JP5770670B2 - Power generation and dilution methods and equipment - Google Patents

Power generation and dilution methods and equipment Download PDF

Info

Publication number
JP5770670B2
JP5770670B2 JP2012077345A JP2012077345A JP5770670B2 JP 5770670 B2 JP5770670 B2 JP 5770670B2 JP 2012077345 A JP2012077345 A JP 2012077345A JP 2012077345 A JP2012077345 A JP 2012077345A JP 5770670 B2 JP5770670 B2 JP 5770670B2
Authority
JP
Japan
Prior art keywords
seawater
power generation
membrane
concentrated
dilution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012077345A
Other languages
Japanese (ja)
Other versions
JP2012217333A (en
Inventor
正巳 長谷川
正巳 長谷川
哲司 渕脇
哲司 渕脇
智之 鴨志田
智之 鴨志田
Original Assignee
公益財団法人 塩事業センター
公益財団法人 塩事業センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人 塩事業センター, 公益財団法人 塩事業センター filed Critical 公益財団法人 塩事業センター
Priority to JP2012077345A priority Critical patent/JP5770670B2/en
Publication of JP2012217333A publication Critical patent/JP2012217333A/en
Application granted granted Critical
Publication of JP5770670B2 publication Critical patent/JP5770670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、発電及び希釈法、及びその方法を用いた発電及び希釈装置に関するものである。   The present invention relates to a power generation and dilution method and a power generation and dilution apparatus using the method.

最近では、海水からの淡水化に逆浸透膜を利用することが多い。この逆浸透膜法では、半透膜を介して海水を流動させ、浸透圧以上の圧力をかけることで海水中の水だけを半透膜を透して採取するものである。このとき、海水は水が除去されることにより、本来3.5%程度であった塩分濃度が6〜7%まで濃縮されることになり、濃縮された海水(以降、濃縮海水)をそのまま廃棄できないという問題点があった。   Recently, reverse osmosis membranes are often used for desalination from seawater. In this reverse osmosis membrane method, seawater is caused to flow through a semipermeable membrane, and only water in the seawater is collected through the semipermeable membrane by applying a pressure higher than the osmotic pressure. At this time, when the seawater is removed, the salt concentration which was originally about 3.5% is concentrated to 6-7%, and the concentrated seawater (hereinafter, concentrated seawater) is discarded as it is. There was a problem that it was not possible.

この問題点の解決方法の一つとして、半透膜を利用した手法が検討された例が見られる。この方法は、濃縮海水と海水、あるいは淡水との間に半透膜を挟み、海水中の水あるいは淡水が浸透圧によって濃縮海水側に透過させることによって、濃縮海水を希釈しようとするものである。さらに、浸透水をタービン、あるいは水車等に供給し、その回転によって発電させることができるといった利点もある(特許文献1、2)。   As one of the solutions to this problem, there is an example in which a technique using a semipermeable membrane has been studied. This method is intended to dilute concentrated seawater by sandwiching a semipermeable membrane between concentrated seawater and seawater, or fresh water, and allowing the water or fresh water in seawater to permeate the concentrated seawater side by osmotic pressure. . Further, there is an advantage that the permeated water can be supplied to a turbine or a water turbine and the power can be generated by the rotation (Patent Documents 1 and 2).

特開2003−176775号公報JP 2003-176775 A 特開2009−047012号公報JP 2009-047012 A

しかしながら、現行の半透膜を利用した場合には浸透水量が少ないため、膜面積が多大になることや、大型設備の割に発電量が小さいことなどの問題点もある。
本発明は、小型の設備で大きな発電量を得ることができ、濃縮海水の希釈が容易である発電及び希釈法、及び発電及び希釈装置を提供することを課題とする。
However, when the current semipermeable membrane is used, the amount of permeated water is small, so there are also problems such as a large membrane area and a small amount of power generation for a large facility.
An object of the present invention is to provide a power generation and dilution method and a power generation and dilution apparatus that can obtain a large amount of power generation with a small facility and that can easily dilute concentrated seawater.

本発明は、以下の通りである。
1)海水Aの水を、イオン交換膜を介して濃縮海水Bに移動させて浸透圧発電を行い、かつ濃縮海水Bのイオンを、イオン交換膜を介して海水Aに移動させて濃度差発電を行うとともに、希釈海水Bを調製する、発電及び希釈工程を含む、発電及び希釈法。
2)海水Aの水を、イオン交換膜を介して濃縮海水Bに移動させて浸透圧発電を行い、かつ濃縮海水Bのイオンを、イオン交換膜を介して海水Aに移動させて濃度差発電を行うとともに、希釈海水Bを調製する、発電及び希釈部を含む、発電及び希釈装置。
The present invention is as follows.
1) Osmotic pressure power generation is performed by moving the water of seawater A to the concentrated seawater B through the ion exchange membrane, and the concentration difference power generation is performed by moving the ions of the concentrated seawater B to the seawater A through the ion exchange membrane. to together Doing, prepare diluted seawater B, incl generating and dilution processes, power generation and dilution method.
2) Osmotic pressure power generation is performed by moving the water of seawater A to the concentrated seawater B through the ion exchange membrane, and the concentration difference power generation is performed by moving the ions of the concentrated seawater B to the seawater A through the ion exchange membrane. to together Doing, prepare diluted seawater B, incl generating and dilution unit, generating and dilution device.

本発明は、海水の水を、イオン交換膜を介して濃縮海水に移動させ、かつ濃縮海水のイオンを海水に移動させて発電を行うとともに希釈海水を調製することを特徴とし、イオン交換膜を用いることに最大の特徴がある。
また、本発明は、上記希釈海水をRO膜にて淡水を抽出するとともに該淡水抽出で生成した濃縮海水を前記イオン交換膜を介した発電及び希釈工程、又は発電及び希釈部に送るサイクルからなる方法、及び装置であって、発電と海水の淡水化を行うことができる方法及び装置も提供することができる。
The present invention is characterized in that seawater water is moved to concentrated seawater through an ion exchange membrane, and ions of concentrated seawater are moved to seawater to generate power and dilute seawater is prepared. There is the biggest feature to use.
In addition, the present invention comprises a cycle in which fresh water is extracted from the diluted seawater with an RO membrane and concentrated seawater generated by the freshwater extraction is sent to the power generation and dilution step via the ion exchange membrane, or to the power generation and dilution section. It is also possible to provide a method and apparatus that can generate power and desalinate seawater.

本発明は、海水にイオン交換膜を利用して発電を行うとともに濃縮海水を希釈することができるので、極めて効率的である。また、希釈された濃縮海水は、通常、そのまま廃棄可能であり、所望によりRO膜にて淡水を得ることができ、結果的に海水から淡水を得ることができる。   The present invention is extremely efficient because it generates power using ion exchange membranes in seawater and dilutes concentrated seawater. Moreover, the diluted concentrated seawater can be normally discarded as it is, and fresh water can be obtained with an RO membrane as desired, and as a result, fresh water can be obtained from seawater.

