polymer sorbent shown in FIG. 6 is used as the dehumidifying material 2, and this is regenerated with air having a relative humidity of 10% in an external drying factory and then installed in an automobile air conditioner. Assume that three people are in the car.
Since the insensitive normal excretion amount from three passengers is about 90 g per hour, the dehumidifying material 2 may process about 270 g of water when using an electric vehicle for about 3 hours. Assuming that the passenger compartment air is cooled by the heat exchanging means 9 and has a relative humidity of 70%, the moisture absorption rate at a relative humidity of 70% is 68% and the moisture absorption rate at a relative humidity of 10% is shown in FIG. Since it is 13%, the moisture absorption difference is 55%. Since the amount of water to be treated is 270 g, it can be seen that about 490 g (270 ÷ 0.55) of the polymer sorbent may be used as the dehumidifying material 2.
Further, since the passing air absorbs an average of 3.5 g of moisture per kg of passing air by the dehumidifying material 2, the passing air amount may be designed to be 26 kg (= 90 ÷ 3.5) per hour. This passing air amount is about 22 cubic meters per hour.
Since the volume of the dehumidifying material 2 having 490 g of the polymer sorbent is about 1.6 liters, if the cross section of the dehumidifying material is 10 cm × 15 cm (area 0.015 square meters), the depth of the dehumidifying material Is about 11 centimeters, and the average surface flow velocity of the passing air is about 0.4 m / sec.
Since it is known that the performance of the dehumidifying material is not significantly affected by the shape of the dehumidifying material, the size of the dehumidifying material may be selected based on the shape of the space in which it is installed. A larger volume of dehumidifying material may be selected.

図2、図3ならびに図5は本発明による第2の実施例による自動車用空調装置の概略構成図である。
図2に示す第2の実施例では、除湿ユニット1の内部でかつ除湿材2の上流側に加熱手段3を設置し、除湿ユニット1の下流に流路切替え手段8を設置し、除湿ユニット1を通過した後の車室内空気を、車外へ排気する流路7、または流路6aを経て噴出手段(防曇ノズル)6bの何れか一方へ導く構成としている。
流路切替え手段8内には、制御装置12からの指令に基づき作動する切替え弁8aが設置されている。
図2の実施例は、加熱手段3として車外からの給電による電気加熱器を採用した例であるが、加熱手段3は車外からの温水供給による熱交換器でも良い。要は加熱手段3と送風手段4を稼働させて、温風を製造して、これを除湿材2へ導き、除湿材2を再生する流路が構成できれば良い。
2, FIG. 3 and FIG. 5 are schematic configuration diagrams of an automotive air conditioner according to a second embodiment of the present invention.
In the second embodiment shown in FIG. 2, the heating unit 3 is installed inside the dehumidifying unit 1 and upstream of the dehumidifying material 2, and the flow path switching unit 8 is installed downstream of the dehumidifying unit 1. The vehicle interior air after passing through the vehicle is guided to either one of the ejection means (anti-fogging nozzle) 6b through the flow path 7 for exhausting outside the vehicle or the flow path 6a.
A switching valve 8 a that operates based on a command from the control device 12 is installed in the flow path switching means 8.
The embodiment of FIG. 2 is an example in which an electric heater by power feeding from the outside of the vehicle is adopted as the heating means 3, but the heating means 3 may be a heat exchanger by hot water supply from outside the vehicle. In short, it is only necessary that the heating means 3 and the air blowing means 4 are operated to produce hot air, which is guided to the dehumidifying material 2 and a flow path for regenerating the dehumidifying material 2 can be configured.

