JP5773891B2 - Bottom pouring method - Google Patents

Bottom pouring method Download PDF

Info

Publication number
JP5773891B2
JP5773891B2 JP2012002189A JP2012002189A JP5773891B2 JP 5773891 B2 JP5773891 B2 JP 5773891B2 JP 2012002189 A JP2012002189 A JP 2012002189A JP 2012002189 A JP2012002189 A JP 2012002189A JP 5773891 B2 JP5773891 B2 JP 5773891B2
Authority
JP
Japan
Prior art keywords
molten steel
added
heat insulating
ingot
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012002189A
Other languages
Japanese (ja)
Other versions
JP2013141678A (en
Inventor
渡辺 大輔
大輔 渡辺
哲史 出浦
哲史 出浦
浩司 岩永
浩司 岩永
晴記 飛松
晴記 飛松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012002189A priority Critical patent/JP5773891B2/en
Publication of JP2013141678A publication Critical patent/JP2013141678A/en
Application granted granted Critical
Publication of JP5773891B2 publication Critical patent/JP5773891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、溶鋼を注入管を介して鋳型に装入することにより鋳塊を製造する下注ぎ造塊方法に関する。   The present invention relates to an ingot casting method for producing an ingot by inserting molten steel into a mold through an injection tube.

溶鋼を注入管を介して鋳型に装入することにより鋳塊を製造する方法として、鋳型の下方から鋳型内に溶鋼を注入することにより鋳塊を製造する下注ぎ造塊方法がある。特許文献1は、このような下注ぎ造塊方法を開示するものである。
特許文献1では、下注ぎ法または上注ぎ法によってキルド鋼を製造するにあたって、鋳込前溶鋼の温度をTL(液相開始温度)+20℃以上にするとともに、その溶鋼の注入中ないしはその直後に、溶鋼トン当りの総発熱量が1800Kcal以上になる量の早期燃焼型高カロリー保温剤、ただし発熱して最高温度に達するピーク時間が3分以内のものをもって、鋳型内湯面上を被覆し、鋼塊底部の沈澱晶帯における介在物集積を、軽減抑制している。
As a method for producing an ingot by inserting molten steel into a mold via an injection tube, there is a bottom pouring ingot method for producing an ingot by injecting molten steel into the mold from below the mold. Patent Document 1 discloses such a down-pour ingot-making method.
In Patent Document 1, when producing killed steel by the down-pour method or the top-pour method, the temperature of the molten steel before casting is set to TL (liquid phase start temperature) + 20 ° C. or more and during or immediately after the injection of the molten steel. An early-burning high-calorie heat-retaining agent with a total calorific value per ton of molten steel of 1800 Kcal or more, but with a peak time of less than 3 minutes to generate heat and reach the maximum temperature, coats the hot water surface in the mold, Inclusion accumulation in the precipitation zone at the bottom of the lump is reduced.

また、特許文献1に示すような下注ぎ造塊法ではないが介在物の群生化を防止するものとして特許文献2に開示されたものがある。
特許文献2では、アルミニウム、チタン、ジルコニウム等を単独又は複合して含有する溶鋼を0.5〜30ton/分の注入速度で鋳造するに際して金属カルシウム若しくはカルシウムを含む合金粒を0.5〜2.0kg/分の供給速度で注入溶鋼流に添加している。
Moreover, although it is not the bottom pouring method as shown in patent document 1, there exists what was disclosed by patent document 2 as what prevents the clustering of inclusions.
In Patent Document 2, when casting molten steel containing aluminum, titanium, zirconium or the like alone or in combination at an injection rate of 0.5 to 30 ton / min, metallic calcium or alloy grains containing calcium are added in an amount of 0.5 to 2. It is added to the molten molten steel stream at a feed rate of 0 kg / min.

特開昭47−026334号公報JP 47-026334 A 特開昭49−035232号公報JP 49-035322 A

特許文献1及び特許文献2には、鋳塊中の介在物の集積を低減する技術が開示されている。しかし、これら文献に開示の技術を下注ぎ造塊方法による鋳塊の製造に用いたとしても、介在物の集積を十分に低減することは困難であり、その結果、サイズの大きな介在物である粗大介在物の発生を十分に抑制することが困難となっているのが実情である。
本発明は、上述の問題に鑑みてなされたもので、鋳塊中の粗大介在物の発生を抑制し、清浄度の優れた鋳塊を製造することができる下注ぎ造塊方法を提供することを目的とする。
Patent Documents 1 and 2 disclose a technique for reducing accumulation of inclusions in an ingot. However, even if the techniques disclosed in these documents are used for the production of ingots by the down-pour ingot casting method, it is difficult to sufficiently reduce the accumulation of inclusions, and as a result, the inclusions are large in size. In fact, it is difficult to sufficiently suppress the generation of coarse inclusions.
This invention is made | formed in view of the above-mentioned problem, and suppresses generation | occurrence | production of the coarse inclusion in an ingot, and provides the bottom pouring ingot method which can manufacture the ingot which was excellent in the cleanliness. With the goal.

本発明は、上記目的を達成するために、次の手段を講じた。
即ち、本発明における課題解決のための技術的手段は、溶鋼を注入管を介して下方から鋳型に装入することにより鋳塊を製造する下注ぎ造塊方法を行うに際し、前記鋳型内の溶鋼に浴面を被覆するための被覆材を、その厚みである被覆材厚が3mm以上20mm以下となるように添加した後、金属Ca及び/又はCa合金を、保温材を添加する前又は同時に添加することとし、前記浴面の表面積に対する前記金属Ca及び/又はCa合金のCa成分の添加量が0.35kg/m以上10kg/m以下の範囲内の値となるように前記金属Ca及び/又はCa合金を添加すると共に、保温材の成分含有量と添加した前記金属Ca及び/又はCa合金のCa成分含有量との関係を示す含有割合である[%Ca]/([%Al]+3[%Fe]+[%FeO]+2[%SiO]+2[%MnO]+[%S])の値を0.08以上0.25以下の範囲内となるようにするとともに、前記含有割合を前記被覆材厚で除して得られる値が0.008以上となるようにしている点にある。
In order to achieve the above object, the present invention has taken the following measures.
That is, the technical means for solving the problem in the present invention is that the molten steel in the mold is produced by performing the pouring and ingot making method for producing the ingot by inserting the molten steel into the mold from below through the injection pipe. After the coating material for coating the bath surface is added so that the coating material thickness is 3 mm or more and 20 mm or less, the metal Ca and / or Ca alloy is added before or simultaneously with the addition of the heat insulating material. and that, the metallic Ca and to a value within a range the amount added is 0.35 kg / m 2 or more 10 kg / m 2 or less of Ca component of the metallic Ca and / or Ca alloy to the surface area of the bath surface [% Ca] / ([% Al] which is a content ratio indicating the relationship between the component content of the heat insulating material and the added Ca component of the metal Ca and / or Ca alloy while adding the Ca alloy +3 [% Fe 2 O 3 ] + [% FeO] +2 [% SiO 2 ] +2 [% MnO 2 ] + [% S]) within the range of 0.08 or more and 0.25 or less, and the content ratio Is obtained by dividing the above by the thickness of the covering material so that the value obtained is 0.008 or more.