本発明の方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of this invention. 水頭差と浸透水量の関係を示す図である。It is a figure which shows the relationship between a water head difference and the amount of osmotic water.

以下、本発明を説明する。
本発明において、濃縮海水Bとは、全塩分濃度が5質量%以上である水溶液を意味するのであれば、海水の濃縮物に限定されず、基本的に任意であり、後述のように人工の食塩水等を含むものを意味し、ゴミ等の不溶物は含まれない。ここで、塩分とは、蒸発乾固したときの金属塩を意味し、また、「B」とは後述のように便宜的な符号である。以下、特に言及がない限り、「%」は、「質量%」を意味する。
また、海水Aとは、単に海水とすると濃縮海水Bとの由来が不明確になることを回避するために便宜的に呼称するものであり、実体は海水又はその相当物である。
The present invention will be described below.
In the present invention, the concentrated seawater B is not limited to seawater concentrate as long as it means an aqueous solution having a total salt concentration of 5% by mass or more, and is basically arbitrary. It means that contains saline solution, etc., and does not include insoluble materials such as dust. Here, the salt content means a metal salt when evaporated to dryness, and “B” is a convenient code as described later. Hereinafter, unless otherwise specified, “%” means “% by mass”.
Seawater A is called for convenience in order to avoid the ambiguity of the origin of concentrated seawater B when it is simply seawater, and the entity is seawater or its equivalent.

本発明を工程順に説明する。
本発明の発電及び希釈工程は、海水Aの水を、イオン交換膜を介して濃縮海水Bに移動させて発電を行うとともに希釈海水Bを調製する工程である。
この発電及び希釈工程では、海水Aと濃縮海水Bは、イオン交換膜に接触しているとともにイオン交換膜を介して海水Aと濃縮海水Bの間に電位又は浸透圧が形成可能なように分離している。イオン交換膜としては、陽イオン交換膜(以下、C膜とも記す)及び陰イオン交換膜(以下、A膜とも記す)を交互に配置可能な平膜構造が好ましく、C膜及びA膜の構造(支持体の有機高分子構造、支持体に結合させたイオン交換基の種類等)は特に上記機能を有するものであれば、特に制限はない。
The present invention will be described in the order of steps.
The power generation and dilution step of the present invention is a step of preparing the diluted seawater B while generating the power by moving the water of the seawater A to the concentrated seawater B through the ion exchange membrane.
In this power generation and dilution process, seawater A and concentrated seawater B are separated so that a potential or osmotic pressure can be formed between seawater A and concentrated seawater B via the ion exchange membrane while being in contact with the ion exchange membrane. doing. The ion exchange membrane preferably has a flat membrane structure in which a cation exchange membrane (hereinafter also referred to as C membrane) and an anion exchange membrane (hereinafter also referred to as A membrane) can be arranged alternately. There are no particular restrictions on the organic polymer structure of the support, the type of ion exchange groups bonded to the support, etc., provided that they have the above functions.

イオン交換膜は、親水性のイオン交換基を膜中に配置させた構造を持ち、これによりイオンの透過を行わせる。また、親水性となる構造の特徴から、通常の半透膜より浸透水量を大幅に増大させることが可能となるため、浸透圧発電を行った場合でも、膜面積を低減できるとともに、発電量も増加させることができる。
一方、イオン交換膜では、膜を挟んだ海水A又は濃縮海水Bの濃度差に応じて、膜電位が生じる。例えば、全塩分濃度が6〜7%の濃縮海水Bと3.5%の海水との間には、概ね20mV程度の膜電位を生じる。すなわち、濃縮海水B中のイオンはこの電位勾配に応じてイオン交換膜を透過し、海水側に移動させるとともに海水Aの水を濃縮海水Bへ移動させることができるため、濃縮海水の希釈が容易となる。さらに、イオンの移動に伴って電流を流すことができるため、イオン交換膜を4000〜6000枚を配置した装置を用いれば、装置の両端には80〜120Vの電圧を得ることができる。
The ion exchange membrane has a structure in which hydrophilic ion exchange groups are arranged in the membrane, thereby allowing ions to pass therethrough. In addition, since the amount of osmotic water can be significantly increased compared to a normal semipermeable membrane due to the characteristics of the hydrophilic structure, even when osmotic pressure power generation is performed, the membrane area can be reduced and the power generation amount is also increased. Can be increased.
On the other hand, in the ion exchange membrane, a membrane potential is generated according to the concentration difference between seawater A or concentrated seawater B sandwiching the membrane. For example, a membrane potential of about 20 mV is generated between concentrated seawater B having a total salinity of 6 to 7% and seawater having 3.5%. That is, the ions in the concentrated seawater B can permeate the ion exchange membrane according to this potential gradient, move to the seawater side and move the water of the seawater A to the concentrated seawater B, so that the concentrated seawater can be easily diluted. It becomes. Furthermore, since an electric current can be flowed with the movement of ions, a voltage of 80 to 120 V can be obtained at both ends of the apparatus by using an apparatus having 4000 to 6000 ion exchange membranes.

これとは別に、半透膜を利用した手法では、スパイラル膜や中空糸膜を使用するのが一般的なため、洗浄は薬品洗浄が主流であり、ファウリング対策が重要となるが、本発明はイオン交換膜としては平膜であることが好適であり、このイオン交換膜を装着した装置は、容易に解体でき、イオン交換膜自体の洗浄を行うことで再生できる。本発明は、上記装置として、通常、製塩(食塩)用のイオン交換膜電気透析装置(ED装置ともいう)を発電器として用いることができる利点がある。この場合では、1年に一度程度解体洗浄を行っているが、イオン交換膜の性能劣化などはほとんどなく、10年以上の使用を可能としている。
例えば、本発明に適用可能なED装置としては、例えば、造水技術ハンドブック、2004年11月25日、造水技術ハンドブック編集企画委員会編、財団法人 造水促進センター発行、113頁図基I−13.24に記載のもの等が挙げられる。
Apart from this, in the method using a semipermeable membrane, it is common to use a spiral membrane or a hollow fiber membrane, so chemical cleaning is the mainstream for cleaning, and countermeasures against fouling are important. The ion exchange membrane is preferably a flat membrane, and an apparatus equipped with the ion exchange membrane can be easily disassembled and regenerated by washing the ion exchange membrane itself. The present invention has an advantage that an ion-exchange membrane electrodialysis apparatus (also referred to as an ED apparatus) for salt production (salt) can be used as a generator as the above-mentioned apparatus. In this case, disassembly cleaning is performed about once a year, but there is almost no deterioration in the performance of the ion exchange membrane, and it can be used for more than 10 years.
For example, as an ED apparatus applicable to the present invention, for example, the desalination technology handbook, November 25, 2004, edited by the desalination technology handbook editing planning committee, issued by the desalination promotion center, page 113 The thing of -13.24 etc. are mentioned.

