JP5768765B2 - Operation method of electrolytic smelting equipment - Google Patents

Operation method of electrolytic smelting equipment Download PDF

Info

Publication number
JP5768765B2
JP5768765B2 JP2012132450A JP2012132450A JP5768765B2 JP 5768765 B2 JP5768765 B2 JP 5768765B2 JP 2012132450 A JP2012132450 A JP 2012132450A JP 2012132450 A JP2012132450 A JP 2012132450A JP 5768765 B2 JP5768765 B2 JP 5768765B2
Authority
JP
Japan
Prior art keywords
electrolytic
electrolytic cell
supply
electrolytic solution
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012132450A
Other languages
Japanese (ja)
Other versions
JP2013256683A (en
Inventor
裕久 加集
裕久 加集
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012132450A priority Critical patent/JP5768765B2/en
Publication of JP2013256683A publication Critical patent/JP2013256683A/en
Application granted granted Critical
Publication of JP5768765B2 publication Critical patent/JP5768765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、電解製錬設備の操業方法に関する。さらに詳しくは、電解精製や電解採取において通電期間と通電期間の間に行われる交換作業の技術に関する。   The present invention relates to a method for operating an electrolytic smelting facility. More specifically, the present invention relates to a technique for exchange work performed between energization periods in electrolytic refining and electrowinning.

電解製錬の方法として、電解精製と電解採取が知られている。
電解精製は、乾式製錬の後工程であり、粗金属から純度の高い金属を製造する。電解精製に使用されるアノードは乾式製錬によって製造された粗金属であり、有利に電解精製が行える程度に純度が高められている。一方、カソードは製品金属であり、一定基準以上の純度を保った金属である。電解精製では、目的金属がアノードからイオンの形で電解液に溶出し、カソード上に析出する。また、アノードに含まれる目的金属より貴な電位を持つ不純物はアノードスライムとして電解槽の底に堆積する。
電解採取は、湿式製錬工程の最後の工程であり、鉱石から目的金属を適当な溶媒を用いて浸出し、浄液工程で浸出液から不純物を除去し目的金属イオンの濃縮を行なって電解液を得て、電解により電解液から目的金属をカソード上に析出させる。
As a method of electrolytic smelting, electrolytic purification and electrolytic extraction are known.
Electrolytic refining is a post-process of dry smelting and produces high-purity metal from crude metal. The anode used for the electrolytic refining is a crude metal produced by dry smelting, and its purity is increased to such an extent that it can be advantageously subjected to electrolytic refining. On the other hand, the cathode is a product metal, which is a metal having a purity exceeding a certain standard. In electrolytic purification, the target metal elutes from the anode in the form of ions and is deposited on the cathode. Impurities having a higher potential than the target metal contained in the anode are deposited on the bottom of the electrolytic cell as anode slime.
Electrolytic extraction is the last step of the hydrometallurgical process.The target metal is leached from the ore using an appropriate solvent, impurities are removed from the leachate in the liquid purification process, and the target metal ions are concentrated to remove the electrolyte. The target metal is deposited on the cathode from the electrolyte by electrolysis.

上記の電解製錬では、電解液で満たされた電解槽に複数枚のアノードとカソードを交互に挿入し、アノード−カソード間に通電して電解が行われる。そして、所定時間の通電の後に、一度停電させてアノードやカソードを交換し、再度通電することを繰り返す。以下、通電開始から通電終了までの期間を通電期間と称し、通電期間と通電期間の間に行われる作業を交換作業と称する。   In the electrolytic smelting, a plurality of anodes and cathodes are alternately inserted into an electrolytic bath filled with an electrolytic solution, and electrolysis is performed by energizing between the anode and the cathode. Then, after energization for a predetermined time, the power is interrupted once, the anode and the cathode are replaced, and energization is repeated. Hereinafter, a period from the start of energization to the end of energization is referred to as an energization period, and an operation performed between the energization period and the energization period is referred to as replacement work.

例えば、銅の電解精製では、一般にアノード一枚当たりの通電時間は15〜20日程度であり、アノード一枚につき7〜10日間の通電を行った製品カソード(電気銅)を2回得ることができる。1回目の製品カソードを得る通電期間を前半ライフ、2回目の製品カソードを得る通電期間を後半ライフと称すると、前半ライフから後半ライフへの交換作業は、前半ライフの終了後に一度停電させて、カソードを新たなものに交換し、再度通電することにより行われる。   For example, in the electrolytic refining of copper, the energization time per anode is generally about 15 to 20 days, and a product cathode (electrocopper) that has been energized for 7 to 10 days per anode can be obtained twice. it can. The energizing period for obtaining the first product cathode is referred to as the first half life, and the energizing period for obtaining the second product cathode is referred to as the second half life. This is done by replacing the cathode with a new one and turning it on again.

一方、後半ライフから前半ライフへの交換作業は以下の手順で行われる。まず、後半ライフの終了後に一度停電させる。つぎに、電解槽からアノードとカソードの双方を抜き出し、電解液を排出して電解槽の底に堆積したアノードスライムなどを除去する。つぎに、電解槽に新たなアノードとカソードを挿入し、電解液を給液する。そして、電解槽が電解液で満たされ、電解液の温度が所定の温度に達した後に通電を開始する。   On the other hand, the replacement work from the second half life to the first half life is performed according to the following procedure. First, after the end of the second half of the life, make a power outage once. Next, both the anode and the cathode are extracted from the electrolytic cell, the electrolytic solution is discharged, and the anode slime deposited on the bottom of the electrolytic cell is removed. Next, a new anode and cathode are inserted into the electrolytic cell, and the electrolytic solution is supplied. Then, the electrolytic cell is filled with the electrolytic solution, and energization is started after the temperature of the electrolytic solution reaches a predetermined temperature.

ところで、銅の電解精製では、カソードの温度が通電初期に60℃以下に低下している場合、アノード−カソード間のショート率が高くなることが知られている(特許文献1参照)。これは、カソードの温度が低いと、電解液の液面付近で針状電析が生じるからである。
ショートが発生すると電力が無駄となり操業コストが増加する。また、ショートが発生したカソードは、過剰な電着による粒・瘤の発生や部分的な溶解などが生じ、外観品質が基準を満たさなくなり製品とならない。
By the way, in the electrolytic refining of copper, it is known that the short-circuit rate between the anode and the cathode increases when the temperature of the cathode is reduced to 60 ° C. or less in the initial stage of energization (see Patent Document 1). This is because if the temperature of the cathode is low, acicular electrodeposition occurs near the electrolyte surface.
When a short circuit occurs, power is wasted and operating costs increase. In addition, a cathode that has short-circuited may generate particles or bumps due to excessive electrodeposition or may be partially melted, resulting in an appearance quality that does not meet the standards and being a product.

また、銅の電解精製設備では、電解液は電解液循環系内を循環しており、電解槽から排出された電解液は不純物が除去され、銅の電解精製に適した60℃前後に温度調整された後、再び電解槽に給液される。一方、交換した直後のアノードおよびカソードは外気温程度(0〜30℃程度)であり温度が低い。そのため、交換されたアノードおよびカソードは、電解液により暖められ徐々に温度が上昇する。そして、電解液は、給液開始直後はアノードおよびカソードに熱を奪われ温度が低下し、アノードおよびカソードの温度が上昇するに従い、電解液の温度も上昇する。   Also, in copper electrolytic purification equipment, the electrolytic solution circulates in the electrolytic solution circulation system, and impurities are removed from the electrolytic solution discharged from the electrolytic bath, and the temperature is adjusted to around 60 ° C, which is suitable for copper electrolytic purification. Then, the solution is again supplied to the electrolytic cell. On the other hand, the anode and cathode immediately after replacement are at an outside air temperature (about 0 to 30 ° C.) and the temperature is low. Therefore, the exchanged anode and cathode are warmed by the electrolytic solution and gradually rise in temperature. Then, immediately after the start of liquid supply, the electrolyte is deprived of heat by the anode and the cathode, the temperature is lowered, and the temperature of the electrolyte rises as the temperature of the anode and the cathode rises.