第2の実施例では、除湿材2は除湿ユニット1に内包され、除湿材2の再生は電気自動車等が停車している条件において、外部からの電力あるいは温水あるいは温風などの供給により実施される。
制御装置12は、電気自動車等が外部からの給電や温水供給、あるいは温風供給などが設定された状態を検出し、送風手段4の稼働・停止、加熱手段3の稼働・停止、流路切替え手段8への空気流路選択などの指令を発信し、自動車用空調装置が正しく運転されていることを確認すると共に、温度異常などを検出した際は、加熱手段3へのエネルギー供給を遮断するなどの安全制御を行う。
In the second embodiment, the dehumidifying material 2 is contained in the dehumidifying unit 1, and the regeneration of the dehumidifying material 2 is performed by supplying external electric power, hot water, hot air, or the like under the condition that the electric vehicle or the like is stopped. The
The control device 12 detects a state in which an electric vehicle or the like is set to supply power from outside, hot water supply, or hot air supply, etc., and operates / stops the blowing unit 4, operates / stops the heating unit 3, and switches the flow path. A command such as air flow path selection to the means 8 is transmitted to confirm that the automotive air conditioner is operating correctly, and when a temperature abnormality is detected, the energy supply to the heating means 3 is cut off. Safety control is performed.

図5は、本発明による第2の実施例の改良例を示している。図5に示すように、送風手段4の下流に流路切替え手段8と車外に設置された熱交換手段9をバイパスするバイパス通風手段5eを設置し、図示されない車室内空気温度の計測手段41と外気温度の計測手段42からの温度計測結果を制御装置12は受信し、車室内空気温度が外気温度より高い場合に、流路切替え手段8を作動させ、車室内空気が熱交換手段9を経由する流路構成を形成し、車室内空気温度が外気温度より高く無い場合には、車室内空気をバイパス通風手段5eへ導いた後に除湿ユニット1へ導く流路構成を選択する制御を行う。 FIG. 5 shows an improvement of the second embodiment according to the present invention. As shown in FIG. 5, a bypass ventilation means 5e for bypassing the flow path switching means 8 and the heat exchange means 9 installed outside the vehicle is installed downstream of the blowing means 4, and a vehicle interior air temperature measuring means 41 (not shown) The control device 12 receives the temperature measurement result from the outside air temperature measuring means 42 and activates the flow path switching means 8 when the passenger compartment air temperature is higher than the outside air temperature, so that the passenger compartment air passes through the heat exchanging means 9. When the vehicle interior air temperature is not higher than the outside air temperature, the vehicle interior air is guided to the bypass ventilation means 5e and then the flow channel configuration for guiding the dehumidification unit 1 is selected.

また、図3に示すように、通風手段4を加熱手段3の直前に設置しても良い。このような構成とすることで、通風手段4と除湿ユニット1の一体化が可能となり、自動車用空調装置全体の配置の自由度が向上すると共に、全体をコンパクトに設置することが可能となる。
通風手段4と除湿ユニット1の一体化を意図する構成は、図5に示す様に熱交換手段9を車外に設置する場合も採用可能である。
Further, as shown in FIG. 3, the ventilation means 4 may be installed immediately before the heating means 3. By adopting such a configuration, the ventilation means 4 and the dehumidifying unit 1 can be integrated, the degree of freedom in the arrangement of the entire automobile air conditioner can be improved, and the whole can be installed compactly.
The configuration intended to integrate the ventilation means 4 and the dehumidifying unit 1 can also be adopted when the heat exchange means 9 is installed outside the vehicle as shown in FIG.

以上説明したように、本発明では電気自動車等に搭載される自動車用空調装置において、車室内空気を外気により冷却した後に除湿材へ導く構成としたので、除湿材へ流入する車室内空気の相対湿度が高まり、除湿材の吸湿率増大効果が得られる。これにより同一の除湿材であっても多量の水分吸湿が可能となった。すなわち、電気自動車等の運転時に、乗員が発する不感常泄(約30g/h・人)や外気が車室内へ持ち込む水分(水蒸気)を多量に吸湿処理できるため、長時間にわたり車内空気の絶対湿度上昇が防止でき、電気自動車等のフロントウインドウ等の防曇や、車室内暖房が可能となる。 As described above, in the present invention, in an automotive air conditioner mounted on an electric vehicle or the like, the vehicle interior air is cooled by outside air and then guided to the dehumidifying material. The humidity increases, and the effect of increasing the moisture absorption rate of the dehumidifying material is obtained. As a result, a large amount of moisture can be absorbed even with the same dehumidifying material. In other words, when driving an electric vehicle, the insensitive excretion (approximately 30 g / h / person) generated by the occupant and the moisture (water vapor) that the outside air brings into the passenger compartment can be subjected to moisture absorption treatment, so the absolute humidity of the air inside the vehicle over a long period of time Ascending can be prevented, and anti-fogging of a front window of an electric vehicle or the like, and heating of a vehicle interior can be performed.