本発明の発電及び希釈工程は、海水Aの厚み方向の両隣にC膜又はA膜を接触させるとともに位置させ、濃縮海水Bの厚み方向の両隣にC膜又はA膜を接触させるとともに位置させ、海水Aの厚み方向の両隣が濃縮海水Bであり、濃縮海水Bの厚み方向の両隣が海水Aであるように位置させることが好ましい。すなわち、本発明は、C膜とA膜との間に形成される別個の空間(以下、膜空間ともいう)内に海水A又は濃縮海水Bを注入し、濃縮海水Bが注入された膜空間には希釈海水Bが調製されるとともに該希釈海水Bを導出、集水する機構を有することが好ましく、海水Aが注入された膜空間には濃縮された海水Aが調製されるとともに濃縮された海水Aを導出、集水する機構を有することが好ましい。海水A、濃縮海水Bの膜空間への注入、導出方式は、バッチ式でも連続式でもよい。海水Aが注入された膜空間には濃縮された海水Aが生じるが、これを濃縮海水Bとして用いるようにしてもよい。また、濃縮された海水Aを膜空間に保持し、希釈海水Bの導出により空いた膜空間に注入する濃縮海水Bとして、濃縮された海水Aの全塩分濃度よりも高い濃度のものを用いるようにしてもよい。   In the power generation and dilution process of the present invention, the C membrane or the A membrane is placed in contact with both sides in the thickness direction of the seawater A, and the C membrane or A membrane is placed in contact with both sides in the thickness direction of the concentrated seawater B. It is preferable that the two adjacent sides in the thickness direction of the seawater A are the concentrated seawater B and the two adjacent sides in the thickness direction of the concentrated seawater B are the seawater A. That is, in the present invention, the seawater A or the concentrated seawater B is injected into a separate space (hereinafter also referred to as a membrane space) formed between the C membrane and the A membrane, and the concentrated seawater B is injected into the membrane space. It is preferable to have a mechanism for deriving and collecting the diluted seawater B while preparing the diluted seawater B. In the membrane space into which the seawater A is injected, the concentrated seawater A is prepared and concentrated. It is preferable to have a mechanism for deriving and collecting the seawater A. The injection and derivation method of the seawater A and the concentrated seawater B into the membrane space may be a batch type or a continuous type. Concentrated seawater A is produced in the membrane space into which seawater A is injected, but this may be used as concentrated seawater B. Further, as the concentrated seawater B that retains the concentrated seawater A in the membrane space and injects it into the membrane space vacated by the derivation of the diluted seawater B, one having a concentration higher than the total salt concentration of the concentrated seawater A is used. It may be.

また、本発明の発電及び希釈法は、海水Aの水を、イオン交換膜を介して濃縮海水Bに移動させて浸透圧発電を行い、かつ濃縮海水Bのイオンを、イオン交換膜を介して海水Aに移動させて濃度差発電を行うとともに、希釈海水Bを調製する、発電及び希釈工程、該希釈海水BからRO膜にて淡水を抽出するとともに濃縮海水Bを生成する淡水抽出工程、該淡水抽出工程で生成した濃縮海水Bを前記発電及び希釈工程に送るサイクルを含むことが好ましい。
また、本発明の発電及び希釈装置は、海水Aの水を、イオン交換膜を介して濃縮海水Bに移動させて浸透圧発電を行い、かつ濃縮海水Bのイオンを、イオン交換膜を介して海水Aに移動させて濃度差発電を行うとともに、希釈海水Bを調製する、発電及び希釈部、該希釈海水BからRO膜にて淡水を抽出するとともに濃縮海水Bを生成する淡水抽出部、該希釈海水Bを該淡水抽出部へ移送する手段、及び該淡水抽出部で生成した濃縮海水Bを該発電及び希釈部へ移送する手段を含むことが好ましい。この発電装置は、濃度差発電及び浸透圧発電を併用するものである。
本発明において、発電及び希釈部の濃縮海水Bと淡水抽出部で生成される濃縮海水Bの塩分濃度は一定でなくてもよいが、海水Aより高濃度である必要がある。
本発明において、発電及び希釈部を浸透圧発電に構成する場合には、希釈部に希釈海水Bによる浸透圧を保持する手段及び浸透圧を受けるタービン発電装置等を備えている必要がある。浸透圧利用後の希釈海水Bは、廃棄してもよいし、所望により、希釈海水Bを淡水抽出部へ移送することができるが、発電及び希釈部を濃度差発電装置のみに構成する場合は、該浸透圧を保持する手段は必要としない。また、同様に濃度差発電利用後の希釈海水Bは、廃棄してもよいし、所望により、希釈海水Bを淡水抽出部へ移送することができる。
In addition, the power generation and dilution method of the present invention performs the osmotic power generation by moving the water of seawater A to the concentrated seawater B through the ion exchange membrane, and the ions of the concentrated seawater B through the ion exchange membrane. is moved to the sea water a in together when the density difference power generation, you prepare diluted seawater B, power generation and dilution step, fresh water extraction to produce a concentrated seawater B extracts a freshwater with RO membranes from the dilute seawater B It is preferable that the process includes a cycle for sending the concentrated seawater B generated in the fresh water extraction step to the power generation and dilution step.
In addition, the power generation and dilution apparatus of the present invention moves the water of seawater A to the concentrated seawater B through the ion exchange membrane to perform osmotic pressure power generation , and the ions of the concentrated seawater B through the ion exchange membrane. is moved to the sea water a in together when the density difference power generation, you prepare diluted seawater B, power generation and diluting unit, fresh water extraction to produce a concentrated seawater B extracts a freshwater with RO membranes from the dilute seawater B And a means for transferring the diluted seawater B to the fresh water extraction section, and a means for transferring the concentrated seawater B produced by the fresh water extraction section to the power generation and dilution section. The power generating apparatus is used together density difference power generation and penetration pressure power generation.
In the present invention, the salt concentration of the concentrated seawater B in the power generation and dilution section and the concentrated seawater B generated in the fresh water extraction section may not be constant, but it needs to be higher than the seawater A.
In the present invention, when the power generation and dilution section is configured to be osmotic pressure power generation, it is necessary to provide the dilution section with means for holding the osmotic pressure due to the diluted seawater B, a turbine power generator that receives the osmotic pressure, and the like. The diluted seawater B after use of the osmotic pressure may be discarded, and if desired, the diluted seawater B can be transferred to the fresh water extraction unit. However, when the power generation and dilution unit is configured only in the concentration difference power generation device. No means for maintaining the osmotic pressure is required. Similarly, the diluted seawater B after use of the concentration difference power generation may be discarded, or the diluted seawater B can be transferred to the fresh water extraction unit as desired.