本発明の他の技術的手段は、溶鋼を注入管を介して下方から鋳型に装入することにより鋳塊を製造する下注ぎ造塊方法を行うに際し、前記鋳型内の溶鋼に浴面を被覆するための被覆材を、その厚みである被覆材厚が3mm以上20mm以下となるように添加した後、金属Ca及び/又はCa合金を含有する保温材を添加することとし、前記浴面の表面積に対する前記金属Ca及び/又はCa合金のCa成分の添加量が0.35kg/m以上10kg/m以下を満たすように前記保温材を添加すると共に、保温材の成分含有量と添加した前記金属Ca及び/又はCa合金のCa成分含有量との関係を示す含有割合である[%Ca]/([%Al]+3[%Fe]+[%FeO]+2[%SiO]+2[%MnO]+[%S])の値を0.08以上0.25以下の範囲内となるようにするとともに、前記被覆材厚を前記含有割合で除して得られる値が0.008以上となるようにしている点にある。なお、[%X]は、保温材中X含有量(モル%)である。 The other technical means of the present invention is to cover the molten steel in the mold with a bath surface when performing the pouring and ingot forming method for producing the ingot by inserting the molten steel into the mold from below through the injection pipe. After adding a covering material for the thickness of the covering material to be 3 mm or more and 20 mm or less, a heat insulating material containing metal Ca and / or a Ca alloy is added, and the surface area of the bath surface wherein the addition amount of Ca component of the metallic Ca and / or Ca alloy with the addition of the thermal insulation material so as to satisfy the 0.35 kg / m 2 or more 10 kg / m 2 or less, it was added and ingredient content of heat insulating material for a content showing the relationship between the Ca content of the component metals Ca and / or Ca alloy [% Ca] / ([% Al] +3 [% Fe 2 O 3] + [% FeO] +2 [% SiO 2] +2 [% MnO 2 ] + [% S ]) Within the range of 0.08 or more and 0.25 or less, and the value obtained by dividing the coating material thickness by the content ratio is 0.008 or more. It is in. [% X] is the X content (mol%) in the heat insulating material.

本発明によれば、鋳塊中の粗大介在物の発生を抑制し、清浄度の優れた鋳塊を製造することができる。   According to the present invention, it is possible to suppress the generation of coarse inclusions in an ingot and to manufacture an ingot having excellent cleanliness.

下注ぎ造塊を行う下注ぎ造塊装置の概略図である。It is the schematic of the bottom pouring lump apparatus which performs bottom pouring lump. 下注ぎ造塊の流れを示す図であって、(a)造塊の初期段階であり、(b)造塊の中期段階であり、(c)終期段階でCaを添加した時であり、(d)終期段階で保温材を添加した時を示している。It is a figure which shows the flow of a bottom pouring ingot, Comprising: (a) It is the initial stage of ingot, (b) It is the middle stage of ingot, (c) It is the time of adding Ca in the final stage, d) The time when the heat insulating material is added in the final stage is shown. 実施例における[%Ca]/([%Al]+3[%Fe]+[%FeO]+2[%SiO]+2[%MnO]+[%S])の値と介在物最大径との関係図である。Up [% Ca] / ([% Al] +3 [% Fe 2 O 3] + [% FeO] +2 [% SiO 2] +2 [% MnO 2] + [% S]) values of inclusions in Examples It is a relationship figure with a diameter. 実施例におけるCaの添加量の値と介在物最大径との関係図である。It is a related figure of the value of the addition amount of Ca in an Example, and the maximum diameter of an inclusion. 被覆材の厚み、及び被覆材厚とCa含有割合との比を調整した場合の実施例及び比較例の結果を表わす分布図である。It is a distribution map showing the result of the Example and comparative example at the time of adjusting the ratio of the thickness of a coating | covering material, and coating | coated material thickness and Ca content rate.

以下、図を参照しながら、本発明の実施形態による下注ぎ造塊方法について説明する。
まず図1を参照して、本実施形態の下注ぎ造塊方法が適用される下注ぎ造塊装置1について説明する。図1は、下注ぎ造塊を行う下注ぎ造塊装置1の概略構成を示している。
下注ぎ造塊装置1は、下注ぎ造塊法により溶鋼2を鋳造するものであって、取鍋3内の溶鋼2を注入する注入管4と、この注入管4に注入された溶鋼2が装入される鋳型5と、注入管4と鋳型5とを連通する定盤6とを備えている。
Hereinafter, the bottom pouring and ingot-making method according to the embodiment of the present invention will be described with reference to the drawings.
First, with reference to FIG. 1, the bottom pouring and ingot-making apparatus 1 to which the bottom pouring and ingot making method of this embodiment is applied will be described. FIG. 1 shows a schematic configuration of a bottom pouring and ingot forming apparatus 1 that performs bottom pouring and ingot making.
The bottom pouring and ingot-making apparatus 1 casts molten steel 2 by the bottom pouring and ingot casting method. An injection pipe 4 for injecting molten steel 2 in a ladle 3 and a molten steel 2 injected into the injection pipe 4 are provided. A casting mold 5 to be charged, and a surface plate 6 for communicating the injection tube 4 and the casting mold 5 are provided.

注入管4及び定盤6には溶鋼2が通る湯道7が形成されていて、注入管4は、定盤6から上方に向かって立つように設けられている。鋳型5は、下方に下注入口9が形成されており定盤6上に設置されている。鋳型5は、溶鋼2が定盤6の湯道7から下注入口9を経て下方から装入される構造となっている。鋳型5の上部には、押湯枠8が装着されている。   A runner 7 through which the molten steel 2 passes is formed in the injection tube 4 and the surface plate 6, and the injection tube 4 is provided so as to stand upward from the surface plate 6. The casting mold 5 has a lower inlet 9 formed below and is placed on the surface plate 6. The mold 5 has a structure in which the molten steel 2 is inserted from the runner 7 of the surface plate 6 through the lower inlet 9 from below. A feeder frame 8 is attached to the upper part of the mold 5.

このような下注ぎ造塊装置1にて下注ぎ造塊を行うにあたっては、まず、取鍋3を注入管4上に配置して、取鍋3内の溶鋼2を注入管4に注入する。溶鋼2は、注入管4及び定盤6に形成された湯道7を通り、下注入口9を経て鋳型5へ下方から到達し、鋳型5内で冷却されてインゴット等の鋳塊となる。この下注ぎ造塊方法においては、例えば船舶用部品や発電機用部品などに用いられる大型鍛造品等の素材となる鋳塊を製造することができる。   In performing the bottom pouring and ingot using such a bottom pouring and ingot apparatus 1, first, the ladle 3 is placed on the pouring tube 4, and the molten steel 2 in the ladle 3 is poured into the pouring tube 4. The molten steel 2 passes through the runner 7 formed in the injection pipe 4 and the surface plate 6, reaches the mold 5 from below through the lower injection port 9, is cooled in the mold 5, and becomes an ingot such as an ingot. In this bottom pouring and ingot forming method, for example, an ingot that becomes a raw material such as a large forged product used for a marine component or a generator component can be manufactured.

本実施形態の下注ぎ造塊方法について詳しく説明する。
下注ぎ造塊方法において、鋳型5に装入された溶鋼2の浴面が大気と接触すると、溶鋼2は大気との接触面から酸化して清浄度を低下させる。そこで本実施形態では、溶鋼2の酸化を防止するために、溶鋼2の鋳型5内への注入が始まった段階で、溶鋼2の浴面を被覆するための被覆材10(C−SiO−CaO−Al系の被覆材)を鋳型5の上方から添加する。
The bottom pouring method of the present embodiment will be described in detail.
In the bottom pouring and ingot forming method, when the bath surface of the molten steel 2 charged in the mold 5 comes into contact with the atmosphere, the molten steel 2 is oxidized from the contact surface with the atmosphere to reduce the cleanliness. Therefore, in this embodiment, in order to prevent the molten steel 2 from being oxidized, the coating material 10 (C—SiO 2 − for covering the bath surface of the molten steel 2 at the stage where the injection of the molten steel 2 into the mold 5 has started. CaO—Al 2 O 3 -based coating material) is added from above the mold 5.