この他、冷房時の圧縮式冷凍装置での水分凝縮量を低減できるため、圧縮式冷凍装置の冷却負荷が低減すると共に、冷凍効率が改善されるので圧縮式冷凍装置の消費電力の削減にも有効である。 In addition, since the amount of moisture condensation in the compression refrigeration system during cooling can be reduced, the cooling load of the compression refrigeration system is reduced and the refrigeration efficiency is improved, so the power consumption of the compression refrigeration system is also reduced. It is valid.

このように、電気自動車の走行時において、処理対象空気を外気により低温化する構成としたので、フロントウインドウ等の結露を除湿材の吸湿作用にて防止する際の除湿材の吸湿能力が向上した。また、冷房時においては冷却対象空気の絶対湿度を低減できるので圧縮式冷凍装置の効率改善が行われた。
これらの効果により、従来型の電気自動車に比して防曇や冷房のための使用電力量を低減でき、電気自動車の走行可能距離増大や、車載バッテリーの容量低減に貢献する電気自動車用空調装置の提供が可能となった。
As described above, when the electric vehicle is running, the air to be treated is cooled by the outside air, so that the moisture absorption capacity of the dehumidifying material when the dew condensation of the front window and the like is prevented by the moisture absorbing action of the dehumidifying material is improved. . Further, since the absolute humidity of the air to be cooled can be reduced during cooling, the efficiency of the compression refrigeration system has been improved.
These effects can reduce the amount of power used for anti-fogging and cooling compared to conventional electric vehicles, and increase the mileage of electric vehicles and contribute to reducing the capacity of in-vehicle batteries. Is now available.

1・・・除湿ユニット、
2・・・除湿材
3・・・加熱手段
4・・・送風手段(ファン)
5a、5b、5c、5d・・・通風ダクト
5e・・・バイパス通風手段(バイパスダクト)
6a・・・防曇ノズル用ダクト
6b・・・噴出手段(防曇ノズル)
7・・・排気ダクト
8・・・流路切替え手段
8a・・・切替え弁
9・・・熱交換手段
10・・・フロントウインドウ
12・・・制御装置、
30・・・自動車用空調装置
41・・・温度検出手段
42・・・温度検出手段
60・・・車載バッテリー(蓄電装置)
1 ... dehumidifying unit,
2 ... Dehumidifying material 3 ... Heating means 4 ... Air blowing means (fan)
5a, 5b, 5c, 5d ... ventilation duct 5e ... bypass ventilation means (bypass duct)
6a: Antifogging nozzle duct 6b: Ejecting means (antifogging nozzle)
7 ... exhaust duct 8 ... flow path switching means 8a ... switching valve 9 ... heat exchange means 10 ... front window 12 ... control device,
30 ... Air-conditioner for automobile 41 ... Temperature detection means 42 ... Temperature detection means 60 ... In-vehicle battery (power storage device)

Claims (5)