前記発電及び希釈部は、海水Aの厚み方向の両隣に陽イオン交換膜(C膜)又は陰イオン交換膜(A膜)を接触させるとともに位置させる手段、及び濃縮海水Bの厚み方向の両隣にC膜又はA膜を接触させるとともに位置させる手段を含む発電及び希釈装置であって、前記両手段は、海水Aの厚み方向の両隣が濃縮海水Bであり、濃縮海水Bの厚み方向の両隣が海水Aであるように位置させる手段であることが好ましく、濃度差発電装置及び/又は浸透圧発電装置に構成されることが好ましい。
本発明において、厚み方向とは、前記膜空間の膜に対して垂直方向を意味する。この膜空間は、膜と、膜を保持する手段と、海水A又は濃縮海水Bを保持する壁部材から構成される。この発電及び希釈部が有する膜空間の数は、特に制限はないが、浸透圧発電装置及び濃度差発電装置に併用して適用するときは2000個以上が好ましい。この発電及び希釈部は、膜空間の数が同一又は異なる独立した装置を直列または並列またはそれらの併用で構成することができる。発電及び希釈部を濃度差発電装置に適用する場合は、各装置は、その両端に電極を備えている必要がある。
The power generation and diluting part is located on both sides of the seawater A in the thickness direction of the seawater A, on both sides of the cation exchange membrane (C membrane) or anion exchange membrane (A membrane) and positioned in the thickness direction of the concentrated seawater B. The power generation and dilution apparatus includes means for bringing the C membrane or the A membrane into contact with each other, and the both means are that the seawater A is adjacent to the thickness direction of the seawater A is the concentrated seawater B, and both sides of the concentrated seawater B are adjacent to the thickness direction. It is preferable that it is a means to position so that it may be the seawater A, and it is preferable to comprise in a concentration difference power generation device and / or an osmotic pressure power generation device.
In the present invention, the thickness direction means a direction perpendicular to the film in the film space. This membrane space is composed of a membrane, a means for holding the membrane, and a wall member for holding seawater A or concentrated seawater B. The number of membrane spaces in the power generation and dilution section is not particularly limited, but is preferably 2000 or more when applied in combination with an osmotic pressure power generation device and a concentration difference power generation device. The power generation and dilution section can be configured by independent devices having the same or different numbers of membrane spaces in series or in parallel or a combination thereof. When the power generation and dilution unit is applied to a concentration difference power generation device, each device needs to have electrodes at both ends.

本発明は、前記濃縮海水Bとして、精製金属塩の濃縮水溶液、例えば、NaCl濃縮水溶液を用いると、希釈海水B、淡水抽出工程で生成した濃縮海水Bでは、何れも純粋な塩化ナトリウム水溶液であり、サイクル系内は塩化ナトリウム水溶液が循環することになる。これにより、従来の問題点であった淡水化装置での炭酸カルシウム、硫酸カルシウムなどのスケール析出トラブル及び海水の有機物などによるファウリングを未然に防ぐことができ、さらに淡水への海水中のホウ素の混入も抑制できる。   In the present invention, when a concentrated aqueous solution of a purified metal salt, for example, a concentrated NaCl aqueous solution is used as the concentrated seawater B, both the diluted seawater B and the concentrated seawater B generated in the fresh water extraction step are pure sodium chloride aqueous solutions. The sodium chloride aqueous solution circulates in the cycle system. As a result, scale deposition troubles such as calcium carbonate and calcium sulfate and fouling due to organic matter in seawater in the desalination apparatus, which has been a problem in the past, can be prevented in advance. Mixing can also be suppressed.

発電及び希釈工程で生成した希釈海水Bから淡水を抽出するために用いるRO膜としては、膜の構造(支持体の有機高分子構造等)及び全体形状(平膜、スパイラル、中空糸等)も水を選択的に透過できるものであれば、特に制限はない。   The RO membrane used to extract fresh water from the diluted seawater B generated in the power generation and dilution process includes the membrane structure (such as the organic polymer structure of the support) and the overall shape (flat membrane, spiral, hollow fiber, etc.) There is no particular limitation as long as it can selectively permeate water.

本発明の装置は、海水Aの水を、イオン交換膜を介して濃縮海水Bに移動させて浸透圧発電を行い、かつ濃縮海水Bのイオンを、イオン交換膜を介して海水Aに移動させて濃度差発電を行うとともに、希釈海水Bを調製する、発電及び希釈部、該希釈海水BからRO膜にて淡水を抽出するとともに濃縮海水Bを生成する淡水抽出部、該希釈海水Bを該淡水抽出部へ移送する手段、及び該淡水抽出部で生成した濃縮海水Bを該発電及び希釈部へ移送する手段を含み、上記濃縮海水Bと上記希釈海水Bのサイクルを実施することができる。上記移送する手段としては、管、バルブ、ポンプ、コンプレッサー並びにそれらの制御装置等が挙げられる。 The apparatus of the present invention moves seawater A water to concentrated seawater B through an ion exchange membrane to perform osmotic pressure power generation , and moves ions of concentrated seawater B to seawater A through an ion exchange membrane. in together when the density difference power generation Te, prepare diluted seawater B, power generation and diluting unit, fresh water extractor for generating a concentrated seawater B extracts a freshwater with RO membranes from the dilute seawater B, the diluted seawater Including a means for transferring B to the fresh water extraction section and a means for transferring the concentrated seawater B generated in the fresh water extraction section to the power generation and dilution section, and carrying out a cycle of the concentrated seawater B and the diluted seawater B. Can do. Examples of the means for transferring include pipes, valves, pumps, compressors, and control devices thereof.

以下、図を参照して、本発明の実施態様を説明する。
図1は、本発明の方法が浸透圧発電装置及び濃度差発電装置に適用される発電及び希釈部の構成を模式的に示したものである。1は、発電及び希釈部であり、発電及び希釈部1には、A膜(A)とC膜(C)で囲まれる膜空間5、6、及び7(他の膜は不図示)が形成され、海水A(膜空間6に注入される)の厚み方向の両隣にC膜(C)又はA膜(A)を接触させるとともに位置させる手段、及び濃縮海水B(膜空間5に注入される)及び(膜空間7に注入される)の厚み方向の両隣にC又はAを接触させるとともに位置させる手段を含み、前記両手段は、海水A(膜空間6に注入される)の厚み方向の両隣が濃縮海水B(膜空間5に注入される)及び(膜空間7に注入される)であり、濃縮海水B(膜空間5に注入される)及び(膜空間7に注入される)の厚み方向の両隣が海水A(膜空間6に注入される)であるように位置させる手段を備え、AとCの組の総数は、2000組以上であり、膜間距離は、0.03〜0.1cmである。この態様では、濃縮海水Bとして、5質量%以上(通常は6〜7質量%)のNaCl水溶液(濃食塩水)を、海水Aとして全塩分濃度3.5質量%の海水を用いる。また、C及びAは、製塩用のイオン交換膜である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 schematically shows a configuration of a power generation and dilution unit to which the method of the present invention is applied to an osmotic pressure power generation device and a concentration difference power generation device. Reference numeral 1 denotes a power generation and dilution section. In the power generation and dilution section 1, film spaces 5, 6, and 7 (other films are not shown) surrounded by the A film (A) and the C film (C) are formed. Means for contacting and positioning the C membrane (C) or A membrane (A) on both sides in the thickness direction of the seawater A (injected into the membrane space 6), and the concentrated seawater B (injected into the membrane space 5) ) And (injected into the membrane space 7) and a means for contacting and positioning C or A on both sides of the thickness direction of the seawater A (injected into the membrane space 6) Both sides are concentrated seawater B (injected into membrane space 5) and (injected into membrane space 7), and concentrated seawater B (injected into membrane space 5) and (injected into membrane space 7) Provided with means for positioning so that both sides in the thickness direction are seawater A (injected into membrane space 6), the total number of sets of A and C , And 2,000 or more sets, film distance is a 0.03~0.1cm. In this embodiment, 5 mass% or more (usually 6-7 mass%) NaCl aqueous solution (concentrated saline) is used as the concentrated seawater B, and seawater with a total salt concentration of 3.5 mass% is used as the seawater A. C and A are ion exchange membranes for salt production.