図2(a)に示すように、具体的には、溶鋼2が鋳型5内に注入される前に、被覆材10が装入された袋を鋳型5内の下注入口9の近傍に配置する。こうすれば、溶鋼2の鋳型5内への注入が始まった直後に溶鋼2の熱によって袋が溶けるので、溶鋼2の鋳型5内への注入が始まった早い段階から溶鋼2の浴面が被覆材10で覆われる。
次に、図2(b)に示すように、鋳型5内への溶鋼2の装入が続くと、溶鋼2の浴面は徐々に上昇してゆき、浴面上の被覆材10は、浴面が上昇する溶鋼2と鋳型5の内面との間に流入しながら消費されていく。この過程では、消費量に応じて鋳型5の上方から被覆材10を追加添加することで、溶鋼2の浴面が大気に露出しないようにし、溶鋼2の大気との接触を防止している。被覆材10の追加は、鋳型5内への溶鋼2の装入が開始されてから溶鋼2の浴面が押湯枠8に到達するまで実施した。なお、被覆材10の添加方法は、上述した方法に限らない。被覆材10の入った袋を溶鋼2の注入開始前に鋳型5内に置かなくとも、溶鋼2の鋳型5内への注入が始まった直後から、被覆材10を鋳型5の上方から溶鋼2の浴面に直接添加してもよいし、その他の方法により添加してもよい。
Specifically, as shown in FIG. 2A, before the molten steel 2 is injected into the mold 5, the bag in which the covering material 10 is charged is disposed in the vicinity of the lower inlet 9 in the mold 5. To do. In this way, the bag is melted by the heat of the molten steel 2 immediately after the injection of the molten steel 2 into the mold 5 starts, so that the bath surface of the molten steel 2 is covered from the early stage when the injection of the molten steel 2 into the mold 5 starts. Covered with material 10.
Next, as shown in FIG. 2 (b), when the molten steel 2 is continuously charged into the mold 5, the bath surface of the molten steel 2 gradually rises, and the covering material 10 on the bath surface It is consumed while flowing between the molten steel 2 whose surface rises and the inner surface of the mold 5. In this process, the coating material 10 is additionally added from above the mold 5 in accordance with the consumption amount so that the bath surface of the molten steel 2 is not exposed to the atmosphere, and the molten steel 2 is prevented from coming into contact with the atmosphere. Addition of the covering material 10 was performed until the bath surface of the molten steel 2 reached the feeder frame 8 after the start of charging the molten steel 2 into the mold 5. In addition, the addition method of the coating | covering material 10 is not restricted to the method mentioned above. Even if the bag containing the covering material 10 is not placed in the mold 5 before the injection of the molten steel 2 is started, the covering material 10 is placed on the molten steel 2 from above the mold 5 immediately after the injection of the molten steel 2 into the mold 5 starts. It may be added directly to the bath surface or may be added by other methods.

通常、下注ぎ造塊方法では、溶鋼2の浴面が鋳型5の上部付近に到達したときに、溶鋼2の温度を保つための保温材11を添加する。ここで、保温材11として酸化鉄(FeO)、MnO、SiO、及びAlを含む粉粒体などを添加するが、溶鋼2に保温材11を添加することで大きな粒径の高アルミナ系介在物(粗大介在物)が生成し、溶鋼2の清浄度が低下することがある。この保温材11は、パウダー形状の粉粒体であっても、ボード等の成形形状であってもよい。 Usually, in the bottom pouring and ingot-making method, when the bath surface of the molten steel 2 reaches near the upper part of the mold 5, a heat insulating material 11 for maintaining the temperature of the molten steel 2 is added. Here, the iron oxide as a heat insulating material 11 (Fe t O), MnO 2, SiO 2, and although the addition of such particulate material containing Al, a large particle diameter of the high by the addition of heat insulating material 11 in the molten steel 2 Alumina inclusions (coarse inclusions) may be generated, and the cleanliness of the molten steel 2 may be reduced. The heat insulating material 11 may be a powder-shaped powder or a molded shape such as a board.

そこで、本発明では、保温材11を添加する前、又は保温材11の添加と同時にカルシウム(Ca)12を溶鋼2に添加する。この添加されたCa12によって、保温材11の添加時に生成する高アルミナ系介在物を、下記式(1)〜(3)に従ってCaO−Al系介在物へと改質する。このCaO−Al系介在物は凝集しにくく、その大きさは高アルミナ系介在物に比べて小さいので、溶鋼2の清浄度を向上させることができる。 Therefore, in the present invention, calcium (Ca) 12 is added to the molten steel 2 before the heat insulating material 11 is added or simultaneously with the addition of the heat insulating material 11. With this added Ca12, the high alumina inclusions generated when the heat insulating material 11 is added are modified into CaO—Al 2 O 3 inclusions according to the following formulas (1) to (3). The CaO—Al 2 O 3 inclusions are less likely to agglomerate and the size thereof is smaller than that of the high alumina inclusions, so that the cleanliness of the molten steel 2 can be improved.

2Al+3FetO=Al+3tFe ・・・(1)
2Al+3/2MnO=Al+3/2Mn ・・・(2)
2Al+3/2SiO=Al+3/2Si ・・・(3)
以下、Ca12の添加方法や添加量について詳しく説明する。
本実施形態では、図2(c)に示すように、鋳型5内への溶鋼2の注入が開始されてから溶鋼2が押湯枠8に達して鋳造が終了するまでの間に、Ca12を添加する。Ca12の添加後に、図2(d)に示すように保温材11を添加する。
2Al + 3Fe t O = Al 2 O 3 + 3tFe ··· (1)
2Al + 3 / 2MnO 2 = Al 2 O 3 + 3 / 2Mn (2)
2Al + 3 / 2SiO 2 = Al 2 O 3 + 3 / 2Si (3)
Hereinafter, the addition method and addition amount of Ca12 will be described in detail.
In the present embodiment, as shown in FIG. 2 (c), Ca12 is inserted between the start of the injection of the molten steel 2 into the mold 5 and the time when the molten steel 2 reaches the feeder frame 8 and the casting is finished. Added. After the addition of Ca12, the heat insulating material 11 is added as shown in FIG.

具体的には、鋳造の終了が近くなった段階で、溶鋼2の浴面を覆った被覆材10の上方からCa12を添加して、Ca12の添加後に保温材11を添加する。
添加されるCa12は、純金属Ca(金属Ca)であってもCa合金であってもよい。Ca合金としては、Ca−Si合金、Ca−Ni合金などがあるが、鋼成分の規格に応じて任意に選択することができる。また、保温材11は、Ca12の添加に続いて連続的に添加され、且つ、Ca12の添加から1分以内に添加されるのが好ましく、長くても10分以内とする方がよい。Ca12の添加から保温材11の添加までの時間は、鋳造の作業手順や鋳造設備の制約などに応じて1分より長くなってもかまわないが、この時間があまり長くなってしまうと、Ca12が上述の改質剤としては十分に働かなくなることに注意しなくてはならない。
Specifically, at the stage when the end of casting is near, Ca12 is added from above the covering material 10 covering the bath surface of the molten steel 2, and the heat insulating material 11 is added after the addition of Ca12.
The added Ca12 may be pure metal Ca (metal Ca) or a Ca alloy. Examples of the Ca alloy include a Ca—Si alloy and a Ca—Ni alloy, which can be arbitrarily selected according to the standard of steel components. Moreover, it is preferable that the heat insulating material 11 is continuously added following the addition of Ca12, and is added within 1 minute from the addition of Ca12, and it is better to be within 10 minutes at the longest. The time from the addition of Ca12 to the addition of the heat insulating material 11 may be longer than 1 minute depending on the casting work procedure and the restrictions on the casting equipment, but when this time becomes too long, It must be noted that the above modifiers do not work well.

なお、鋳造の終了が近くなった段階でCa12を添加すると述べたが、鋳造の終了が近くなった段階とは、鋳造終了の10分前くらいが目安となる。もちろんこの目安は、鋳造終了の10分前に限らず、鋳造工程の操業条件や上述の式(1)〜(3)の反応速度に応じて任意に変更することができる。
上述のように、大きな粒径の高アルミナ系介在物(粗大介在物)の生成を抑制することを目的として、保温材11を添加する前、又は保温材11の添加と同時にCa12を溶鋼2に添加する。このとき、本実施形態では、Ca12の添加量について2つの条件を課している。以下、それぞれの条件について説明する。
Although it has been described that Ca12 is added at the stage where the end of casting is near, the stage where the end of casting is near is about 10 minutes before the end of casting. Of course, this guideline is not limited to 10 minutes before the end of casting, but can be arbitrarily changed according to the operating conditions of the casting process and the reaction rates of the above-described formulas (1) to (3).
As described above, Ca12 is added to the molten steel 2 before the heat insulating material 11 is added or simultaneously with the addition of the heat insulating material 11 for the purpose of suppressing the formation of high alumina inclusions (coarse inclusions) having a large particle size. Added. At this time, in this embodiment, two conditions are imposed on the amount of Ca12 added. Hereinafter, each condition will be described.