上記の後半ライフから前半ライフへの交換作業の例では、電解槽が電解液で満たされた直後に通電を開始すると、カソードの温度が低いままでありショート率が高くなる。そこで、電解槽が電解液で満たされた後、電解液の温度が所定の温度(例えば、57℃)に達した後に通電を開始することにより、ショート率を低減している。   In the example of the replacement work from the latter half life to the first half life described above, when energization is started immediately after the electrolytic cell is filled with the electrolytic solution, the cathode temperature remains low and the short-circuit rate increases. Therefore, after the electrolytic cell is filled with the electrolytic solution, the short-circuit rate is reduced by starting energization after the temperature of the electrolytic solution reaches a predetermined temperature (for example, 57 ° C.).

数百〜千槽の電解槽を有する工業的な電解製錬設備では、一般に複数の電解槽を直列に接続して通電する。これは、例えば銅の電解製錬の場合、1つの電解槽に数千〜数万Aもの電流を流す必要があるが、一方で必要な電圧は0.5V程度と低く、このような大電流・低電圧な電源装置を製作することは技術的に容易でなく経済的でもないからである。そこで、電圧を制御しやすい数V〜数十Vの大きさになるように、複数の電解槽を電気的に直列に接続して通電する方法がとられる。このような通電方法では、回路の一部を短絡することによりその間の電解槽だけを停電させることができる。すべての電解槽を個々に停電できるように多数の短絡機を設置することは設備費用がかさんで不経済であるため、十〜十数槽の電解槽を一組とし、組単位に設置した短絡機を用いて通電、停電を制御する方法が用いられる。そして、上記のような交換作業も組単位で行われる。   In an industrial electrolytic smelting facility having hundreds to thousands of electrolytic cells, generally, a plurality of electrolytic cells are connected in series and energized. For example, in the case of electrolytic smelting of copper, it is necessary to pass a current of several thousand to several tens of thousands of A through one electrolytic cell. On the other hand, the required voltage is as low as about 0.5 V, This is because it is neither technically easy nor economical to manufacture a low-voltage power supply device. Therefore, a method is adopted in which a plurality of electrolytic cells are electrically connected in series and energized so that the voltage can be controlled to several V to several tens of V. In such an energization method, only a part of the circuit can be short-circuited to cause a power failure in the electrolytic cell therebetween. Since it is uneconomical to install a large number of short-circuit machines so that all the electrolyzers can be blacked out individually, the cost of equipment is high and it is uneconomical. A method of controlling energization and power failure using a short-circuit machine is used. The replacement work as described above is also performed on a group basis.

例えば、銅の電解精製における、後半ライフから前半ライフへの交換作業は以下の手順で行われる。まず、後半ライフの終了後にその組を一度停電させる。つぎに、アノードとカソードの抜き出し、電解液の排出、アノードスライムなどの除去、新たなアノードとカソードの挿入、電解液の給液を、その組に属する複数の電解槽について順次行う。全ての電解槽が電解液で満たされ、電解液の温度が所定の温度に達した後にその組に通電を開始する。   For example, replacement work from the second half life to the first half life in the electrolytic refining of copper is performed according to the following procedure. First, after the end of the second half of the life, the group is blacked out once. Next, extraction of the anode and cathode, discharge of the electrolytic solution, removal of anode slime, insertion of a new anode and cathode, and supply of the electrolytic solution are sequentially performed for a plurality of electrolytic cells belonging to the set. All the electrolytic cells are filled with the electrolytic solution, and energization of the set is started after the temperature of the electrolytic solution reaches a predetermined temperature.

以上のような手順で交換作業を行うため、一の組に属する複数の電解槽のうち、作業を最初に始めた電解槽は、作業を最後に始めた電解槽に比べて、作業が早く完了する。すなわち、電解液の温度が所定の温度に達し通電してもよい状態となる。しかし、全ての電解槽において電解液の温度が所定の温度に達するまで通電できない。結局、作業を最後に始めた電解槽において、電解液の温度が所定の温度に達するまで通電を開始することができず、その他の電解槽は作業が完了しても通電開始まで待機した状態となる。その結果、全体として交換作業に長時間を要する。交換作業の間は電解を行うことができないため、交換作業に長時間を要すればその分操業効率が悪くなるという問題がある。   Because the replacement work is performed according to the above procedure, among the multiple electrolytic cells belonging to one set, the electrolytic cell that started the work first completes earlier than the electrolytic cell that started the work last To do. That is, the temperature of the electrolytic solution reaches a predetermined temperature and can be energized. However, current cannot be supplied until the temperature of the electrolytic solution reaches a predetermined temperature in all electrolytic cells. Eventually, in the electrolytic cell that started the work last, energization could not be started until the temperature of the electrolyte reached a predetermined temperature, and the other electrolytic cells were in a state of waiting until the start of energization even after the work was completed. Become. As a result, the entire replacement work takes a long time. Since electrolysis cannot be performed during the replacement work, there is a problem that if the replacement work takes a long time, the operation efficiency decreases accordingly.

特開平08−311678号公報Japanese Patent Application Laid-Open No. 08-311678

本発明は上記事情に鑑み、交換作業を短時間とし操業効率が良い電解製錬設備の操業方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a method for operating an electrolytic smelting facility that shortens replacement work and has high operational efficiency.

第1発明の電解製錬設備の操業方法は、通電および停電を共通の制御とする複数の電解槽からなる組おける、通電期間と通電期間の間に行われる交換作業であって、前記組に属する電解槽内の電解液を排出する排出工程と、該排出工程の後に、前記組に属する電解槽へ電解液を給液する給液工程と、を備え、前記給液工程において、前記電解槽への電解液の給液を、該電解槽に設けられた給液手段からの電解液の給液に加え、他の電解槽から供給された電解液を給液することにより行うことを特徴とする。
第2発明の電解製錬設備の操業方法は、第1発明において、電解液を供給する供給元電解槽は、該電解液が給液される供給先電解槽と同じ組に属する電解槽のうち、該供給先電解槽よりも早く電解液の給液が開始された電解槽であることを特徴とする。
第3発明の電解製錬設備の操業方法は、第2発明において、前記供給先電解槽は、前記組に属する電解槽のうち、最も遅く電解液の給液が開始された電解槽であることを特徴とする。
第4発明の電解製錬設備の操業方法は、第2または第3発明において、前記供給先電解槽は、複数の前記供給元電解槽から供給された電解液が給液されることを特徴とする。
第5発明の電解製錬設備の操業方法は、第2、第3または第4発明において、前記供給元電解槽から前記供給先電解槽への電解液の送液は、サイフォンの原理を用いて行うことを特徴とする。
第6発明の電解製錬設備の操業方法は、第2、第3または第4発明において、前記供給元電解槽から前記供給先電解槽への電解液の送液を、通電開始後4時間経過時まで継続することを特徴とする。
The method for operating an electrolytic smelting facility according to the first invention is an exchange operation performed between an energization period and an energization period in an assembly composed of a plurality of electrolytic cells having common control of energization and power failure. A discharge step of discharging the electrolytic solution in the electrolytic cell to which the electrolytic cell belongs, and a liquid supply step of supplying the electrolytic solution to the electrolytic cell belonging to the set after the discharging step, wherein in the liquid supply step, the electrolytic cell In addition to supplying the electrolyte solution to the electrolyte solution in addition to the electrolyte solution supplied from the solution supply means provided in the electrolytic cell, the electrolyte solution supplied from another electrolytic cell is supplied. To do.
The operation method of the electrolytic smelting facility according to the second aspect of the present invention is the first aspect, wherein the supply source electrolytic cell supplying the electrolytic solution is an electrolytic cell belonging to the same set as the supply destination electrolytic cell supplied with the electrolytic solution The electrolytic cell is one in which the supply of the electrolytic solution is started earlier than the supply destination electrolytic cell.
The operation method of the electrolytic smelting facility of the third invention is that in the second invention, the supply destination electrolytic cell is an electrolytic cell in which supply of the electrolytic solution is started latest among the electrolytic cells belonging to the set. It is characterized by.
The method for operating an electrolytic smelting facility according to a fourth aspect of the invention is characterized in that, in the second or third aspect of the invention, the supply source electrolytic cell is supplied with an electrolytic solution supplied from a plurality of the supply source electrolytic cells. To do.
The method for operating an electrolytic smelting facility according to a fifth aspect of the present invention is the second, third or fourth aspect of the invention, wherein the feeding of the electrolytic solution from the supply source electrolytic cell to the supply destination electrolytic cell is based on the siphon principle. It is characterized by performing.
The method for operating an electrolytic smelting facility according to a sixth aspect of the present invention is the second, third or fourth aspect of the invention, wherein 4 hours have elapsed since the start of energization of feeding the electrolytic solution from the supply source electrolytic cell to the supply destination electrolytic cell It is characterized by continuing until time.