図1(a)は、海水と濃食塩水が膜空間内に交互に注入され、同膜空間内に保持されることにより、膜を介してイオン及び水が移動し、電力が発生している状態を模式的に示している。●は、Naであり、○はClであり、■は水であり、矢印方向は、移動方向を示す。塩濃度の差異により、水(3)は、海水から濃食塩水へ移動して、濃食塩水を希釈し、Na(2)は、紙面の右へ、Cl(4)は紙面の左へ移動し、装置両端に電位80〜120Vが発生し、電極(+)又は(−)から60A/m程度の電流密度を得ることができる。図中、8は、ガスの発生を防ぐための循環される電極液であり、9は、電極液を保持する電流透過性の膜である。 In FIG. 1 (a), seawater and concentrated saline are alternately injected into the membrane space and held in the membrane space, so that ions and water move through the membrane, generating electric power. The state is shown schematically. ● is Na + , ○ is Cl , ■ is water, and the arrow direction indicates the direction of movement. Due to the difference in salt concentration, water (3) moves from seawater to concentrated saline to dilute concentrated saline, Na + (2) is to the right of the page and Cl (4) is to the left of the page. The potential of 80 to 120 V is generated at both ends of the device, and a current density of about 60 A / m 2 can be obtained from the electrode (+) or (−). In the figure, 8 is a circulated electrode liquid for preventing the generation of gas, and 9 is a current permeable film for holding the electrode liquid.

図1(b)は、図1(a)のイオン及び水の移動の結果を模式的に示したものであり、膜空間6等に注入された海水は濃縮され、膜空間5及び7等に注入された濃食塩水は希釈されることを示している。このとき、希釈された濃食塩水(希食塩水ともいう)の全塩分濃度は、4質量%程度であり、濃縮された海水の全塩分濃度は、4質量%程度である。
次に(b)状態の膜空間5及び7等に生成された希食塩水を全量、導出してRO装置へ移送するとともに食塩濃度を下記新たな海水により希釈された海水に比べ高くした食塩水(この該海水に比べ高くした食塩水は、RO処理後の濃食塩水のままでもよいし、適宜濃度を調整したもの、例えば、食塩濃度を高めたものでもよい)を同膜空間に注入し、膜空間6等で濃縮された海水はそのまま維持し、濃食塩水の希釈に使用された容量とほぼ同量の新たな海水を注入する。装置両端には、電位80〜120Vが発生し、60A/mの電流密度を得ることができる。上記操作は、繰り返すと膜空間6における海水の濃度が高くなり、初期の濃食塩水との濃度差が小さくなり、効率が低下するので、適宜、濃食塩水の濃度を高めたり、膜空間6の海水の抜き取り等、該濃度差を高く維持することが好ましい。また、上記操作は、連続式に実施することも可能である。
FIG. 1 (b) schematically shows the result of the movement of ions and water in FIG. 1 (a). Seawater injected into the membrane space 6 and the like is concentrated, and the membrane spaces 5 and 7 and so on are concentrated. The injected concentrated saline solution is diluted. At this time, the total salt concentration of the diluted concentrated saline (also referred to as diluted saline) is about 4% by mass, and the total salt concentration of the concentrated seawater is about 4% by mass.
Next, the total amount of the diluted saline solution generated in the membrane spaces 5 and 7 in the state (b) is derived, transferred to the RO device, and the salt concentration is increased compared to the seawater diluted with the following new seawater. (The saline solution that is higher than the seawater may be the concentrated saline solution after the RO treatment, or may be adjusted to an appropriate concentration, for example, an increased salt concentration). The seawater concentrated in the membrane space 6 or the like is maintained as it is, and fresh seawater of approximately the same volume as that used for diluting the concentrated saline is injected. A potential of 80 to 120 V is generated at both ends of the device, and a current density of 60 A / m 2 can be obtained. If the above operation is repeated, the concentration of seawater in the membrane space 6 increases, the difference in concentration from the initial concentrated saline solution decreases, and the efficiency decreases. It is preferable to keep the concentration difference high, such as by removing seawater. The above operation can also be carried out continuously.

上記は、発電及び希釈部を濃度差発電装置として構成した例を説明したが、同じ構成で浸透圧発電装置の浸透圧発生装置としても用いるもできるし、濃度差発電装置と兼用することもできる。例えば、実施例に記載のような兼用装置において、実施例では浸透圧発電として、膜空間に供給される濃縮海水を浸透水とともにタービンに供給するシステムであるが、該システムにおいて、膜空間に供給される海水を、該濃縮海水とは独立にタービンに供給可能なように上記タービンを改変することにより実施することもできる。
濃度差発電、浸透圧発生装置として用いる場合、上記濃食塩水と海水の膜空間への注入、希釈した食塩水を淡水抽出部へ移送する操作は、バッチ式でも連続式でもよいが、以下、連続式に好適な一例を説明する。
Although the above demonstrated the example which comprised the electric power generation and dilution part as a concentration difference electric power generation apparatus, it can be used also as an osmotic pressure generator of an osmotic pressure electric power generation apparatus with the same structure, and can also serve as a concentration difference electric power generation apparatus. . For example, in the dual-purpose apparatus as described in the embodiment, in the embodiment, as the osmotic pressure power generation, the concentrated seawater supplied to the membrane space is supplied to the turbine together with the osmotic water. It is also possible to implement this by modifying the turbine so that the seawater to be supplied can be supplied to the turbine independently of the concentrated seawater.
When used as a concentration difference power generation and osmotic pressure generator, the operation of transferring the concentrated saline solution and seawater into the membrane space and transferring the diluted saline solution to the fresh water extraction unit may be a batch type or a continuous type. An example suitable for the continuous type will be described.

上記発電及び希釈工程で生成した希食塩水は、RO膜で淡水を抽出する工程へ移送される。
RO装置として、例えば、中空糸膜モジュールを備えた密閉式とし、ポンプによりRO膜内へ淡水を導入する方式を有する装置を用いる。ポンプは、浸透圧以上の圧力を出すので、この圧力を膜空間からの希食塩水の導出及び淡水抽出部で生成した濃食塩水の膜空間への注入に利用することができる。
更に、同ポンプ動力を用いて該押し出された淡水又は生成した濃食塩水をタービンに導入し浸透圧発電に利用することもできるとともに濃食塩水の発電及び希釈部への返送に利用することもできる。
また、製造された電力は、上記ポンプの動力源等として利用できる。
The diluted saline solution generated in the power generation and dilution process is transferred to the process of extracting fresh water with the RO membrane.
As the RO device, for example, an airtight type device having a hollow fiber membrane module and a device having a system for introducing fresh water into the RO membrane by a pump is used. Since the pump generates a pressure higher than the osmotic pressure, this pressure can be used for the derivation of the diluted saline solution from the membrane space and the injection of the concentrated saline solution generated by the fresh water extraction unit into the membrane space.
Furthermore, the pumped fresh water or the generated concentrated saline can be introduced into the turbine and used for osmotic pressure power generation, and can also be used for power generation of concentrated saline and return to the dilution section. it can.
The produced electric power can be used as a power source for the pump.