まず1つめの条件として、Ca12を添加するに際し、溶鋼2の浴面の表面積(m)に対するCa12中のCa成分(純Ca)の添加量(kg)である1m当たりの添加量が、0.35kg/m以上10kg/m以下(0.35kg/m〜10kg/m)の範囲を満たすこととしている(第1条件)。言い換えれば、添加される金属Ca及び
Ca合金中のCa成分相当量を押湯枠8から内側の浴面の表面積で割って得られた値を、Ca成分の添加量として規定する。その上で、Ca成分の添加量が0.35kg/m〜10kg/mの範囲内となるようにCa12の添加量を決定し添加する。
First, as the first condition, when adding Ca12, the addition amount per 1 m 2 that is the addition amount (kg) of the Ca component (pure Ca) in Ca12 to the surface area (m 2 ) of the bath surface of the molten steel 2, 0.35 kg / m 2 or more 10 kg / m 2 or less is set to satisfy the range of (0.35kg / m 2 ~10kg / m 2) ( first condition). In other words, a value obtained by dividing the Ca component equivalent amount in the added metal Ca and Ca alloy by the surface area of the inner bath surface from the feeder frame 8 is defined as the Ca component addition amount. Then, the addition amount of Ca12 is determined and added so that the addition amount of Ca component is in the range of 0.35 kg / m 2 to 10 kg / m 2 .

Ca成分の添加量が0.35kg/m未満であると、高アルミナ系介在物を十分にCaO−Al系介在物へと改質するにはCa成分は不足する。一方で、Ca成分の添加量が10kg/mよりも多いと、大きな粒径のCaO系の介在物が発生してしまうことにより溶鋼2の清浄度が低下してしまうおそれがある。
ところで、保温材11は、Al、Si、FeO、MnO、SiO、MnO、C、Sの各成分を含有している。例えば、保温材11の組成は、FeO:10〜20質量%、Fe:10〜20質量%、Al:20〜25質量%、Al:25〜40質量%、SiO:5〜10質量%程度である。
When the added amount of the Ca component is less than 0.35 kg / m 2 , the Ca component is insufficient to sufficiently reform the high alumina-based inclusions into CaO—Al 2 O 3 -based inclusions. On the other hand, when there is more addition amount of Ca component than 10 kg / m < 2 >, there exists a possibility that the cleanliness of the molten steel 2 may fall by generating the CaO type inclusion of a big particle size.
Meanwhile, heat insulating material 11, Al, Si, Fe t O , MnO, SiO 2, MnO 2, C, contains the components of the S. For example, the composition of the heat insulating material 11 is FeO: 10 to 20% by mass, Fe 2 O 3 : 10 to 20% by mass, Al: 20 to 25% by mass, Al 2 O 3 : 25 to 40% by mass, SiO 2 : It is about 5-10 mass%.

そこで2つめの条件に関して、本実施形態では、保温材11中の各成分の含有量(成分含有量)とCa12中のCa成分の含有量(Ca成分含有量)との関係を、保温材の成分含有量に対するCa成分含有量の割合(含有割合)Xとして規定する。保温材11によってCa12のCa成分が消費されるため、保温材11の成分にあわせて保温材11中のCa成分の含有割合Xを規定する必要がある。Ca成分の含有割合Xを規定するために、保温材11の各成分の含有量とCa成分の含有量との関係を下記の式(4)で表現し、式(4)で得られる値である含有割合Xが0.08以上0.25以下(0.08〜0.25)の範囲を満たすことを、2つめの条件としている(第2条件)。   Therefore, regarding the second condition, in the present embodiment, the relationship between the content of each component in the heat insulating material 11 (component content) and the content of the Ca component in Ca 12 (Ca component content) is as follows. It is defined as the ratio (content ratio) X of the Ca component content to the component content. Since the Ca component of Ca12 is consumed by the heat insulating material 11, it is necessary to define the content ratio X of the Ca component in the heat insulating material 11 in accordance with the components of the heat insulating material 11. In order to regulate the content ratio X of the Ca component, the relationship between the content of each component of the heat insulating material 11 and the content of the Ca component is expressed by the following formula (4), and the value obtained by the formula (4): The second condition is that a certain content ratio X satisfies a range of 0.08 to 0.25 (0.08 to 0.25) (second condition).

X=[%Ca]/([%Al]+3[%Fe]+[%FeO]+2[%SiO]+2[%MnO]+[%S]) ・・・(4)
ただし、式(4)で示される「%」は、「モル%」を意味している。
ここで、保温材11中には、硫黄Sが含有されているが、Sの含有量は200ppm程度(不可避不純物程度の量)であり、実質的に零(≒0)と考えてもよい。言い換えれば、Sの含有量は他の成分に比べて微量であるため、式(4)にSの含有量を代入したとしても、式(4)の値Xが大きく変化することはなく、実質的に影響が出ない。
X = [% Ca] / ( [% Al] +3 [% Fe 2 O 3] + [% FeO] +2 [% SiO 2] +2 [% MnO 2] + [% S]) ··· (4)
However, “%” represented by the formula (4) means “mol%”.
Here, although the heat insulating material 11 contains sulfur S, the content of S is about 200 ppm (amount of inevitable impurities) and may be considered to be substantially zero (≈0). In other words, since the S content is very small compared to other components, even if the S content is substituted into the formula (4), the value X of the formula (4) does not change greatly, There will be no impact.

式(4)の値が0.08未満であると、保温材11によって生成する高アルミナ系介在物量に対するCa成分の量が少なすぎるために、添加したCa12によっては、十分に高アルミナ系介在物をCaO−Al系介在物へと改質することができない。一方、式(4)の値が0.25よりも大きいと、保温材11に対するCa成分の量が多すぎるために大きな粒径のCaO系の介在物が発生してしまい、溶鋼2の清浄度が低下してしまうおそれがある。この事実に基づけば、式(4)で得られる含有割合Xは、溶鋼2の高アルミナ系介在物を改質して高い清浄度を実現するために有効に働くカルシウムの量(有効カルシウム量)を規定するための値であり、この有効カルシウム量を表現しているといえる。 If the value of the formula (4) is less than 0.08, the amount of Ca component relative to the amount of high alumina inclusions produced by the heat insulating material 11 is too small. Cannot be modified into CaO—Al 2 O 3 inclusions. On the other hand, if the value of the formula (4) is larger than 0.25, the amount of Ca component with respect to the heat insulating material 11 is too large, so that a CaO-based inclusion with a large particle size is generated, and the cleanliness of the molten steel 2 May decrease. Based on this fact, the content ratio X obtained by the formula (4) is the amount of calcium that works effectively to improve the high alumina inclusions of the molten steel 2 to achieve high cleanliness (effective calcium amount). It can be said that this effective calcium amount is expressed.

したがって本実施形態では、1つめの条件である、Ca成分の添加量が0.35kg/m〜10kg/mの範囲にあることと、2つめの条件である、式(4)に示す含有割合Xが0.08〜0.25の範囲の値となることとを同時に満たすようにCa12を添加する。
なお、保温材11とCa12とを別々に添加する場合には、保温材11が微量の金属Ca及びCa合金を含有していてもよい。保温材11が微量の金属Ca及びCa合金を含有している場合であっても、式(4)に示す保温材11中の各成分の含有量とCa成分の添加量との関係(含有割合X)が、0.08〜0.25の範囲に含まれる値であればよい。
Therefore, in the present embodiment, the first condition, that is, the addition amount of the Ca component is in the range of 0.35 kg / m 2 to 10 kg / m 2 , and the second condition is shown in the formula (4). Ca12 is added so that it may satisfy | fill simultaneously that the content rate X becomes the value of the range of 0.08-0.25.
In addition, when adding the heat insulating material 11 and Ca12 separately, the heat insulating material 11 may contain a trace amount metal Ca and Ca alloy. Even when the heat insulating material 11 contains a trace amount of metal Ca and Ca alloy, the relationship between the content of each component in the heat insulating material 11 shown in Formula (4) and the added amount of the Ca component (content ratio) X) should just be a value included in the range of 0.08-0.25.

