JP5779267B2 - Nitrogen-containing carbon material - Google Patents

Nitrogen-containing carbon material Download PDF

Info

Publication number
JP5779267B2
JP5779267B2 JP2014076114A JP2014076114A JP5779267B2 JP 5779267 B2 JP5779267 B2 JP 5779267B2 JP 2014076114 A JP2014076114 A JP 2014076114A JP 2014076114 A JP2014076114 A JP 2014076114A JP 5779267 B2 JP5779267 B2 JP 5779267B2
Authority
JP
Japan
Prior art keywords
nitrogen
containing carbon
carbon material
acid
results
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014076114A
Other languages
Japanese (ja)
Other versions
JP2014196239A (en
Inventor
日名子 英範
英範 日名子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2014076114A priority Critical patent/JP5779267B2/en
Publication of JP2014196239A publication Critical patent/JP2014196239A/en
Application granted granted Critical
Publication of JP5779267B2 publication Critical patent/JP5779267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、窒素含有炭素材料に関する。   The present invention relates to a nitrogen-containing carbon material.

炭素材料は、従来、吸着材等として主に使用されていたが、導電性等の電子材料物性、高い熱伝導率、低い熱膨張率、軽さ、耐熱性等の基本的な性質を持つために幅広い用途が検討されるようになってきている。特に最近はその化学的機能に着目されて、リチウムイオン二次電池負極、キャパシタ用電極、固体高分子型燃料電池の電極、化学反応の触媒等の分野で検討されている。   Conventionally, carbon materials have been mainly used as adsorbents, etc., but they have basic properties such as physical properties of electronic materials such as conductivity, high thermal conductivity, low thermal expansion coefficient, lightness, and heat resistance. A wide range of applications has been studied. In particular, recently, attention has been paid to its chemical function, and studies have been made in the fields of lithium ion secondary battery negative electrode, capacitor electrode, polymer electrolyte fuel cell electrode, chemical reaction catalyst, and the like.

かかる炭素材料は、椰子殻、石炭コークス、石炭又は石油ピッチ、フラン樹脂、フェノール樹脂等を原料とし、炭化処理して製造されている。   Such a carbon material is manufactured by carbonization using coconut shell, coal coke, coal or petroleum pitch, furan resin, phenol resin, or the like as a raw material.

近年になって、かかる炭素材料に他の元素を含有させて炭素材料の物性の幅をさらに広げて発展させようとする試みがある。   In recent years, attempts have been made to further expand the range of physical properties of carbon materials by incorporating other elements into such carbon materials.

こうした中、最近は、窒素がドープされた炭素材料(以下、窒素含有炭素材料という)を用いて酸素還元活性を発現させて、固体高分子型燃料電池の電極や化学反応の触媒等に用いるという検討が進められている(例えば特許文献1)。   Under such circumstances, recently, a carbon material doped with nitrogen (hereinafter referred to as a nitrogen-containing carbon material) is used to develop oxygen reduction activity, which is used for an electrode of a polymer electrolyte fuel cell, a catalyst for a chemical reaction, or the like. Investigations are underway (for example, Patent Document 1).

国際公開第2008/123380号International Publication No. 2008/123380

しかし、いまだ窒素含有炭素材料の酸素還元等の活性は不十分である。
また窒素含有炭素材料を製造するには、特殊な出発物質を合成する必要があり、製造プロセスが複雑であったり、資源、エネルギーの消費が大きいという問題があり、製造コストも高くなるという問題がある。
However, the activity of the nitrogen-containing carbon material such as oxygen reduction is still insufficient.
In addition, in order to produce a nitrogen-containing carbon material, it is necessary to synthesize special starting materials, and there are problems that the production process is complicated, resources and energy are consumed, and that production costs are also high. is there.

本発明は、以上の状況を鑑み、化学反応の触媒、燃料電池の電極等の用途において、従来の窒素含有炭素材料と比較して、高い活性を有する窒素含有炭素材料を提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a nitrogen-containing carbon material having a higher activity compared to conventional nitrogen-containing carbon materials in applications such as catalysts for chemical reactions and electrodes for fuel cells. To do.

また本発明は、従来の窒素含有炭素材料と比較して、エネルギーの消費が少なく製造プロセスが比較的簡易である製造方法を提供することを目的とする。   Another object of the present invention is to provide a production method that consumes less energy and has a relatively simple production process compared to conventional nitrogen-containing carbon materials.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、アズルミン酸と遷移金属を含むプレカーサーを炭化して得られる窒素含有炭素材料は、上記課題を解決できることを見出し、本発明をなすに至った。
すなわち、本発明は、下記のとおりである。
As a result of intensive studies to solve the above problems, the present inventor has found that a nitrogen-containing carbon material obtained by carbonizing a precursor containing azulmic acid and a transition metal can solve the above problems. It came to an eggplant.
That is, the present invention is as follows.

〔1〕[1]
炭素原子に対する窒素原子の原子数比(N/C)が0.03〜0.6の窒素含有炭素材料であって、  A nitrogen-containing carbon material having an atomic ratio (N / C) of nitrogen atoms to carbon atoms of 0.03 to 0.6,
CuKα線をX線源として得られるX線回折図において、回折角(2θ)が24.0〜26.5°の位置にピークを有し、該ピークの半値幅が7.5°以下であって、  In an X-ray diffraction diagram obtained using CuKα rays as an X-ray source, the diffraction angle (2θ) has a peak at a position of 24.0 to 26.5 °, and the half width of the peak is 7.5 ° or less. And
Fe、Ni、及びPtからなる群より選ばれる少なくとも1種の遷移金属を含有する、  Containing at least one transition metal selected from the group consisting of Fe, Ni, and Pt,
窒素含有炭素材料。  Nitrogen-containing carbon material.
〔2〕[2]
前記遷移金属の含有量が、0.01〜70質量%である、前項〔1〕に記載の窒素含有炭素材料。  The nitrogen-containing carbon material according to [1], wherein the content of the transition metal is 0.01 to 70% by mass.
〔3〕[3]
炭素原子に対する窒素原子の原子数比(N/C)が0.03〜0.6の窒素含有炭素材料であって、  A nitrogen-containing carbon material having an atomic ratio (N / C) of nitrogen atoms to carbon atoms of 0.03 to 0.6,
大気圧下200Ncc/min.の窒素気流中で60分かけて1000℃まで昇温し、1000℃で1時間保持した後、CuKα線をX線源として得られるX線回折図において、回折角(2θ)が24.0〜26.5°の位置にピークを有し、該ピークの半値幅が7.5°以下であって、  200 Ncc / min. Under atmospheric pressure. In an X-ray diffractogram obtained by using CuKα rays as an X-ray source after raising the temperature to 1000 ° C. over 60 minutes in a nitrogen stream and holding at 1000 ° C. for 1 hour, the diffraction angle (2θ) is 24.0. Having a peak at a position of 26.5 °, and the half width of the peak is 7.5 ° or less,
Fe、Ni、及びPtからなる群より選ばれる少なくとも1種の遷移金属を含有する、  Containing at least one transition metal selected from the group consisting of Fe, Ni, and Pt,
窒素含有炭素材料。  Nitrogen-containing carbon material.
〔4〕[4]
前記遷移金属の含有量が、0.01〜70質量%である、前項〔3〕に記載の窒素含有炭素材料。  The nitrogen-containing carbon material according to [3], wherein the content of the transition metal is 0.01 to 70% by mass.

本発明の窒素含有炭素材料は、燃料電池の電極として有用である。   The nitrogen-containing carbon material of the present invention is useful as a fuel cell electrode.

本発明の方法を含む窒素含有炭素材料の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the nitrogen containing carbon material containing the method of this invention. 実施例7と比較例4のXRDチャートである。10 is an XRD chart of Example 7 and Comparative Example 4.

アズルミン酸とは、主として青酸を重合して得られる重合物の総称である。
図1は、窒素含有炭素材料を製造するための工程の一例を示す。図1に示すように、青酸を含む原料を重合してアズルミン酸を製造する工程S10と、アズルミン酸と遷移金属を含むプレカーサーを製造する工程S12と、炭化する工程S14とを有する。
Azulmic acid is a general term for polymers obtained mainly by polymerizing hydrocyanic acid.
FIG. 1 shows an example of a process for producing a nitrogen-containing carbon material. As shown in FIG. 1, it has process S10 which manufactures the raw material containing hydrocyanic acid and manufactures azulmic acid, process S12 which manufactures the precursor containing azulmic acid and a transition metal, and carbonization process S14.

工程S10で用いる青酸は、特に限定されず、公知の方法で製造されるものを用いることができる。具体的には、プロピレン、イソブチレン、tert−ブチルアルコール、プロパンまたはイソブタンを触媒存在下にアンモニア、酸素含有ガスと反応させる気相接触反応によってアクリロニトリルやメタクリロニトリルを製造する方法において副生されるものを用いることができる。このために工程S10で用いる青酸は非常に安価に入手することが可能である。例えばメタノールのようにアンモ酸化反応によって青酸を生成するような原料を、アクリロニトリルやメタクリロニトリルの反応器に供給すると副生する青酸を増産することができる。   The cyanic acid used in step S10 is not particularly limited, and those produced by a known method can be used. Specifically, by-products are produced as a by-product in a process for producing acrylonitrile or methacrylonitrile by a gas phase catalytic reaction in which propylene, isobutylene, tert-butyl alcohol, propane or isobutane is reacted with ammonia or an oxygen-containing gas in the presence of a catalyst. Can be used. For this reason, the cyanuric acid used in step S10 can be obtained at a very low cost. For example, when a raw material such as methanol that generates hydrocyanic acid by an ammoxidation reaction is supplied to an acrylonitrile or methacrylonitrile reactor, the byproduct hydrocyanic acid can be increased.

また天然ガスの主成分であるメタンを触媒存在下にアンモニア、酸素含有ガスと反応させるアンドリュッソー法によって青酸を製造されることができる。この方法はメタンを原料とするために、非常に安価に青酸を入手できる方法である。   Further, hydrocyanic acid can be produced by an Andrewss method in which methane, which is a main component of natural gas, is reacted with ammonia and an oxygen-containing gas in the presence of a catalyst. Since this method uses methane as a raw material, it is a method by which hydrocyanic acid can be obtained at a very low cost.

もちろん青化ソーダ等を用いる実験室的な製造方法であってもかまわないが、コストの観点では上記の工業的に製造される青酸を用いるのが好ましい。   Of course, it may be a laboratory production method using sodium blue soda, but from the viewpoint of cost, it is preferable to use the above industrially produced cyanic acid.