蓄電された電力を電動機の動力源として走行する電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、又は燃料電池自動車等の自動車に用いられる自動車用空調装置において、
車室内空気を取り込んで通風空気として通風する送風手段と、
前記通風空気を車室外空気と熱交換する熱交換手段と、
前記通風空気中の水分を吸湿する水分吸湿手段と、
前記通風空気を車室側からフロントウインドウへ噴射する噴出手段を備え、
これら手段通風管路により接続され、かつ、
車室内空気温度の計測手段と、
車室外空気温度の計測手段と、
前記熱交換手段をバイパスするバイパス通風手段と、
前記送風手段の上流または下流に備えられた、通風空気の流路を切り替える第1流路切替え手段と、
制御手段と、を備え、
前記制御手段は、
前記車室内空気温度の計測手段により検出された温度と前記車室外空気温度の計測手段により検出された温度とを感知して前記車室内空気温度と前記車室外空気温度とを比較し、
前記車室内空気温度が前記車室外空気温度より高い場合には、前記車室内空気が前記熱交換手段を経由する流路構成を形成し、前記車室内空気温度が前記車室外空気温度より高くない場合には、車室内空気が前記バイパス通風手段を経由する流路構成を形成するように前記第1流路切替え手段を制御するものであり、
前記第1流路切替え手段は、前記制御手段の制御に基づき、前記通風空気が前記熱交換手段あるいは前記バイパス通風手段を経由する流路構成を形成するように作動することを特徴とする自動車用空調装置。
In an automotive air conditioner used for an automobile such as an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, or a fuel cell vehicle that runs using the stored electric power as a power source of an electric motor,
A blowing means for taking in the air in the passenger compartment and ventilating it as ventilation air ;
Heat exchange means for outside air and the heat exchanging the ventilation air,
And Moisture means for moisture absorption of moisture of the air in the air,
Comprising a jetting means for jetting the passed air from the cabin side to the front window,
These means are connected by a ventilation line , and
Means for measuring the air temperature in the passenger compartment;
Means for measuring the temperature outside the passenger compartment,
Bypass ventilation means for bypassing the heat exchange means;
A first flow path switching means provided upstream or downstream of the blower means for switching the flow path of the ventilation air;
Control means,
The control means includes
Sensing the temperature detected by the vehicle interior air temperature measurement means and the temperature detected by the vehicle exterior air temperature measurement means, and comparing the vehicle interior air temperature and the vehicle exterior air temperature;
When the vehicle interior air temperature is higher than the vehicle exterior air temperature, the vehicle interior air forms a flow path configuration through the heat exchange means, and the vehicle interior air temperature is not higher than the vehicle interior air temperature. In this case, the first flow path switching means is controlled so that the vehicle interior air forms a flow path configuration via the bypass ventilation means,
The first flow path switching means operates so as to form a flow path configuration in which the ventilation air passes through the heat exchange means or the bypass ventilation means based on the control of the control means . Air conditioner.
前記水分吸湿手段の上流側に設けられた前記通風空気の加熱手段と、
前記水分吸湿手段の下流側に設けられ、前記通風空気を前記噴出手段または車室外排気流路へ振り分ける第2流路切替え手段と、
前記自動車が停車中で、かつ、外部エネルギー源と前記加熱手段とが電気的あるいは熱的に接続されたことを検出する検出手段と、
前記検出手段からの信号を受け、前記加熱手段と前記外部エネルギー源とが電気的あるいは熱的に接続されている間は、前記第2流路切替え手段により前記通風空気を車室外へ排気する流路構成を形成する制御指令を前記第2流路切替え手段へ発信する制御手段を供え、
前記制御手段からの制御指令に基づき、前記通風空気を車外へ排気する流路構成、または前記通風空気を前記噴出手段へ導く流路構成を形成するように前記第2流路切替え手段が作動することを特徴とする、請求項1記載の自動車用空調装置。
Heating means for the ventilation air provided on the upstream side of the moisture absorption means;
Said moisture is provided downstream of the moisture absorbing means, second channel switching means for distributing the ventilation air to the jet means or cabin exhaust passage,
The automobile is parked, and a detection means for detecting that said heating means to an external energy source is electrically or thermally connected,
Receiving a signal from said detecting means, while said heating means and said external energy source is electrically or thermally connected to the flow of the ventilation air exhausted into the passenger compartment by the second flow path switching unit Providing control means for transmitting a control command for forming a path configuration to the second flow path switching means;
Based on the control command from said control means, said flow channel configured to exhaust the air air to the outside of the vehicle, or the ventilating air is the second flow path switching unit so as to form a flow path structure that leads to the ejection means operating The automotive air conditioner according to claim 1, wherein
前記熱交換手段を前記自動車の前方部、後方部、車室床下部、又は車室天井外部に設置したことを特徴とする、請求項1又は2記載の自動車用空調装置。 The air conditioner for an automobile according to claim 1 or 2, wherein the heat exchanging means is installed in a front part, a rear part , a lower part of a passenger compartment floor , or an exterior of a passenger compartment ceiling of the automobile. 前記水分吸湿手段と前記加熱手段とを一つの容器内に設置したことを特徴とする、請求項2又は3記載の自動車用空調装置。 The automobile air conditioner according to claim 2 or 3 , wherein the moisture absorption means and the heating means are installed in one container. 前記水分吸湿手段は、取り外し可能であることを特徴とする、請求項1〜のいずれかに記載の自動車用空調装置。 The automobile air conditioner according to any one of claims 1 to 4 , wherein the moisture absorption means is removable .
JP2011091604A 2011-04-16 2011-04-16 Automotive air conditioner Active JP5783558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011091604A JP5783558B2 (en) 2011-04-16 2011-04-16 Automotive air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011091604A JP5783558B2 (en) 2011-04-16 2011-04-16 Automotive air conditioner