上述の説明では、鋳造の開始から溶鋼2が押湯枠8に達して鋳造が終了するまでの間に、Ca12と保温材11とを別々に添加していたが、これに代えて、保温材11とCa12とを混ぜ合わせて、保温材11とCa12とを同時に添加するようにしてもよい。例えば、保温材11を添加する前にCa12を保温材11に混合して、Ca成分を含有する保温材11を用意しておき、その保温材11を溶鋼2に添加するようにしてもよい。   In the above description, Ca12 and the heat insulating material 11 are added separately from the start of casting until the molten steel 2 reaches the feeder frame 8 and the casting is finished, but instead of this, the heat insulating material is replaced. 11 and Ca12 may be mixed and the heat insulating material 11 and Ca12 may be added simultaneously. For example, Ca12 may be mixed with the heat insulating material 11 before the heat insulating material 11 is added to prepare the heat insulating material 11 containing the Ca component, and the heat insulating material 11 may be added to the molten steel 2.

Ca12が混合された保温材11を添加する場合も、式(4)に示す含有割合Xが0.08〜0.25の範囲に含まれる値であればよい。また、上述したように、Ca12が混
合された保温材11を、Ca成分の添加量が0.35kg/m〜10kg/mを満たすように添加する必要がある。
Also when adding the heat insulating material 11 with which Ca12 was mixed, the content ratio X shown in Formula (4) should just be a value included in the range of 0.08-0.25. As described above, the heat insulating material 11 Ca12 is mixed, the addition amount of Ca component needs to be added so as to satisfy the 0.35kg / m 2 ~10kg / m 2 .

表1は、本発明の下注ぎ造塊方法によって鋳塊を製造した実施例と、本発明の下注ぎ造塊方法とは異なる方法によって鋳塊を製造した比較例とを示したものである。   Table 1 shows an example in which an ingot was produced by the under-pour ingot casting method of the present invention, and a comparative example in which the ingot was produced by a method different from the under-ingot ingot ingot method of the present invention.

Figure 0005773891
Figure 0005773891

実施例及び比較例において、下注ぎ造塊方法を行う前の一次精錬は、当業者常法により電気炉にてスクラップを溶解した後に精錬を行い、20〜100トンの溶鋼2を取鍋3に出鋼した。また、一次精錬後の溶鋼2に対してLF装置及び蓋脱ガス装置(VD)による二次精錬を行い、溶鋼2の成分調整及び温度調整をした。一次精錬及び二次精錬が終了した溶鋼2に対して、下注ぎ造塊方法によって鋳塊(インゴット)を製造した。   In the examples and comparative examples, the primary refining before the bottom pouring and ingot casting method is performed by melting the scraps in an electric furnace according to the ordinary method of those skilled in the art, and the molten steel 2 of 20 to 100 tons is taken into the ladle 3 Steel was produced. Moreover, the secondary refining by the LF apparatus and a cover degassing apparatus (VD) was performed with respect to the molten steel 2 after the primary refining, and the component adjustment and temperature adjustment of the molten steel 2 were performed. With respect to the molten steel 2 in which the primary refining and the secondary refining were finished, an ingot was manufactured by the down-pour ingot casting method.

本実施形態では、鋳型5による鋳造後に、凝固したインゴットを当業者常法によって約1300℃まで加熱して、熱間鍛造により150〜700mmの断面直径を有する鍛造材に成形した。
上述の一次精錬は、電気炉による精錬でなくてもよく転炉などの他の装置で行ってもよい。また、二次精錬も、必ずしもLF装置や蓋脱ガス装置で行う必要はなく、還流脱ガス装置(RH)やCAS装置などの他の装置で行ってもよい。さらに、一次精錬や二次精錬における溶鋼2の成分、処理温度及び溶鋼量などは、本発明の本質に関わる部分ではなく上述した数値に限定されるものではない。なお、下注ぎ造塊方法における鋳型5のサイズは、20トン〜90トンのインゴットを製造できるものとしているが、インゴットのサイズ及び形状も、本実施形態で開示したものに限定されるものではない。
In this embodiment, after casting with the mold 5, the solidified ingot was heated to about 1300 ° C. by a conventional method of those skilled in the art, and formed into a forged material having a cross-sectional diameter of 150 to 700 mm by hot forging.
The primary refining described above may not be performed by an electric furnace, but may be performed by another apparatus such as a converter. The secondary refining is not necessarily performed by the LF apparatus or the lid degassing apparatus, and may be performed by other apparatuses such as a reflux degassing apparatus (RH) or a CAS apparatus. Furthermore, the components of the molten steel 2 in the primary refining and the secondary refining, the processing temperature, the amount of molten steel, and the like are not parts related to the essence of the present invention and are not limited to the above-described numerical values. In addition, although the size of the casting_mold | template 5 in the bottom pouring ingot-making method shall be able to manufacture an ingot of 20 tons-90 tons, the size and shape of an ingot are not limited to what was disclosed by this embodiment. .

また、実施例及び比較例では、誘導溶解炉を鋳型5に模した小型実験も一部実施した。小型実験では、溶鋼量3〜30kgの溶鋼2を誘導溶解炉で溶解して成分を調整した後、鋳型5の場合と同様に、速やかに被覆材10を添加した。その後、溶鋼2の浴面の表面積に対するCa成分の添加量が0.35kg/m〜10kg/mの範囲を満たすように、パウダー状のCa12とCa成分を含まない保温材11を同時に添加、またはCa12を含有する保温材11を添加した。なお、Ca成分を含有する保温材11又はCa12を
添加するにあたっては、式(4)として示した“X=[%Ca]/([%Al]+3[%Fe]+[%FeO]+2[%SiO]+2[%MnO]+[%S])”が、0.08〜0.25を満たすように保温材11及びCa12を添加した。そして、保温材11を添加した後は、誘導溶解炉の電力を停止して炉内で溶鋼2を凝固させた。
Further, in the examples and comparative examples, some small-scale experiments simulating an induction melting furnace as the mold 5 were also performed. In a small experiment, after the molten steel 2 having a molten steel amount of 3 to 30 kg was melted in an induction melting furnace to adjust the components, the covering material 10 was quickly added as in the case of the mold 5. Thereafter, the powdered Ca12 and the heat insulating material 11 not containing the Ca component are simultaneously added so that the addition amount of the Ca component with respect to the surface area of the bath surface of the molten steel 2 satisfies the range of 0.35 kg / m 2 to 10 kg / m 2. Or the heat insulating material 11 containing Ca12 was added. In addition, when adding the heat insulating material 11 or Ca12 containing the Ca component, “X = [% Ca] / ([% Al] +3 [% Fe 2 O 3 ] + [% FeO] shown as the formula (4)” ] +2 [% SiO 2] +2 [% MnO 2] + [% S]) " was added heat insulating material 11 and Ca12 to satisfy 0.08 to 0.25. And after adding the heat insulating material 11, the electric power of the induction melting furnace was stopped and the molten steel 2 was solidified in the furnace.

鍛造後の鋼塊や誘導溶解炉(小型実験)にて凝固させた鋼塊から試料として小片を取り出して研磨した後、電子顕微鏡(SEM)による介在物の観察を行った。実施例及び比較例では、15×15mm四方の視野内で検出された最大介在物の大きさを表中の介在物サイズとした。
表1に示すように、このように試料を作成して観察した結果、実施例1〜11では、最大介在物のサイズを200μm以下とすることができた。実施例1〜11は、上述の本実施形態による下注ぎ造塊方法に従って、鋳型5内の溶鋼2に浴面を被覆するための被覆材10を添加した後、Ca12を含有する保温材11を添加するか、又は保温材11とCa12とを別々に添加するかのいずれかを行った。このとき、上述したように、浴面の表面積に対するCa成分の添加量は0.35kg/m〜10kg/mの範囲を満たすようにし、さらに、式(4)の値Xが0.08〜0.25の範囲を満たすようにした。
A small piece was taken out as a sample from a steel ingot after forging or a steel ingot solidified in an induction melting furnace (small experiment) and polished, and the inclusions were observed with an electron microscope (SEM). In the examples and comparative examples, the size of the maximum inclusion detected in a 15 × 15 mm square field of view was defined as the inclusion size in the table.
As shown in Table 1, as a result of preparing and observing the sample in this way, in Examples 1 to 11, the size of the maximum inclusion was able to be 200 μm or less. In Examples 1 to 11, after the coating material 10 for coating the bath surface on the molten steel 2 in the mold 5 is added according to the above-described ingot casting method according to the present embodiment, the heat insulating material 11 containing Ca12 is added. Either the thermal insulation material 11 or Ca12 was added separately. At this time, as described above, the addition amount of the Ca component with respect to the surface area of the bath surface satisfies the range of 0.35 kg / m 2 to 10 kg / m 2 , and the value X of the formula (4) is 0.08. The range of ˜0.25 was satisfied.