工程S12で用いるアズルミン酸は、特に限定されないが、主として青酸を含む原料を重合して得られる黒色〜黒褐色の青酸重合物である。青酸を含む原料において、青酸に対するその他の重合性物質の存在比は40質量%以下であるのが好ましく、より好ましくは10質量%以下であり、さらに好ましくは5質量%以下であり、特に好ましくは1質量%以下である。 アズルミン酸は、青酸を種々の方法で重合させることにより製造することができる。例えば液化青酸や青酸水溶液を加熱する方法、長時間放置する方法、塩基を添加する方法、光を照射する方法、高エネルギーの放射をする方法、種々の放電を行う方法や、シアン化カリウム水溶液の電気分解による方法が挙げられる。この他、文献にもアズルミン酸の重合方法の記載があり、例としてAngew.Chem.72巻、379−384(1960年)及びその引用文献、並びに真空科学、16巻、64−72(1969年)及びその引用文献が挙げられる。   The azulmic acid used in step S12 is not particularly limited, but is a black to black brown hydrocyanic acid polymer obtained by polymerizing a raw material mainly containing hydrocyanic acid. In the raw material containing hydrocyanic acid, the abundance ratio of the other polymerizable substance to hydrocyanic acid is preferably 40% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, and particularly preferably. 1% by mass or less. Azulmic acid can be produced by polymerizing hydrocyanic acid by various methods. For example, a method of heating liquefied hydrocyanic acid or aqueous hydrocyanic acid, a method of leaving for a long time, a method of adding a base, a method of irradiating light, a method of emitting high energy, a method of performing various discharges, electrolysis of an aqueous solution of potassium cyanide The method by is mentioned. In addition, there is a description of the polymerization method of azulmic acid in the literature, and Angew. Chem. 72, 379-384 (1960) and references cited therein, and vacuum science, 16, 64-72 (1969) and references cited therein.

塩基の存在下に青酸を重合させる方法において、塩基として、水酸化ナトリウム、水酸化カリウム、シアン化ナトリウム、シアン化カリウム、有機塩基、アンモニア、アンモニア水を例示することができる。有機塩基としては、一級アミンR1NH2、二級アミンR12NH、三級のアミンR123N、四級アンモニウ塩R1234+が一般的に用いられる(但し、R1〜R4は互いに同一又は異なってもよい炭素数1〜10のアルキル基、フェニル基、ヘキシル基、およびこれらが結合して得られる基、である。R1〜R4に官能基を含んでよい。)。脂肪族又は環式脂肪族の第三級アミンが好ましい。例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、ジシクロヘキシルメチルアミン、テトラメチルアンモニウムヒドロキサイド、N−メチルピロリジン、1,8−ジアザビシクロ[5.4.0]ウンデク−7−エン(DBU)を挙げることができる。青酸の重合方法のうち、重合段階で金属成分を含まないという観点で好ましいのは、液化青酸や青酸水溶液を加熱する、あるいは長時間放置する、光を照射する、高エネルギーの放射をする、アンモニア、有機塩基の存在下で重合する方法である。 In the method of polymerizing hydrocyanic acid in the presence of a base, examples of the base include sodium hydroxide, potassium hydroxide, sodium cyanide, potassium cyanide, organic base, ammonia, and aqueous ammonia. Examples of the organic base, primary amine R 1 NH 2, secondary amine R 1 R 2 NH, tertiary amine R 1 R 2 R 3 N, quaternary ammonium salt-free R 1 R 2 R 3 R 4 N + general manner are used (however, R 1 to R 4 is a group, obtained the same or different and an alkyl group having 1 to 10 carbon atoms, a phenyl group, a hexyl group, and then they are bonded to each other .R 1 ~ R 4 may contain a functional group). Aliphatic or cycloaliphatic tertiary amines are preferred. Examples include trimethylamine, triethylamine, tripropylamine, tributylamine, dicyclohexylmethylamine, tetramethylammonium hydroxide, N-methylpyrrolidine, 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU). be able to. Among the polymerization methods of cyanic acid, from the viewpoint of not containing a metal component in the polymerization step, it is preferable to heat liquefied hydrocyanic acid or an aqueous solution of hydrocyanic acid or leave it for a long time, irradiate light, emit high energy, ammonia The polymerization is carried out in the presence of an organic base.

また、プロピレン等のアンモ酸化工程で副生する青酸の精製工程において見られる装置の付着物から回収することによってもアズルミン酸を製造することができる。   Azulmic acid can also be produced by recovering from the deposits of the apparatus found in the purifying process of cyanuric acid by-produced in the ammoxidation process such as propylene.

アズルミン酸の組成は、CHN分析計を用いて測定することができる。(窒素元素の質量%)/(炭素元素の質量%)は0.2〜1.0が好ましく、より好ましくは0.3〜0.9であり、特に好ましくは0.4〜0.9である。(水素元素の質量%)/(炭素元素の質量%)は0.03〜0.2が好ましく、より好ましくは0.05〜0.15であり、特に好ましくは0.08〜0.11である。   The composition of azulmic acid can be measured using a CHN analyzer. (Mass% of nitrogen element) / (mass% of carbon element) is preferably 0.2 to 1.0, more preferably 0.3 to 0.9, and particularly preferably 0.4 to 0.9. is there. (Mass% of hydrogen element) / (mass% of carbon element) is preferably 0.03 to 0.2, more preferably 0.05 to 0.15, and particularly preferably 0.08 to 0.11. is there.

アズルミン酸は、波数1000〜2000cm-1のレーザーラマンスペクトル図において、ラマンシフトが1300〜1400cm-1、1500〜1600cm-1の位置にピークを持つことが好ましく、特に好ましくは1360〜1380cm-1、1530〜1550cm-1の位置にピークを持つ。 Azulmic acid, in the laser Raman spectrum of the wave number 1000~2000Cm -1, the Raman shift 1300~1400Cm -1, it is preferable to have a peak position of 1500~1600Cm -1, particularly preferably 1360~1380Cm -1, It has a peak at a position of 1530 to 1550 cm −1 .

アズルミン酸は、CuKα線をX線源として得られるX線回折図の10〜50°の範囲において、回折角(2θ)が26.8±1°の位置に、好ましくは26.8±0.5°の位置に、より好ましくは26.8±0.2°の位置に強いピークを示す。また、前述のピークに加えて、本発明で用いるアズルミン酸は、CuKα線をX線源として得られるX線回折図の10〜50°の範囲において、回折角(2θ)が12.3±1°の位置に、好ましくは12.3±0.5°の位置にもピークを示す。   Azulmic acid has a diffraction angle (2θ) of 26.8 ± 1 °, preferably 26.8 ± 0. 0, in the range of 10 to 50 ° in the X-ray diffraction diagram obtained using CuKα rays as an X-ray source. A strong peak is shown at a position of 5 °, more preferably at a position of 26.8 ± 0.2 °. In addition to the above-mentioned peak, the azurmic acid used in the present invention has a diffraction angle (2θ) of 12.3 ± 1 in the range of 10 to 50 ° in the X-ray diffraction diagram obtained using CuKα rays as an X-ray source. A peak also appears at the position of °, preferably at the position of 12.3 ± 0.5 °.

次いで、アズルミン酸と遷移金属を含むプレカーサーを製造する(工程12)。アズルミン酸と遷移金属の原料とを溶媒中で混合し、次いで溶媒を除去することにより、プレカーサーを製造するのが好ましい。 Then, to produce a precursor containing a transition metal and azulmic acid (Step S 12). It is preferable to produce a precursor by mixing azulmic acid and the raw material of the transition metal in a solvent and then removing the solvent.

遷移金属としては、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Ta、W、Re、Ir、Pt、Au、ランタノイド元素が好ましい。より好ましくは、Fe、Co、Ni、Pd、Pt、Au、La、Ceであり、特に好ましくはPt、Fe、Co、Niである。   Transition metals include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Ta, W, Re, Ir, Pt, Au A lanthanoid element is preferred. More preferable are Fe, Co, Ni, Pd, Pt, Au, La, and Ce, and particularly preferable are Pt, Fe, Co, and Ni.

遷移金属の原料としては、遷移金属のシュウ酸塩、水酸化物、酸化物、亜硝酸塩、硝酸
塩、酢酸塩、アンモニウム塩、炭酸塩、塩化物、臭化物、アルコキシド、アセチルアセト
ナート、フタロシアニン、ポルフィリン等を用いることができる
鉄原料としては、鉄(II)フタロシアニン、鉄(III)アセチルアセトネート、鉄(II)メト
キシド、鉄(III)エトキシド、鉄(III)イソプロポキシド、ビス(シクロペンタジエニル)鉄
、ビス(エチルシクロペンタジエニル)鉄ビス(イソプロピルシクロペンタジエニル)鉄、ビス(テトラメチルシクロペンタジエニル)鉄、塩化第二鉄、クエン酸第二鉄 、りん化第二鉄、酒石酸第二鉄、フマル酸第一鉄、 ヘキサシアノ鉄(II)酸アンモニウム、ヘキサシアノ鉄(II)酸アンモニウム鉄(III)、しゅう酸アンモニウム鉄(III)三水和物 、硫酸鉄(III)アンモニウム、硫酸アンモニウム鉄(III)、ビス(シクロペンタジエニル)鉄、塩化第二鉄、エチレンジアミン四酢酸、クエン酸鉄アンモニウム、硝酸第二鉄、酢酸鉄(II)、フマル酸鉄(II)、グルコン酸鉄(II) 、シュウ酸鉄及び水酸化鉄(III)を例示できる。好ましくは鉄(II)フタロシアニン、硝酸鉄である。
Transition metal raw materials include transition metal oxalate, hydroxide, oxide, nitrite, nitrate, acetate, ammonium salt, carbonate, chloride, bromide, alkoxide, acetylacetonate, phthalocyanine, porphyrin, etc. Can be used .
Iron raw materials include iron (II) phthalocyanine, iron (III) acetylacetonate, iron (II) methoxide, iron (III) ethoxide, iron (III) isopropoxide, bis (cyclopentadienyl) iron, bis ( Ethylcyclopentadienyl) iron , bis (isopropylcyclopentadienyl) iron, bis (tetramethylcyclopentadienyl) iron, ferric chloride, ferric citrate, ferric phosphide, ferric tartrate , Ferrous fumarate, ammonium hexacyanoferrate (II), ammonium hexacyanoferrate (II) ammonium iron (III), ammonium oxalate iron (III) trihydrate, iron (III) sulfate ammonium, iron iron sulfate (III ), Bis (cyclopentadienyl) iron, ferric chloride, ethylenediaminetetraacetic acid, ammonium iron citrate, ferric nitrate, iron (II) acetate, iron (II) fumarate, iron (II) gluconate, Iron oxalate and iron (III) hydroxide It can be illustrated. Iron (II) phthalocyanine and iron nitrate are preferred.

ニッケル原料としては、ニッケル(II)フタロシアニン、ニッケル(II)トリフルオロアセチルアセトナート、ビス(シクロペンタジエニル)ニッケル、ビス(イソプロピルシクロペンタジエニル)ニッケル ビス(ペンタメチルシクロペンタジエニル)ニッケル、ビス(テトラメチルシクロペンタジエニル)ニッケル、ほう酸ニッケルヒドロキシ酢酸ニッケル、ナフテン酸ニッケル、ビス(エチルシクロペンタジエニル)ニッケル、硫酸ニッケル(II)アンモニウム、ビス(1,5-シクロオクタジエン)ニッケル、ビス(テトラメチルシクロペンタジエニル)ニッケル、臭化ヘキサアンミンニッケル(II)塩化ヘキサアンミンニッケル(II) 、酢酸ニッケル(II) 四水和物、アセチルアセトン酸ニッケル(II)、硫酸ニッケルアンモニウム、塩化ニッケル(II)臭化ニッケル、炭酸ニッケル(II)、ぎ酸ニッケル(II)、ヘキサフルオロアセチルアセトナトニッケル(II)、酸化ニッケル(II)、ヒドロキシ酢酸ニッケル(II)、乳酸ニッケル(II)硝酸ニッケル、しゅう酸ニッケル(II)、2,4-ペンタンジオン酸ニッケル(II)、硫酸ニッケル、アミド硫酸ニッケル、水酸化ニッケルを例示できる。好ましくは、ニッケル(II)フタロシアニン、硝酸ニッケルである。 Nickel raw materials include nickel (II) phthalocyanine, nickel (II) trifluoroacetylacetonate, bis (cyclopentadienyl) nickel, bis (isopropylcyclopentadienyl) nickel bis (pentamethylcyclopentadienyl) nickel, Bis (tetramethylcyclopentadienyl) nickel, nickel borate nickel hydroxyacetate nickel, naphthenic acid nickel, bis (ethylcyclopentadienyl) nickel, nickel (II) ammonium sulfate, bis (1,5-cyclooctadiene) nickel, Bis (tetramethylcyclopentadienyl) nickel, hexaamminenickel bromide (II) , hexaamminenickel (II) chloride, nickel (II) acetate tetrahydrate, nickel (II) acetylacetonate, nickel ammonium sulfate, chloride Nickel (II) , nickel bromide, nickel carbonate Le (II), formic acid nickel (II), hexafluoro acetylacetonate nickel (II), nickel oxide (II), hydroxyacetic acid nickel (II), lactic acid nickel (II), nickel nitrate, nickel oxalate (II) 2,4-pentanedioic acid nickel (II), nickel sulfate, amido nickel sulfate, and nickel hydroxide. Preferred are nickel (II) phthalocyanine and nickel nitrate.

コバルト原料としては、コバルト(II)フタロシアニン、コバルト(II)トリフルオロアセチルアセトナート、ビス(シクロペンタジエニル)コバルト、ビス(イソプロピルシクロペンタジエニル)コバルトビス(ペンタメチルシクロペンタジエニル)コバルト、ビス(テトラメチルシクロペンタジエニル)コバルト、ほう酸コバルトヒドロキシ酢酸コバルト、ナフテン酸コバルト、ビス(エチルシクロペンタジエニル)コバルト、硫酸コバルト(II)アンモニウム、ビス(1,5-シクロオクタジエン)コバルト、ビス(テトラメチルシクロペンタジエニル)コバルト、臭化ヘキサアンミンコバルト(II)塩化ヘキサアンミンコバルト(II) 、酢酸コバルト(II) 四水和物、アセチルアセトン酸コバルト(II)、硫酸コバルトアンモニウム、塩化コバルト(II)臭化コバルト、炭酸コバルト(II)、ぎ酸コバルト(II)、ヘキサフルオロアセチルアセトナトコバルト(II)、酸化コバルト(II)、ヒドロキシ酢酸コバルト(II)、乳酸コバルト(II)、ナフテン酸ニッケル(II)、硝酸コバルト、しゅう酸コバルト(II)、2,4-ペンタンジオン酸コバルト(II)、硫酸コバルト、アミド硫酸コバルト、水酸化コバルトを例示できる。好ましくは、コバルト(II)フタロシアニン、硝酸コバルトである。 Cobalt raw materials include cobalt (II) phthalocyanine, cobalt (II) trifluoroacetylacetonate, bis (cyclopentadienyl) cobalt, bis (isopropylcyclopentadienyl) cobalt , bis (pentamethylcyclopentadienyl) cobalt , Bis (tetramethylcyclopentadienyl) cobalt, cobalt borate hydroxycobalt cobalt acetate, cobalt naphthenate, bis (ethylcyclopentadienyl) cobalt, cobalt (II) ammonium sulfate, bis (1,5-cyclooctadiene) cobalt , Bis (tetramethylcyclopentadienyl) cobalt, hexaamminecobalt bromide (II) , hexaamminecobalt (II) chloride, cobalt (II) acetate tetrahydrate, cobalt (II) acetylacetonate, cobaltammonium sulfate, cobalt chloride (II), cobalt bromide, carbonate Koba (II), cobalt formate (II), hexafluoroacetylacetonato cobalt (II), cobalt (II) oxide, cobalt (II) hydroxyacetate, cobalt (II) lactate, nickel (II) naphthenate, cobalt nitrate And cobalt (II) oxalate, cobalt (II) 2,4-pentandionate, cobalt sulfate, cobalt amidosulfate, and cobalt hydroxide. Preferred are cobalt (II) phthalocyanine and cobalt nitrate.

白金原料としては、白金(II)アセチルアセトナート、ヘキサブロモ白金酸(IV)アンモニウム、ヘキサクロロ白金(IV)酸アンモニウム、テトラクロロ白金(II)酸アンモニウム、ビス(アセチルアセトナート)白金(II)、ビス(エチレンジアミン)白金(II)クロリド、クロロ白金酸六水和物ジクロロジアンミン白金(II)、テトラクロロジアンミン白金(IV)、1,1-シクロブタンジカルボシラトジアンミン白金(II)、ジアンミンジクロロ白金(II)、亜硝酸ジアンミン白金(II)、ジクロロビス(ベンゾニトリル)白金(II)、ヘキサクロロ白金酸(IV)二水素、ヘキサブロモ白金酸(IV)二水素、ヘキサヒドロオクソ白金酸(IV)ジフェニル(1,5-シクロオクタジエン)白金(II)、ヘキサヒドロキソ白金(IV)酸、臭化白金(II)、塩化白金(II)、ヘキサフルオロアセチルアセトン酸白金(II)、塩化テトラアンミン白金(II)、炭酸水素テトラアンミン白金(II)テトラアンミン白金(II)水酸化物、硝酸テトラアミン白金 (II)、テトラアミン白金(II)テトラクロロ白金(II)酸及びヘキサヒドロキソ白金硝酸水溶液を例示できる。 Platinum raw materials include platinum (II) acetylacetonate, ammonium hexabromoplatinate (IV), ammonium hexachloroplatinate (IV), ammonium tetrachloroplatinate (II), bis (acetylacetonato) platinum (II), bis (Ethylenediamine) platinum (II) chloride, chloroplatinic acid hexahydrate , dichlorodiammine platinum (II), tetrachlorodiammine platinum (IV), 1,1-cyclobutanedicarbosilatodiammine platinum (II), diammine dichloroplatinum ( II), diammine platinum nitrite (II), dichlorobis (benzonitrile) platinum (II), hexachloroplatinic acid (IV) dihydrogen, hexabromoplatinic acid (IV) dihydrogen, hexahydrooxoplatinic acid (IV) , diphenyl ( 1,5-cyclooctadiene) platinum (II), hexahydroxoplatinum (IV) acid, platinum (II) bromide, platinum (II) chloride, platinum (II) hexafluoroacetylacetonate, tetrachloride Examples include ammineplatinum (II) , tetraammineplatinum hydrogen carbonate (II) , tetraammineplatinum (II) hydroxide, tetraamineplatinum (II) nitrate, tetraamineplatinum (II) tetrachloroplatinum (II) acid and hexahydroxoplatinum nitrate aqueous solution. it can.

溶媒としては、アズルミン酸との親和性が高い溶媒が好ましい。有機溶媒、水、水溶液を例示できる。極性溶媒の方が、アズルミン酸との親和性が高い傾向がある。   As the solvent, a solvent having high affinity with azulmic acid is preferable. An organic solvent, water, and aqueous solution can be illustrated. Polar solvents tend to have higher affinity with azulmic acid.

有機溶媒としては、極性溶媒が好ましい。クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、アセトン、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、1-ブタノール、2-プロパノール、1-プロパノール、エタノール、メタノール、ギ酸、アミノ基を有する溶媒を例示できる。アミノ基を有する溶媒として、第一級アミンを例示することができる。具体的には、アミノ基を有する溶媒として、アンモニア、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、アミルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、セチルアミン、シクロプロピルアミンシクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミン、アニリン、トルイジン、ベンジルアミン、ナフチルアミン、アリルアミン等のモノアミン、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、フェニレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンエキサミン等のジアミン、1,2,3−トリアミノプロパン、トリアミノベンゼン、トリアミノフェノール、メラミン等のトリアミンを例示できる。 As the organic solvent, a polar solvent is preferable. Chloroform, ethyl acetate, tetrahydrofuran, methylene chloride, acetone, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, acetic acid, 1-butanol, 2-propanol, 1-propanol, ethanol, methanol, formic acid, solvents with amino groups It can be illustrated. A primary amine can be illustrated as a solvent which has an amino group. Specifically, examples of solvents having amino groups include ammonia, methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, Decylamine, tetradecylamine, pentadecylamine, cetylamine, cyclopropylamine , cyclobutylamine, cyclopentylamine, cyclohexylamine, aniline, toluidine, benzylamine, naphthylamine, allylamine and other monoamines, ethylenediamine, trimethylenediamine, tetramethylenediamine, Pentamethylenediamine, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9- Aminonane, 1,10-diaminodecane, phenylenediamine, diethylenetriamine, triethylenetetramine, diamine such as tetraethylenepentamine, pentaethyleneexamine, 1,2,3-triaminopropane, triaminobenzene, triaminophenol, melamine And the like.

これらの中で、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、1,2,3−トリアミノプロパンが好ましく、エチレンジアミンがより好ましい。   Among these, ethylenediamine, trimethylenediamine, tetramethylenediamine, and 1,2,3-triaminopropane are preferable, and ethylenediamine is more preferable.

塩基性水溶液としては、例えば、第一級アミンの水溶液、アルカリ金属の水溶液、アルカリ土類金属の水溶液、4級アンモニウム塩の水溶液等を例示することができる。第一級アミンの水溶液としては、アンモニア水溶液、メチルアミン水溶液、エチルアミン水溶液、プロピルアミン水溶液、イソプロピルアミン水溶液、ブチルアミン水溶液、アミルアミン水溶液、ヘキシルアミン水溶液の等のモノアミン水溶液、エチレンジアミン水溶液、トリメチレンジアミン水溶液、テトラメチレンジアミン水溶液等のジアミン水溶液、メラミン水溶液等のトリアミン水溶液を例示できる。アルカリ金属の水溶液としては水酸化ナトリウム水溶液、水酸化カリウム水溶液等を、アルカリ土類金属の水溶液としては水酸化カルシウム水溶液、水酸化バリウム水溶液等を、4級アンモニウム塩の水溶液としてはテトラメチルアンモニウムヒドロキシド水溶液、テトラエチルアンモニウムヒドロキシド水溶液、テトラプロピルアンモニウムヒドロキシド水溶液、テトラブチルアンモニウムヒドロキシド水溶液等を例示することができる。これらの中で、好ましくはアンモニア水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液、テトラエチルアンモニウムヒドロキシド水溶液である。   Examples of the basic aqueous solution include an aqueous solution of a primary amine, an aqueous solution of an alkali metal, an aqueous solution of an alkaline earth metal, an aqueous solution of a quaternary ammonium salt, and the like. As an aqueous solution of primary amine, aqueous ammonia solution, aqueous solution of methylamine, aqueous solution of ethylamine, aqueous solution of propylamine, aqueous solution of isopropylamine, aqueous solution of butylamine, aqueous solution of amylamine, aqueous solution of hexylamine, aqueous solution of ethylenediamine, aqueous solution of trimethylenediamine, Examples include diamine aqueous solutions such as tetramethylene diamine aqueous solutions and triamine aqueous solutions such as melamine aqueous solutions. Sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, etc. as alkaline metal aqueous solution, calcium hydroxide aqueous solution, barium hydroxide aqueous solution etc. as alkaline earth metal aqueous solution, tetramethylammonium hydroxy as aqueous solution of quaternary ammonium salt Aqueous solution of aqueous solution, aqueous solution of tetraethylammonium hydroxide, aqueous solution of tetrapropylammonium hydroxide, aqueous solution of tetrabutylammonium hydroxide and the like. Among these, an aqueous ammonia solution, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, and an aqueous tetraethylammonium hydroxide solution are preferable.

酸性水溶液として、硫酸水溶液、硝酸水溶液、塩酸水溶液、燐酸水溶液を例示することができる。これらの中で、好ましくは硫酸水溶液である。   Examples of the acidic aqueous solution include a sulfuric acid aqueous solution, a nitric acid aqueous solution, a hydrochloric acid aqueous solution, and a phosphoric acid aqueous solution. Among these, a sulfuric acid aqueous solution is preferable.

アズルミン酸と遷移金属の原料の比率は限定されないが、好ましくはアズルミン酸に対して遷移金属の原料は0.001以上であり、より好ましくは0.005以上であり、特に好ましくは0.01以上である。またアズルミン酸に対して遷移金属の原料は10以下であり、より好ましくは1以下であり、特に好ましくは0.1以下である。   The ratio of the raw materials of azulmic acid and transition metal is not limited, but preferably the raw material of transition metal with respect to azulmic acid is 0.001 or more, more preferably 0.005 or more, and particularly preferably 0.01 or more. It is. Moreover, the raw material of a transition metal with respect to azulmic acid is 10 or less, More preferably, it is 1 or less, Most preferably, it is 0.1 or less.

溶媒との混合に先立って、アズルミン酸は予めボールミル等で粉砕しておくことが好ましい。   Prior to mixing with the solvent, it is preferable to pulverize the azulmic acid in advance with a ball mill or the like.

アズルミン酸と溶媒の混合比率は、溶解性、希釈したい比率、混合方法に応じて決めればよい。アズルミン酸に対して質量比で1〜10000倍、好ましくは10〜100倍を例示できる。質量比が低いと溶解性が悪く、高いと溶媒の除去のために消費するエネルギーが増える。   What is necessary is just to determine the mixing ratio of an azulmic acid and a solvent according to solubility, the ratio to dilute, and a mixing method. Examples thereof include 1 to 10,000 times, preferably 10 to 100 times by mass ratio with respect to azulmic acid. If the mass ratio is low, the solubility is poor, and if it is high, the energy consumed for removing the solvent increases.

溶媒の種類によってはアズルミン酸と反応する可能性もあるが、全体として溶解した状態になる限り、反応していても差し支えない。すなわち、溶液又は不溶物を含む混合液中に、アズルミン酸と溶媒の少なくとも一部が反応したものを含む態様を経由する窒素含有炭素材料の製造方法も、本実施形態の範疇である。また水等の溶媒中で青酸を重合することによってアズルミン酸を得ることができるが、生成したアズルミン酸を含む溶液又は不溶物を含む混合液をプレカーサーの製造に利用することもできる。生成したアズルミン酸は難溶性の場合が多いが、酸及び/又は塩基を添加する等によって、溶解状態にすることも可能である。   Although it may react with azulmic acid depending on the type of solvent, it may be reacted as long as it is in a dissolved state as a whole. That is, a method for producing a nitrogen-containing carbon material through an embodiment in which at least a part of azulmic acid and a solvent is reacted in a mixed solution containing a solution or an insoluble material is also included in the category of this embodiment. In addition, azurmic acid can be obtained by polymerizing hydrocyanic acid in a solvent such as water. However, a solution containing azulmic acid produced or a mixed solution containing insoluble matter can also be used for the production of a precursor. The produced azulmic acid is often poorly soluble, but it can be made into a dissolved state by adding an acid and / or a base.

アズルミン酸と溶媒を混合する温度は特に限定されないが、溶媒の融点以上かつ溶媒の沸点若しくは分解温度以下が好ましい。混合時間としては、1分間〜100時間を例示できる。好ましくは10分から20時間であり、より好ましくは30分から2時間である。混合中は振とうしたり攪拌したり超音波をかけたりすることが好ましい。   The temperature at which azulmic acid and the solvent are mixed is not particularly limited, but is preferably not lower than the melting point of the solvent and not higher than the boiling point or decomposition temperature of the solvent. Examples of the mixing time include 1 minute to 100 hours. It is preferably 10 minutes to 20 hours, more preferably 30 minutes to 2 hours. During mixing, it is preferable to shake, stir or apply ultrasonic waves.

溶媒を除去する方法としては、常圧あるいは減圧下で加熱して溶媒を除去する方法、噴霧乾燥させる方法を例示できる。   Examples of the method for removing the solvent include a method for removing the solvent by heating under normal pressure or reduced pressure, and a method for spray drying.

工程S14について説明する。
炭化の方法は、以下のものに限定されないが、回転炉、トンネル炉、管状炉、流動焼成炉等を用い、プレカーサーを不活性ガス雰囲気下で500〜1500℃、好ましくは600〜1200℃、より好ましくは700〜1100℃、特に好ましくは、800〜1000℃の範囲で熱処理することにより行うことができる。上記不活性ガスとしては、以下のガスに限定されないが、例えば窒素、アルゴン、ヘリウム、ネオン、二酸化炭素等の不活性ガスが挙げられ、コスト的には窒素ガスが好ましい。なお、不活性ガス雰囲気で熱処理する代わりに、真空中で熱処理しても良い。
Step S14 will be described.
The method of carbonization is not limited to the following, but using a rotary furnace, tunnel furnace, tubular furnace, fluidized firing furnace, etc., the precursor is 500 to 1500 ° C., preferably 600 to 1200 ° C. in an inert gas atmosphere. Preferably, it can be carried out by heat treatment in the range of 700 to 1100 ° C, particularly preferably in the range of 800 to 1000 ° C. The inert gas is not limited to the following gas, but includes, for example, an inert gas such as nitrogen, argon, helium, neon, carbon dioxide, and nitrogen gas is preferable in terms of cost. In addition, you may heat-process in a vacuum instead of heat-processing in inert gas atmosphere.

不活性ガス雰囲気で炭化する場合、不活性ガスは静止していても流通していてもよいが、流通しているのが好ましい。窒素含有炭素材料の酸化を防ぐ観点で、不活性ガス中の酸素濃度は5%以下が好ましく、より好ましくは1%以下であり、特に好ましくは1000ppm以下である。炭化処理時間としては10秒〜100時間、好ましくは5分〜10時間、より好ましくは15分〜5時間、さらにより好ましくは30分〜2時間の範囲である。炭化工程の圧力は、0.01〜5MPa、好ましくは0.05〜1MPa、より好ましくは0.08〜0.3MPa、特に好ましくは、0.09〜0.15MPaである。高圧処理はsp3軌道によって構成されるダイヤモンド構造となるために好ましくない。   When carbonizing in an inert gas atmosphere, the inert gas may be stationary or distributed, but is preferably distributed. From the viewpoint of preventing oxidation of the nitrogen-containing carbon material, the oxygen concentration in the inert gas is preferably 5% or less, more preferably 1% or less, and particularly preferably 1000 ppm or less. The carbonization time is in the range of 10 seconds to 100 hours, preferably 5 minutes to 10 hours, more preferably 15 minutes to 5 hours, and even more preferably 30 minutes to 2 hours. The pressure in the carbonization step is 0.01 to 5 MPa, preferably 0.05 to 1 MPa, more preferably 0.08 to 0.3 MPa, and particularly preferably 0.09 to 0.15 MPa. The high-pressure treatment is not preferable because it has a diamond structure composed of sp3 orbitals.

窒素含有炭素材料は、触媒や電極用途には平均粒子径(体積基準のメディアン径:50%D)が0.1μm以上100μm以下であることが好ましく、0.5μm以上30μm以下であることがより好ましい。また触媒や電極用途向けにはBET法により測定した比表面積は、30〜2500m2/gの範囲内にすることが好ましい。比表面積30m2/g未満であれば活性が低く、2500m2/gを超えるものは、合成が難しいからである。BET法により測定した比表面積のさらに好ましい範囲は、50〜600m2/gである。 The nitrogen-containing carbon material preferably has an average particle diameter (volume-based median diameter: 50% D) of 0.1 μm or more and 100 μm or less, and more preferably 0.5 μm or more and 30 μm or less for catalyst and electrode applications. preferable. For catalyst and electrode applications, the specific surface area measured by the BET method is preferably in the range of 30 to 2500 m 2 / g. The specific surface area is less active is less than 30 m 2 / g, in excess of 2500 m 2 / g, the synthesis is difficult, is from. A more preferable range of the specific surface area measured by the BET method is 50 to 600 m 2 / g.

得られた窒素含有炭素材料中の遷移金属の含有量は、0.01〜70質量%の範囲内にすることが望ましい。より好ましい範囲は、0.1〜50質量%であり、特に好ましくは0.5〜8%である。   The content of the transition metal in the obtained nitrogen-containing carbon material is desirably in the range of 0.01 to 70% by mass. A more preferable range is 0.1 to 50% by mass, and particularly preferably 0.5 to 8%.

なお、工程S14で得られた窒素含有炭素材料を後処理することもできる。後処理としては粉砕、溶媒による洗浄、再焼成が挙げられる。洗浄用の溶媒としては酸性水溶液を例示できる。   Note that the nitrogen-containing carbon material obtained in step S14 can be post-treated. Post-processing includes pulverization, washing with a solvent, and re-firing. As the solvent for washing, an acidic aqueous solution can be exemplified.

本実施態様の窒素含有炭素材料は、
(1)炭素原子に対する窒素原子の原子数比(N/C)が0.03〜0.6、
(2)CuKα線をX線源として得られるX線回折図において、回折角(2θ)が24.0〜26.5°の位置にピークを有し、該ピークの半値幅が7.5°以下、
である。
The nitrogen-containing carbon material of this embodiment is
(1) The atomic ratio (N / C) of nitrogen atoms to carbon atoms is 0.03 to 0.6,
(2) In an X-ray diffraction diagram obtained using CuKα rays as an X-ray source, the diffraction angle (2θ) has a peak at a position of 24.0 to 26.5 °, and the half width of the peak is 7.5 °. Less than,
It is.

好ましくは(N/C)が0.04以上、より好ましくは0.05以上、特に好ましくは0.06以上である。好ましくは(N/C)が0.5以下、より好ましくは0.4以下、特に好ましくは0.3以下である。   (N / C) is preferably 0.04 or more, more preferably 0.05 or more, and particularly preferably 0.06 or more. (N / C) is preferably 0.5 or less, more preferably 0.4 or less, and particularly preferably 0.3 or less.

好ましくは回折角(2θ)が25.0〜26.4°の位置に、より好ましくは、25.4〜26.3°の位置に、特に好ましくは25.6〜26.1°の位置に、ピークを有する。好ましくは該ピークの半値幅が7°以下であり、より好ましくは6°以下であり、特に好ましくは5°以下である。好ましくは該ピークの半値幅が0.001°以上であり、より好ましくは0.01°以上であり、特に好ましくは0.04°以上である。 Preferably, the diffraction angle (2θ) is at a position of 25.0 to 26.4 °, more preferably at a position of 25.4 to 26.3 °, and particularly preferably at a position of 25.6 to 26.1 ° . Have a peak. Preferably, the full width at half maximum of the peak is 7 ° or less, more preferably 6 ° or less, and particularly preferably 5 ° or less. The full width at half maximum of the peak is preferably 0.001 ° or more, more preferably 0.01 ° or more, and particularly preferably 0.04 ° or more.

なお上述のX線回折ピークを示さない窒素含有炭素材料についても、高温で再焼成した後に、24.0〜26.5°の位置に7.5°以下の半値幅を有するピークを示すものであれば、本実施態様の窒素含有炭素材料の範疇である。   The nitrogen-containing carbon material that does not show the above X-ray diffraction peak also shows a peak having a half-value width of 7.5 ° or less at a position of 24.0 to 26.5 ° after re-baking at a high temperature. If there is, it is a category of the nitrogen-containing carbon material of the present embodiment.

すなわち、窒素含有炭素材料の試験片を作製し、これを大気圧下200Ncc/min.の窒素気流中で60分かけて1000℃まで昇温し、1000℃で1時間ホールド(保持)した後、CuKα線をX線源としてX線回折図を得る。このX線回折図において、回折角(2θ)が24.0〜26.5°の位置にピークを有し、該ピークの半値幅が7.5°以下であるものは、本実施態様の窒素含有炭素材料である。   That is, a test piece of nitrogen-containing carbon material was prepared, and this was tested at 200 Ncc / min. The temperature is raised to 1000 ° C. over 60 minutes in a nitrogen stream and held (held) at 1000 ° C. for 1 hour, and then an X-ray diffraction diagram is obtained using CuKα rays as an X-ray source. In this X-ray diffraction pattern, the diffraction angle (2θ) has a peak at a position of 24.0 to 26.5 °, and the half width of the peak is 7.5 ° or less. It is a contained carbon material.

したがって、製造履歴の不明な窒素含有炭素材料についてX線回折ピークを調べる場合、(再焼成しない状態で)試験片のX線回折を測定して所定のピークを示さないときは、サンプルを大気圧下200Ncc/min.の窒素気流中で60分かけて1000℃まで昇温し、1000℃で1時間ホールド(保持)した後のX線回折ピークも調べるのが好ましい。   Therefore, when examining the X-ray diffraction peak of a nitrogen-containing carbon material whose production history is unknown, when the X-ray diffraction of the test piece is measured (without recalcination) and does not show a predetermined peak, the sample is taken to atmospheric pressure. Lower 200 Ncc / min. It is preferable to examine the X-ray diffraction peak after the temperature is raised to 1000 ° C. in a nitrogen flow of 60 minutes and held at 1000 ° C. for 1 hour.

本実施態様の窒素含有炭素材料は、化学反応の触媒、固体高分子型燃料電池の電極、金属―空気電池の電極等に用いることができる。アズルミン酸の原料としてはアクリロニトリル等基礎原料の製造において、プロピレンやプロパン等の原料が反応する際に副生物として得られる青酸が利用可能である。青酸を熱処理して製造されるアズルミン酸から窒素含有炭素材料を製造する方法は、工程数が少なく、比較的高い収率である。よって省資源、省エネルギーに窒素含有炭素材料を製造する方法と言える。従って、燃料電池の電極及びこの電極を用いて得られる燃料電池に利用する場合も、効率的且つ安価で、しかも省資源、省エネルギーで製造することができ、工業上非常に有用である。   The nitrogen-containing carbon material of this embodiment can be used as a catalyst for chemical reaction, an electrode of a polymer electrolyte fuel cell, an electrode of a metal-air cell, and the like. As a raw material of azulmic acid, hydrocyanic acid obtained as a by-product when a raw material such as propylene or propane reacts in the production of a basic raw material such as acrylonitrile can be used. The method for producing a nitrogen-containing carbon material from azulmic acid produced by heat treating cyanic acid has a small number of steps and a relatively high yield. Therefore, it can be said that it is a method for producing a nitrogen-containing carbon material in order to save resources and energy. Therefore, even when used for an electrode of a fuel cell and a fuel cell obtained by using this electrode, it can be manufactured efficiently and inexpensively with resource saving and energy saving, and is very useful industrially.

以下に本発明の実施例等を挙げて本発明をさらに詳細に説明するが、これらは例示的なものであり、本発明は以下の具体例に制限されるものではない。当業者は以下に示す実施例に様々な変更を加えて本発明を実施することができ、かかる変更は本願の特許請求の範囲に包含される。
分析方法は以下のとおりとした。
EXAMPLES The present invention will be described in more detail below with reference to examples and the like of the present invention, but these are illustrative and the present invention is not limited to the following specific examples. Those skilled in the art can implement the present invention by making various modifications to the examples described below, and such modifications are included in the scope of the claims of the present application.
The analysis method was as follows.

<分析方法>
(CHN分析)
ジェイサイエンスラボ社製MICRO CORDER JM10を用い、2500μgの試料を試料台に充填してCHN分析を行った。試料炉は950℃、燃焼炉(酸化銅触媒)は850℃、還元炉(銀粒+酸化銅のゾーン、還元銅のゾーン、酸化銅のゾーンからなる)は550℃に設定されている。酸素は15ml/min、Heは150ml/minに設定されている。検出器はTCDである。アンチピリン(Antipyrine)を用いてマニュアルに記載の方法でキャリブレーションを行う。
<Analysis method>
(CHN analysis)
Using a MICRO CORDER JM10 manufactured by J Science Lab Inc., a sample of 2500 μg was filled in a sample stage and subjected to CHN analysis. The sample furnace is set to 950 ° C., the combustion furnace (copper oxide catalyst) is set to 850 ° C., and the reduction furnace (consisting of a silver grain + copper oxide zone, a reduced copper zone, and a copper oxide zone) is set to 550 ° C. Oxygen is set to 15 ml / min and He is set to 150 ml / min. The detector is a TCD. Calibration is performed by the method described in the manual using antipyrine.

(金属量の分析)
XRF(リガク RIX−3000、X線管球:Rh管球、管電圧:50kV、管電流50mA)を用いて定量分析を行い、窒素含有炭素材料中に含まれる金属量を定量した。
(Analysis of metal content)
Quantitative analysis was performed using XRF (Rigaku RIX-3000, X-ray tube: Rh tube, tube voltage: 50 kV, tube current 50 mA), and the amount of metal contained in the nitrogen-containing carbon material was quantified.

(X線回折の測定)
X線回折パターンは、試料をメノウ乳鉢で粉砕後、粉末用セルに充填して下記の条件で測定した。装置:リガク社製Rint2500、X線管球:Cu管球(Cu−Kα線) 管電圧:40kV、管電流:200mA、分光結晶:あり、散乱スリット:1°、発散スリット:1°、受光スリット:0.15mm、スキャン速度:2°/分、サンプリング幅:0.02°、スキャン法:2θ/θ法。X線回折角(2θ)の補正は、シリコン粉末について得られたX線回折角データを用いて行った。
(Measurement of X-ray diffraction)
The X-ray diffraction pattern was measured under the following conditions after pulverizing the sample with an agate mortar and filling the powder cell. Apparatus: Rint 2500 manufactured by Rigaku Corporation, X-ray tube: Cu tube (Cu-Kα ray) Tube voltage: 40 kV, tube current: 200 mA, spectral crystal: Yes, scattering slit: 1 °, diverging slit: 1 °, light receiving slit : 0.15 mm, scan speed: 2 ° / min, sampling width: 0.02 °, scan method: 2θ / θ method. The X-ray diffraction angle (2θ) was corrected using the X-ray diffraction angle data obtained for the silicon powder.

<アズルミン酸の製造例>
水350gに青酸150gを溶解させた水溶液を調製し、攪拌を行いながら、25%アンモニア水溶液120gを10分かけて添加し、得られた混合液を35℃に加熱した。重合が始まり黒褐色の重合物が析出し始め、温度は徐々に上昇し45℃となった。2時間後から30質量%青酸水溶液を200g/hの速度で添加し、4時間かけて800g添加した。添加中は反応温度50℃保つようにコントロールした。この温度で100時間攪拌した。得られた黒色沈殿物をろ過によって分離し、黒色のアズルミン酸を得た。このときの収率は96%であった。分離後の沈殿物を水洗した後、乾燥器にて120℃で4時間乾燥させてアズルミン酸を得た。
<Production example of azulmic acid>
An aqueous solution in which 150 g of hydrocyanic acid was dissolved in 350 g of water was prepared, 120 g of 25% aqueous ammonia solution was added over 10 minutes while stirring, and the resulting mixture was heated to 35 ° C. Polymerization started and a blackish brown polymer started to precipitate, and the temperature gradually increased to 45 ° C. After 2 hours, a 30% by mass aqueous solution of hydrocyanic acid was added at a rate of 200 g / h, and 800 g was added over 4 hours. During the addition, the reaction temperature was controlled to be kept at 50 ° C. Stir at this temperature for 100 hours. The resulting black precipitate was separated by filtration to obtain black azulmic acid. The yield at this time was 96%. The separated precipitate was washed with water and then dried at 120 ° C. for 4 hours in a drier to obtain azulmic acid.

[実施例1]
<窒素含有炭素材料の製造>
硝酸鉄(III)・9水和物0.7gを純水20gに溶解させて硝酸鉄水溶液を調製した。アズルミン酸10gを25%アンモニア水200gと混合して50℃で1時間加熱したのちに硝酸鉄水溶液を添加し、そのまま50℃で1時間攪拌してプレカーサー混合液を得た。プレカーサー混合液を、ロータリーエバポレーターにて200rpmで回転させながら、減圧下で溶媒を蒸発させて、プレカーサーを得た。得られたプレカーサーを内径25mmの石英管に充填し、大気圧下、200Ncc/ min.の窒素気流中で60分かけて800℃まで昇温させ、800℃で1時間ホールドすることにより炭化させ3gの窒素含有炭素材料を得た。
[Example 1]
<Manufacture of nitrogen-containing carbon materials>
An aqueous iron nitrate solution was prepared by dissolving 0.7 g of iron (III) nitrate nonahydrate in 20 g of pure water. After 10 g of azulmic acid was mixed with 200 g of 25% aqueous ammonia and heated at 50 ° C. for 1 hour, an aqueous iron nitrate solution was added, and stirred at 50 ° C. for 1 hour to obtain a precursor mixture. The precursor was obtained by evaporating the solvent under reduced pressure while rotating the precursor mixture at 200 rpm with a rotary evaporator. The obtained precursor was filled into a quartz tube having an inner diameter of 25 mm, and 200 Ncc / min. In a nitrogen stream, the temperature was raised to 800 ° C. over 60 minutes and carbonized by holding at 800 ° C. for 1 hour to obtain 3 g of a nitrogen-containing carbon material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<電極作製>
得られた窒素含有炭素材料を粉砕、分級して平均粒径約10μm(日機装社製Microtrac MT3300)として電極作製に用いた。
窒素含有炭素材料の粉末5mgに精製水を加え5gに調整し、超音波を印加して分散させ、0.1%触媒懸濁液を得た。この触媒懸濁液を回転ディスクカーボン電極上に120μl滴下し、乾燥機において120℃で乾燥させた。次に導電性樹脂溶液(アシプレックス、旭化成ケミカルズ登録商標、含有量0.15%エタノール溶液)を90μl滴下し、同じく乾燥機において120℃で約2時間乾燥させ、触媒試験電極を作製した。
<Electrode production>
The obtained nitrogen-containing carbon material was pulverized and classified to obtain an average particle size of about 10 μm (Microtrac MT3300 manufactured by Nikkiso Co., Ltd.), which was used for electrode production.
Purified water was added to 5 mg of the nitrogen-containing carbon material powder to adjust to 5 g, and ultrasonic waves were applied to disperse to obtain a 0.1% catalyst suspension. 120 μl of this catalyst suspension was dropped on a rotating disk carbon electrode and dried at 120 ° C. in a dryer. Next, 90 μl of a conductive resin solution (Aciplex, Asahi Kasei Chemicals registered trademark, ethanol solution with a content of 0.15%) was dropped, and dried in a dryer at 120 ° C. for about 2 hours to prepare a catalyst test electrode.

<電気化学的測定>
白金線を対極、銀/塩化銀電極を参照極とした。酸性溶液中での酸素還元活性を調べるために、0.5Mの硫酸水溶液を使用した。この硫酸水溶液を純酸素で酸素飽和にするために1時間バブリングを行った。
次に、作用極を+0.8Vから+0Vの電位まで2mV/secで掃引し、電位−電流曲線を測定した。電位が0.5Vのときの電流を表1に示す。
<Electrochemical measurement>
A platinum wire was used as a counter electrode, and a silver / silver chloride electrode as a reference electrode. In order to investigate the oxygen reduction activity in an acidic solution, a 0.5 M aqueous sulfuric acid solution was used. In order to make this sulfuric acid aqueous solution oxygen saturated with pure oxygen, bubbling was performed for 1 hour.
Next, the working electrode was swept from +0.8 V to +0 V at 2 mV / sec, and a potential-current curve was measured. Table 1 shows currents when the potential is 0.5V.

[実施例2]
<窒素含有炭素材料の製造>
鉄(II)フタロシアニン0.9gをエチレンジアミン20gに溶解させてエチレンジアミン溶液を調製した。アズルミン酸10gをエチレンジアミン200gと混合して90℃で1時間加熱したのちにエチレンジアミン溶液を添加し、そのまま90℃で1時間攪拌してプレカーサー混合液を得た。プレカーサー混合液を、ロータリーエバポレーターにて200rpmで回転させながら、減圧下で溶媒を蒸発させて、プレカーサーを得た。得られたプレカーサーを内径25mmの石英管に充填し、大気圧下、200Ncc/ min.の窒素気流中で60分かけて800℃まで昇温させ、800℃で1時間ホールドして炭化処理をして3gの窒素含有炭素材料を得た。
[Example 2]
<Manufacture of nitrogen-containing carbon materials>
An ethylenediamine solution was prepared by dissolving 0.9 g of iron (II) phthalocyanine in 20 g of ethylenediamine. After mixing 10 g of azulmic acid with 200 g of ethylenediamine and heating at 90 ° C. for 1 hour, the ethylenediamine solution was added and stirred at 90 ° C. for 1 hour to obtain a precursor mixture. The precursor was obtained by evaporating the solvent under reduced pressure while rotating the precursor mixture at 200 rpm with a rotary evaporator. The obtained precursor was filled into a quartz tube having an inner diameter of 25 mm, and 200 Ncc / min. In a nitrogen stream, the temperature was raised to 800 ° C. over 60 minutes, held at 800 ° C. for 1 hour and carbonized to obtain 3 g of a nitrogen-containing carbon material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作製>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode production>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

[実施例3]
<窒素含有炭素材料の製造>
硝酸ニッケル(II)・6水和物0.7gを純水20gに溶解させて硝酸ニッケル水溶液を調製した。アズルミン酸10gを25%アンモニア水200gと混合して50℃で1時間加熱したのちに硝酸ニッケル水溶液を添加し、そのまま50℃で1時間攪拌してプレカーサー混合液を得た。プレカーサー混合液を、ロータリーエバポレーターにて200rpmで回転させながら、減圧下で溶媒を蒸発させて、プレカーサーを得た。得られたプレカーサーを内径25mmの石英管に充填し、大気圧下、200Ncc/ min.の窒素気流中で60分かけて800℃まで昇温させ、800℃で1時間ホールドして炭化処理をして3gの窒素含有炭素材料を得た。
[Example 3]
<Manufacture of nitrogen-containing carbon materials>
A nickel nitrate aqueous solution was prepared by dissolving 0.7 g of nickel (II) nitrate hexahydrate in 20 g of pure water. After mixing 10 g of azulmic acid with 200 g of 25% aqueous ammonia and heating at 50 ° C. for 1 hour, an aqueous nickel nitrate solution was added and stirred at 50 ° C. for 1 hour to obtain a precursor mixture. The precursor was obtained by evaporating the solvent under reduced pressure while rotating the precursor mixture at 200 rpm with a rotary evaporator. The obtained precursor was filled into a quartz tube having an inner diameter of 25 mm, and 200 Ncc / min. In a nitrogen stream, the temperature was raised to 800 ° C. over 60 minutes, held at 800 ° C. for 1 hour and carbonized to obtain 3 g of a nitrogen-containing carbon material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作製>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode production>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

[実施例4]
<窒素含有炭素材料の製造>
ニッケル(II)フタロシアニン0.9gをエチレンジアミン20gに溶解させてエチレンジアミン溶液を調製した。アズルミン酸10gをエチレンジアミン200gと混合して90℃で1時間加熱したのちにエチレンジアミン溶液を添加し、そのまま90℃で1時間攪拌してプレカーサー混合液を得た。プレカーサー混合液を、ロータリーエバポレーターにて200rpmで回転させながら、減圧下で溶媒を蒸発させて、プレカーサーを得た。得られたプレカーサーを内径25mmの石英管に充填し、大気圧下、200Ncc/ min.の窒素気流中で60分かけて800℃まで昇温させ、800℃で1時間ホールドして炭化処理をして3gの窒素含有炭素材料を得た。
[Example 4]
<Manufacture of nitrogen-containing carbon materials>
An ethylenediamine solution was prepared by dissolving 0.9 g of nickel (II) phthalocyanine in 20 g of ethylenediamine. After mixing 10 g of azulmic acid with 200 g of ethylenediamine and heating at 90 ° C. for 1 hour, the ethylenediamine solution was added and stirred at 90 ° C. for 1 hour to obtain a precursor mixture. The precursor was obtained by evaporating the solvent under reduced pressure while rotating the precursor mixture at 200 rpm with a rotary evaporator. The obtained precursor was filled into a quartz tube having an inner diameter of 25 mm, and 200 Ncc / min. In a nitrogen stream, the temperature was raised to 800 ° C. over 60 minutes, held at 800 ° C. for 1 hour and carbonized to obtain 3 g of a nitrogen-containing carbon material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作製>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode production>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

[実施例5]
<窒素含有炭素材料の製造>
硝酸コバルト(II)・6水和物0.7gを純水20gに溶解させて硝酸コバルト水溶液を調製した。アズルミン酸10gを25%アンモニア水200gと混合して50℃で1時間加熱したのちに硝酸コバルト水溶液を添加し、そのまま50℃で1時間攪拌してプレカーサー混合液を得た。プレカーサー混合液を、ロータリーエバポレーターにて200rpmで回転させながら、減圧下で溶媒を蒸発させて、プレカーサーを得た。得られたプレカーサーを内径25mmの石英管に充填し、大気圧下、200Ncc/ min.の窒素気流中で60分かけて800℃まで昇温させ、800℃で1時間ホールドして炭化処理をして3gの窒素含有炭素材料を得た。
[Example 5]
<Manufacture of nitrogen-containing carbon materials>
A cobalt nitrate aqueous solution was prepared by dissolving 0.7 g of cobalt (II) nitrate hexahydrate in 20 g of pure water. After mixing 10 g of azulmic acid with 200 g of 25% aqueous ammonia and heating at 50 ° C. for 1 hour, an aqueous cobalt nitrate solution was added, and the mixture was stirred as it was at 50 ° C. for 1 hour to obtain a precursor mixture. The precursor was obtained by evaporating the solvent under reduced pressure while rotating the precursor mixture at 200 rpm with a rotary evaporator. The obtained precursor was filled into a quartz tube having an inner diameter of 25 mm, and 200 Ncc / min. In a nitrogen stream, the temperature was raised to 800 ° C. over 60 minutes, held at 800 ° C. for 1 hour and carbonized to obtain 3 g of a nitrogen-containing carbon material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作製>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode production>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

[実施例6]
アズルミン酸10gを25%アンモニア水200gと混合して50℃で1時間加熱した
のちに白金を0.01g含むヘキサヒドロキソ白金酸水溶液を添加し、そのまま50℃
で1時間攪拌してプレカーサー混合液を得た。プレカーサー混合液を、ロータリーエバポ
レーターにて200rpmで回転させながら、減圧下で溶媒を蒸発させて、プレカーサー
を得た。得られたプレカーサーを内径25mmの石英管に充填し、
大気圧下、200Ncc/ min.の10%水素ガス中(窒素90%)で400℃で2時
間ホールドし、ついで大気圧下、200Ncc/ min.の窒素気流中で60分かけて8
00℃まで昇温させ、800℃で1時間ホールドして炭化処理をして3gの窒素含有炭素
材料を得た。
[Example 6]
After mixing 10 g of azulmic acid with 200 g of 25% aqueous ammonia and heating at 50 ° C. for 1 hour, an aqueous hexahydroxoplatinic acid solution containing 0.01 g of platinum was added, and the temperature was kept at 50 ° C.
And stirred for 1 hour to obtain a precursor mixture. The precursor was obtained by evaporating the solvent under reduced pressure while rotating the precursor mixture at 200 rpm with a rotary evaporator. Fill the resulting precursor into a quartz tube with an inner diameter of 25 mm,
Under atmospheric pressure, 200 Ncc / min. In 10% hydrogen gas (90% nitrogen) at 400 ° C. for 2 hours and then 200 Ncc / min. 8 minutes over 60 minutes in a nitrogen stream
The temperature was raised to 00 ° C., held at 800 ° C. for 1 hour, and carbonized to obtain 3 g of a nitrogen-containing carbon material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作製>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode production>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

[比較例1]
<窒素含有炭素材料の製造>
アズルミン酸10gを内径25mmの石英管に充填し、大気圧下、200Ncc/ min.の窒素気流中で60分かけて800℃まで昇温させ、800℃で1時間ホールドして炭化処理をして3.4gの窒素含有炭素材料を得た。
[Comparative Example 1]
<Manufacture of nitrogen-containing carbon materials>
A quartz tube having an inner diameter of 25 mm was filled with 10 g of azulmic acid, and 200 Ncc / min. In a nitrogen stream, the temperature was raised to 800 ° C. over 60 minutes, held at 800 ° C. for 1 hour and carbonized to obtain 3.4 g of a nitrogen-containing carbon material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作製>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode production>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

[比較例2]
<窒素含有炭素材料の製造>
硝酸鉄(III)・9水和物0.7gを純水20gに溶解させて硝酸鉄水溶液を調製した。比較例1と同様にして窒素含有炭素材料を得て、得られた窒素含有炭素材料3gを25%アンモニア水200gと混合して50℃で1時間加熱したのちに硝酸鉄水溶液を添加し、そのまま50℃で1時間攪拌してプレカーサー混合液を得た。プレカーサー混合液を、ロータリーエバポレーターにて200rpmで回転させながら、減圧下で溶媒を蒸発させて、プレカーサーを得た。得られたプレカーサーを内径25mmの石英管に充填し、大気圧下、200Ncc/ min.の窒素気流中で60分かけて800℃まで昇温させ、800℃で1時間ホールドして炭化処理をして2.9gの窒素含有炭素材料を得た。
[Comparative Example 2]
<Manufacture of nitrogen-containing carbon materials>
An aqueous iron nitrate solution was prepared by dissolving 0.7 g of iron (III) nitrate nonahydrate in 20 g of pure water. A nitrogen-containing carbon material was obtained in the same manner as in Comparative Example 1, 3 g of the obtained nitrogen-containing carbon material was mixed with 200 g of 25% ammonia water and heated at 50 ° C. for 1 hour, and then an iron nitrate aqueous solution was added and left as it was. The mixture was stirred at 50 ° C. for 1 hour to obtain a precursor mixture. The precursor was obtained by evaporating the solvent under reduced pressure while rotating the precursor mixture at 200 rpm with a rotary evaporator. The obtained precursor was filled into a quartz tube having an inner diameter of 25 mm, and 200 Ncc / min. In a nitrogen stream, the temperature was raised to 800 ° C. over 60 minutes, held at 800 ° C. for 1 hour, and carbonized to obtain 2.9 g of a nitrogen-containing carbon material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作製>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode production>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

比較例3においては、アズルミン酸以外では、窒素含有炭素材料の前駆体として最も窒素含有量の多い樹脂であるメラミン樹脂を用いた。   In Comparative Example 3, a melamine resin, which is a resin having the highest nitrogen content, was used as a precursor of a nitrogen-containing carbon material other than azulmic acid.

[比較例3]
<メラミン樹脂の製造>
メラミン252gと37%ホルムアルデヒド水溶液650mLを混合し、攪拌しながら6mol/Lの水酸化カリウム水溶液を少量加えて、pH8〜9にした。還流させながら、70℃で攪拌して40時間重合させた。この間、適宜水酸化カリウム水溶液を加えてpHを8〜9に保つようにした。50時間後に加熱を停止し冷却し、1500gの水を添加して反応液から分離してきた粘調な樹脂を取り出し、80℃で真空乾燥させてメラミン樹脂を得た。
[Comparative Example 3]
<Manufacture of melamine resin>
252 g of melamine and 650 mL of 37% formaldehyde aqueous solution were mixed, and a small amount of 6 mol / L potassium hydroxide aqueous solution was added while stirring to adjust the pH to 8-9. While refluxing, the mixture was stirred at 70 ° C. for polymerization for 40 hours. During this time, an aqueous potassium hydroxide solution was appropriately added to maintain the pH at 8-9. After 50 hours, the heating was stopped and cooled, and 1500 g of water was added to remove the viscous resin separated from the reaction solution, followed by vacuum drying at 80 ° C. to obtain a melamine resin.

<窒素含有炭素材料の製造>
硝酸鉄(III)・9水和物0.7gを純水20gに溶解させて硝酸鉄水溶液を調製した。メラミン樹脂10gを25%アンモニア水200gと混合して50℃で1時間加熱したのちに硝酸鉄水溶液を添加し、そのまま50℃で1時間攪拌してプレカーサー混合液を得た。プレカーサー混合液を、ロータリーエバポレーターにて200rpmで回転させながら、減圧下で溶媒を蒸発させて、プレカーサーを得た。得られたプレカーサーを内径25mmの石英管に充填し、大気圧下、200Ncc/ min.の窒素気流中で60分かけて800℃まで昇温させ、800℃で1時間ホールドして炭化処理をして1.1gの窒素含有炭素材料を得た。
<Manufacture of nitrogen-containing carbon materials>
An aqueous iron nitrate solution was prepared by dissolving 0.7 g of iron (III) nitrate nonahydrate in 20 g of pure water. 10 g of melamine resin was mixed with 200 g of 25% aqueous ammonia and heated at 50 ° C. for 1 hour, and then an aqueous iron nitrate solution was added and stirred at 50 ° C. for 1 hour to obtain a precursor mixture. The precursor was obtained by evaporating the solvent under reduced pressure while rotating the precursor mixture at 200 rpm with a rotary evaporator. The obtained precursor was filled into a quartz tube having an inner diameter of 25 mm, and 200 Ncc / min. In a nitrogen stream, the temperature was raised to 800 ° C. over 60 minutes, held at 800 ° C. for 1 hour and carbonized to obtain 1.1 g of a nitrogen-containing carbon material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作成>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode creation>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

[実施例7]
<窒素含有炭素材料の製造>
実施例1において硝酸鉄(III)・9水和物0.7gを1.4gに、800℃の焼成温度を1000℃に変更した以外は実施例1を反復して2.6gの窒素含有炭素材料を得た。
[Example 7]
<Manufacture of nitrogen-containing carbon materials>
Example 1 was repeated except that 0.7 g of iron (III) nitrate nonahydrate was changed to 1.4 g and the firing temperature at 800 ° C. was changed to 1000 ° C. in Example 1. 2.6 g of nitrogen-containing carbon Obtained material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作製>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode production>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

[実施例8]
<窒素含有炭素材料の製造>
実施例2において鉄(II)フタロシアニン0.9gを1.4gに、800℃の焼成温度を1000℃に変更した以外は実施例2を反復して2.6gの窒素含有炭素材料を得た。
[Example 8]
<Manufacture of nitrogen-containing carbon materials>
Example 2 was repeated except that 0.9 g of iron (II) phthalocyanine was changed to 1.4 g and the firing temperature at 800 ° C. was changed to 1000 ° C. to obtain 2.6 g of a nitrogen-containing carbon material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作製>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode production>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

[実施例9]
<窒素含有炭素材料の製造>
実施例3において硝酸ニッケル(II)・6水和物0.7gを1gに、800℃の焼成温度を1000℃に変更した以外は実施例3を反復して2.6gの窒素含有炭素材料を得た。
[Example 9]
<Manufacture of nitrogen-containing carbon materials>
Example 3 was repeated except that 0.7 g of nickel (II) nitrate hexahydrate was changed to 1 g and the firing temperature at 800 ° C. was changed to 1000 ° C. to obtain 2.6 g of a nitrogen-containing carbon material. Obtained.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作製>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode production>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

[実施例10]
<窒素含有炭素材料の製造>
実施例4においてニッケル(II)フタロシアニン0.9gを1gに、800℃の焼成温度を1000℃に変更した以外は実施例4を反復して2.6gの窒素含有炭素材料を得た。
[Example 10]
<Manufacture of nitrogen-containing carbon materials>
Example 4 was repeated except that 0.9 g of nickel (II) phthalocyanine was changed to 1 g and the firing temperature at 800 ° C. was changed to 1000 ° C. to obtain 2.6 g of a nitrogen-containing carbon material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作製>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode production>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

[実施例11]
<窒素含有炭素材料の製造>
実施例5において硝酸コバルト(II)・6水和物0.7gを1.3gに、800℃の焼成温度を1000℃に変更した以外は実施例5を反復して2.6gの窒素含有炭素材料を得た。
[Example 11]
<Manufacture of nitrogen-containing carbon materials>
Example 5 was repeated except that 0.7 g of cobalt (II) nitrate hexahydrate was changed to 1.3 g and the calcination temperature of 800 ° C. was changed to 1000 ° C. in Example 5. Obtained material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作製>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode production>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

[比較例4]
<窒素含有炭素材料の製造>
比較例1において800℃の焼成温度を1000℃に変更した以外は比較例1を反復して2.8gの窒素含有炭素材料を得た。
[Comparative Example 4]
<Manufacture of nitrogen-containing carbon materials>
Comparative Example 1 was repeated except that the firing temperature at 800 ° C. was changed to 1000 ° C. in Comparative Example 1 to obtain 2.8 g of a nitrogen-containing carbon material.

<窒素含有炭素材料の解析>
(CHN分析結果)
CHN分析より、炭素原子に対する窒素原子の原子数比(N/C)を分析した。結果を表1に示す。
(金属量の分析結果)
結果を表1に示す。
<Analysis of nitrogen-containing carbon materials>
(CHN analysis results)
From CHN analysis, the ratio of the number of nitrogen atoms to carbon atoms (N / C) was analyzed. The results are shown in Table 1.
(Analysis result of metal content)
The results are shown in Table 1.

<窒素含有炭素材料の粉砕と分級>
実施例1の粉砕と分級と同様に実施した。
<電極作製>
実施例1の電極作製と同様にして作製した。
<電気化学的測定>
実施例1の電気化学的測定と同様にして測定した。結果を表1に示す。
<Crushing and classification of nitrogen-containing carbon materials>
It carried out similarly to the grinding | pulverization and classification of Example 1.
<Electrode production>
It was produced in the same manner as the electrode production in Example 1.
<Electrochemical measurement>
The measurement was performed in the same manner as the electrochemical measurement in Example 1. The results are shown in Table 1.

Figure 0005779267
Figure 0005779267

実施例の窒素含有炭素材料は、高い酸素還元活性を有することがわかる。
実施例7、実施例8、実施例11、比較例4のXRDを図2に示す。いずれも回折角(2θ)が24.0〜26.5°の位置にピークを有し、各ピークの半値幅は、それぞれ2.4°、4.5°、5.9°、8.2°であった。
It turns out that the nitrogen-containing carbon material of an Example has high oxygen reduction activity.
The XRDs of Example 7, Example 8, Example 11, and Comparative Example 4 are shown in FIG. Each has a peak at a diffraction angle (2θ) of 24.0 to 26.5 °, and the half width of each peak is 2.4 °, 4.5 °, 5.9 °, and 8.2, respectively. °.

実施例1、比較例1で得られた窒素含有炭素材料をそれぞれ内径25mmの石英管に充填し、大気圧下、200Ncc/ min.の窒素気流中で60分かけて1000℃まで昇温し、1000℃で1時間ホールドして試験用窒素含有炭素材料を得た。   Each of the nitrogen-containing carbon materials obtained in Example 1 and Comparative Example 1 was filled in a quartz tube having an inner diameter of 25 mm, and 200 Ncc / min. In a nitrogen stream, the temperature was raised to 1000 ° C. over 60 minutes, and held at 1000 ° C. for 1 hour to obtain a test nitrogen-containing carbon material.

得られた試験用窒素含有炭素材料の(N/C)、XRDを測定したところ、実施例1の試験用窒素含有炭素材料の(N/C)は0.06、回折角(2θ)が24.0〜26.5°の位置にピークを有し、該ピークの半値幅は、2.4°であった。一方、比較例1の試験用窒素含有炭素材料の(N/C)は0.09、回折角(2θ)が24.0〜26.5°の位置にピークを有したが、該ピークの半値幅は、8.2°であった。   When the (N / C) and XRD of the obtained nitrogen-containing carbon material for test were measured, (N / C) of the nitrogen-containing carbon material for test of Example 1 was 0.06, and the diffraction angle (2θ) was 24. It had a peak at a position of 0.0 to 26.5 °, and the full width at half maximum of the peak was 2.4 °. On the other hand, (N / C) of the test-containing nitrogen-containing carbon material of Comparative Example 1 had a peak at a position of 0.09 and a diffraction angle (2θ) of 24.0 to 26.5 °. The value range was 8.2 °.

本発明の窒素含有炭素材料は、化学反応の触媒、燃料電池の電極、金属―空気電池の電極等として有用である。
また本実施態様の窒素含有炭素材料の製造方法は、アクリロニトリル等基礎原料の製造において副生物として製造されている青酸の重合体を利用可能であり、工程数が少なく、しかも炭素化収率が高い。そのため、省資源、省エネルギーとなる製造方法として有用である。
The nitrogen-containing carbon material of the present invention is useful as a catalyst for chemical reaction, an electrode for a fuel cell, an electrode for a metal-air cell, and the like.
Further, the method for producing a nitrogen-containing carbon material according to this embodiment can use a polymer of cyanic acid produced as a by-product in the production of basic raw materials such as acrylonitrile, has a small number of steps, and has a high carbonization yield. . Therefore, it is useful as a production method that saves resources and energy.

Claims (4)

炭素原子に対する窒素原子の原子数比(N/C)が0.03〜0.6の窒素含有炭素材料であって、
CuKα線をX線源として得られるX線回折図において、回折角(2θ)が24.0〜26.5°の位置にピークを有し、該ピークの半値幅が7.5°以下であって、
Fe、Ni、及びPtからなる群より選ばれる少なくとも1種の遷移金属を含有する、
窒素含有炭素材料。
A nitrogen-containing carbon material having an atomic ratio (N / C) of nitrogen atoms to carbon atoms of 0.03 to 0.6,
In an X-ray diffraction diagram obtained using CuKα rays as an X-ray source, the diffraction angle (2θ) has a peak at a position of 24.0 to 26.5 °, and the half width of the peak is 7.5 ° or less . And
Containing at least one transition metal selected from the group consisting of Fe, Ni, and Pt,
Nitrogen-containing carbon material.
前記遷移金属の含有量が、0.01〜70質量%である、請求項1に記載の窒素含有炭素材料。The nitrogen-containing carbon material according to claim 1, wherein the content of the transition metal is 0.01 to 70% by mass. 炭素原子に対する窒素原子の原子数比(N/C)が0.03〜0.6の窒素含有炭素材料であって、
大気圧下200Ncc/min.の窒素気流中で60分かけて1000℃まで昇温し、1000℃で1時間保持した後、CuKα線をX線源として得られるX線回折図において、回折角(2θ)が24.0〜26.5°の位置にピークを有し、該ピークの半値幅が7.5°以下であって
Fe、Ni、及びPtからなる群より選ばれる少なくとも1種の遷移金属を含有する、
窒素含有炭素材料。
A nitrogen-containing carbon material having an atomic ratio (N / C) of nitrogen atoms to carbon atoms of 0.03 to 0.6,
200 Ncc / min. Under atmospheric pressure. In an X-ray diffractogram obtained by using CuKα rays as an X-ray source after raising the temperature to 1000 ° C. over 60 minutes in a nitrogen stream and holding at 1000 ° C. for 1 hour, the diffraction angle (2θ) is 24.0. having peaks at 26.5 °, the half-value width of the peak is not more 7.5 ° or less,
Containing at least one transition metal selected from the group consisting of Fe, Ni, and Pt,
Nitrogen-containing carbon material.
前記遷移金属の含有量が、0.01〜70質量%である、請求項3に記載の窒素含有炭素材料。The nitrogen-containing carbon material according to claim 3, wherein the content of the transition metal is 0.01 to 70% by mass.
JP2014076114A 2014-04-02 2014-04-02 Nitrogen-containing carbon material Active JP5779267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076114A JP5779267B2 (en) 2014-04-02 2014-04-02 Nitrogen-containing carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076114A JP5779267B2 (en) 2014-04-02 2014-04-02 Nitrogen-containing carbon material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010134283A Division JP5586337B2 (en) 2010-06-11 2010-06-11 Nitrogen-containing carbon material

Publications (2)

Publication Number Publication Date
JP2014196239A JP2014196239A (en) 2014-10-16
JP5779267B2 true JP5779267B2 (en) 2015-09-16

Family

ID=52357367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076114A Active JP5779267B2 (en) 2014-04-02 2014-04-02 Nitrogen-containing carbon material

Country Status (1)

Country Link
JP (1) JP5779267B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159622A1 (en) 2017-02-28 2018-09-07 Okinawa Institute Of Science And Technology School Corporation Process for preparing a supported catalytic material, and supported catalytic material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026313A (en) * 1988-03-12 1990-01-10 Kao Corp Composite material of metallic carbon and production thereof
JP2885654B2 (en) * 1994-12-06 1999-04-26 科学技術振興事業団 Method for producing nitrogen-containing carbon material
JPH09235111A (en) * 1995-06-01 1997-09-09 Toray Ind Inc Carbon substance, electrode and secondary battery using the same
JP2006151797A (en) * 2004-10-28 2006-06-15 Mitsubishi Chemicals Corp Spherical carbon particle aggregate and manufacturing method thereof
JP5291617B2 (en) * 2007-03-28 2013-09-18 旭化成ケミカルズ株式会社 ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, ELECTRIC DOUBLE LAYER CAPACITOR OR FUEL CELL, AND LITHIUM ION SECONDARY BATTERY, ELECTRIC DOUBLE LAYER CAPACITOR AND FUEL CELL USING THE SAME
JP5481646B2 (en) * 2008-06-04 2014-04-23 清蔵 宮田 Carbon catalyst, fuel cell, power storage device

Also Published As

Publication number Publication date
JP2014196239A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP5586337B2 (en) Nitrogen-containing carbon material
JP5777449B2 (en) Nitrogen-containing carbon material, method for producing the same, and electrode for fuel cell
CN107252702B (en) Co-N-C/SiO2Composite nano catalyst, preparation method and application thereof
Jing et al. Tungsten nitride decorated carbon nanotubes hybrid as efficient catalyst supports for oxygen reduction reaction
He et al. Highly efficient and stable Ag/AgIO 3 particles for photocatalytic reduction of CO 2 under visible light
JP6430168B2 (en) Carbon material composite, nitrogen-containing carbon material, and production method thereof
CN109126844B (en) Molybdenum carbide nanosheet and preparation method and application thereof
JP2008080322A (en) Method for preparing platinum supported catalyst
CN113797947A (en) C-modified platinum-based catalyst and preparation method and application thereof
CN109879265B (en) Mesoporous nitrogen-doped carbon material and preparation method and application thereof
JP5779267B2 (en) Nitrogen-containing carbon material
Johnson et al. Effect of pH on the electrochemical behavior and nitrogen reduction reaction activity of Ti2N nitride mxene
CN109622044A (en) A kind of efficient liberation of hydrogen catalyst material, preparation method and application
CN107413361B (en) Method for preparing non-noble metal tungsten carbide photocatalyst by hydrothermal method
KR20170088145A (en) Method of preparing non-platinum catalyst for fuel cell
Wu et al. CeO 2 modified Ni-MOF as an efficient catalyst for electrocatalytic urea oxidation
EP4025339B1 (en) Materials comprising carbon-embedded cobalt nanoparticles, processes for their manufacture, and use as heterogeneous catalysts
EP4025340B1 (en) Materials comprising carbon-embedded nickel nanoparticles, processes for their manufacture, and use as heterogeneous catalysts
Li et al. Application of a Nanostructured Composite Material Constructed by Self‐Assembly of Titanoniobate Nanosheets and Cobalt Porphyrin to Electrocatalytic Reduction of Oxygen
Huang et al. Preparation and Characterization of ZnTiO3/g‐C3N4 Heterojunction Composite Catalyst with Highly Enhanced Photocatalytic CO2 Reduction Performance
Li et al. Facile preparation and highly efficient photocatalytic hydrogen evolution of novel Cu x Ni y nanoalloy/graphene nanohybrids
EP4025338B1 (en) Materials comprising carbon-embedded iron nanoparticles, processes for their manufacture, and use as heterogeneous catalysts
JP2017147187A (en) Method of manufacturing electrode catalyst for fuel battery
Tu et al. Multi-functional hydrogen-and oxygen-capturing FeCo-NC catalyst with improved hydrogenation of nitroarenes and ORR activity
Fakhrutdinova et al. Highly Defective Dark TiO2 Modified with Pt: Effects of Precursor Nature and Preparation Method on Photocatalytic Properties

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150710

R150 Certificate of patent or registration of utility model

Ref document number: 5779267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350