Publications (2)

Publication Number Publication Date
JP2012224135A JP2012224135A (en) 2012-11-15
JP5783558B2 true JP5783558B2 (en) 2015-09-24

Family

ID=47274822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011091604A Active JP5783558B2 (en) 2011-04-16 2011-04-16 Automotive air conditioner

Country Status (1)

Country Link
JP (1) JP5783558B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202426A (en) * 2013-04-05 2014-10-27 株式会社デンソー Humidifier
JP6079653B2 (en) * 2014-01-21 2017-02-15 マツダ株式会社 Air conditioning control device for vehicles
JP6167947B2 (en) * 2014-03-13 2017-07-26 マツダ株式会社 Air conditioner for vehicles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4304076C2 (en) * 1993-02-11 1996-03-07 Behr Gmbh & Co Method and device for heating the passenger compartment of a motor vehicle
JPH0867136A (en) * 1994-08-30 1996-03-12 Nippondenso Co Ltd Air conditioner for vehicle
DE19653964A1 (en) * 1996-12-21 1998-06-25 Behr Gmbh & Co Air conditioning unit for vehicle interior equipped for filtration, moisture adsorption and regeneration
DE19718047A1 (en) * 1997-04-29 1998-11-05 Behr Gmbh & Co Device to reduce humidity in cabin of electric car
JP2000108655A (en) * 1998-01-13 2000-04-18 Denso Corp Dehumidifier
JP2000146220A (en) * 1998-11-02 2000-05-26 Nissan Motor Co Ltd Air conditioning means and air conditioner
DE10213347A1 (en) * 2002-03-26 2003-10-09 Modine Mfg Co Arrangement and method in an air conditioning system
US6883602B2 (en) * 2002-05-31 2005-04-26 Carrier Corporation Dehumidifier for use in mass transit vehicle
US20050039481A1 (en) * 2003-08-21 2005-02-24 Eileen Chant Rotor desiccant air-conditioning system for a motor vehicle

Also Published As

Publication number Publication date
JP2012224135A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP6433098B2 (en) Vehicle dehumidifier
EP2511116B1 (en) Antifogging air conditioning system for electric vehicle
US11110386B2 (en) Air purification device for vehicle
JP5887644B2 (en) Anti-fogging and air conditioning system for electric vehicles, dehumidifying unit, dehumidifying cassette, and dehumidifying member
CN102803006A (en) Vehicle and method for controlling same
CN103906638A (en) Vehicle atmosphere purifying apparatus
JP5783558B2 (en) Automotive air conditioner
JP5741895B2 (en) Electric vehicle anti-fogging and air conditioning system power receiving device
CN104527369A (en) Automobile air conditioner HVAC system
JP5522550B2 (en) Air conditioners for electric vehicles
JP5928274B2 (en) Air conditioning control device for vehicles
JP2013226942A (en) Indoor humidity control device for electric automobile or the like
JP6289881B2 (en) Air conditioner for vehicles
JP6621098B1 (en) Vehicle air conditioning system
JP6664766B1 (en) Vehicle air conditioning system
JP6131439B2 (en) Charging equipment for electric vehicles
JP6036081B2 (en) Air conditioning control device for vehicles
JP2014015066A (en) In-vehicle humidity controller for vehicle, such as electric automobile
JPWO2019239476A1 (en) Electric car

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140403

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150715

R150 Certificate of patent or registration of utility model

Ref document number: 5783558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250