第1発明によれば、他の電解槽から供給された電解液を給液するので、電解槽への電解液の給液量が増加し、電解液の給液時間が短くなり、電解液の温度上昇が早くなる。そのため、ショート率を低減しつつ通電を早く開始でき、交換作業を短時間とできるので操業効率が良い。
第2発明によれば、電解液の給液が早く開始された電解槽から供給された電解液を給液するので、温度が高い電解液を給液できる。そのため、電解液の温度上昇がより早くなる。
第3発明によれば、最も遅く電解液の給液が開始された電解槽への電解液の給液量が増加する。そのため、その電解槽の電解液の給液時間が短くなり、電解液の温度上昇が早くなる。その結果、組全体としても電解液の給液時間が短くなる。
第4発明によれば、複数の供給元電解槽から供給された電解液を給液するので、電解槽への電解液の給液量がさらに増加する。そのため、電解液の給液時間がさらに短くなり、電解液の温度上昇がさらに早くなる。
第5発明によれば、サイフォンの原理を用いて送液するので、供給先電解槽が電解液で満たされるまでは送液が継続し、電解液で満たされると送液が自然に停止する。そして、供給元電解槽の電解液が不足することがない。このように、流量の制御が不要であり、作業が容易である。
第6発明によれば、通電開始後4時間経過時まで電解液の給液量を増加させるので、通電初期にカソードを十分に温めることができ、ショート率を低減できる。
According to the first invention, since the electrolytic solution supplied from the other electrolytic cell is supplied, the amount of the electrolytic solution supplied to the electrolytic cell is increased, and the time for supplying the electrolytic solution is shortened. The temperature rises faster. Therefore, it is possible to start energization early while reducing the short-circuit rate, and the replacement work can be performed in a short time, so that the operation efficiency is good.
According to the second aspect of the invention, since the electrolytic solution supplied from the electrolytic tank that has started supplying the electrolytic solution early is supplied, the electrolytic solution having a high temperature can be supplied. Therefore, the temperature rise of the electrolytic solution becomes faster.
According to the third aspect of the invention, the amount of electrolyte supplied to the electrolytic cell where the supply of the electrolyte is started latest increases. Therefore, the time for supplying the electrolytic solution in the electrolytic cell is shortened, and the temperature rise of the electrolytic solution is accelerated. As a result, the time for supplying the electrolytic solution is shortened for the entire set.
According to the fourth aspect of the invention, since the electrolytic solution supplied from the plurality of supply source electrolytic cells is supplied, the amount of electrolytic solution supplied to the electrolytic cell is further increased. Therefore, the supply time of the electrolytic solution is further shortened, and the temperature rise of the electrolytic solution is further accelerated.
According to the fifth aspect, since the liquid is fed using the principle of siphon, the liquid feeding is continued until the supply destination electrolytic tank is filled with the electrolytic solution, and when it is filled with the electrolytic solution, the liquid feeding is naturally stopped. And there is no shortage of electrolyte in the source electrolytic cell. In this way, control of the flow rate is unnecessary, and the operation is easy.
According to the sixth aspect of the invention, since the amount of electrolyte supplied is increased until the elapse of 4 hours after the start of energization, the cathode can be sufficiently warmed at the initial stage of energization, and the short-circuit rate can be reduced.

一般的な銅の電解精製設備の電解槽の配置図である。It is an arrangement plan of an electrolytic cell of a general copper electrolytic purification facility. 一般的な銅の電解精製設備の概略図である。1 is a schematic view of a general copper electrolytic purification facility. FIG. 供給元電解槽から供給先電解槽への電解液の送液の説明図である。It is explanatory drawing of liquid feeding of the electrolyte solution from a supply source electrolytic cell to a supply destination electrolytic cell. 電極および電解液の温度変化グラフであり、(a)は実施例、(b)は比較例である。It is a temperature change graph of an electrode and electrolyte solution, (a) is an Example, (b) is a comparative example.

つぎに、本発明の実施形態を図面に基づき説明する。
電解製錬では、電解液で満たされた電解槽に複数枚のアノードとカソードを交互に挿入し、アノード−カソード間に通電して電解が行われる。そして、所定時間の通電の後に、一度停電させてアノードやカソードを交換し、再度通電することを繰り返す。以下、通電開始から通電終了までを通電期間と称し、通電期間と通電期間の間に行われる作業を交換作業と称する。
Next, an embodiment of the present invention will be described with reference to the drawings.
In electrolytic smelting, a plurality of anodes and cathodes are alternately inserted into an electrolytic bath filled with an electrolytic solution, and electrolysis is performed by energizing between the anode and the cathode. Then, after energization for a predetermined time, the power is interrupted once, the anode and the cathode are replaced, and energization is repeated. Hereinafter, the period from the start of energization to the end of energization is referred to as the energization period, and the work performed between the energization period and the energization period is referred to as replacement work.

また、数百〜千槽の電解槽を有する電解製錬設備では、十〜十数槽の電解槽を一組とし、その組に属する電解槽を電気的に直列に接続している。そのため、個々の電解槽について通電、停電を制御しておらず、組単位で通電、停電を制御している。そして、上記のような交換作業も組単位で行われる。   Moreover, in the electrolytic smelting equipment having several hundred to one thousand electrolytic cells, ten to ten or more electrolytic cells are made into one set, and the electrolytic cells belonging to the set are electrically connected in series. Therefore, energization and power outage are not controlled for each electrolytic cell, and energization and power outage are controlled in units of groups. The replacement work as described above is also performed on a group basis.

本発明は、上記のような通電および停電を共通の制御とする複数の電解槽からなる組を有する電解製錬設備において、電解液の張り替えを伴う交換作業に関する方法である。   The present invention is a method relating to an exchange operation involving replacement of an electrolytic solution in an electrolytic smelting facility having a set of a plurality of electrolytic cells having common control of energization and power failure as described above.

なお、本発明の電解製錬設備の操業方法は、電解精製を行う電解精製設備や、電解採取を行う電解採取設備の操業方法に適用できる。また、製品となる目的金属もとくに限定されない。例えば、電解精製の目的金属として銅、鉛、ニッケル、金、銀などが、電解採取の目的金属としてニッケル、コバルト、銅、銀、金、亜鉛などが知られている。いずれの場合においても同様の操業方法であるので、以下、銅の電解精製を例に説明する。   In addition, the operation method of the electrolytic smelting equipment of the present invention can be applied to an electrolytic purification equipment that performs electrolytic purification and an operating method of an electrolytic collection equipment that performs electrolytic collection. Moreover, the target metal used as a product is not particularly limited. For example, copper, lead, nickel, gold, silver, and the like are known as target metals for electrolytic purification, and nickel, cobalt, copper, silver, gold, zinc, and the like are known as target metals for electrolytic collection. In any case, since the operation method is the same, the following description will be made taking copper electrolytic purification as an example.

まず、一般的な銅の電解精製設備の構成について説明する。
図2において、1は電解槽、2は排液槽、3はポンプ、4は熱交換器、5は給液槽であり、これらにより電解液循環系が形成されている。
First, the structure of a general copper electrolytic purification facility will be described.
In FIG. 2, 1 is an electrolysis tank, 2 is a drainage tank, 3 is a pump, 4 is a heat exchanger, 5 is a liquid supply tank, and these form an electrolyte circulation system.