図3は、実施例1〜11に関して、上述した式(4)の値と表1に示した介在物最大径との関係をまとめたものである。図3に示すように、Ca成分の添加量を0.35kg/m〜10kg/mの範囲の値となるように調整すると、式(4)の値Xが0.08〜0.25の範囲にあるときは、介在物最大径は200μm未満である。しかし、式(4)の値Xが0.08未満であれば、介在物最大径は200μmを大きく超えて500μm以上となり、式(4)の値Xが0.25より大きいときも、介在物最大径は200μmを大きく超えて400μm以上となることがわかる。即ち、図3のグラフから見ても、式(4)の値が0.08や0.25となったときが、介在物最大径を小さくするための境界となる。 FIG. 3 summarizes the relationship between the value of the above-described formula (4) and the maximum inclusion inclusion diameter shown in Table 1 for Examples 1 to 11. As shown in FIG. 3, when the addition amount of the Ca component is adjusted so as to be in the range of 0.35 kg / m 2 to 10 kg / m 2 , the value X of the formula (4) is 0.08 to 0.25. In the range, the maximum inclusion diameter is less than 200 μm. However, if the value X of the formula (4) is less than 0.08, the maximum diameter of inclusions is more than 200 μm and becomes 500 μm or more. Even when the value X of the formula (4) is more than 0.25, the inclusions It can be seen that the maximum diameter greatly exceeds 200 μm and becomes 400 μm or more. That is, also from the graph of FIG. 3, when the value of Formula (4) becomes 0.08 or 0.25, it becomes a boundary for reducing the maximum diameter of inclusions.

図4は、実施例1〜11に関して、Ca成分の添加量と介在物最大径との関係をまとめたものである。図4に示すように、式(4)の値を0.08〜0.25の範囲の値となるように調整すると、Ca成分の添加量が0.35kg/m〜10kg/mの範囲にあるときは、介在物最大径は200μm未満である。しかし、Ca成分の添加量が0.35kg/m未満であれば、介在物最大径は200μmを大きく超えて350μm以上となり、Ca成分の添加量が10kg/mより大きいときも、介在物最大径は200μmを大きく超えて400μm以上となることがわかる。即ち、図4のグラフから見ても、Ca成分の添加量が0.35kg/mや10kg/mとなったときが、介在物最大径を小さくするための境界となる。 FIG. 4 summarizes the relationship between the amount of Ca component added and the maximum inclusion diameter for Examples 1 to 11. As shown in FIG. 4, when the value of Equation (4) is adjusted to a value in the range of 0.08 to 0.25, the amount of Ca component added is 0.35 kg / m 2 to 10 kg / m 2 . When in the range, the maximum inclusion diameter is less than 200 μm. However, if the addition amount of the Ca component is less than 0.35 kg / m 2 , the maximum diameter of inclusions is more than 200 μm and becomes 350 μm or more, and even when the addition amount of the Ca component is more than 10 kg / m 2 It can be seen that the maximum diameter greatly exceeds 200 μm and becomes 400 μm or more. In other words, even when viewed from the graph in FIG. 4, when the added amount of the Ca constituent became 0.35 kg / m 2 and 10 kg / m 2 becomes the boundary for reducing inclusions maximum diameter.

一方で、被覆材10を添加した比較例12〜27では、Ca成分の添加量に関する第1条件、及び、式(4)に関する第2条件のいずれかが満たされておらず、介在物最大径は200μmよりも大きくなった。つまり、第1条件が満たされているが第2条件が満たされていない、又は、第2条件が満たされているが第1条件が満たされていない比較例12〜27では、介在物最大径は200μmよりも大きくなった。   On the other hand, in Comparative Examples 12 to 27 to which the coating material 10 is added, either the first condition regarding the addition amount of the Ca component or the second condition regarding the formula (4) is not satisfied, and the maximum diameter of inclusions Became larger than 200 μm. That is, in the comparative examples 12 to 27 in which the first condition is satisfied but the second condition is not satisfied, or the second condition is satisfied but the first condition is not satisfied, the inclusion maximum diameter Became larger than 200 μm.

さらに、比較例28〜32は、被覆材10を添加しなかったり、途中で被覆材10が消費されても被覆材10を追加添加しなかったりした場合(表中、被覆材の添加「ナシ」)であり、これらの場合でも、介在物最大径は200μmよりも大きくなった。
以上、本実施形態の下注ぎ造塊方法によれば、鋳型5内の溶鋼2に浴面を被覆するための被覆材10を添加した後、上述の第1条件及び第2条件を満たすように、Ca12を含有する保温材11を添加するか、保温材11を添加する前又は同時にCa12を添加する。これによって、溶鋼2での粗大介在物の発生を抑制するとともに鋳塊中の介在物最大径を200μm以下にすることができ、清浄度の優れた鋳塊を製造することができる。
Further, in Comparative Examples 28 to 32, when the covering material 10 is not added, or when the covering material 10 is consumed in the middle, the additional covering material 10 is not added (in the table, the addition of the covering material “pear”). In these cases, the maximum inclusion diameter was larger than 200 μm.
As described above, according to the bottom pouring ingot method of the present embodiment, after adding the coating material 10 for coating the bath surface to the molten steel 2 in the mold 5, the first condition and the second condition described above are satisfied. The heat insulating material 11 containing Ca12 is added, or Ca12 is added before or simultaneously with the addition of the heat insulating material 11. Thereby, generation | occurrence | production of the coarse inclusion in the molten steel 2 can be suppressed, and the maximum diameter of the inclusion in an ingot can be made 200 micrometers or less, and the ingot excellent in the cleanliness can be manufactured.

ここまで説明した本実施形態による下注ぎ造塊方法において、介在物最大径をさらに小さくする方法について、以下に説明する。上述の下注ぎ造塊方法では、第1条件及び第2条件を満たすことで介在物最大径を200μm以下に抑制できると説明したが、第1条件及び第2条件を満たすことに加えて、被覆材10の厚み(被覆材厚d)を調整し、その上
で被覆材厚dと上述の含有割合Xとの比(X/d値)を調整すると、介在物最大径を200μm未満に抑制することができて、介在物の平均粒径も小さくすることができる。
A method for further reducing the maximum inclusion diameter in the bottom pouring method according to the present embodiment described so far will be described below. In the above-described ingot casting method, it has been explained that the maximum inclusion diameter can be suppressed to 200 μm or less by satisfying the first condition and the second condition, but in addition to satisfying the first condition and the second condition, When the thickness of the material 10 (coating material thickness d) is adjusted, and the ratio (X / d value) between the coating material thickness d and the above-described content ratio X is adjusted, the maximum inclusion diameter is suppressed to less than 200 μm. And the average particle size of the inclusions can be reduced.

具体的には、被覆材10の厚みである被覆材厚dを20mm以下となるように調整し、その上でX/d値が0.008以上となるように式(4)の含有割合Xを調整する。既に述べたように、含有割合Xは、式(4)に従って保温材11及びCa12の添加量(モル%)によって決まる。以下の表2に示す実施例1〜18のように、第1条件及び第2条件を満たすことに加えて、被覆材厚dを20mm以下となるように調整し、X/d値が0.008以上となるように調整することで、介在物最大径を150μm以下に抑制することができる。好ましくは、被覆材厚dを15mm以下とする。   Specifically, the coating material thickness d, which is the thickness of the coating material 10, is adjusted to be 20 mm or less, and the X / d value is 0.008 or more, and then the content ratio X of the formula (4) Adjust. As already described, the content ratio X is determined by the amount (mol%) of the heat insulating material 11 and Ca12 according to the formula (4). As in Examples 1 to 18 shown in Table 2 below, in addition to satisfying the first condition and the second condition, the coating material thickness d is adjusted to be 20 mm or less, and the X / d value is 0. By adjusting to become 008 or more, the maximum inclusion diameter can be suppressed to 150 μm or less. Preferably, the coating material thickness d is 15 mm or less.