以下、実施例により本発明を詳細に説明するが、本発明の範囲はこれらに限定されるものではない。
海水として相模湾から取水した海水、濃縮海水として逆浸透膜を用いて前記海水から水を50%回収し、全塩分濃度が7質量%の海水を用い、また、本発明の発電及び希釈装置(以下、発電装置と略す)のイオン交換膜には製塩用のものを用いた。この発電装置は、浸透圧発電と濃度差発電の両方が同時に可能な構成である。
実施例1
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, the scope of the present invention is not limited to these.
Seawater taken from Sagami Bay as seawater, reverse osmosis membrane as concentrated seawater, 50% of water is recovered from the seawater, seawater having a total salinity of 7% by mass, and the power generation and dilution device of the present invention ( The ion exchange membrane (hereinafter abbreviated as a power generation device) used for salt production was used. This power generator is configured to be capable of both osmotic pressure power generation and concentration difference power generation at the same time.
Example 1

海水を図1に示す膜空間6に、濃縮海水を膜空間5および膜空間7に導入し、膜空間6(海水導入側)と膜空間5および膜空間7(濃縮海水導入側)との水頭差を均等あるいは3mとしたときの海水から濃縮海水への水の移動量(浸透水量)を図2に示した。
図2から、イオン交換膜を介して海水側から濃縮海水側に水が浸透し、また、この浸透水量は濃縮海水を導入した膜空間よりも海水を導入した膜空間側の水頭を高くすることで多くなった。
この水頭差3.1mの浸透水量(17.3ml/(dm・h))を例に、膜面積178.5dm、膜間隔0.075cm、陽、陰イオン交換膜各々2,100枚装着した発電装置に92×0.075cmの面積の5cm/secの速度で海水および濃縮海水を各々の膜空間に下から上に供給したときの浸透水量を算出すると、1日あたり311mとなる。また、この浸透水量と発電装置に導入した濃縮海水の水量の和、1日あたり6,571mを有効落差15mでタービン供給した場合、タービンの発電効率η80%における出力電力Pは、9kWとなる。なお、発電力は下記に示す式により算出した。
P=QHgη/100
ここで、P:出力電力[kW]、Q:流量[m/sec]、H:有効落差[m]、η:発電効率[%]、g:重力加速度[9.8m/sec
1日当たり50,000mの水を造る逆浸透膜設備から排出される1日当たり約50,000mの濃縮海水を前記した発電装置を用いて希釈し、これより得られた浸透水量と発電装置に導入した濃縮海水により発電を、以下のように実施すると1日当たり1,728kWhの発電量を得ることができる。
送液量/1基[m/day]=6,260
1日あたり50,000mに必要な発電装置基数[基]=8
1日あたりの発電量[kWh]=8[基]×9[kW]×24[h]=1,728
Seawater is introduced into the membrane space 6 shown in FIG. 1, concentrated seawater is introduced into the membrane space 5 and the membrane space 7, and the head of the membrane space 6 (seawater introduction side) and the membrane space 5 and membrane space 7 (concentrated seawater introduction side). The amount of water transferred from the seawater to the concentrated seawater (the amount of permeated water) when the difference is equal or 3 m is shown in FIG.
From FIG. 2, water permeates from the seawater side to the concentrated seawater side through the ion exchange membrane, and the amount of the permeated water is higher on the head of the membrane space side where the seawater is introduced than the membrane space where the concentrated seawater is introduced. Increased.
Using this water head difference of 3.1 m permeated water (17.3 ml / (dm 2 · h)) as an example, membrane area is 178.5 dm 2 , membrane spacing is 0.075 cm, and 2,100 cation and anion exchange membranes are installed. When the seawater and the concentrated seawater are supplied to each membrane space from the bottom to the membrane space at a rate of 5 cm / sec in an area of 92 × 0.075 cm 2 to the generated power generator, 311 m 3 per day is calculated. . Further, when the sum of the amount of osmotic water and the amount of concentrated seawater introduced into the power generation apparatus is supplied with a turbine of 6,571 m 3 per day with an effective drop of 15 m, the output power P at the power generation efficiency η 80% of the turbine is 9 kW. . The generated power was calculated by the following formula.
P = QHgη / 100
Here, P: output power [kW], Q: flow rate [m 3 / sec], H: effective head [m], η: power generation efficiency [%], g: gravity acceleration [9.8 m / sec 2 ]
About 50,000 m 3 of concentrated seawater discharged from a reverse osmosis membrane facility that produces 50,000 m 3 of water per day is diluted with the power generation device described above. When power generation is performed with the introduced concentrated seawater as follows, a power generation amount of 1,728 kWh per day can be obtained.
Amount of liquid fed / 1 group [m 3 / day] = 6,260
Number of power generation equipment necessary for 50,000 m 3 per day [base] = 8
Electric power generation amount [kWh] = 8 [base] × 9 [kW] × 24 [h] = 1,728 per day

実施例2
実施例1における有効落差を均等としたときの膜空間5と膜空間7に掛かる電位を測定した。この結果、約0.04Vの電位差が得られ、膜電位として陽イオン交換膜、陰イオン交換膜両方が計測された。
これより、上述のように膜面積178.5dm、膜間隔0.075cm、陽、陰イオン交換膜2,100対装着した発電装置に5cm/secの速度で海水および濃縮海水を各々の膜空間に下から上に供給したときの総電圧は、0.04V×2100=84Vとなる。このとき得られる電流Iは、発電装置の内部抵抗値Rと総電圧Emより算出できる。
すなわち、
I=S・Em/R
=S・Em/(Ra+Rk+nR+nR+nρd/100+ρd/100)
Example 2
The potential applied to the membrane space 5 and the membrane space 7 when the effective head in Example 1 was made uniform was measured. As a result, a potential difference of about 0.04 V was obtained, and both the cation exchange membrane and the anion exchange membrane were measured as the membrane potential.
Thus, as described above, the membrane area is 178.5 dm 2 , the membrane spacing is 0.075 cm, and 2,100 pairs of positive and anion exchange membranes are attached to the power generator at a rate of 5 cm / sec. When the voltage is supplied from the bottom to the top, the total voltage is 0.04V × 2100 = 84V. The current I obtained at this time can be calculated from the internal resistance value RT of the power generator and the total voltage Em.
That is,
I = S · Em / R T
= S · Em / (Ra + Rk + nR A + nR K + nρ cd / 100 + ρ d d / 100)

ただし、Ra,Rk:アノード、カソード電極における反応抵抗[Ω]
,R:陰イオン交換膜、陽イオン交換膜の伝導抵抗[いずれも0.02Ω]
ρ,ρ:濃縮海水、海水の比抵抗[7.2695,17.5251Ωcm]
d:膜間隔[0.075cm]
S:有効膜面積[178.5dm
n:対数[2,100]
この内、R、Rは、電極材料の選択にもよるが、銀−塩化銀電極を用いれば、反応抵抗は0とみなせる。
したがって、電流Iは、
However, Ra, Rk: Reaction resistance at the anode and cathode electrodes [Ω]
R A , R K : Conduction resistance of anion exchange membrane and cation exchange membrane [both 0.02Ω]
ρ c , ρ d : Concentrated seawater, specific resistance of seawater [7.2695, 17.5251 Ωcm]
d: Membrane spacing [0.075 cm]
S: Effective membrane area [178.5 dm 2 ]
n: logarithm [2,100]
Among these, although R a and R k depend on the selection of the electrode material, the reaction resistance can be regarded as 0 if a silver-silver chloride electrode is used.
Therefore, the current I is

Figure 0005770670
Figure 0005770670

したがって、発電量は121.86×84=10,237W
なお、実施例1と同様に、1日あたり50,000mの水を造る逆浸透膜設備から排出される1日あたり約50,000mの濃縮海水を発電装置、8基に供給する場合、濃度差発電による全発電量は一日あたり1,965kWhとなる。
また、発電装置と同様の構成からなる装置に電力を供給することにより、さらに濃縮海水中の塩分を海水側に移動させることができるため、濃縮海水の更なる希釈にも活用できる。
また、上述のように発電装置に5cm/secの速度で海水および濃縮海水を各々の膜空間に下から上に供給したときの浸透水量と発電装置に導入した濃縮海水の水量の和を有効落差0でタービン供給したところ、実施例1に準じた発電量が得られた。
Therefore, the power generation amount is 121.86 × 84 = 10,237W.
In addition, as in Example 1, when supplying about 50,000 m 3 of concentrated seawater discharged from a reverse osmosis membrane facility that produces 50,000 m 3 of water per day to the power generator, 8 units, The total amount of power generated by concentration difference power generation is 1,965 kWh per day.
Moreover, by supplying electric power to an apparatus having the same configuration as the power generation apparatus, the salinity in the concentrated seawater can be further moved to the seawater side, so that it can be used for further dilution of the concentrated seawater.
In addition, as described above, the sum of the amount of infiltrated water and the amount of concentrated seawater introduced into the power generation apparatus when the seawater and concentrated seawater are supplied to the membrane space from the bottom to the top at a rate of 5 cm / sec is effectively dropped. When the turbine was supplied at 0, a power generation amount according to Example 1 was obtained.

1…希釈部、2…Na、3…水、4…Cl、5、6、7…膜空間、8…電極液、9…
1 ... dilution unit, 2 ... Na +, 3 ... water, 4 ... Cl -, 5, 6, 7 ... film space, 8 ... electrode solution, 9 ...
film

Claims (10)

海水Aの水を、イオン交換膜を介して濃縮海水Bに移動させて浸透圧発電を行い、かつ濃縮海水Bのイオンを、イオン交換膜を介して海水Aに移動させて濃度差発電を行うとともに、希釈海水Bを調製する、発電及び希釈工程を含む、発電及び希釈法。 The water of seawater A is moved to concentrated seawater B through an ion exchange membrane to perform osmotic pressure power generation , and the ions of concentrated seawater B are moved to seawater A through an ion exchange membrane to perform concentration difference power generation. to together with, prepare diluted seawater B, incl generating and dilution processes, power generation and dilution method. 前記発電及び希釈工程は、海水Aの厚み方向の両隣に陽イオン交換膜(C膜)又は陰イオン交換膜(A膜)を接触させるとともに位置させ、濃縮海水Bの厚み方向の両隣にC膜又はA膜を接触させるとともに位置させ海水Aの厚み方向の両隣が濃縮海水Bであり、濃縮海水Bの厚み方向の両隣が海水Aであるように位置させる、請求項1に記載の発電及び希釈法。 In the power generation and dilution step, a cation exchange membrane (C membrane) or an anion exchange membrane (A membrane) is brought into contact with and positioned on both sides in the thickness direction of the seawater A, and a C membrane is placed on both sides in the thickness direction of the concentrated seawater B. Alternatively, the power generation and dilution according to claim 1 , wherein the A membrane is brought into contact with and positioned such that both sides of the seawater A in the thickness direction are concentrated seawater B, and both sides in the thickness direction of the concentrated seawater B are seawater A. Law. 海水Aの水を、イオン交換膜を介して濃縮海水Bに移動させて浸透圧発電を行い、かつ濃縮海水Bのイオンを、イオン交換膜を介して海水Aに移動させて濃度差発電を行うとともに、希釈海水Bを調製する、発電及び希釈工程、該希釈海水BからRO膜にて淡水を抽出する淡水抽出工程、該淡水抽出工程で生成した濃縮海水Bを前記発電及び希釈工程に送るサイクルを含む、請求項1又は2に記載の発電及び希釈法。 The water of seawater A is moved to concentrated seawater B through an ion exchange membrane to perform osmotic pressure power generation , and the ions of concentrated seawater B are moved to seawater A through an ion exchange membrane to perform concentration difference power generation. to together with, you prepare diluted seawater B, power generation and dilution step, the fresh water extraction step of extracting the fresh water from the diluted seawater B in RO membrane, the generator and dilution step concentrated seawater B generated in該淡water extraction step The power generation and dilution method according to claim 1, comprising a cycle for sending to the power source. 前記濃縮海水Bは、精製金属塩の濃縮水溶液である、請求項1〜のいずれか1項に記載の発電及び希釈法。 The power generation and dilution method according to any one of claims 1 to 3 , wherein the concentrated seawater B is a concentrated aqueous solution of a purified metal salt. 前記濃縮海水Bは、溶質濃度が、6〜7質量%である、請求項1〜のいずれか1項に記載の発電及び希釈法。 The power generation and dilution method according to any one of claims 1 to 4 , wherein the concentrated seawater B has a solute concentration of 6 to 7% by mass. 海水Aの水を、イオン交換膜を介して濃縮海水Bに移動させて浸透圧発電を行い、かつ濃縮海水Bのイオンを、イオン交換膜を介して海水Aに移動させて濃度差発電を行うとともに、希釈海水Bを調製する、発電及び希釈部を含む、発電及び希釈装置。 The water of seawater A is moved to concentrated seawater B through an ion exchange membrane to perform osmotic pressure power generation , and the ions of concentrated seawater B are moved to seawater A through an ion exchange membrane to perform concentration difference power generation. and to Tomo, prepare diluted seawater B, incl generating and dilution unit, generating and dilution device. 前記発電及び希釈部は、海水Aの厚み方向の両隣に陽イオン交換膜(C膜)又は陰イオン交換膜(A膜)を接触させるとともに位置させる手段、及び濃縮海水Bの厚み方向の両隣にC膜又はA膜を接触させるとともに位置させる手段を含む発電及び希釈装置であって、前記両手段は、海水Aの厚み方向の両隣が濃縮海水Bであり、濃縮海水Bの厚み方向の両隣が海水Aであるように位置させる手段である、請求項6に記載の発電及び希釈装置。 The power generation and diluting part is located on both sides of the seawater A in the thickness direction of the seawater A, on both sides of the cation exchange membrane (C membrane) or anion exchange membrane (A membrane) and positioned in the thickness direction of the concentrated seawater B. The power generation and dilution apparatus includes means for bringing the C membrane or the A membrane into contact with each other, and the both means are that the seawater A is adjacent to the thickness direction of the seawater A is the concentrated seawater B, and both sides of the concentrated seawater B are adjacent to the thickness direction. The power generation and dilution apparatus according to claim 6, which is means for positioning the seawater A. 海水Aの水を、イオン交換膜を介して濃縮海水Bに移動させて浸透圧発電を行い、かつ濃縮海水Bのイオンを、イオン交換膜を介して海水Aに移動させて濃度差発電を行うとともに、希釈海水Bを調製する、発電及び希釈部、該希釈海水BからRO膜にて淡水を抽出するとともに濃縮海水Bを生成する淡水抽出部、該希釈海水Bを該淡水抽出部へ移送する手段、及び該淡水抽出部で生成した濃縮海水Bを該発電及び希釈部へ移送する手段を含む、請求項6又は7に記載の発電及び希釈装置。 The water of seawater A is moved to concentrated seawater B through an ion exchange membrane to perform osmotic pressure power generation , and the ions of concentrated seawater B are moved to seawater A through an ion exchange membrane to perform concentration difference power generation. to together with, you prepare diluted seawater B, power generation and diluting unit, the fresh water extractor for generating a concentrated seawater B extracts a freshwater with RO membrane from a dilute seawater B,該淡water extractor of the diluted seawater B The power generation and dilution apparatus according to claim 6 or 7, comprising means for transferring to the power generation and dilution section, and means for transferring the concentrated seawater B produced in the fresh water extraction section to the power generation and dilution section. 前記濃縮海水Bは、精製金属塩の濃縮水溶液である、請求項6〜8のいずれか1項に記載の発電及び希釈装置。 The power generation and dilution apparatus according to any one of claims 6 to 8 , wherein the concentrated seawater B is a concentrated aqueous solution of a purified metal salt. 前記濃縮海水Bは、溶質濃度が、6〜7質量%である、請求項6〜9のいずれか1項に記載の発電及び希釈装置。 The power generation and dilution apparatus according to any one of claims 6 to 9 , wherein the concentrated seawater B has a solute concentration of 6 to 7 mass%.
JP2012077345A 2011-03-31 2012-03-29 Power generation and dilution methods and equipment Active JP5770670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012077345A JP5770670B2 (en) 2011-03-31 2012-03-29 Power generation and dilution methods and equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011079332 2011-03-31
JP2011079332 2011-03-31
JP2012077345A JP5770670B2 (en) 2011-03-31 2012-03-29 Power generation and dilution methods and equipment

Publications (2)

Publication Number Publication Date
JP2012217333A JP2012217333A (en) 2012-11-08
JP5770670B2 true JP5770670B2 (en) 2015-08-26

Family

ID=47269565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012077345A Active JP5770670B2 (en) 2011-03-31 2012-03-29 Power generation and dilution methods and equipment

Country Status (1)

Country Link
JP (1) JP5770670B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335312A (en) * 2003-05-08 2004-11-25 Ishikawajima Harima Heavy Ind Co Ltd Power generation method and power generation device utilizing concentrated sea water generated at sea water desalting device
JP2010077934A (en) * 2008-09-26 2010-04-08 Taiheiyo Cement Corp Electric power generation system
JP5222886B2 (en) * 2010-04-22 2013-06-26 株式会社神鋼環境ソリューション Separation membrane reforming method and separation membrane reforming apparatus
JP2012030194A (en) * 2010-08-02 2012-02-16 Sumitomo Electric Ind Ltd Hollow yarn membrane module, hollow yarn membrane module filter, and seawater desalting pretreatment filter

Also Published As

Publication number Publication date
JP2012217333A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
Al-Amshawee et al. Electrodialysis desalination for water and wastewater: A review
Jiang et al. Production of lithium hydroxide from lake brines through electro–electrodialysis with bipolar membranes (EEDBM)
Zhao et al. Waste conversion and resource recovery from wastewater by ion exchange membranes: state-of-the-art and perspective
Güler et al. Micro-structured membranes for electricity generation by reverse electrodialysis
Ibáñez et al. Acid and base recovery from softened reverse osmosis (RO) brines. Experimental assessment using model concentrates
Zhu et al. Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells
Zhang et al. Recovery of hydrochloric acid from simulated chemosynthesis aluminum foils wastewater: An integration of diffusion dialysis and conventional electrodialysis
Beh et al. A redox-shuttled electrochemical method for energy-efficient separation of salt from water
Zhang et al. Process economic evaluation of resource valorization of seawater concentrate by membrane technology
Goh et al. The water–energy nexus: solutions towards energy‐efficient desalination
Zhao et al. Preparation of LiOH through BMED process from lithium-containing solutions: Effects of coexisting ions and competition between Na+ and Li+
Sharma et al. Clean energy from salinity gradients using pressure retarded osmosis and reverse electrodialysis: A review
Qiu et al. Sustainable recovery of high-saline papermaking wastewater: Optimized separation for salts and organics via membrane-hybrid process
Jiang et al. An excellent method to produce morpholine by bipolar membrane electrodialysis
KR20170071502A (en) Forward osmosis process for concentration of lithium containing solutions
Lee et al. Fouling distribution in forward osmosis membrane process
Venugopal et al. Evaluation of synthetic salt water desalination by using a functionalized polysulfone based bipolar membrane electrodialysis cell
Qiu et al. Study on recovering high-concentration lithium salt from lithium-containing wastewater using a hybrid reverse osmosis (RO)–electrodialysis (ED) process
Son et al. Electro-forward osmosis
EP3041598B1 (en) Apparatus and method for product recovery and electrical energy generation
Lopez et al. Reduction of the shadow spacer effect using reverse electrodeionization and its applications in water recycling for hydraulic fracturing operations
Zoungrana et al. Energy coverage of ataköy-ambarlı municipal wastewater treatment plants by salinity gradient power
Park et al. Electrochemical energy-generating desalination system using a pressure-driven ion-selective nanomembrane
Li et al. A cascade electro-dehydration process for simultaneous extraction and enrichment of uranium from simulated seawater
Wu et al. Effects of multivalent ions on hydrogen production from the salinity gradient between desalination concentrated brine and river by reverse electrodialysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130815

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150625

R150 Certificate of patent or registration of utility model

Ref document number: 5770670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250