JP5768781B2 - High carbon steel sheet - Google Patents

High carbon steel sheet Download PDF

Info

Publication number
JP5768781B2
JP5768781B2 JP2012177299A JP2012177299A JP5768781B2 JP 5768781 B2 JP5768781 B2 JP 5768781B2 JP 2012177299 A JP2012177299 A JP 2012177299A JP 2012177299 A JP2012177299 A JP 2012177299A JP 5768781 B2 JP5768781 B2 JP 5768781B2
Authority
JP
Japan
Prior art keywords
less
heat treatment
steel sheet
content
carbon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012177299A
Other languages
Japanese (ja)
Other versions
JP2014034717A (en
Inventor
達雄 吉井
達雄 吉井
敦詞 切畑
敦詞 切畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012177299A priority Critical patent/JP5768781B2/en
Publication of JP2014034717A publication Critical patent/JP2014034717A/en
Application granted granted Critical
Publication of JP5768781B2 publication Critical patent/JP5768781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高炭素鋼板に関する。例えば、本発明は、熱処理後のビッカース硬度で650以上を要求されるような高強度鋼板部品の素材に供される高炭素鋼板に関するものであり、熱処理前においては軟質で良好な成形性を備え、かつ熱処理後においては硬度に比して優れた耐摩耗性を備えるとともに優れた靭性をも備える高炭素鋼板に関する。   The present invention relates to a high carbon steel sheet. For example, the present invention relates to a high-carbon steel sheet used for a material of a high-strength steel sheet part that requires a Vickers hardness of 650 or more after heat treatment, and is soft and has good formability before heat treatment. And after heat processing, it is related with the high carbon steel plate which is equipped with the outstanding abrasion resistance compared with hardness, and also the outstanding toughness.

自動車のトランスミッション部品等には、その複雑な動きや耐久性の観点から、非常に高い強度と優れた耐摩耗性および靭性が要求される。   Automotive transmission parts and the like are required to have very high strength and excellent wear resistance and toughness from the viewpoint of complicated movement and durability.

強度を向上させる手段としてCを添加する方法等が、耐摩耗性を向上させる手段としてCrを添加する方法等が、靭性を向上させる手段としてNbを添加する方法等が、一般に知られる。しかしながら、C、Cr、Nb等の合金元素を単に添加するのみで何ら工夫を施すことなく製造される鋼板は、合金元素の影響により硬化し、熱処理前の素材段階における成形性が劣化する。   A method of adding C as a means for improving strength, a method of adding Cr as a means for improving wear resistance, a method of adding Nb as a means for improving toughness, etc. are generally known. However, a steel sheet produced without any modification by simply adding an alloy element such as C, Cr, or Nb hardens due to the influence of the alloy element, and the formability at the material stage before the heat treatment deteriorates.

一方、成形性と耐摩耗性とを具備する鋼板として、以下の技術が提案されている。
特許文献1には、成形性と耐摩耗性とに優れた熱処理用鋼板が開示されている。
On the other hand, the following techniques have been proposed as steel sheets having formability and wear resistance.
Patent Document 1 discloses a steel sheet for heat treatment that is excellent in formability and wear resistance.

特許文献2には、耐摩耗性に優れた加工面を有する加工部材の製造方法およびそれに供する加工部材用高強度鋼板が開示されている。   Patent Document 2 discloses a method for manufacturing a processed member having a processed surface with excellent wear resistance and a high-strength steel sheet for processed member to be used for the method.

特許文献3には、耐摩耗性及び打抜き加工性に優れたオートマチックトランスミッションプレート用冷延鋼板が開示されている。   Patent Document 3 discloses a cold-rolled steel sheet for an automatic transmission plate that is excellent in wear resistance and punching workability.

さらに、特許文献4には、熱処理前においては軟質で良好な成形性を備え、かつ熱処理後においては硬度に比して優れた耐摩耗性を備える高炭素鋼板が開示されている。   Furthermore, Patent Document 4 discloses a high-carbon steel sheet that is soft and has good formability before heat treatment, and has excellent wear resistance compared to hardness after heat treatment.

特開2002−121647号公報JP 2002-121647 A 特開2003−268491号公報JP 2003-268491 A 特開2003−277883号公報JP 2003-277883 A 特開2006−274348号公報JP 2006-274348 A

自動車のトランスミッション用の部品等には、素材として供される鋼板を成形して鋼板部材とし、この鋼板部材に焼入れ焼戻しやオーステンパー等の熱処理を施すものがあり、熱処理前の素材段階における鋼板については軟質で良好な加工性を有することが、また熱処理後の鋼板部材については高い強度と耐摩耗性、さらには優れた靭性を有することが、それぞれ要求される。   There are parts for automobile transmissions, etc., in which steel plates used as raw materials are formed into steel plate members, and these steel plate members are subjected to heat treatment such as quenching and tempering or austemper. Are required to be soft and have good workability, and to have high strength and wear resistance as well as excellent toughness for the steel sheet member after the heat treatment.

熱処理後の鋼板部材について耐摩耗性を確保するには、CやCr等の含有量が多いほうが有利であるが、これにより、熱処理前の素材段階における鋼板の成形性の劣化を招くことにつながる。   In order to ensure the wear resistance of the steel plate member after heat treatment, it is advantageous that the content of C, Cr, etc. is large, but this leads to deterioration of the formability of the steel plate in the material stage before heat treatment. .

一方、熱処理前の素材段階における鋼板を軟質化することにより良好な成形性を確保しようとしてCやCr等の含有量を減らすと、熱処理後の硬度が低下し、熱処理後の鋼板部材について必要な強度が確保できなくなったり耐摩耗性が劣化したりする。   On the other hand, if the content of C, Cr, etc. is reduced in order to ensure good formability by softening the steel plate in the material stage before heat treatment, the hardness after heat treatment will decrease, and it is necessary for the steel plate member after heat treatment Strength cannot be secured or wear resistance deteriorates.

特許文献1により開示される熱処理用鋼板のC含有量は0.25〜0.40%(本明細書においては特にことわりがない限り化学組成についての「%」は「質量%」を意味するものとする)であり、しかも鋼中の炭化物としてグラファイトの含有をある程度許容するものである。鋼中の炭化物をグラファイト化させることは、鋼板の降伏点(YP)や引張強度(TS)を低下させることには有効な手段であるものの、グラファイト自体は延性に乏しいために曲げ加工等の際にその部分から亀裂を生じ易く、真に成形性に優れるとは云えない。また、この熱処理用鋼板は、C含有量が少ないために耐摩耗性も充分とは云えない。   C content of the steel sheet for heat treatment disclosed by Patent Document 1 is 0.25 to 0.40% (in this specification, “%” for chemical composition means “% by mass” unless otherwise specified) In addition, graphite is allowed to some extent as carbides in the steel. Graphitization of carbides in steel is an effective means for reducing the yield point (YP) and tensile strength (TS) of steel sheets, but graphite itself has poor ductility, so it is difficult to perform bending work. However, it is easy to form a crack from the part, and it cannot be said that it is truly excellent in formability. Moreover, this steel sheet for heat treatment cannot be said to have sufficient wear resistance because of its low C content.

特許文献2により開示される加工部材用高強度鋼板のC含有量は0.05〜0.25%であり、しかも成形後に塗装焼付け処理程度の低温熱処理を施すものであり、本発明のように焼入れ等の高温熱処理を施すことを前提とするものとは用途が異なる。   The C content of the high-strength steel sheet for processed members disclosed in Patent Document 2 is 0.05 to 0.25%, and is subjected to low-temperature heat treatment such as paint baking after forming, as in the present invention. The use is different from that premised on high-temperature heat treatment such as quenching.

さらに、特許文献3により開示されるオートマチックトランスミッションプレート用冷延鋼板のC含有量は0.15〜0.25%であり、かつ成形後に熱処理を施さないものであり、高温熱処理に供することを前提とするものとは用途が異なる。   Furthermore, the C content of the cold-rolled steel sheet for automatic transmission plates disclosed in Patent Document 3 is 0.15 to 0.25%, and is not subjected to heat treatment after forming, and is premised on high-temperature heat treatment. The use is different from that.

これらの技術は、C含有量が少ないことからある程度良好な成形性を示すものの、耐摩耗性の点では充分であるとは云えない。   Although these techniques show good moldability to some extent because of their low C content, they cannot be said to be sufficient in terms of wear resistance.

これらの技術に対し、特許文献4により開示される高炭素鋼板は、熱処理前においては軟質で良好な成形性を備え、かつ熱処理後においては硬度に比して優れた耐摩耗性を備えており、優れた発明である。しかし、靭性に関しては十分に検討されているとは云い難く、この点において改善の余地がある。   In contrast to these techniques, the high carbon steel sheet disclosed in Patent Document 4 is soft and has good formability before heat treatment, and has excellent wear resistance compared to hardness after heat treatment. It is an excellent invention. However, it is difficult to say that the toughness has been sufficiently studied, and there is room for improvement in this respect.

本発明者らは、上述した課題を解決するために、熱処理前の素材段階における高炭素鋼板の組成および組織について鋭意検討を行った結果、以下に列記する知見(A)〜(C)を得た。   In order to solve the above-described problems, the present inventors have conducted extensive studies on the composition and structure of the high-carbon steel sheet in the material stage before the heat treatment, and as a result, obtained knowledge (A) to (C) listed below. It was.

(A)熱処理後の鋼板部材の耐摩耗性には、鋼板部材の硬度のみならず鋼板部材中の炭化物が重要な働きをする。すなわち、素材として供される高炭素鋼板は、一般に、鋼板部材に成形加工された後に焼入れ焼戻し等の熱処理が施されて使用されるが、この熱処理の際に、炭化物を総てオーステナイト中に固溶させるのではなく適度に未固溶炭化物として残留させることが有効である。そして、この未固溶炭化物の硬度が鋼板部材の耐摩耗性に大きく影響を及ぼす。この未固溶炭化物は、MnとCrが溶け込み複炭化物となっており、高炭素鋼板におけるMnとCrとの原子数比{(Mn/55)/(Cr/52)}を特定の範囲内とすることにより耐摩耗性を著しく向上させることができる。   (A) Not only the hardness of the steel plate member but also the carbide in the steel plate member plays an important role in the wear resistance of the steel plate member after the heat treatment. That is, a high carbon steel plate provided as a raw material is generally used after being formed into a steel plate member and then subjected to a heat treatment such as quenching and tempering. During this heat treatment, all carbides are solidified in austenite. It is effective to leave it as an undissolved carbide instead of dissolving it. The hardness of the insoluble carbide greatly affects the wear resistance of the steel plate member. This insoluble carbide is a double carbide in which Mn and Cr are mixed, and the atomic ratio of {Mn / 55) / (Cr / 52)} between Mn and Cr in the high carbon steel sheet is within a specific range. By doing so, the wear resistance can be remarkably improved.

(B)熱処理前の素材段階における鋼板を軟質にするには、C、Mn、Cr等の合金元素の含有量を低減することが有効であるが、鋼板部材の強度と耐摩耗性とを確保するためには、ある程度含有させることが必要となり、鋼組成のみで鋼板の軟質化を図ることには限界がある。そこで、フェライトの粒径および球状化炭化物の分布を特定の範囲内とすることにより、従来材よりも合金元素の含有量に比して軟質化することが可能となり、素材段階における鋼板について良好な加工性を実現することができる。   (B) It is effective to reduce the content of alloy elements such as C, Mn, Cr, etc. to soften the steel sheet in the material stage before heat treatment, but ensure the strength and wear resistance of the steel sheet member. In order to achieve this, it is necessary to contain a certain amount, and there is a limit to the softening of the steel sheet only by the steel composition. Therefore, by making the ferrite grain size and the distribution of spheroidized carbide within a specific range, it becomes possible to soften the alloy element content as compared with the conventional material, which is good for steel sheets in the material stage. Workability can be realized.

(C)熱処理後の鋼板部材の靭性は、TiおよびNbの1種または2種を含有させることにより向上させることができる。しかし、TiやNbは、熱処理前における鋼板を硬質化させ、優れた加工性を確保することが困難にしたり、焼入れ時のオーステナイトの細粒化させ、焼入れ性の低下を招いたりする。また、Tiは、焼入れ後の硬さに影響を及ぼすCをTiCを形成することで消費してしまい、焼入後において目的とする硬度を確保することを困難にする。そこで、これらの副作用を考慮しつつTiおよびNbによる靭性向上作用を享受することにより、上述した性能を損なうことなく、熱処理後の鋼板部材について優れた靭性をも確保することができる。   (C) The toughness of the steel plate member after the heat treatment can be improved by containing one or two of Ti and Nb. However, Ti and Nb harden the steel plate before the heat treatment, making it difficult to ensure excellent workability, or making austenite fine during quenching, leading to a decrease in hardenability. Further, Ti consumes C which affects the hardness after quenching by forming TiC, making it difficult to ensure the target hardness after quenching. Therefore, by taking advantage of the toughness improving effect of Ti and Nb in consideration of these side effects, excellent toughness can be secured for the steel plate member after the heat treatment without impairing the above-described performance.

本発明は、これらの新規な知見(A)〜(C)に基づくものであり、以下に列記の通りである。   The present invention is based on these novel findings (A) to (C) and is listed below.

(1)C:0.50〜1.00%、Si:0.35%以下、Mn:0.60〜1.00%、P:0.015%以下、S:0.0030%以下、Cr:0.30〜0.60%、sol.Al:0.005〜0.080%、N:0.0050%以下を含有し、さらに、Ti:0.0010〜0.020%およびNb:0.0010〜0.030%からなる群から選択された1種または2種を含有し、残部Feおよび不純物からなり、さらに、Cr含有量およびMn含有量が下記(1)式を満足する化学組成を有し、フェライトの平均結晶粒径が10.0μm以上であるとともに、球状化炭化物のうち粒径が1.0μm以上であるものの個数比率が50%以上であることを特徴とする高炭素鋼板。   (1) C: 0.50 to 1.00%, Si: 0.35% or less, Mn: 0.60 to 1.00%, P: 0.015% or less, S: 0.0030% or less, Cr : 0.30 to 0.60%, sol. Al: 0.005 to 0.080%, N: 0.0050% or less, and further selected from the group consisting of Ti: 0.0010 to 0.020% and Nb: 0.0010 to 0.030% 1 type or 2 types, and the balance is composed of Fe and impurities, the Cr content and the Mn content satisfy the following formula (1), and the average crystal grain size of ferrite is 10 A high-carbon steel sheet having a diameter ratio of not less than 0.0 μm and a number ratio of spheroidized carbides having a particle diameter of not less than 1.0 μm of not less than 50%.

1.20≦(Mn/55)/(Cr/52)≦2.00・・・・・・・(1)
ただし、(1)式における符号MnおよびCrは、いずれも、鋼中における各元素の含有量(質量%)を示す。
1.20 ≦ (Mn / 55) / (Cr / 52) ≦ 2.00 (1)
However, the symbols Mn and Cr in the formula (1) both indicate the content (mass%) of each element in the steel.

(2)前記化学組成が、前記Feの一部に代えて、質量%で、Ni:0.15%以下、Mo:0.30%以下およびV:0.05%以下からなる群から選択された1種または2種以上を含有することを特徴とする、(1)項に記載の高炭素鋼板。   (2) The chemical composition is selected from the group consisting of Ni: 0.15% or less, Mo: 0.30% or less, and V: 0.05% or less in mass% instead of a part of the Fe. The high-carbon steel sheet according to item (1), further comprising at least one kind.

(3)前記化学組成が、前記Feの一部に代えて、質量%で、Ca:0.010%以下を含有することを特徴とする、(1)項または(2)項に記載の高炭素鋼板。   (3) The high chemical composition according to (1) or (2), wherein the chemical composition contains, by mass%, Ca: 0.010% or less instead of a part of the Fe. Carbon steel plate.

(4)前記化学組成が、前記Feの一部に代えて、質量%で、Cu:0.15%以下を含有することを特徴とする、(1)項から(3)項までのいずれかに記載の高炭素鋼板。   (4) Any one of the items (1) to (3), wherein the chemical composition contains, by mass%, Cu: 0.15% or less instead of a part of the Fe The high carbon steel sheet described in 1.

本発明により、熱処理後のビッカース硬度で650以上を要求されるような高強度鋼板部品の素材に供される高炭素鋼板であって、熱処理前においては軟質で良好な成形性を備え、熱処理後においては硬度に比して優れた耐摩耗性を備えるとともに優れた靭性をも備える高炭素鋼板を得ることができる。   According to the present invention, a high-carbon steel sheet used for a material of a high-strength steel sheet component that requires a Vickers hardness of 650 or more after heat treatment, which is soft and has good formability before heat treatment, and after heat treatment Can provide a high carbon steel sheet having excellent wear resistance as well as excellent toughness as compared with hardness.

より具体的には、本発明により、熱処理前の素材段階における鋼板の状態では、ビッカース硬度が170以下と非常に軟質でありながら、熱処理後の鋼板部材の状態では、ビッカース硬度が650以上と高い強度を備えるとともに優れた耐摩耗性と靭性とを備える高炭素鋼板を得ることができる。   More specifically, according to the present invention, the Vickers hardness is as high as 170 or less in the state of the steel plate in the material stage before the heat treatment, while the Vickers hardness is as high as 650 or more in the state of the steel plate member after the heat treatment. A high carbon steel sheet having strength and excellent wear resistance and toughness can be obtained.

このため、本発明は、自動車のトランスミッション部品等の用途に利用価値の高い発明である。   For this reason, this invention is invention with high utility value for uses, such as a transmission part of a motor vehicle.

図1は、大越式摩耗試験機の概要を示す説明図である。FIG. 1 is an explanatory view showing an outline of the Ogoshi type abrasion tester. 図2は、摩耗試験の結果を示すグラフである。FIG. 2 is a graph showing the results of the wear test.

以下、本発明に係る高炭素鋼板を実施するための形態を、添付図面を参照しながら詳細に説明する。   Hereinafter, the form for implementing the high carbon steel plate concerning the present invention is explained in detail, referring to an accompanying drawing.

本発明の高炭素鋼板の限定理由を説明する。
(C:0.50〜1.00%)
Cは、焼入れ焼戻しあるいはオーステンパー、さらには必要に応じて浸炭処理等の熱処理を施した後における、硬度、耐摩耗性さらには疲労強度を向上させる。本発明においては、熱処理後のビッカース硬度で650以上を確保するために、C含有量を0.50%以上とする。一方、過剰に含有させると熱処理前の冷間加工性や熱処理後の靱性が劣化するため、C含有量を1.00%以下とする。好ましいC含有量は、0.65%以上0.80%以下である。
The reason for limitation of the high carbon steel sheet of the present invention will be described.
(C: 0.50 to 1.00%)
C improves the hardness, wear resistance, and fatigue strength after heat treatment such as quenching and tempering or austempering and, if necessary, carburizing treatment. In the present invention, in order to ensure a Vickers hardness of 650 or higher after heat treatment, the C content is set to 0.50% or higher. On the other hand, if contained excessively, cold workability before heat treatment and toughness after heat treatment deteriorate, so the C content is made 1.00% or less. The preferable C content is 0.65% or more and 0.80% or less.

(Si:0.35%以下)
Siは、多量に含有するとSi酸化物を形成して熱処理後の鋼材の疲労強度の低下を招く。そこで、Si含有量を0.35%以下とする。好ましくは0.20%以下である。
(Si: 0.35% or less)
When Si is contained in a large amount, Si oxide is formed and the fatigue strength of the steel material after heat treatment is lowered. Therefore, the Si content is set to 0.35% or less. Preferably it is 0.20% or less.

(Mn:0.60〜1.00%)
Mnは、本発明において重要な元素である。すなわち、Mnは、セメンタイト中に固溶してセメンタイトの硬度を増加させることにより耐摩耗性を向上する。さらに、熱処理時の焼入性の確保を容易にしたり、あるいは靱性向上のための焼戻し温度およびオーステンパー温度を上昇させる。そこで、Mn含有量を0.60%以上とする。しかし、1.00%を超えて含有すると、熱処理前における鋼板の高度が高くなり、優れた加工性を確保することが困難となる。このため、Mn含有量を0.60%以上1.00%以下とする。好ましくは、0.70%以上0.85%以下である。
(Mn: 0.60 to 1.00%)
Mn is an important element in the present invention. That is, Mn improves the wear resistance by dissolving in cementite and increasing the hardness of cementite. Furthermore, it is easy to ensure hardenability during heat treatment, or to raise the tempering temperature and austempering temperature for improving toughness. Therefore, the Mn content is set to 0.60% or more. However, if the content exceeds 1.00%, the height of the steel sheet before heat treatment becomes high, and it becomes difficult to ensure excellent workability. For this reason, Mn content shall be 0.60% or more and 1.00% or less. Preferably, it is 0.70% or more and 0.85% or less.

(P:0.015%以下)
Pは、鋼中に不可避的に含有される不純物元素であり、靭性を劣化させる。したがって、Pはなるべく少ないほうがよく、P含有量を0.015%以下とする。好ましくは0.010%以下である。
(P: 0.015% or less)
P is an impurity element inevitably contained in steel, and deteriorates toughness. Therefore, P should be as small as possible, and the P content should be 0.015% or less. Preferably it is 0.010% or less.

(S:0.0030%以下)
Sは、鋼中に不可避的に含有される不純物元素であり、Mnと結び付いてMnSを形成し、鋼板の靭性を劣化させる。したがって、Sはなるべく少ないほうがよく、S含有量を0.0030%以下とする。好ましくは0.0020%以下である。
(S: 0.0030% or less)
S is an impurity element inevitably contained in the steel, and is combined with Mn to form MnS, thereby degrading the toughness of the steel sheet. Therefore, S should be as small as possible, and the S content should be 0.0030% or less. Preferably it is 0.0020% or less.

(Cr:0.30〜0.60%)
Crは、本発明の中で耐摩耗性を確保する点で最も重要な元素である。Mnと同様に、セメンタイト中に固溶してセメンタイトの硬度を増加させることにより耐摩耗性の向上に寄与する。さらに、熱処理時の焼入性の確保を容易にしたり、あるいは靱性向上のための焼戻し温度およびオーステンパー温度を上昇させる作用を有する。そこで、Cr含有量を0.30%以上とする。しかし、0.60%を超えて含有させると、熱処理前における鋼板の硬度が高くなり、優れた加工性を確保することが困難となる。このため、Crの含有量を0.30%以上0.60%以下とする。好ましくは、0.45%以上0.55%以下である。
(Cr: 0.30-0.60%)
Cr is the most important element in securing wear resistance in the present invention. Like Mn, it contributes to the improvement of wear resistance by increasing the hardness of cementite by dissolving in cementite. Furthermore, it has the effect of making it easy to ensure hardenability during heat treatment or increasing the tempering temperature and austempering temperature for improving toughness. Therefore, the Cr content is set to 0.30% or more. However, if the content exceeds 0.60%, the hardness of the steel sheet before heat treatment becomes high, and it becomes difficult to ensure excellent workability. For this reason, content of Cr shall be 0.30% or more and 0.60% or less. Preferably, it is 0.45% or more and 0.55% or less.

(sol.Al:0.005〜0.080%)
Alは、鋼の溶製過程で脱酸剤として添加される。また、NをAlNとして固定する作用も有する。Al含有量が0.005%未満では脱酸作用が不十分であり、一方0.080%を超えると清浄度が低下して表面性状が劣化する。このため、sol.Al含有量を0.005%以上0.080%以下とする。好ましくは0.020%以上0.040%以下である。
(Sol.Al: 0.005-0.080%)
Al is added as a deoxidizer in the melting process of steel. It also has the effect of fixing N as AlN. If the Al content is less than 0.005%, the deoxidation action is insufficient, while if it exceeds 0.080%, the cleanliness is lowered and the surface properties are deteriorated. For this reason, sol. Al content shall be 0.005% or more and 0.080% or less. Preferably they are 0.020% or more and 0.040% or less.

(N:0.0050%以下)
Nは、鋼中に不可避的に含有される不純物元素であり、Alと結び付いてAlNを形成し、その量が多量になると焼入れ性を阻害する場合がある。したがって、N含有量を0.0050%以下とする。好ましくは0.0040%以下である。
(N: 0.0050% or less)
N is an impurity element inevitably contained in the steel, and is combined with Al to form AlN. If the amount is large, the hardenability may be hindered. Therefore, the N content is 0.0050% or less. Preferably it is 0.0040% or less.

(Ti:0.0010〜0.020%およびNb:0.0010〜0.030%からなる群から選択された1種または2種)
TiおよびNbは、靭性を向上させる作用を有する元素であり、本発明の中で靭性を確保する点で重要な元素である。Ti:0.0010%未満かつNb:0.0010%未満では、目的とする靭性を確保することが困難である。したがって、Ti:0.0010%以上およびNb:0.0010%以上からなる群から選択された1種または2種を含有させる。一方、Ti含有量が0.020%超であったり、Nb含有量が0.020%超であったりすると、熱処理前における鋼板の硬度が高くなり、優れた加工性を確保することが困難となる。また、焼入れ時のオーステナイト粒径が小さくなるため、焼入れ性が低下する。さらにまた、Tiについては焼入れ後の硬さに影響を及ぼすCをTiCを形成することで消費してしまい、焼入後において目的とする硬度を確保することが困難となる。したがって、Ti含有量は0.020%以下、Nb含有量は0.030%以下とする。Ti含有量は0.010%以下とすることが好ましく、Nb含有量は0.010%以下とすることが好ましい。
(One or two selected from the group consisting of Ti: 0.0010 to 0.020% and Nb: 0.0010 to 0.030%)
Ti and Nb are elements having an action of improving toughness, and are important elements in terms of securing toughness in the present invention. When Ti is less than 0.0010% and Nb is less than 0.0010%, it is difficult to ensure the intended toughness. Therefore, 1 type or 2 types selected from the group which consists of Ti: 0.0010% or more and Nb: 0.0010% or more are contained. On the other hand, if the Ti content exceeds 0.020% or the Nb content exceeds 0.020%, the hardness of the steel sheet before heat treatment increases, and it is difficult to ensure excellent workability. Become. Moreover, since the austenite particle size at the time of hardening becomes small, hardenability falls. Furthermore, as for Ti, C which affects the hardness after quenching is consumed by forming TiC, and it becomes difficult to ensure the target hardness after quenching. Therefore, the Ti content is 0.020% or less and the Nb content is 0.030% or less. The Ti content is preferably 0.010% or less, and the Nb content is preferably 0.010% or less.

(Cr含有量およびMn含有量:1.20≦(Mn/55)/(Cr/52)≦2.00)
Mn、Crはいずれも鉄炭化物に溶け易い元素である。セメンタイトにこれらの元素が固溶すると、一部のFeが置換されてMCと表される複炭化物になると考えられる。この際、鉄炭化物に溶ける元素の個数比が、耐摩耗性の確保に必要とされる炭化物の性質を決定する重要な因子である。すなわち、MnとCrとの原子数比{(Mn/55)/(Cr/52)}が1.20≦(Mn/55)/(Cr/52)≦2.00の関係を満たすときに、炭化物が大きな耐摩耗性の向上効果を発揮する。好ましくは、1.4≦(Mn/55)/(Cr/52)≦1.8である。
(Cr content and Mn content: 1.20 ≦ (Mn / 55) / (Cr / 52) ≦ 2.00)
Both Mn and Cr are elements that are easily dissolved in iron carbide. When these elements are dissolved in cementite, it is considered that a part of Fe is substituted and a double carbide expressed as M 3 C is obtained. At this time, the number ratio of elements dissolved in the iron carbide is an important factor for determining the properties of the carbide required for ensuring the wear resistance. That is, when the atomic ratio {(Mn / 55) / (Cr / 52)} between Mn and Cr satisfies the relationship of 1.20 ≦ (Mn / 55) / (Cr / 52) ≦ 2.00, Carbide exhibits a significant effect of improving wear resistance. Preferably, 1.4 ≦ (Mn / 55) / (Cr / 52) ≦ 1.8.

(Ni:0.15%以下、Mo:0.30%以下およびV:0.05%以下からなる群から選択された1種または2種以上)
Ni、MoおよびVは、いずれも靭性を向上させる作用を有する元素である。したがって、これらの元素の1種または2種以上を含有させてもよい。しかし、NiおよびMoは高価な元素であり、また、Mo含有量が過剰になると熱処理前における鋼板の硬度が高くなり、優れた加工性を確保することが困難となる。したがって、Ni含有量は0.15%以下、Mo含有量は0.30%以下とする。また、V含有量が過剰になると却って靭性が劣化するうえに、焼入れ後の硬さに影響を及ぼすCを炭化物を形成することで消費してしまい、焼入後において目的とする硬度を確保することが困難となる。したがって、V含有量は0.05%以下とする。上記作用による効果をより確実に得るには、Ni:0.001%以上、Mo:0.001%以上およびV:0.001%以上のいずれかを満足させることが好ましい。
(One or two or more selected from the group consisting of Ni: 0.15% or less, Mo: 0.30% or less, and V: 0.05% or less)
Ni, Mo and V are all elements that have an action of improving toughness. Therefore, you may contain 1 type, or 2 or more types of these elements. However, Ni and Mo are expensive elements, and if the Mo content is excessive, the hardness of the steel sheet before heat treatment increases, making it difficult to ensure excellent workability. Therefore, the Ni content is 0.15% or less, and the Mo content is 0.30% or less. On the other hand, if the V content is excessive, the toughness deteriorates, and C that affects the hardness after quenching is consumed by forming carbides, and the desired hardness is ensured after quenching. It becomes difficult. Therefore, the V content is 0.05% or less. In order to more reliably obtain the effect of the above action, it is preferable to satisfy any of Ni: 0.001% or more, Mo: 0.001% or more, and V: 0.001% or more.

(Ca:0.010%以下)
Caは、鋼中の介在物清浄度を向上させ、特に巾方向の衝撃値を向上させる作用を有する。したがって、Caを含有させてもよい。しかし、Ca含有量が過剰になると、Ca系の析出物により、却って清浄度が悪くなる。したがって、Ca含有量は0.010%以下とする。上記作用による効果をより確実に得るにはCa含有量を0.0001%以上とすることが好ましい。
(Ca: 0.010% or less)
Ca has the effect | action which improves the cleanliness of the inclusion in steel, and improves the impact value of the width direction especially. Therefore, Ca may be contained. However, when the Ca content is excessive, the cleanliness is deteriorated due to Ca-based precipitates. Therefore, the Ca content is 0.010% or less. In order to more reliably obtain the effect of the above action, the Ca content is preferably 0.0001% or more.

(Cu:0.15%以下)
Cuは、熱間圧延後の酸洗時のオーバーピックルによるピンホール疵等を防止し、鋼板の表面品質の向上に効果がある。したがって、Cuを含有させてもよい。しかし、Cuを過剰に含有させるとコスト増につながるので好ましくない。したがって、Cu含有量は0.15%以下とする。上記作用による効果をより確実に得るには、Cu含有量を0.05%以上とすることが好ましい。
(Cu: 0.15% or less)
Cu prevents pinhole flaws due to overpickling during pickling after hot rolling, and is effective in improving the surface quality of the steel sheet. Therefore, Cu may be contained. However, excessive addition of Cu is not preferable because it leads to an increase in cost. Therefore, the Cu content is 0.15% or less. In order to more reliably obtain the effect of the above action, the Cu content is preferably set to 0.05% or more.

上記以外は、Feおよび不純物である。
また、熱処理前の素材段階における鋼板の組織は、素材としての加工性に重大な影響を及ぼすばかりか、熱処理そのものにも影響を与え、また、熱処理後の鋼板部材における耐摩耗性にも影響を及ぼす。このため、本実施の形態の高炭素鋼板の組織を説明する。
Other than the above are Fe and impurities.
In addition, the structure of the steel sheet in the material stage before heat treatment not only has a significant effect on the workability of the material, but also affects the heat treatment itself, and also affects the wear resistance of the steel sheet member after heat treatment. Effect. For this reason, the structure of the high carbon steel plate of the present embodiment will be described.

(フェライトの平均結晶粒径:10.0μm以上)
フェライトの結晶粒径は、熱処理前の鋼板の軟質性に大きな影響を及ぼす。具体的には、フェライトの平均結晶粒径が10.0μm未満では、熱処理前の鋼板を軟質化して成形性を確保することが困難になる。したがって、フェライトの平均結晶粒径を10.0μm以上とする。フェライトの平均結晶粒径の上限は特に規定しないが、フェライトの平均結晶粒径が50μm超であると、粒径を大きくすることに要する製造コストの増加が著しくなるので、フェライトの平均結晶粒径を50μm以下とすることが好ましい。
(Average grain size of ferrite: 10.0 μm or more)
The crystal grain size of ferrite greatly affects the softness of the steel sheet before heat treatment. Specifically, when the average crystal grain size of ferrite is less than 10.0 μm, it becomes difficult to ensure the formability by softening the steel sheet before heat treatment. Accordingly, the average crystal grain size of ferrite is set to 10.0 μm or more. The upper limit of the average crystal grain size of ferrite is not particularly specified, but if the average crystal grain size of ferrite exceeds 50 μm, the increase in production cost required to increase the grain size becomes significant. Is preferably 50 μm or less.

このフェライトの平均結晶粒径は、鋼板表面から板厚1/4深さの部位の領域で0.2mm×0.2mmの視野を500倍で撮影した組織写真から観察されるフェライト粒径の平均値として、規定される。   The average crystal grain size of this ferrite is the average of the ferrite grain size observed from a structural photograph taken at a magnification of 500 × in a 0.2 mm × 0.2 mm field of view in the region of a depth of ¼ depth from the steel sheet surface. Defined as a value.

(球状化炭化物のうち粒径が1.0μm以上であるものの個数比率:50%以上)
球状化炭化物の粒径は、熱処理前の鋼板の加工性に大きな影響を及ぼすのはもちろんのこと、本発明の重要なポイントである耐摩耗性に対しても大きな影響を及ぼす。すなわち、炭化物の粒径が大きいほうが熱処理前の素材段階における鋼板の加工性を確保することを容易にするとともに、熱処理中における炭化物の固溶を抑制して未固溶炭化物の残存させることを容易にして、耐摩耗に好影響を及ぼす。具体的には、球状化炭化物のうち粒径が1.0μm以上であるものの個数比率が50%以上である状態が最も良好である。
(Number ratio of spheroidized carbides having a particle size of 1.0 μm or more: 50% or more)
The particle size of the spheroidized carbide has a great influence not only on the workability of the steel sheet before the heat treatment but also on the wear resistance which is an important point of the present invention. That is, the larger the particle size of the carbide, the easier it is to ensure the workability of the steel plate in the material stage before the heat treatment, and it is easier to suppress the solid solution of the carbide during the heat treatment and to leave the undissolved carbide. Thus, it has a positive effect on wear resistance. Specifically, the state in which the number ratio of spheroidized carbides having a particle size of 1.0 μm or more is 50% or more is the best.

球状化炭化物の粒径の測定は、ピクリン酸アルコールでエッチングしたミクロ組織を走査型電子顕微鏡によって観察し、さらに2000倍で10視野撮影した写真を画像解析して、個々の炭化物の面積を測定し、この測定値から個々の炭化物の円相当径を算出して、その大きさを測定することにより、行われる。   The particle size of the spheroidized carbide was measured by observing the microstructure etched with picric alcohol with a scanning electron microscope, and further analyzing the images of 10 fields of view taken at 2000 times to measure the area of each carbide. The calculation is performed by calculating the equivalent circle diameter of each carbide from the measured value and measuring the size.

このように、本発明の高炭素鋼板は、MnとCrとの原子数比{(Mn/55)/(Cr/52)}を所定の範囲内とすることによって成形加工された後に行われる焼入れ焼戻し等の熱処理の際に、炭化物を総てオーステナイト中に固溶させるのではなく、MnとCrとが溶け込んだ未固溶炭化物として適度に残留させることができ、この未固溶炭化物の硬度により鋼板部材の耐摩耗性を大きく向上することができるとともに、フェライトの平均結晶粒径、および粒径が1.0μm以上である球状化炭化物の個数比率を、それぞれ10μm以上50μm以下、50%以上とすることにより、従来材よりも合金元素の含有量に比較して軟質化することができ、熱処理前の素材段階における鋼板を軟質にして、良好な加工性を確保することができる。さらに、適量のTiおよびNbの1種または2種を含有させることにより、上記性能を損なうことなく、熱処理後の鋼板部材について優れた靭性をも確保することができる。   Thus, the high-carbon steel sheet of the present invention is quenched after being formed by setting the atomic number ratio {(Mn / 55) / (Cr / 52)} between Mn and Cr within a predetermined range. In the heat treatment such as tempering, all the carbides are not dissolved in austenite, but can be appropriately left as insoluble carbides in which Mn and Cr are dissolved. The hardness of the insoluble carbides The wear resistance of the steel plate member can be greatly improved, and the average crystal grain size of ferrite and the number ratio of spheroidized carbides having a grain size of 1.0 μm or more are 10 μm or more and 50 μm or less and 50% or more, respectively. By doing so, it can be softened compared to the content of the alloy element than the conventional material, the steel plate in the material stage before heat treatment can be softened, and good workability can be ensuredFurthermore, by including an appropriate amount of one or two of Ti and Nb, excellent toughness can be ensured for the steel plate member after the heat treatment without impairing the above performance.

このため、本発明によれば、熱処理後のビッカース硬度で650以上を要求されるような高強度鋼板部品の素材に供される高炭素鋼板であって熱処理前においては軟質で良好な成形性を備え、さらに熱処理後においては硬度に比して優れた耐摩耗性を備えるとともに優れた靭性をも備える高炭素鋼板、より具体的には、熱処理前の素材段階における鋼板の状態ではビッカース硬度が170以下と非常に軟質でありながら、熱処理後の鋼板部材の状態ではビッカース硬度が650以上と高い強度を備えるとともに優れた耐摩耗性を備え、かつ優れた靭性をも備える高炭素鋼板が提供される。このため、例えば自動車のミッション部品等の用途に利用価値が高い高炭素鋼板が提供される。   Therefore, according to the present invention, it is a high carbon steel plate used for a material of a high strength steel plate part that requires a Vickers hardness of 650 or more after heat treatment, and is soft and has good formability before heat treatment. In addition, after the heat treatment, a high carbon steel plate having excellent wear resistance and excellent toughness as compared with the hardness, more specifically, a Vickers hardness of 170 in the state of the steel plate in the material stage before the heat treatment. A high carbon steel sheet having a Vickers hardness as high as 650 or higher, excellent wear resistance and excellent toughness in the state of a steel sheet member after heat treatment, while being very soft as follows. . For this reason, for example, a high carbon steel plate having a high utility value for applications such as automobile mission parts is provided.

本発明を実施例に基づいて、さらに具体的に説明する。
表1−1、1−2に示す化学成分を有する鋼を溶製した。そして、表2−1、2−2に示すように、連続鋳造によりスラブとし、このスラブを1250℃に加熱してから、仕上げ温度860℃及び巻取温度550℃で3.6mm厚の熱延コイルを製造し、次いで、この熱延コイルを酸洗して黒皮スケールを除去した後、箱形焼鈍炉にて690〜720℃で25時間、並びに750℃で6時間の炭化物球状化焼鈍(前焼鈍)を行い、中間処理として、冷間圧延機による2.0〜2.8mm厚までの冷間圧延(中間冷延1、2)と、箱形焼鈍炉での700℃で20時間の焼鈍(中間焼鈍1、2)とを、1回ないし2回繰返して行った後、仕上げ処理として、1.8mmまでの冷間圧延(仕上冷圧)と690℃で4時間の焼鈍(仕上焼鈍)とを行って、鋼材No.1〜4、6〜103の高炭素鋼板を製造した。
The present invention will be described more specifically based on examples.
Steels having chemical components shown in Tables 1-1 and 1-2 were melted. Then, as shown in Tables 2-1 and 2-2, a slab was formed by continuous casting, the slab was heated to 1250 ° C., and then hot-rolled to a thickness of 3.6 mm at a finishing temperature of 860 ° C. and a winding temperature of 550 ° C. The coil was manufactured, and then the hot rolled coil was pickled to remove the black scale, and then the carbide spheroidizing annealing was performed in a box-type annealing furnace at 690 to 720 ° C. for 25 hours and at 750 ° C. for 6 hours ( Pre-annealing), and as an intermediate treatment, cold rolling to 2.0-2.8 mm thickness (intermediate cold rolling 1, 2) with a cold rolling mill and 700 ° C. in a box annealing furnace for 20 hours After annealing (intermediate annealing 1 and 2) is repeated once or twice, as finishing treatment, cold rolling up to 1.8 mm (finish cold pressure) and annealing at 690 ° C. for 4 hours (finish annealing) ) And steel material No. 1 to 4 and 6 to 103 high carbon steel sheets were produced.

これらの高炭素鋼板について、上述した方法によってフェライトの平均結晶粒径、球状化炭化物のうち粒径が1.0μm以上であるものの個数比率、及びビッカース硬度を測定した。測定結果を表2−1、2−2に併せて示す。   About these high carbon steel plates, the average crystal grain diameter of ferrite, the number ratio of those having a grain diameter of 1.0 μm or more among the spheroidized carbides, and the Vickers hardness were measured by the method described above. The measurement results are shown in Tables 2-1 and 2-2.

Figure 0005768781
Figure 0005768781

Figure 0005768781
Figure 0005768781

Figure 0005768781
Figure 0005768781

Figure 0005768781
Figure 0005768781

次に、これらの高炭素鋼板から3cm×3cmの試料を打抜き、この試料を800℃で30分間均熱した後、60℃の油中へ焼入れを行い、その後150℃で30分間焼戻す熱処理を行った。   Next, a sample of 3 cm × 3 cm is punched from these high-carbon steel sheets, and the sample is soaked at 800 ° C. for 30 minutes, then quenched into oil at 60 ° C., and then tempered at 150 ° C. for 30 minutes. went.

この後、表面研磨を行い、図1に概要を示す大越式摩耗試験機により表面の摩耗試験を行った。なお、図1における符号Pは摩耗試験時の負荷荷重を示し、符号Vは摩耗速度を示し、符号Lは摩耗距離(図示しない)を示し、符号bは摩耗痕の幅を示し、符号rは回転円板の半径を示し、さらに、符号Bは回転円板の厚さを示す。 Thereafter, surface polishing was performed, and a surface abrasion test was performed using an Ogoshi type abrasion tester schematically shown in FIG. 1 indicates the load applied during the wear test, V indicates the wear rate, L indicates the wear distance (not shown), b 0 indicates the width of the wear mark, and r Indicates the radius of the rotating disk, and symbol B indicates the thickness of the rotating disk.

本実施例では、P=67(N)、V=0.76(m/s)、L=400(m)、r=30(mm)、B=3.0(mm)とするとともに、相手材としてSCM415を用いて、摩耗試験を行った。そして、摩耗量(mm)を測定した。 In this embodiment, P = 67 (N), V = 0.76 (m / s), L = 400 (m), r = 30 (mm), B = 3.0 (mm), and the other party A wear test was performed using SCM415 as the material. And the amount of wear (mm < 3 >) was measured.

また、熱処理後のビッカース硬度およびシャルピー衝撃値も測定した。
摩耗試験の結果ならびに熱処理後のビッカース硬度およびシャルピー衝撃値を表2−1,2−2に併せて示す。
Further, the Vickers hardness and Charpy impact value after the heat treatment were also measured.
The results of the abrasion test, the Vickers hardness and the Charpy impact value after the heat treatment are shown together in Tables 2-1 and 2-2.

また、図2は、各試料の摩耗量が1.50(mm/(mm・mm))未満である試料を●印(摩耗量小)として、摩耗量が1.50(mm/(mm・mm))以上1.60(mm/(mm・mm))未満である試料を▲印(摩耗量中)として、さらに摩耗量が1.60(mm/(mm・mm))以上である試料を×印(摩耗量大)として、各試料の母材である高炭素鋼板のCr量及びMn量をプロットして示すグラフである。なお、図2には、各試料の母材である高炭素鋼板のMnとCrとの原子数比{(Mn/55)/(Cr/52)}が、1.0、1.2、1.4、1.6、1.8、2.0及び2.2となる直線を併記してある。 Further, FIG. 2 shows that the wear amount of each sample is less than 1.50 (mm 3 / (mm 2 · mm)), and the wear amount is 1.50 (mm 3 / mm) with the mark ● (small wear amount). (Mm 2 · mm)) or more and less than 1.60 (mm 3 / (mm 2 · mm)) are marked with ▲ (in the wear amount), and the wear amount is further 1.60 (mm 3 / (mm 2 (Mm)) It is a graph plotting the amount of Cr and the amount of Mn of a high-carbon steel plate as a base material of each sample, with the sample having the above described as x (a large amount of wear). In FIG. 2, the atomic ratio {(Mn / 55) / (Cr / 52)} of Mn and Cr of the high-carbon steel plate that is the base material of each sample is 1.0, 1.2, 1 .4, 1.6, 1.8, 2.0 and 2.2 are also shown.

図2のグラフから理解されるように、MnとCrとの原子数比{(Mn/55)/(Cr/52)}が1.2≦(Mn/55)/(Cr/52)≦2.0の関係を満たすときには、摩耗量小又は摩耗量中であり、炭化物が大きな耐摩耗性の向上効果を発揮することがわかるとともに、原子数比{(Mn/55)/(Cr/52)}が1.4≦(Mn/55)/(Cr/52)≦1.8の関係を満たすときには、摩耗量小であり、炭化物がさらに大きな耐摩耗性の向上効果を発揮することがわかる。   As understood from the graph of FIG. 2, the atomic ratio {(Mn / 55) / (Cr / 52)} between Mn and Cr is 1.2 ≦ (Mn / 55) / (Cr / 52) ≦ 2. 0.0 is satisfied, the wear amount is small or during wear, and it can be seen that the carbide exhibits a large effect of improving wear resistance, and the atomic ratio {(Mn / 55) / (Cr / 52) } Satisfies the relationship of 1.4 ≦ (Mn / 55) / (Cr / 52) ≦ 1.8, the wear amount is small, and it can be seen that the carbide exhibits a greater effect of improving wear resistance.

また、表2−1および表2−2から理解されるように、本発明に係る高炭素鋼板は、熱処理前においては軟質で良好な成形性を備えながら、熱処理後においては硬度に比して優れた耐摩耗性を備えるとともに優れた靭性をも備えることがわかる。   Moreover, as understood from Table 2-1 and Table 2-2, the high carbon steel sheet according to the present invention is soft and has good formability before heat treatment, but compared with hardness after heat treatment. It can be seen that it has excellent wear resistance and excellent toughness.

Claims (4)

質量%で、C:0.50〜1.00%、Si:0.35%以下、Mn:0.60〜1.00%、P:0.015%以下、S:0.0030%以下、Cr:0.30〜0.60%、sol.Al:0.005〜0.080%、N:0.0050%以下を含有し、さらに、Ti:0.0010〜0.020%およびNb:0.0010〜0.030%からなる群から選択された1種または2種を含有し、残部Feおよび不純物からなり、さらに、Cr含有量およびMn含有量が下記(1)式を満足する化学組成を有し、フェライトの平均結晶粒径が10.0μm以上であるとともに、球状化炭化物のうち粒径が1.0μm以上であるものの個数比率が50%以上であることを特徴とする高炭素鋼板。
1.20≦(Mn/55)/(Cr/52)≦2.00・・・・・・・(1)
ただし、(1)式における符号MnおよびCrは、いずれも、鋼中における各元素の含有量(質量%)を示す。
In mass%, C: 0.50 to 1.00%, Si: 0.35% or less, Mn: 0.60 to 1.00%, P: 0.015% or less, S: 0.0030% or less, Cr: 0.30 to 0.60%, sol. Al: 0.005 to 0.080%, N: 0.0050% or less, and further selected from the group consisting of Ti: 0.0010 to 0.020% and Nb: 0.0010 to 0.030% 1 type or 2 types, and the balance is composed of Fe and impurities, the Cr content and the Mn content satisfy the following formula (1), and the average crystal grain size of ferrite is 10 A high-carbon steel sheet having a diameter ratio of not less than 0.0 μm and a number ratio of spheroidized carbides having a particle diameter of not less than 1.0 μm of not less than 50%.
1.20 ≦ (Mn / 55) / (Cr / 52) ≦ 2.00 (1)
However, the symbols Mn and Cr in the formula (1) both indicate the content (mass%) of each element in the steel.
前記化学組成が、前記Feの一部に代えて、質量%で、Ni:0.15%以下、Mo:0.30%以下およびV:0.05%以下からなる群から選択された1種または2種以上を含有することを特徴とする、請求項1に記載の高炭素鋼板。   The chemical composition is one selected from the group consisting of Ni: 0.15% or less, Mo: 0.30% or less, and V: 0.05% or less in mass% instead of a part of the Fe Or the high carbon steel plate of Claim 1 containing 2 or more types. 前記化学組成が、前記Feの一部に代えて、質量%で、Ca:0.010%以下を含有することを特徴とする、請求項1または請求項2に記載の高炭素鋼板。   The high-carbon steel sheet according to claim 1 or 2, wherein the chemical composition contains Ca: 0.010% or less in mass% instead of a part of the Fe. 前記化学組成が、前記Feの一部に代えて、質量%で、Cu:0.15%以下を含有することを特徴とする、請求項1から請求項3までのいずれかに記載の高炭素鋼板。   The high carbon according to any one of claims 1 to 3, wherein the chemical composition contains Cu: 0.15% or less in mass% instead of a part of the Fe. steel sheet.
JP2012177299A 2012-08-09 2012-08-09 High carbon steel sheet Active JP5768781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012177299A JP5768781B2 (en) 2012-08-09 2012-08-09 High carbon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012177299A JP5768781B2 (en) 2012-08-09 2012-08-09 High carbon steel sheet

Publications (2)

Publication Number Publication Date
JP2014034717A JP2014034717A (en) 2014-02-24
JP5768781B2 true JP5768781B2 (en) 2015-08-26

Family

ID=50283890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012177299A Active JP5768781B2 (en) 2012-08-09 2012-08-09 High carbon steel sheet

Country Status (1)

Country Link
JP (1) JP5768781B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217586B2 (en) * 2014-10-20 2017-10-25 Jfeスチール株式会社 Abrasion resistant steel plate excellent in bending workability and impact wear resistance and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3848444B2 (en) * 1997-09-08 2006-11-22 日新製鋼株式会社 Medium and high carbon steel plates with excellent local ductility and hardenability
JP3460659B2 (en) * 2000-02-03 2003-10-27 住友金属工業株式会社 Soft high carbon steel strip with small heat treatment distortion and method for producing the same
JP4371072B2 (en) * 2005-03-29 2009-11-25 住友金属工業株式会社 High carbon steel sheet
JP4600196B2 (en) * 2005-07-26 2010-12-15 Jfeスチール株式会社 High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof
JP5050433B2 (en) * 2005-10-05 2012-10-17 Jfeスチール株式会社 Method for producing extremely soft high carbon hot-rolled steel sheet
JP5076347B2 (en) * 2006-03-31 2012-11-21 Jfeスチール株式会社 Steel plate excellent in fine blanking workability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014034717A (en) 2014-02-24

Similar Documents

Publication Publication Date Title
JP4371072B2 (en) High carbon steel sheet
JP6573033B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
US10329635B2 (en) High-strength cold-rolled steel sheet having excellent bendability
US20130186522A1 (en) Carburizing steel having excellent cold forgeability and method of manufacturing the same
KR101656980B1 (en) Stainless steel brake disc and method for manufacturing same
US20170058376A1 (en) Rolled material for high strength spring, and wire for high strength spring
JP5233846B2 (en) Steel materials used for nitriding and induction hardening
US9777353B2 (en) Hot-rolled steel sheet for nitriding, cold-rolled steel sheet for nitriding excellent in fatigue strength, manufacturing method thereof, and automobile part excellent in fatigue strength using the same
KR101751242B1 (en) Full hard cold-rolled steel sheet and method for manufacturing the same
WO2013146124A1 (en) Bearing steel material having superior rolling fatigue characteristics and a method for producing same
JP2007284783A (en) High strength cold rolled steel sheet and its production method
JP5632759B2 (en) Method for forming high-strength steel members
JP5245777B2 (en) Full hard cold rolled steel sheet
JP5842748B2 (en) Cold rolled steel sheet and method for producing the same
JP6620431B2 (en) High-strength steel sheet with excellent workability and method for producing the same
US20140003990A1 (en) High-tension steel plate excellent in base metal toughness and haz toughness
JP2005240135A (en) Method for manufacturing wear-resistant steel having excellent bendability, and wear-resistant steel
JP5768781B2 (en) High carbon steel sheet
JP4471486B2 (en) Medium and high carbon steel plates with excellent deep drawability
JP2012237052A (en) Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same
JP6361279B2 (en) Medium and high carbon steel
JP4822398B2 (en) Medium to high carbon steel plate with excellent punchability
US9790565B2 (en) Hot-rolled stainless steel sheet having excellent hardness and low-temperature impact properties
JP5929233B2 (en) Steel plate for machine structural parts
JP4740021B2 (en) Cr-containing thin steel sheet having excellent shape freezing property and method for producing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R151 Written notification of patent or utility model registration

Ref document number: 5768781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350