Figure 0005773891
Figure 0005773891

すでに述べたように、Ca12として金属CaやCa合金を添加する目的は、保温材11の添加時に生成する高アルミナ系介在物を、凝集しにくいCaO−Al系介在物へと改質することである。しかし、Ca12のCa成分は、改質に寄与する前に保温材11の成分であるFeやSiOなどによって酸化されてCaOへと変化してしまう。そこで、本願発明の発明者らは、Ca12の表面側のCa成分がCaOに変化しても、当該Ca12の中心部分のCa成分が保温材11内で残り、介在物改質効果が得られるように被覆材厚dやX/d値を調整する試みを行った。その結果、表2の実施例1〜18に示すような優良な結果を得ることができた。 As already described, the purpose of adding metal Ca or Ca alloy as Ca12 is to modify the high alumina inclusions that are formed when the heat insulating material 11 is added into CaO—Al 2 O 3 inclusions that are less likely to aggregate. It is to be. However, the Ca component of Ca12 is oxidized by Fe 2 O 3 , SiO 2, or the like, which is a component of the heat insulating material 11, before it contributes to the modification and changes to CaO. Therefore, the inventors of the present invention seem to obtain inclusion modification effect even if the Ca component on the surface side of Ca12 is changed to CaO, the Ca component in the central part of the Ca12 remains in the heat insulating material 11. An attempt was made to adjust the coating material thickness d and the X / d value. As a result, excellent results as shown in Examples 1 to 18 in Table 2 could be obtained.

表2の比較例についても触れておく。表2における比較例19〜比較例26(ただし、比較例21を除く)では、被覆材厚dが20mm以下となるように、且つ、X/d値が0.008以上となるように調整したにもかかわらず、Ca成分の添加量に関する第1条件、及び、式(4)に関する第2条件のいずれか又は両方を満たさなかった。従って、介在物最大径は、150μmを遥かに超える大きな値となった。比較例21,27では、第1条件及び第2条件のいずれかを満たさなかっただけでなく、被覆材厚dも20mm以下ではなかった、又はX/d値も0.008以上ではなかったため、介在物最大径は150μmを遥かに超える大きな値となった。   The comparative example of Table 2 is also mentioned. In Comparative Example 19 to Comparative Example 26 (excluding Comparative Example 21) in Table 2, the coating material thickness d was adjusted to 20 mm or less and the X / d value was adjusted to 0.008 or more. Nevertheless, either or both of the first condition regarding the addition amount of the Ca component and the second condition regarding the formula (4) were not satisfied. Accordingly, the maximum inclusion diameter was a large value far exceeding 150 μm. In Comparative Examples 21 and 27, not only the first condition and the second condition were not satisfied, but the coating material thickness d was not 20 mm or less, or the X / d value was not 0.008 or more. The maximum inclusion diameter was a large value far exceeding 150 μm.

比較例28〜36は、被覆材厚dが20mm以下となっていない状態、又は、X/d値
が0.008以上となっていない状態であった。しかし、すでに述べたように第1条件及び第2条件をともに満たしたので、介在物最大径は150μmよりも大きいものの200μm以下に抑制できた。
図5のグラフは、これら実施例1〜18と比較例19〜36の結果を表わす分布図である。黒のひし形が実施例1〜18の結果を示し、白抜きの正方形が比較例19〜36の結果を示している。図5に示すように、介在物最大径(又は介在物最大長径)が150μm以下となるのは、被覆材厚dを20mm以下となるように調整し、その上でX/d値が0.008以上となるように式(4)の含有割合Xを調整した実施例1〜18においてであることが一目でわかる。
In Comparative Examples 28 to 36, the coating material thickness d was not 20 mm or less, or the X / d value was not 0.008 or more. However, since both the first condition and the second condition were satisfied as described above, the maximum inclusion inclusion diameter was larger than 150 μm but could be suppressed to 200 μm or less.
The graph of FIG. 5 is a distribution diagram showing the results of Examples 1 to 18 and Comparative Examples 19 to 36. Black diamonds show the results of Examples 1 to 18, and white squares show the results of Comparative Examples 19 to 36. As shown in FIG. 5, the maximum inclusion diameter (or maximum inclusion longest diameter) is 150 μm or less, so that the coating material thickness d is adjusted to 20 mm or less, and the X / d value is 0. It can be seen at a glance that it is in Examples 1 to 18 in which the content ratio X of the formula (4) is adjusted to be 008 or more.

このように、本実施形態の下注ぎ造塊方法によれば、鋳型5内の溶鋼2に浴面を被覆するための被覆材10を被覆材厚dが20mm以下となるように添加した後、上述の第1条件及び第2条件を満たすように、なお且つ、被覆材厚dと含有割合Xとの比(X/d値)が0.008以上となるように、Ca12を含有する保温材11を添加するか、保温材11を添加する前又は同時にCa12を添加する。このように被覆材厚dとX/d値とを調整することによって、溶鋼2での粗大介在物の発生を抑制するとともに鋳塊中の介在物最大径を150μm以下にすることができ、さらに清浄度の優れた鋳塊を製造することができる。   Thus, according to the bottom pouring ingot method of the present embodiment, after adding the coating material 10 for coating the molten steel 2 in the mold 5 to the bath surface so that the coating material thickness d is 20 mm or less, A heat insulating material containing Ca12 so as to satisfy the first condition and the second condition described above, and so that the ratio (X / d value) between the coating material thickness d and the content ratio X is 0.008 or more. 11 or Ca12 is added before or simultaneously with the addition of the heat insulating material 11. By adjusting the coating material thickness d and the X / d value in this way, it is possible to suppress the generation of coarse inclusions in the molten steel 2 and to reduce the maximum inclusion inclusion diameter in the ingot to 150 μm or less. An ingot with excellent cleanliness can be produced.

本実施形態において、被覆材厚dの値を20mm以下にすると説明したが、その被覆材厚dの下限を特に設けてはいない。いうまでもなく、被覆材厚dの値を0mmとして浴面を大気に晒すことはないが、上述の下注ぎ造塊方法を実施するには、実際の操業上の諸条件や、被覆材10上に添加されたCa12が溶鋼2に辿り着くまでの時間や、保温材11とCa12の化学反応速度などを考慮して被覆材厚dの値の下限が決定される。本願の発明者らは、本実施形態による下注ぎ造塊方法では、被覆材厚dの値は3mm程度を下限とするのが好ましいとの知見を得ている。   In the present embodiment, it has been described that the value of the coating material thickness d is 20 mm or less, but the lower limit of the coating material thickness d is not particularly provided. Needless to say, the value of the coating material thickness d is set to 0 mm, and the bath surface is not exposed to the atmosphere. The lower limit of the value of the coating material thickness d is determined in consideration of the time until the Ca 12 added above reaches the molten steel 2, the chemical reaction rate between the heat insulating material 11 and Ca 12, and the like. The inventors of the present application have obtained knowledge that it is preferable that the value of the coating material thickness d is about 3 mm as the lower limit in the bottom pouring ingot method according to the present embodiment.

なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。上記の実施形態では、保温材11の添加は、鋳込み途中で行っているが、鋳込み終了時(浴面の上昇が停止したタイミング)でもあっても構わない。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. In the above embodiment, the heat insulating material 11 is added during casting, but it may be at the end of casting (timing when the rise of the bath surface is stopped).