電解槽1には、粗銅のアノードと純銅のカソードが複数枚交互に挿入されており、電解液が満たされている。電解槽1の電解液排出部からは電解液が排出され、落差により排液槽2に給液されている。排液槽2と熱交換器4および給液槽5とは配管で接続されており、その配管にはポンプ3が介装されている。このポンプ3の駆動により、所定流量の電解液が排液槽2から熱交換器4または給液槽5に給液されている。熱交換器4に供給された電解液は加熱または冷却され、給液槽5に供給されている。そして、給液槽5から排出された電解液は、落差により電解槽1に給液されている。   A plurality of crude copper anodes and pure copper cathodes are alternately inserted into the electrolytic cell 1 to fill the electrolytic solution. The electrolytic solution is discharged from the electrolytic solution discharge portion of the electrolytic cell 1 and is supplied to the drainage cell 2 by a drop. The drainage tank 2, the heat exchanger 4 and the liquid supply tank 5 are connected by a pipe, and a pump 3 is interposed in the pipe. By driving the pump 3, a predetermined flow rate of the electrolyte is supplied from the drainage tank 2 to the heat exchanger 4 or the supply tank 5. The electrolytic solution supplied to the heat exchanger 4 is heated or cooled and supplied to the liquid supply tank 5. Then, the electrolytic solution discharged from the liquid supply tank 5 is supplied to the electrolytic tank 1 by a drop.

給液槽5と電解槽1とを接続する給液配管6には流量制御弁が介装されており、この流量制御弁で電解槽1への電解液の給液、停止および給液量を調整できるようになっている。また、電解槽1の電解液排出部には堰式の流量制御手段が設けられており、電解液の液面高さを調整できるようになっている。
なお、給液配管6が、特許請求の範囲に記載の給液手段に相当する。給液手段は、このように電解槽に予め設けられた電解液を給液する手段を意味する。
A flow control valve is interposed in the liquid supply pipe 6 connecting the liquid supply tank 5 and the electrolytic tank 1, and the supply, stop, and supply amount of the electrolytic solution to the electrolytic tank 1 are controlled by this flow control valve. It can be adjusted. Further, a weir-type flow rate control means is provided in the electrolytic solution discharge part of the electrolytic cell 1 so that the liquid level of the electrolytic solution can be adjusted.
The liquid supply pipe 6 corresponds to the liquid supply means described in the claims. The liquid supply means means means for supplying the electrolytic solution previously provided in the electrolytic cell as described above.

このように、電解液は電解液循環系内を循環しており、電解槽1から排出された電解液は、銅の電解精製に適した温度(55〜65℃)に温度調整された後、再び電解槽1に給液される。また、電解液は電解液循環系内を循環する間に不純物が除去される。電解液の不純物の除去は、例えば、電解液循環系から電解液の一部を浄液工程に送り、濃縮冷却や電解採取などの方法を用いて、電解液中に含まれた不純物や過剰な銅を除去することにより行われる。   Thus, the electrolytic solution circulates in the electrolytic solution circulation system, and the electrolytic solution discharged from the electrolytic cell 1 is adjusted to a temperature suitable for copper electrolytic purification (55 to 65 ° C.), The liquid is again supplied to the electrolytic cell 1. Further, impurities are removed while the electrolytic solution circulates in the electrolytic solution circulation system. The removal of impurities in the electrolytic solution can be performed by, for example, sending a part of the electrolytic solution from the electrolytic solution circulation system to the liquid purification step, and using a method such as concentration cooling or electrolytic collection to remove impurities contained in the electrolytic solution or excessive amounts. This is done by removing the copper.

図1に示すように、電解精製設備では、数百〜千槽の電解槽1が建屋内に並べられて設けられている。これらの電解槽1は、隣接する十〜十数槽を一組として複数の組に分けられている。そして一の組に属する十〜十数槽の電解槽1を電気的に直列に接続して、組単位で通電、停電を制御している。図1に示す例では、隣接する18槽の電解槽1a〜1rを組Aとし、電解槽1a〜1rを電気的に直列に接続している。   As shown in FIG. 1, in an electrolytic purification facility, several hundred to thousand electrolytic cells 1 are arranged in a building. These electrolyzers 1 are divided into a plurality of groups, with ten to ten or more adjacent tanks as one set. And ten to dozen or more electrolytic cells 1 belonging to one set are electrically connected in series to control energization and power failure in units of sets. In the example shown in FIG. 1, the adjacent 18 electrolytic cells 1a to 1r are set as a set A, and the electrolytic cells 1a to 1r are electrically connected in series.

銅の電解精製では、一般にアノード一枚当たりの通電時間は15〜20日程度であり、アノード一枚につき7〜10日間の通電を行った製品カソード(電気銅)を2回得ることができる。以下、1回目の製品カソードを得る通電期間を前半ライフ、2回目の製品カソードを得る通電期間を後半ライフと称する。   In electrolytic refining of copper, in general, the energization time per anode is about 15 to 20 days, and a product cathode (electrocopper) subjected to energization for 7 to 10 days per anode can be obtained twice. Hereinafter, the energization period for obtaining the first product cathode is referred to as the first half life, and the energization period for obtaining the second product cathode is referred to as the second half life.

組Aの前半ライフから後半ライフへの交換作業は、前半ライフの終了後に組Aを一度停電させて、電解槽1a〜1rに挿入されていたカソードを新たなものに交換し、再度組Aへの通電を開始することにより行われる。   The replacement work from the first half life of the group A to the second half life is performed after the first half life is completed, the group A is once blacked out, the cathodes inserted in the electrolyzers 1a to 1r are replaced with new ones, and the group A again. This is done by starting the energization of.

一方、組Aの後半ライフから前半ライフへの交換作業は以下の手順で行われる。
(1)まず、後半ライフの終了後に組Aを停電させる。
(2)つぎに、アノードおよびカソードを電解槽から抜き出す。ここで、アノードおよびカソードは、建屋に設けられた天井クレーンを用いて抜き出される。そのため、組Aに属する電解槽1a〜1rについて1槽ずつ順次作業が行われる。例えば、最初に電解槽1aのアノードおよびカソードを抜き出し、つぎに電解槽1bのアノードおよびカソードを抜き出し、同様の作業を電解槽1c、・・・・、1gの順で行い、最後に電解槽1rのアノードおよびカソードを抜き出す。
On the other hand, the replacement work from the latter half life of the group A to the first half life is performed in the following procedure.
(1) First, after the end of the second half life, the group A is blacked out.
(2) Next, the anode and cathode are extracted from the electrolytic cell. Here, the anode and the cathode are extracted using an overhead crane provided in the building. Therefore, the operation is sequentially performed for each of the electrolytic cells 1a to 1r belonging to the set A. For example, the anode and cathode of the electrolytic cell 1a are first extracted, then the anode and cathode of the electrolytic cell 1b are extracted, the same operation is performed in the order of the electrolytic cell 1c,..., 1g, and finally the electrolytic cell 1r. Extract the anode and cathode.

(3)アノードおよびカソードが抜き出された電解槽から順次、電解槽内の電解液を排出する(排出工程)。そのため、電解槽1a、・・・、1rの順で電解液の排出が行われる。
(4)電解液の排出を終えた電解槽から順次、電解槽の底に堆積したアノードスライムなどを除去し、新たなアノードおよびカソードを挿入する。この場合にも、アノードおよびカソードは天井クレーンを用いて挿入される。そのため、電解槽1a、・・・、1rの順でアノードスライムなどの除去、アノードおよびカソードの挿入が行われる。
(3) The electrolytic solution in the electrolytic cell is sequentially discharged from the electrolytic cell from which the anode and cathode are extracted (discharge process). Therefore, the electrolytic solution is discharged in the order of the electrolytic cells 1a,.
(4) The anode slime and the like deposited on the bottom of the electrolytic cell are sequentially removed from the electrolytic cell after discharging the electrolytic solution, and new anodes and cathodes are inserted. Again, the anode and cathode are inserted using an overhead crane. Therefore, removal of anode slime and the like and insertion of the anode and cathode are performed in the order of the electrolytic cells 1a,.

(5)アノードおよびカソードの挿入を終えた電解槽から順次電解液を給液する(給液工程)。そのため、電解槽1a、・・・、1rの順で電解液の給液が開始される。
(6)全ての電解槽1a〜1rが電解液で満たされ、全ての電解槽1a〜1rの電解液の温度が所定の温度(例えば、57℃)に達した後に、組Aの通電を開始する。
(5) The electrolytic solution is sequentially supplied from the electrolytic cell in which the anode and the cathode have been inserted (liquid supply step). Therefore, the electrolytic solution supply is started in the order of the electrolytic cells 1a,.
(6) After all the electrolytic cells 1a to 1r are filled with the electrolytic solution and the temperature of the electrolytic solution in all the electrolytic cells 1a to 1r reaches a predetermined temperature (for example, 57 ° C.), the energization of the set A is started. To do.

銅の電解精製では、カソードの温度が通電初期に60℃以下に低下している場合、アノード−カソード間のショート率が高くなることが知られている。これは、カソードの温度が低いと、電解液の液面付近で針状電析が生じるからである。ここで、ショート率とは、n/(D×N)(n:所定期間中にショートが発生したカソード延枚数、D:所定期間中の通電日数、N:所定期間中に製造されたカソード枚数)で求められた値である。   In copper electrolytic refining, it is known that the short-circuit rate between the anode and the cathode increases when the temperature of the cathode is lowered to 60 ° C. or less at the beginning of energization. This is because if the temperature of the cathode is low, acicular electrodeposition occurs near the electrolyte surface. Here, the short-circuit rate is n / (D × N) (n: the total number of cathodes in which a short circuit occurred during a predetermined period, D: the number of energization days during a predetermined period, N: the number of cathodes manufactured during a predetermined period. ).

また、交換した直後のアノードおよびカソードは外気温程度(0〜30℃程度)であり温度が低い。そのため、交換されたアノードおよびカソードは、55〜65℃に温度調整された電解液により暖められ徐々に温度が上昇する。そして、電解液は、給液開始直後はアノードおよびカソードに熱を奪われ温度が低下し、アノードおよびカソードの温度が上昇するに従い、電解液の温度も上昇する。そこで、電解槽1a〜1rが電解液で満たされた後、電解液の温度が所定の温度に達した後に通電を開始することにより、ショート率を低減している。   Further, the anode and cathode immediately after replacement are at the outside air temperature (about 0 to 30 ° C.) and the temperature is low. Therefore, the replaced anode and cathode are warmed by the electrolytic solution whose temperature is adjusted to 55 to 65 ° C., and the temperature gradually rises. Then, immediately after the start of liquid supply, the electrolyte is deprived of heat by the anode and the cathode, the temperature is lowered, and the temperature of the electrolyte rises as the temperature of the anode and the cathode rises. Therefore, after the electrolytic cells 1a to 1r are filled with the electrolytic solution, the short-circuit rate is reduced by starting energization after the temperature of the electrolytic solution reaches a predetermined temperature.

組Aに属する電解槽1a〜1rのうち、アノードおよびカソードの抜き出し作業を最初に始めた電解槽1aは、作業を最後に始めた電解槽1rに比べて、早く電解液が満たされ、電解液の温度が所定の温度に早く達する。すなわち、通電してもよい状態となる。しかし、全ての電解槽1a〜1rにおいて電解液の温度が所定の温度に達するまで通電できない。   Among the electrolytic cells 1a to 1r belonging to the set A, the electrolytic cell 1a that started the extraction operation of the anode and the cathode was filled with the electrolytic solution earlier than the electrolytic cell 1r that started the operation. The temperature reaches the predetermined temperature quickly. That is, it will be in the state which may energize. However, in all the electrolytic cells 1a-1r, it cannot energize until the temperature of electrolyte solution reaches predetermined temperature.

本発明は、上記(5)給液工程において、電解槽1への電解液の給液を、電解槽1に設けられた給液配管6からの電解液の給液に加え、他の電解槽1から供給された電解液を給液する(以下、補助給液ともいう。)ことにより、交換作業を短時間としたところに特徴がある。   In the above (5) liquid supply step, the present invention adds the electrolytic solution supplied to the electrolytic cell 1 to the electrolytic solution supplied from the liquid supply pipe 6 provided in the electrolytic cell 1, and other electrolytic cells. 1 is characterized in that the replacement work is shortened by supplying the electrolyte supplied from 1 (hereinafter also referred to as auxiliary supply).

例えば、図1の実線矢印で示すように、組Aに属する電解槽1a〜1rのうち、最も早く電解液の給液が開始された電解槽1aを供給元電解槽1aとし、最も遅く電解液の給液が開始された電解槽1rを供給先電解槽1rとし、供給元電解槽1aから供給された電解液を供給先電解槽1rに給液する。以下、説明の便宜のために、電解液を供給する電解槽を供給元電解槽と称し、供給元電解槽が供給した電解液が給液される電解槽を供給先電解槽と称する。   For example, as indicated by the solid line arrow in FIG. 1, among the electrolytic cells 1 a to 1 r belonging to the set A, the electrolytic cell 1 a in which the supply of the electrolytic solution is started earliest is the supply source electrolytic cell 1 a, and the latest electrolytic solution The electrolytic cell 1r from which the liquid supply is started is used as the supply destination electrolytic cell 1r, and the electrolytic solution supplied from the supply source electrolytic cell 1a is supplied to the supply destination electrolytic cell 1r. Hereinafter, for convenience of explanation, an electrolytic cell that supplies an electrolytic solution is referred to as a source electrolytic cell, and an electrolytic cell that is supplied with an electrolytic solution supplied by a source electrolytic cell is referred to as a destination electrolytic cell.

供給先電解槽1rには、供給元電解槽1aから供給された電解液を給液するので、その給液量は給液配管6から給液される通常の給液量に比べて増加する。そのため、供給先電解槽1rの電解液の給液時間が短くなり、電解液の温度上昇が早くなる。ここで、供給先電解槽1rは最も遅く電解液の給液が開始された電解槽であるので、組A全体としても電解液の給液時間が短くなり、電解液の温度上昇が早くなる。そうすると、ショート率を低減しつつ通電を早く開始でき、交換作業を短時間とできる。そして、電解を行うことができない交換作業を短時間とできるため、その分操業効率が良くなる。また、ショート率を低減できる結果、電力ロスや修正の手間が減少し、製品の歩留まりが向上する。   Since the electrolytic solution supplied from the supply source electrolytic cell 1 a is supplied to the supply destination electrolytic cell 1 r, the supply amount is increased as compared with the normal supply amount supplied from the liquid supply pipe 6. Therefore, the time for supplying the electrolytic solution in the supply destination electrolytic tank 1r is shortened, and the temperature rise of the electrolytic solution is accelerated. Here, since the supply destination electrolytic tank 1r is the latest electrolytic tank in which the supply of the electrolytic solution is started, the supply time of the electrolytic solution is shortened as a whole, and the temperature rise of the electrolytic solution is accelerated. If it does so, electricity supply can be started early, reducing a short circuit rate, and exchange work can be made into a short time. And since the exchange work which cannot electrolyze can be made into a short time, operation efficiency becomes good by the part. In addition, as a result of the reduction in the short-circuit rate, power loss and correction work are reduced, and the product yield is improved.

なお、供給元電解槽1aには、給液配管6から電解液が給液されているので、供給先電解槽1rへ電解液を供給しても、電解液が不足することはない。   In addition, since the electrolytic solution is supplied to the supply source electrolytic tank 1a from the liquid supply pipe 6, even if the electrolytic solution is supplied to the supply destination electrolytic tank 1r, the electrolytic solution is not short.

供給元電解槽1aから供給先電解槽1rへの電解液の送液は、ポンプなど種々の手段を用いることができ特に限定されないが、サイフォンの原理を用いて行うのが好ましい。
具体的には、図3に示すように、ホースなどの管7の一端を供給元電解槽1a内の電解液の中に浸け、他端を供給先電解槽1r側であって、供給元電解槽1a内の電解液の液面高さより低い位置とする。このとき、管7の中に電解液を満たしておけば、他に何ら操作をすることなく供給元電解槽1a内の電解液が供給先電解槽1rへ送液される。例えば、管7の全体を供給元電解槽1a内の電解液に浸け、一端に蓋をした状態でその端部を供給先電解槽1r側に移動させれば、管7の中に電解液を満たすことができるので、蓋を外すと電解液の送液ができる。
Various means such as a pump can be used to feed the electrolytic solution from the supply source electrolytic tank 1a to the supply destination electrolytic tank 1r, but it is preferable to use the siphon principle.
Specifically, as shown in FIG. 3, one end of a tube 7 such as a hose is immersed in the electrolytic solution in the supply source electrolytic tank 1a, and the other end is on the supply destination electrolytic tank 1r side. The position is lower than the liquid level of the electrolyte in the tank 1a. At this time, if the pipe 7 is filled with the electrolytic solution, the electrolytic solution in the supply source electrolytic cell 1a is fed to the supply destination electrolytic cell 1r without any other operation. For example, if the entire tube 7 is immersed in the electrolytic solution in the supply source electrolytic tank 1a and the end thereof is moved to the supply destination electrolytic cell 1r side with the end covered, the electrolytic solution is put into the tube 7 Since it can be filled, the electrolyte can be fed when the lid is removed.

このように、サイフォンの原理を用いて送液すれば、供給元電解槽1a内の電解液の液面高さと供給先電解槽1r内の電解液の液面高さとの間に差異がある間は送液が継続し、同じ高さとなれば送液が停止する。すなわち、供給先電解槽1rが電解液で満たされるまでは送液が継続し、電解液で満たされると送液が自然に停止する。そして、供給元電解槽1aの電解液が不足することがない。このように、流量の制御が不要であり、作業が容易である。   In this way, when the liquid is fed using the siphon principle, there is a difference between the liquid level height of the electrolytic solution in the supply source electrolytic tank 1a and the liquid level height of the electrolytic solution in the supply destination electrolytic tank 1r. The liquid supply continues, and when it reaches the same height, the liquid supply stops. That is, the liquid feeding is continued until the supply destination electrolytic cell 1r is filled with the electrolytic solution, and the liquid feeding naturally stops when the electrolytic tank is filled with the electrolytic solution. And there is no shortage of electrolyte in the supply source electrolytic cell 1a. In this way, control of the flow rate is unnecessary, and the operation is easy.

供給元電解槽は、最も早く電解液の給液が開始された電解槽1aに限られず、組Aに属する他の電解槽でもよい。また、供給先電解槽は、最も遅く電解液の給液が開始された電解槽1rに限られず、組Aに属する他の電解槽でもよい。そして、供給元電解槽および供給先電解槽は、それぞれ一つの電解槽でもよいし、複数の電解槽でもよい。さらに、供給元電解槽は、供給先電解槽よりも早く電解液の給液が開始された電解槽であればよく、その組み合わせも特に限定されない。
供給元電解槽と供給先電解槽の組み合わせは、組A全体として交換作業の時間が短くなるように選択すればよい。
The supply source electrolytic cell is not limited to the electrolytic cell 1a in which the supply of the electrolytic solution is started earliest, but may be another electrolytic cell belonging to the set A. Further, the supply source electrolytic cell is not limited to the electrolytic cell 1r where the supply of the electrolytic solution is started latest, and may be another electrolytic cell belonging to the set A. The supply source electrolytic cell and the supply destination electrolytic cell may each be one electrolytic cell or a plurality of electrolytic cells. Furthermore, the supply source electrolytic cell may be any electrolytic cell in which the supply of the electrolytic solution is started earlier than the supply destination electrolytic cell, and the combination thereof is not particularly limited.
What is necessary is just to select the combination of a supply source electrolytic cell and a supply destination electrolytic cell so that the time of exchange work may become short as the group A whole.

例えば、複数の供給元電解槽1a、1bから供給された電解液を1槽の供給先電解槽1rに給液するようにしてもよいし、1槽の供給元電解槽1aから供給された電解液を複数の供給先電解槽1g、1rに給液するようにしてもよい。また、電解槽1aから供給された電解液を電解槽1rへ給液すると同時に、電解槽1bから供給された電解液を電解槽1gへ給液するようにしてもよい。   For example, the electrolytic solution supplied from a plurality of supply source electrolytic cells 1a and 1b may be supplied to one supply destination electrolytic cell 1r, or the electrolytic solution supplied from one supply source electrolytic cell 1a. The liquid may be supplied to a plurality of supply destination electrolytic cells 1g and 1r. In addition, the electrolytic solution supplied from the electrolytic cell 1a may be supplied to the electrolytic cell 1r and simultaneously, the electrolytic solution supplied from the electrolytic cell 1b may be supplied to the electrolytic cell 1g.

供給先電解槽よりも早く電解液の給液が開始された電解槽を供給元電解槽とすれば、その時間差の分だけ供給元電解槽内の電解液の温度が高くなっている。そのため、供給先電解槽に温度が高い電解液を給液できるので、供給先電解槽の電解液の温度上昇がより早くなる。
また、複数の供給元電解槽から供給された電解液を供給先電解槽に給液すれば、電解液の給液量がさらに増加する。そのため、供給先電解槽の電解液の給液時間がさらに短くなり、電解液の温度上昇がさらに早くなる。
If the electrolytic cell in which the supply of the electrolytic solution is started earlier than the supply destination electrolytic cell is set as the supply source electrolytic cell, the temperature of the electrolytic solution in the supply source electrolytic cell is increased by the time difference. For this reason, since the electrolyte solution having a high temperature can be supplied to the supply destination electrolytic tank, the temperature rise of the electrolyte solution in the supply destination electrolytic tank becomes faster.
Moreover, if the electrolyte supplied from the plurality of supply source electrolytic cells is supplied to the supply destination electrolytic cell, the amount of supply of the electrolyte further increases. Therefore, the supply time of the electrolytic solution in the supply destination electrolytic tank is further shortened, and the temperature rise of the electrolytic solution is further accelerated.

前述のごとく、銅の電解精製では、カソードの温度が通電初期に60℃以下に低下している場合、アノード−カソード間のショート率が高くなることが知られている。一方、全ての電解槽1a〜1rの電解液の温度が所定の温度(例えば、57℃)に達した後に、組Aの通電を開始したとしても、最も遅く電解液の給液が開始された電解槽1r内の電解液は、通電開始直後は60℃に達していない。   As described above, it is known that, in the electrolytic refining of copper, when the cathode temperature is lowered to 60 ° C. or less at the initial stage of energization, the short-circuit rate between the anode and the cathode is increased. On the other hand, even when the energization of the set A was started after the temperature of the electrolyte in all the electrolytic cells 1a to 1r reached a predetermined temperature (for example, 57 ° C.), the supply of the electrolyte was started latest. The electrolytic solution in the electrolytic cell 1r does not reach 60 ° C. immediately after the start of energization.

そこで、通電開始後もカソードの温度が60℃に達するまでは供給元電解槽から供給先電解槽への電解液の送液を継続することが好ましい。このようにすれば、通電初期にカソードを十分に温めることができ、ショート率を低減できる。
本願発明者は、通電開始後4時間経過するとカソードの温度は60℃に達する知見を得ている。そのため、供給元電解槽から供給先電解槽への電解液の送液を通電開始後4時間経過時まで継続することが好ましい。
Therefore, it is preferable to continue feeding the electrolytic solution from the supply source electrolytic cell to the supply destination electrolytic cell until the cathode temperature reaches 60 ° C. even after the start of energization. In this way, the cathode can be sufficiently warmed at the beginning of energization, and the short-circuit rate can be reduced.
The inventors of the present application have found that the temperature of the cathode reaches 60 ° C. after 4 hours from the start of energization. Therefore, it is preferable to continue feeding the electrolytic solution from the supply source electrolytic tank to the supply destination electrolytic tank until 4 hours have elapsed after the start of energization.

(その他の実施形態)
上記実施形態では、供給元電解槽と供給先電解槽とは同じ組Aに属しているが、供給元電解槽を供給先電解槽が属する組とは異なる組に属する電解槽としてもよい。例えば、図1の破線矢印で示すように、組Aに属する電解槽1rを供給先電解槽1rとし、組Aに隣接する組Bに属する電解槽1xを供給元電解槽1xとし、供給元電解槽1xから供給された電解液を供給先電解槽1rに給液してもよい。
(Other embodiments)
In the above embodiment, the supply source electrolytic cell and the supply destination electrolytic cell belong to the same group A, but the supply source electrolytic cell may be an electrolytic cell belonging to a group different from the group to which the supply destination electrolytic cell belongs. For example, as indicated by a broken line arrow in FIG. 1, an electrolytic cell 1r belonging to the set A is a supply destination electrolytic cell 1r, an electrolytic cell 1x belonging to the set B adjacent to the set A is a supply source electrolytic cell 1x, The electrolytic solution supplied from the tank 1x may be supplied to the supply destination electrolytic tank 1r.

供給元電解槽1xが通電中であれば、ジュール熱によっても電解液の温度が高くなっている。そのため、供給先電解槽1rに温度が高い電解液を給液できるので、供給先電解槽1rの電解液の温度上昇がより早くなる。   If the supply source electrolytic cell 1x is energized, the temperature of the electrolytic solution is also increased by Joule heat. Therefore, since the electrolyte solution having a high temperature can be supplied to the supply destination electrolytic cell 1r, the temperature rise of the electrolyte solution in the supply destination electrolytic cell 1r becomes faster.

なお、供給元電解槽を供給先電解槽が属する組とは異なる組に属する電解槽とする場合、供給元電解槽は、通電開始から4時間経過後の電解槽であることが好ましく、通電開始から1日経過後の電解槽であることがより好ましい。通電開始から4時間経過後であれば、電解液の温度は十分高くなっているからである。また、通電開始から1日経過後であれば、電解液の温度が安定しているからである。   When the supply source electrolytic cell is an electrolytic cell belonging to a group different from the set to which the supply destination electrolytic cell belongs, the supply source electrolytic cell is preferably an electrolytic cell after 4 hours have elapsed from the start of energization. It is more preferable that the electrolytic cell is one day later. This is because the temperature of the electrolyte is sufficiently high after 4 hours have elapsed from the start of energization. Moreover, it is because the temperature of electrolyte solution is stable if one day has passed since the start of energization.

また、供給元電解槽からは、給液側よりも排出側の電解液を採取する方が好ましい。排出側の電解液は給液側の電解液よりも温度が高く、銅濃度が高いからである。
さらに、供給元電解槽からは、カソード付近よりもアノード付近の電解液を採取する方が好ましい。アノード付近の電解液は電解槽内全体の電解液の平均よりも局所的に温度が高く、銅濃度が高いからである。
In addition, it is preferable to collect the electrolyte solution on the discharge side from the supply source electrolytic cell rather than the liquid supply side. This is because the discharge-side electrolyte has a higher temperature and a higher copper concentration than the supply-side electrolyte.
Furthermore, it is preferable to collect the electrolyte solution near the anode from the supply source electrolytic cell rather than near the cathode. This is because the electrolyte solution in the vicinity of the anode has a locally higher temperature and a higher copper concentration than the average of the electrolyte solution in the entire electrolytic cell.

実施例、比較例共に、銅の電解精製を以下の条件で行った。
使用した電解槽は、コンクリートの表面に塩化ビニルをライニングした構造であり、長さ3000mm、幅1260mm、深さ1500〜1700mm(いずれも内寸)であり、電解液の容量は3.4m2である。この電解槽1槽当たりに、銅品位99.2%の粗銅アノード27枚と銅品位99.99%の純銅カソード26枚を交互に並べ、アノードとカソード間の距離が105mmになるように揃えて挿入した。アノードの電極面積は幅1015mm、縦1015mm、初期厚さ約36mmである。カソードの電極面積は幅1070mm、縦1050mm、初期厚さ約0.7mmである。
In both the examples and comparative examples, electrolytic purification of copper was performed under the following conditions.
Electrolytic cell used was a structure lined vinyl chloride on the surface of the concrete, the length 3000 mm, width 1260 mm, the depth 1500~1700Mm (both internal dimensions), the capacity of the electrolytic solution is 3.4 m 2 . 27 electrolytic copper anodes of 99.2% copper grade and 26 pure copper cathodes of 99.99% copper grade were alternately arranged per electrolytic cell, and were inserted so that the distance between the anode and the cathode was 105 mm. The electrode area of the anode is 1015 mm wide, 1015 mm long, and has an initial thickness of about 36 mm. The electrode area of the cathode is 1070 mm wide, 1050 mm long, and an initial thickness of about 0.7 mm.

8日(約200時間)通電後に停電してカソードのみを引き揚げて洗浄して電気銅として払い出し(前半ライフ)、次いで新たなカソードを挿入して再度8日間通電後にアノードとカソードを引き揚げて払い出す(後半ライフ)、1ライフ16日間の操業を13回(約30週間)繰り返した。
給液配管から給液する電解液の流量は15L/分であり、液温は60℃である。この電解液の組成は、銅濃度46〜50g/L、遊離硫酸濃度170〜200g/Lである。また、通電時のカソード電流密度は300A/m2である。
通電中、ショートの発生は公知技術である電解槽電圧の変化や赤外線カメラによる発熱の監視、磁気メータによる測定などにより検知し、発見する都度修正し、同時にショート発生1枚と計数した。
8 days (approx. 200 hours) after power is cut off, only the cathode is lifted, washed and discharged as copper (first half life), then a new cathode is inserted and again after 8 days, the anode and cathode are lifted and discharged (Second half life) The operation of 16 days of 1 life was repeated 13 times (about 30 weeks).
The flow rate of the electrolyte supplied from the supply pipe is 15 L / min, and the liquid temperature is 60 ° C. The composition of this electrolytic solution is a copper concentration of 46 to 50 g / L and a free sulfuric acid concentration of 170 to 200 g / L. The cathode current density during energization is 300 A / m 2 .
During energization, the occurrence of a short circuit was detected by changing the electrolytic cell voltage, monitoring the heat generated by an infrared camera, measuring with a magnetic meter, etc., and correcting each time it was discovered.

ある前半ライフの操業において、電極の温度を測定するため、電解槽の中央に位置するカソードに対して、その電極の中心位置にサーミスタ温度計を接着剤で貼り付けシリコン樹脂で電解液と直接接触しないように覆った。また、電解液の温度を測定するため、電解槽の電解液排出部にも同種類のサーミスタ温度計を設置した。これら2本のサーミスタ温度計をデータロガーに接続し、連続して電極および電解液の温度を測定できるように構成した。   To measure the temperature of an electrode in an operation in the first half of the life, a thermistor thermometer is attached to the center of the electrode with an adhesive to measure the temperature of the electrode, and the silicon resin directly contacts the electrolyte. Covered not to. In order to measure the temperature of the electrolytic solution, the same type of thermistor thermometer was also installed in the electrolytic solution discharge part of the electrolytic cell. These two thermistor thermometers were connected to a data logger so that the temperature of the electrode and electrolyte could be measured continuously.

(実施例)
後半ライフから前半ライフへの交換作業において、電解槽への電解液の給液を、給液配管からの電解液の給液に加えて、隣接する電解槽から供給された電解液を給液する(補助給液)ことにより行った。ここで、補助給液は、ホースを用いたサイフォンの原理により行った。
(Example)
In the replacement work from the second half life to the first half life, the electrolytic solution supplied to the electrolytic tank is added to the electrolytic solution supplied from the liquid supply pipe, and the electrolytic solution supplied from the adjacent electrolytic tank is supplied. (Auxiliary liquid supply). Here, the auxiliary liquid supply was performed according to the principle of a siphon using a hose.

その結果、ある前半ライフにおける通電開始初期の電極および電解液の温度は、図4(a)に示すように変化した。すなわち、電極および電解液の温度は補助給液開始直後から速やかに上昇し、通電を早期に開始できた。また、電極および電解液の温度は通電開始から約2時間半で準定常状態となった。そのため、補助給液を開始から約3時間で終了した。
また、13ライフの期間中、前半ライフのショートの発生は11枚であり、ショート率は0.4%(=11枚/(8日×26枚×13ライフ))であった。
As a result, the temperature of the electrode and the electrolyte at the beginning of energization in a certain first half life changed as shown in FIG. That is, the temperature of the electrode and the electrolyte rapidly increased immediately after the start of the auxiliary liquid supply, and energization could be started early. Moreover, the temperature of the electrode and the electrolyte solution became a quasi-steady state in about two and a half hours from the start of energization. Therefore, the auxiliary liquid supply was completed in about 3 hours from the start.
In addition, during the 13-life period, the occurrence of shorts in the first half life was 11 sheets, and the short-circuit rate was 0.4% (= 11 sheets / (8 days × 26 sheets × 13 lives)).

(比較例)
後半ライフから前半ライフへの交換作業において、電解槽への電解液の給液を給液配管のみにより行った。
(Comparative example)
In the replacement work from the second half life to the first half life, the electrolytic solution was supplied to the electrolytic cell only by the liquid supply pipe.

その結果、ある前半ライフにおける通電開始初期の電極および電解液の温度は、図4(b)に示すように変化した。すなわち、電極および電解液の温度は通電開始後上昇するが、その上昇は実施例に比べて緩やかであった。また、実施例に比べて電解液の温度が60℃に達するまでに時間を要した。準定常状態になるまでに通電開始から約4時間を要した。
また、13ライフの期間中、前半ライフのショートの発生は24枚であり、ショート率は0.9%(=11枚/(8日×26枚×13ライフ))であった。
As a result, the temperature of the electrode and the electrolyte at the beginning of energization in a certain first half life changed as shown in FIG. That is, the temperature of the electrode and the electrolyte increased after the start of energization, but the increase was more gradual than in the examples. In addition, it took time for the temperature of the electrolytic solution to reach 60 ° C. compared to the example. It took about 4 hours from the start of energization to reach a quasi-steady state.
In addition, during the 13-life period, the number of short-circuits in the first half life was 24 sheets, and the short-circuit rate was 0.9% (= 11 sheets / (8 days × 26 sheets × 13 lives)).

以上の結果、本発明を適用することにより、ショート率を低減できることが確認された。これは、比較例に比べて実施例の方が、電解液の温度が早く60℃に達するためであると考えられる。   As a result, it was confirmed that the short-circuit rate can be reduced by applying the present invention. This is considered to be because the temperature of the electrolytic solution reaches 60 ° C. earlier than in the comparative example.

1、1a〜1r、1x 電解槽
2 排液槽
3 ポンプ
4 熱交換器
5 給液槽
6 給液配管
7 管
1, 1a-1r, 1x Electrolysis tank 2 Drainage tank 3 Pump 4 Heat exchanger 5 Liquid supply tank 6 Liquid supply pipe 7 Pipe

Claims (6)

通電および停電を共通の制御とする複数の電解槽からなる組おける、通電期間と通電期間の間に行われる交換作業であって、
前記組に属する電解槽内の電解液を排出する排出工程と、
該排出工程の後に、前記組に属する電解槽へ電解液を給液する給液工程と、を備え、
前記給液工程において、前記電解槽への電解液の給液を、該電解槽に設けられた給液手段からの電解液の給液に加え、他の電解槽から供給された電解液を給液することにより行う
ことを特徴とする電解製錬設備の操業方法。
It is a replacement work performed between the energization period and the energization period in an assembly consisting of a plurality of electrolytic cells with common control of energization and power failure,
A discharging step of discharging the electrolytic solution in the electrolytic cell belonging to the set;
A liquid supply step of supplying an electrolytic solution to the electrolytic cell belonging to the set after the discharging step,
In the liquid supplying step, the electrolytic solution supplied to the electrolytic cell is added to the electrolytic solution supplied from the liquid supplying means provided in the electrolytic cell, and the electrolytic solution supplied from another electrolytic cell is supplied. A method for operating an electrolytic smelting facility, characterized by being performed by liquefying.
電解液を供給する供給元電解槽は、該電解液が給液される供給先電解槽と同じ組に属する電解槽のうち、該供給先電解槽よりも早く電解液の給液が開始された電解槽である
ことを特徴とする請求項1記載の電解製錬設備の操業方法。
The supply source electrolytic cell that supplies the electrolytic solution started to supply the electrolytic solution earlier than the supply destination electrolytic cell among the electrolytic cells belonging to the same set as the supply destination electrolytic cell to which the electrolytic solution was supplied 2. The method for operating an electrolytic smelting facility according to claim 1, wherein the method is an electrolytic cell.
前記供給先電解槽は、前記組に属する電解槽のうち、最も遅く電解液の給液が開始された電解槽である
ことを特徴とする請求項2記載の電解製錬設備の操業方法。
3. The method of operating an electrolytic smelting facility according to claim 2, wherein the supply source electrolytic cell is an electrolytic cell in which supply of the electrolytic solution is started latest among the electrolytic cells belonging to the set.
前記供給先電解槽は、複数の前記供給元電解槽から供給された電解液が給液される
ことを特徴とする請求項2または3記載の電解製錬設備の操業方法。
4. The method for operating an electrolytic smelting facility according to claim 2, wherein the supply electrolytic cell is supplied with an electrolytic solution supplied from a plurality of the supply electrolytic cells. 5.
前記供給元電解槽から前記供給先電解槽への電解液の送液は、サイフォンの原理を用いて行う
ことを特徴とする請求項2、3または4記載の電解製錬設備の操業方法。
The method of operating an electrolytic smelting facility according to claim 2, 3 or 4, wherein the feeding of the electrolytic solution from the supply source electrolytic cell to the supply destination electrolytic cell is performed using a siphon principle.
前記供給元電解槽から前記供給先電解槽への電解液の送液を、通電開始後4時間経過時まで継続する
ことを特徴とする請求項2、3または4記載の電解製錬設備の操業方法。
The operation of the electrolytic smelting equipment according to claim 2, 3 or 4, wherein the feeding of the electrolytic solution from the supply source electrolytic tank to the supply destination electrolytic tank is continued until 4 hours have elapsed after the start of energization. Method.
JP2012132450A 2012-06-12 2012-06-12 Operation method of electrolytic smelting equipment Active JP5768765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012132450A JP5768765B2 (en) 2012-06-12 2012-06-12 Operation method of electrolytic smelting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012132450A JP5768765B2 (en) 2012-06-12 2012-06-12 Operation method of electrolytic smelting equipment

Publications (2)

Publication Number Publication Date
JP2013256683A JP2013256683A (en) 2013-12-26
JP5768765B2 true JP5768765B2 (en) 2015-08-26

Family

ID=49953356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012132450A Active JP5768765B2 (en) 2012-06-12 2012-06-12 Operation method of electrolytic smelting equipment

Country Status (1)

Country Link
JP (1) JP5768765B2 (en)

Also Published As

Publication number Publication date
JP2013256683A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP6111931B2 (en) Electrolyte supply method
CN102459711B (en) Be used for reducing the equipment of solid material and method
KR100767053B1 (en) Preparation method of metal uranium and apparatus thereused
JP5125278B2 (en) Method of electrolytic oxidation of etching waste liquid
CN103334123A (en) Copper electrolysis system and running method
JP5768765B2 (en) Operation method of electrolytic smelting equipment
CN106835196A (en) Produce the mixing electrolysis system of tough cathode
CN103132101A (en) Copper electrolyte decoppering method by utilizing copper electrolytic residual anodes as cathodes and device thereof
KR20180000944U (en) Electrowinning device of Indium
EP3452640B1 (en) Equipment for decopperising an electrorefining process and way of operating the process
CN203474910U (en) Copper electrolysis system
JP2020026576A (en) Producing method of sulfuric acid solution and electrolytic cell used in producing method thereof
JP4934012B2 (en) Method for producing metallic calcium
JP3927706B2 (en) Method and apparatus for electrolytic purification of gallium
JP4524248B2 (en) Copper collection method
CN107090587B (en) A method of control potential electrodeposition removes copper arsenic
JP2012172194A (en) Electrolytic apparatus and electrowinning method using the same
JPWO2008102520A1 (en) Metal production apparatus by molten salt electrolysis and metal production method using the same
JP7188239B2 (en) Method for producing electrolytic cell and acid solution
JP2019059964A (en) Method of operating facility for electrorefining copper
JP6473102B2 (en) Cobalt electrowinning method
JP6010627B2 (en) Cathode power distribution system and method of using the system for power distribution
JP2019026866A (en) Electrorefining method of copper
JP7309123B2 (en) Method for supplying electrolyte to electrolytic cell for electrorefining
JP6816076B2 (en) How to make electrolytic copper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5768765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150