1 下注ぎ造塊装置
2 溶鋼
3 取鍋
4 注入管
5 鋳型
6 定盤
7 湯道
8 押湯枠
9 下注入口
10 被覆材
11 保温材
DESCRIPTION OF SYMBOLS 1 Bottom pouring and ingot making apparatus 2 Molten steel 3 Ladle 4 Injection pipe 5 Mold 6 Surface plate 7 Runway 8 Feeding frame 9 Lower inlet 10 Covering material 11 Heat insulating material

Claims (2)

溶鋼を注入管を介して下方から鋳型に装入することにより鋳塊を製造する下注ぎ造塊方法を行うに際し、
前記鋳型内の溶鋼に浴面を被覆するための被覆材を、その厚みである被覆材厚が3mm以上20mm以下となるように添加した後、金属Ca及び/又はCa合金を、保温材を添加する前又は同時に添加することとし、
前記浴面の表面積に対する前記金属Ca及び/又はCa合金のCa成分の添加量が0.35kg/m以上10kg/m以下の範囲内の値となるように前記金属Ca及び/又はCa合金を添加すると共に、保温材の成分含有量と添加した前記金属Ca及び/又はCa合金のCa成分含有量との関係を示す含有割合である[%Ca]/([%Al]+3[%Fe]+[%FeO]+2[%SiO]+2[%MnO]+[%S])の値を0.08以上0.25以下の範囲内となるようにするとともに、前記含有割合を前記被覆材厚で除して得られる値が0.008以上となるようにしていることを特徴とする下注ぎ造塊方法。
ただし、[%X]:保温材中X含有量(モル%)とする。
In carrying out the bottom pouring and ingot-making method for producing an ingot by inserting molten steel into the mold from below through an injection tube,
After adding the coating material for coating the bath surface to the molten steel in the mold so that the coating material thickness is 3 mm or more and 20 mm or less, the metal Ca and / or Ca alloy is added with a heat insulating material. To be added before or simultaneously,
The metallic Ca and / or Ca alloy as the added amount of the Ca constituent of the metallic Ca and / or Ca alloy to the surface area of the bath surface is a value within the range of 0.35 kg / m 2 or more 10 kg / m 2 or less [% Ca] / ([% Al] +3 [% Fe] which is a content ratio indicating the relationship between the component content of the heat insulating material and the Ca component content of the added metal Ca and / or Ca alloy. 2 O 3 ] + [% FeO] +2 [% SiO 2 ] +2 [% MnO 2 ] + [% S]) is within the range of 0.08 or more and 0.25 or less, A value obtained by dividing the ratio by the thickness of the covering material is set to 0.008 or more.
However, [% X]: X content in the heat insulating material (mol%).
溶鋼を注入管を介して下方から鋳型に装入することにより鋳塊を製造する下注ぎ造塊方法を行うに際し、
前記鋳型内の溶鋼に浴面を被覆するための被覆材を、その厚みである被覆材厚が3mm以上20mm以下となるように添加した後、金属Ca及び/又はCa合金を含有する保温材を添加することとし、
前記浴面の表面積に対する前記金属Ca及び/又はCa合金のCa成分の添加量が0.35kg/m以上10kg/m以下を満たすように前記保温材を添加すると共に、保温材の成分含有量と添加した前記金属Ca及び/又はCa合金のCa成分含有量との関係を示す含有割合である[%Ca]/([%Al]+3[%Fe]+[%FeO]+2[%SiO]+2[%MnO]+[%S])の値を0.08以上0.25以下の範囲内となるようにするとともに、前記被覆材厚を前記含有割合で除して得られる値が0.008以上となるようにしていることを特徴とする下注ぎ造塊方法。
ただし、[%X]:保温材中X含有量(モル%)とする。
In carrying out the bottom pouring and ingot-making method for producing an ingot by inserting molten steel into the mold from below through an injection tube,
After adding a coating material for coating the molten steel in the mold to the bath surface so that the coating material thickness is 3 mm or more and 20 mm or less, a heat insulating material containing metal Ca and / or Ca alloy is added. To add,
With the addition of Ca component of the metallic Ca and / or Ca alloy to the surface area of the bath surface is added to the thermal insulation material so as to satisfy the 0.35 kg / m 2 or more 10 kg / m 2 or less, component-containing heat insulating material [% Ca] / ([% Al] +3 [% Fe 2 O 3 ] + [% FeO] +2 which is a content ratio indicating the relationship between the amount and the Ca component content of the added metal Ca and / or Ca alloy) The value of [% SiO 2 ] +2 [% MnO 2 ] + [% S]) is within the range of 0.08 or more and 0.25 or less, and the coating material thickness is divided by the content ratio. The bottom pouring method is characterized in that the obtained value is 0.008 or more.
However, [% X]: X content in the heat insulating material (mol%).
JP2012002189A 2012-01-10 2012-01-10 Bottom pouring method Expired - Fee Related JP5773891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002189A JP5773891B2 (en) 2012-01-10 2012-01-10 Bottom pouring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012002189A JP5773891B2 (en) 2012-01-10 2012-01-10 Bottom pouring method

Publications (2)

Publication Number Publication Date
JP2013141678A JP2013141678A (en) 2013-07-22
JP5773891B2 true JP5773891B2 (en) 2015-09-02

Family

ID=49038536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002189A Expired - Fee Related JP5773891B2 (en) 2012-01-10 2012-01-10 Bottom pouring method

Country Status (1)

Country Link
JP (1) JP5773891B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6000930B2 (en) * 2013-11-14 2016-10-05 株式会社神戸製鋼所 Method for producing flat ingot for nickel steel plate without shrinkage defect
JP6188632B2 (en) * 2014-05-19 2017-08-30 株式会社神戸製鋼所 Bottom pouring method
JP6188642B2 (en) * 2014-06-25 2017-08-30 株式会社神戸製鋼所 Bottom pouring method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1373924A (en) * 1970-11-12 1974-11-13 Exomet Metallurgical hot topping compositions
JPS5116217A (en) * 1974-07-31 1976-02-09 Aikoh Co Yokono aruminakaizaibutsukyushu narabini hoonyofunmatsusoseibutsu
JP3103465B2 (en) * 1993-08-18 2000-10-30 新日本製鐵株式会社 Liquid steel surface heat insulator
JP2003145250A (en) * 2001-11-14 2003-05-20 Daido Steel Co Ltd Method for manufacturing purified steel
JP5366896B2 (en) * 2010-07-07 2013-12-11 株式会社神戸製鋼所 Bottom pouring method

Also Published As

Publication number Publication date
JP2013141678A (en) 2013-07-22

Similar Documents

Publication Publication Date Title
CN100478455C (en) High-calcium non-silicon aluminium calcium magnesium ferrous alloy for steel-smelting deoxidization and method for preparing the same
CN107150116B (en) A kind of method that electromagnetism regulation and control manufacture large-scale casting ingot from inoculation
JP5366896B2 (en) Bottom pouring method
CN106350631A (en) Production method of armco iron for amorphous soft magnetic materials
CN108339953A (en) It is a kind of it is antivacuum under draw the production technology of continuous casting chromium-zirconium-copper slab ingot
CN106011639B (en) A kind of method of conventional plate blank conticaster production low-alloy peritectic steel
CN105537549B (en) The production method of 100 DEG C of low temperature seamless steel pipe steel continuous cast round billets
JP2019519373A (en) Gray iron inoculum
CN101472691A (en) Method of continuous casting of high-aluminum steel and mold powder
JP5773891B2 (en) Bottom pouring method
CN103691887B (en) The casting technique of the high manganese steel lining plate that a kind of as cast condition uses
JP2013540897A (en) Method for producing iron-based powder
CN103938088B (en) A kind of sheet billet continuous casting method of resistance alloy Cr20AlY
JP4430638B2 (en) Mold powder for continuous casting of high aluminum steel
CN101787452A (en) Preparation method of aluminum-calcium alloy used for vacuum refining molten steel deoxidation and device thereof
CN109112418A (en) Continuous casting method of high manganese steel
JP5773890B2 (en) Bottom pouring method
Wang et al. Effect of rare earth on primary carbides in H13 die steel and their addition method: a review
CN102839292A (en) Aluminum iron alloy with ultra-low carbon, ultra-low titanium and high silicon contents for deoxidizing aluminum silicon killed steel and manufacturing method of aluminum iron alloy
CN101086029A (en) High Ca, silicon-free aluminum calcium iron alloy for deoxidising of molten steel and its preparation method
JP5972135B2 (en) Bottom pouring method
JP4527693B2 (en) Continuous casting method of high Al steel slab
CN103131935A (en) REFeSiCa alloy used to be added in steel, and manufacturing method thereof
CN105170920B (en) A kind of production method of band saw plate slab continuous casting
CN101831577A (en) Aluminum magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150630

R150 Certificate of patent or registration of utility model

Ref document number: 5773891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees