JP5767765B2 - High resolution phosphor screen and method for producing high resolution phosphor screen - Google Patents

High resolution phosphor screen and method for producing high resolution phosphor screen Download PDF

Info

Publication number
JP5767765B2
JP5767765B2 JP2013242039A JP2013242039A JP5767765B2 JP 5767765 B2 JP5767765 B2 JP 5767765B2 JP 2013242039 A JP2013242039 A JP 2013242039A JP 2013242039 A JP2013242039 A JP 2013242039A JP 5767765 B2 JP5767765 B2 JP 5767765B2
Authority
JP
Japan
Prior art keywords
phosphor
metal tube
phosphor screen
cutting
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013242039A
Other languages
Japanese (ja)
Other versions
JP2015102383A (en
Inventor
武 高原
武 高原
Original Assignee
武 高原
武 高原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武 高原, 武 高原 filed Critical 武 高原
Priority to JP2013242039A priority Critical patent/JP5767765B2/en
Publication of JP2015102383A publication Critical patent/JP2015102383A/en
Application granted granted Critical
Publication of JP5767765B2 publication Critical patent/JP5767765B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高解像度をもつ蛍光面板の製造方法に関するものである。   The present invention relates to a method for manufacturing a phosphor screen having high resolution.

X線を利用した検査装置は、医療用のX線診断装置等の他、産業用のIC検査装置等に広く使用されている。このような検査装置に使用されるX線検出器は、X線を蛍光面板で受け、これを光に変換し蛍光面板の背面に配置された光電変換装置(例えばスイッチング用TFTに連結した光電変換要素として作用する薄膜アモルファスシリコンフォトダイオードで構成されているアクティブマトリクス型検出器)で画像化された電気信号に変換される。このX線検出器には様々な性能の向上が求められるが、最も重要なものとして解像度特性の向上が求められる。   Inspection apparatuses using X-rays are widely used not only for medical X-ray diagnostic apparatuses but also for industrial IC inspection apparatuses. An X-ray detector used in such an inspection apparatus receives a X-ray by a fluorescent screen, converts it into light, and converts it into light, which is disposed on the back of the fluorescent screen (for example, a photoelectric conversion connected to a switching TFT). It is converted into an imaged electric signal by an active matrix type detector comprised of a thin film amorphous silicon photodiode acting as an element. This X-ray detector is required to improve various performances, and most importantly, an improvement in resolution characteristics is required.

従来X線検出器に用いられる蛍光面板には通常1μm程度の微粒子蛍光体を用いて、セットリング法(液中沈降法)で基板上に均一な蛍光面板を作成するか、またはヨウ化セシウム(CsI)等の蛍光体を基板上に蒸着して均一な蛍光面板を作成する方法が知られている。このように構成された蛍光面板において、X線画像は、可視光線画像に変換されるが、発光フォトンはすべての立体角方向に放射されるので上記CCD等の2次元撮像素子(撮像管)の垂直な画素エレメントだけでなく、近傍の画素エレメントにも到達する。このため、電気信号画像は元のX線画像に比べて、解像度が劣ることになる。   Conventional phosphor screens used in X-ray detectors usually use a fine particle phosphor of about 1 μm, and a uniform phosphor screen is prepared on the substrate by settling (precipitation in liquid) or cesium iodide ( A method for producing a uniform phosphor screen by depositing a phosphor such as CsI) on a substrate is known. In the thus configured phosphor screen, the X-ray image is converted into a visible light image, but the emitted photons are emitted in all solid angle directions, so that the two-dimensional imaging device (imaging tube) such as the CCD is used. Not only vertical pixel elements but also neighboring pixel elements are reached. For this reason, the resolution of the electric signal image is inferior to that of the original X-ray image.

この解像度向上のために、横方向への光の影響を少なくなるように、蛍光面板の充填率を高くして厚さを薄くすること、基板に垂直な方向に柱状結晶を形成することで横方向への散乱が小さくする方法が知られている。しかしながらこの柱状構造でもまだ横方向散乱は起こり、十分な対策とはいえない。   In order to improve this resolution, in order to reduce the influence of light in the lateral direction, the filling ratio of the phosphor screen is increased and the thickness is reduced, and columnar crystals are formed in the direction perpendicular to the substrate. A method of reducing the scattering in the direction is known. However, this columnar structure still causes lateral scattering, which is not a sufficient countermeasure.

従って、蛍光面板において解像度を向上させる方法として、垂直直下以外の上記CCD等の2次元撮像素子の画素エレメントに到達しないようにするために、反射層としての役目を有する細管を集束し、細管内にシンチレータを充填した蛍光面板構造が提案された(特許文献1、特許文献2参照)。これらの提案では、細管形成後に、蛍光体物質を充填する方法がとられている。特許文献1では電子ビーム蒸着法で細管中にシンチレータ材料を充填することが記載されているが、シンチレータ材料の充填率が低いことが推定される。また、特許文献2では、高温融解液したシンチレータ材料融解液に中空細管を浸して充填する方法が記載されているが、これではせっかく形成した細管構造が高温でメルトする恐れがあり、この充填方法では蛍光面板を安定に形成することが困難である。   Therefore, as a method for improving the resolution in the phosphor screen, in order not to reach the pixel elements of the two-dimensional image pickup device such as the CCD other than directly under the vertical, the narrow tubes that serve as the reflective layer are focused, A phosphor screen structure filled with scintillators has been proposed (see Patent Document 1 and Patent Document 2). In these proposals, a method of filling a phosphor material after forming a thin tube is taken. In Patent Document 1, it is described that a scintillator material is filled in a thin tube by an electron beam evaporation method, but it is estimated that the filling rate of the scintillator material is low. Patent Document 2 describes a method of immersing and filling a hollow thin tube in a high-temperature melted scintillator material melt. However, there is a possibility that the formed thin tube structure may melt at a high temperature. Thus, it is difficult to stably form the phosphor screen.

特開平2−22598号公報JP-A-2-22598 特開2000−81500号公報JP 2000-81500 A

この発明の課題は、蛍光面板に平行な横方向への光散乱が抑えられる細管構造を持ち、かつ蛍光体充填密度が大きい高解像度の蛍光面板及び蛍光板の製造方法を提供することである。   An object of the present invention is to provide a high-resolution phosphor screen and a method for manufacturing the phosphor plate having a thin tube structure capable of suppressing light scattering in the lateral direction parallel to the phosphor screen and having a high phosphor packing density.


請求項1記載の高解像度蛍光面板の製造方法は、

(1)第一の中空金属管に蛍光体物質を充填して第一の蛍光体充填金属管を作成する蛍光体充填工程と

(2)前記第一の蛍光体充填金属管をスウェージング法で、塑性加工により絞り込み、第一の細線を形成する細線形成工程と

(3)前記第一の細線を所定長に切断して第一の切断細線を作成する切断工程と

(4)複数の前記第一の切断細線を第二の中空金属管に集束充填して第一の細線充填金属管を作成する集束充填工程と、

(5)前記第一の細線充填金属管をスウェージング法で、塑性加工により絞り込み、第二の細線を形成する細線形成工程と

(6)前記第二の細線を所定長に切断して第二の切断細線を作成する切断工程と

(7)複数の前記第二の切断細線を第三の中空金属管に集束充填して第二の細線充填金属管を作成する集束充填工程と、

(8)前記第二の細線充填金属管内の細線同士を圧着するため、スウェージング法で管の直径を絞り込み、絞り込み金属管を作成する圧着絞り込み工程と

(9)前記絞り込み金属管を所定の厚さの蛍光面板に切断する切断工程と

(10)前記蛍光面板を還元または中性雰囲気でアニールするアニール工程と

(11)前記アニールした蛍光面板を研磨する研磨工程

とを備えることを特徴とする。



The method for producing a high resolution phosphor screen according to claim 1 comprises:

(1) a phosphor filling step of creating a first phosphor-filled metal tube by filling the first hollow metal tube with a phosphor material;

(2) a thin wire forming step of forming the first fine wire by narrowing the first phosphor-filled metal tube by plastic working by a swaging method;

(3) a cutting step of creating a first cutting fine wire by cutting the first fine wire to a predetermined length

(4) a focusing and filling step of focusing and filling a plurality of the first cut thin wires into a second hollow metal tube to create a first thin wire filling metal tube ;

(5) A fine wire forming step of forming the second fine wire by narrowing the first fine wire-filled metal tube by plastic working by a swaging method;

(6) a cutting step of creating the second thin wire was cut into a predetermined length second cutting fine wire

(7) A focused filling step of focusing and filling a plurality of the second cut thin wires into a third hollow metal tube to create a second thin wire filled metal tube ;

(8) for crimping a thin line between the second fine wire filler metal tube, to narrow down the diameter of the tube in the swaging process, a crimping narrowing step of creating a narrowing metal tube

(9) a cutting step of cutting the narrowed metal tube into a phosphor screen having a predetermined thickness;

(10) An annealing step for annealing the phosphor screen in a reducing or neutral atmosphere;

(11) Polishing process for polishing the annealed phosphor screen

It is characterized by providing.


請求項2記載の高解像度蛍光面板の製造方法は (1) 前記請求項1記載の製造方法で得られた蛍光面板を複数用意して正方形に切断して複数の正方形蛍光面板を作成する切断工程と (2)複数の前記正方形蛍光面板の4つの切断面に接着剤を塗布する塗布工程と (3)複数の前記正方形蛍光面板同士の間には金属薄膜を介して接着し、大型複合蛍光面板を作成する接着形成工程と (4)前記大型複合蛍光面板の片面に接着剤を塗布してアルミ箔接着した基板に接着する接着工程

とを備えることを特徴とする。
The manufacturing method of the high-resolution phosphor screen according to claim 2 is: (1) A cutting step of preparing a plurality of phosphor screens obtained by the manufacturing method according to claim 1 and cutting into squares to create a plurality of square phosphor screens. And (2) an application step in which an adhesive is applied to four cut surfaces of the plurality of square phosphor screens. (3) a large composite phosphor screen is bonded between the plurality of square phosphor screens via a metal thin film. (4) Adhesion step of applying an adhesive to one side of the large composite phosphor screen and adhering to an aluminum foil bonded substrate

It is characterized by providing.

本発明の製造方法で用いられるスウェージング加工で蛍光体充填物を従来の特許文献1と特許文献2に比べて高密度化することができる。   The phosphor filling can be densified as compared with the conventional Patent Document 1 and Patent Document 2 by the swaging process used in the production method of the present invention.

本発明に用いる中空金属管としては展性・延性の優れた金、銀、鉛、銅、アルミニウム、スズ、白金、亜鉛、鉄、ニッケル、インジウム等を用いることができる。コスト、毒性の観点から銀、銅、アルミニウム、スズ、亜鉛、鉄、ニッケル、インジウム等が好ましい。   As the hollow metal tube used in the present invention, gold, silver, lead, copper, aluminum, tin, platinum, zinc, iron, nickel, indium and the like having excellent malleability and ductility can be used. From the viewpoint of cost and toxicity, silver, copper, aluminum, tin, zinc, iron, nickel, indium and the like are preferable.

本発明に用いられる蛍光体(シンチレータ材料)にはX線吸収の大きい、即ち蛍光体は原子番号の大きい原子で構成されていること、また吸収したX線エネルギーの可視光線変換効率の高いこと、CCD等の2次元撮像素子の分光感度特性にマッチングした発光スペクトルを有することが要求される。   The phosphor (scintillator material) used in the present invention has a large X-ray absorption, that is, the phosphor is composed of atoms having a large atomic number, and has a high visible light conversion efficiency of the absorbed X-ray energy. It is required to have an emission spectrum that matches the spectral sensitivity characteristics of a two-dimensional imaging device such as a CCD.

この蛍光体としては、タリウム付活ヨウ化セシウムCsI:Tl、ナトリウム付活ヨウ化セシウムCsI:Na、テルビウム付活酸化硫化ガドリニウムGdS:Tb、ユーロピウム付活フッ化ハロゲン化物バリウムBaF(Cl,Br,I):Euがあげられる。 The phosphors include thallium activated cesium iodide CsI: Tl, sodium activated cesium iodide CsI: Na, terbium activated gadolinium oxide sulfide Gd 2 O 2 S: Tb, europium activated barium fluorohalide BaF ( Cl, Br, I): Eu.

本発明ではスウェージング加工を行うので、中空金属管及び蛍光体の硬度に関しては、中空金属管の硬度はなるべく小さいことが好ましい。蛍光体の硬度も小さい方が好ましいが、中空金属管の硬度と同等以上であることが必要である。   Since swaging is performed in the present invention, the hardness of the hollow metal tube and the phosphor is preferably as small as possible. Although it is preferable that the phosphor has a small hardness, it is necessary to have a hardness equal to or higher than that of the hollow metal tube.


中空金属管よりも蛍光体硬度が極めて小さい場合には、スウェージング加工で管内の蛍光体がスウェージング加工で押し出され、蛍光体部分の割合の小さい細線になってしまう恐れがあるためである。

This is because when the phosphor hardness is extremely smaller than that of the hollow metal tube, the phosphor in the tube is pushed out by the swaging process and becomes a thin line with a small proportion of the phosphor part.

前記のヨウ化セシウム蛍光体のモース硬度は2であり、中空金属管の材質としての前記の銀も同じ2であり、ヨウ化セシウムと銀との組み合わせは最適である。上記に挙げた蛍光体は一般的に硬度2以上であり、中空金属管材質の前記金属のモース硬度は一般的には蛍光体以下である。したがって上記に挙げた蛍光体は本発明の製造方法で蛍光面板の製造が可能である。   The Mohs hardness of the cesium iodide phosphor is 2, the silver as the material of the hollow metal tube is also 2, and the combination of cesium iodide and silver is optimal. The phosphors listed above generally have a hardness of 2 or more, and the metal Mohs hardness of the hollow metal tube material is generally less than or equal to the phosphor. Therefore, the phosphors listed above can be produced as phosphor screens by the production method of the present invention.


スウェージング加工の導入により、蛍光体充填密度向上及び細線充填金属管同士の接合も容易に行えることができるようになった。



With the introduction of the swaging process, it has become possible to easily improve the phosphor filling density and join the thin wire-filled metal tubes together.



図1は本発明の高解像度蛍光面板の製造方法において、第一の中空金属管に蛍光体粉末充填して作成した第一の蛍光体充填金属管を示した図である。(実施例1)FIG. 1 is a view showing a first phosphor-filled metal tube prepared by filling a first hollow metal tube with phosphor powder in the method for producing a high-resolution phosphor screen of the present invention. Example 1 図2は本発明の高解像度蛍光面板の製造方法において、スウェージング加工で第一(または第二)の蛍光体充填金属管を絞り込み第一(または第二)の細線を作成し、所定の長さに切断して作成した第一(または第二)の切断細線を示した図である。(実施例1)FIG. 2 shows a method for producing a high-resolution phosphor screen according to the present invention, wherein the first (or second) phosphor-filled metal tube is narrowed by swaging to create a first (or second) fine line, and a predetermined length is obtained. It is the figure which showed the 1st (or 2nd) cutting | disconnection thin line | wire produced by cut | disconnecting in length. Example 1 図3は本発明の高解像度蛍光面板の製造方法において、複数の第一(または第二)の切断細線を第二(または第三)の中空金属管に端から順に充填することを示した説明図である。(実施例1)FIG. 3 is a view showing that a plurality of first (or second) cut fine wires are filled in the second (or third) hollow metal tube in order from the end in the method for manufacturing a high resolution phosphor screen according to the present invention. FIG. Example 1 図4は本発明の高解像度蛍光面板の製造方法において、複数の第一(または第二)の切断細線をハニカム型に配列充填することを示した説明図である。(実施例1)FIG. 4 is an explanatory view showing that a plurality of first (or second) cut fine wires are arranged and filled in a honeycomb shape in the method for producing a high resolution phosphor screen according to the present invention. Example 1 図5は本発明の高解像度蛍光面板の解像度と空間周波数との関係を示すグラフである。(実施例1)FIG. 5 is a graph showing the relationship between the resolution and the spatial frequency of the high-resolution phosphor screen of the present invention. (Example 1) 図6は本発明の高解像度蛍光面板の製造方法において、大型蛍光面板の製造方法を示した説明図である。(実施例2)FIG. 6 is an explanatory view showing a method for manufacturing a large phosphor screen in the method for manufacturing a high resolution phosphor screen according to the present invention. (Example 2)

以下、図1〜図6を参照して、この発明の実施の形態にかかる高解像度蛍光面板及び蛍光板の製造方法について説明する。   Hereinafter, with reference to FIGS. 1-6, the high-resolution phosphor screen concerning this Embodiment and the manufacturing method of a phosphor plate are demonstrated.


まず、展性・延性の優れた金属を用いた5〜10cmの外径の第一の中空金属管に蛍光体粉末を充填して第一の蛍光体充填金属管を作成する。充填の際には、振動機(バイブレータ)上に金属管を配置して振動しながら、充填作業を進めるのが好ましい。充填密度は70%程度以上が望ましい。(図1参照)。

First, a phosphor powder is filled in a first hollow metal tube having an outer diameter of 5 to 10 cm using a metal having excellent malleability and ductility to produce a first phosphor-filled metal tube . In filling, it is preferable to proceed the filling operation while placing a metal tube on a vibrator (vibrator) and vibrating. The packing density is desirably about 70% or more. (See FIG. 1).

本発明に用いる第一の中空金属管の外径C、内径Dで表したとき、Cは1〜10cm、管の肉厚(C−D)/2は1〜10mm程度の範囲の金属管を用いることが望ましい。   When expressed by the outer diameter C and inner diameter D of the first hollow metal tube used in the present invention, C is a metal tube in the range of about 1 to 10 cm and the wall thickness (C−D) / 2 is about 1 to 10 mm. It is desirable to use it.


次に、前記第一の蛍光体充填金属管をスウェージング装置にかけて、最終的に外径dが1〜3mmになるように複数回スウェージング(絞り)加工を繰り返して第一の細線形成を行う。

Next, the first phosphor-filled metal tube is applied to a swaging apparatus, and the first fine line is formed by repeating swaging (drawing) a plurality of times so that the outer diameter d is finally 1 to 3 mm. .


次に、この第一の細線を切断機で所定の長さに切断して第一の切断細線を作成する(図2参照)。

Next, this first fine wire is cut into a predetermined length by a cutting machine to create a first cut fine wire (see FIG. 2).


次に、複数の第一の切断細線を集束し展性・延性の優れた金属を用いた5〜10cmの外径の第二の中空金属管に図3に示すように端から順に充填して第一の細線充填金属管を作成する。



Next, a plurality of first cut fine wires are converged and filled into a second hollow metal tube having an outer diameter of 5 to 10 cm using a metal having excellent malleability and ductility, as shown in FIG. Create the first fine wire-filled metal tube.


本発明に用いる第二の中空金属管の外径C、内径Dで表したとき、Cは1〜10cm、管の肉厚(C−D)/2は1〜10mm程度の範囲の金属管を用いることが望ましい。   When expressed by the outer diameter C and inner diameter D of the second hollow metal tube used in the present invention, C is a metal tube in the range of 1 to 10 cm, and the wall thickness (C−D) / 2 of the tube is about 1 to 10 mm. It is desirable to use it.


第一の切断細線を前記第二の中空金属管に配置する際、図3に示すように充填することも可能であるが、図4に例示するように細線をハニカム構造になるように規則的に配置した方がより好ましい。前記第二の中空金属管内の空隙面積が少なくなるように、前記第二の中空金属管の内径Dと細線dとの比は(D/d)≧10になるようにするのが好ましい。

When the first cut fine wire is disposed in the second hollow metal tube, it is possible to fill the fine cut wire as shown in FIG. 3, but as shown in FIG. 4, the fine wire is regularly arranged to have a honeycomb structure. It is more preferable to arrange them in The ratio of the inner diameter D of the second hollow metal tube to the fine wire d is preferably (D / d) ≧ 10 so that the void area in the second hollow metal tube is reduced.


次に、前記第一の細線充填金属管をスウェージング装置にかけて、最終的に外径が1〜3mmになるように複数回スウェージング(絞り)加工を繰り返して第二の細線を形成したあとで、切断機で所定の長さに切断して第二の切断細線を作成する

Next, after forming the second fine wire by applying the first fine wire-filled metal tube to a swaging device and repeating swaging (drawing) multiple times so that the outer diameter finally becomes 1 to 3 mm. Then, it is cut into a predetermined length with a cutting machine to create a second cut fine wire .


次に、複数の第二の細線を集束し展性・延性の優れた金属を用いた第三の中空金属管に整列して充填する(図3、4参照)。この第三の中空金属管の外径は最終的に必要とされる蛍光面板サイズによって変わるが、5〜20cm程度の金属管を用いるのがよい。

Next, a plurality of second thin wires are converged and aligned and filled in a third hollow metal tube using a metal having excellent malleability and ductility ( see FIGS. 3 and 4 ). The outer diameter of the third hollow metal tube varies depending on the finally required phosphor screen size, but it is preferable to use a metal tube of about 5 to 20 cm.

このようにして得られた細管配列した金属管をスウェージング加工して、その直径を絞り、配列した細管同士の隙間をなくし、接着性を向上させる。直径絞り率は、金属管の材質にもよるが、一般的には80〜90%にするのが好ましい。   The metal tubes arranged in the thin tube thus obtained are subjected to a swaging process, the diameter thereof is reduced, the gap between the arranged thin tubes is eliminated, and the adhesion is improved. Although the diameter reduction ratio depends on the material of the metal tube, it is generally preferable to set it to 80 to 90%.

このようにして得られた金属管は所定の厚さたとえば0.5mmの厚さにスライス後、スライス面板を研磨して、蛍光面板が得られる。   The metal tube thus obtained is sliced to a predetermined thickness, for example, 0.5 mm, and then the sliced face plate is polished to obtain a fluorescent faceplate.

この蛍光面板中の蛍光体は複数回にわたるスウェージング加工で結晶歪みがのこっている。この歪みを解消するために、中性ないし還元雰囲気中での100〜300℃の温度でアニール工程を通して、本発明の高解像度蛍光面板が得られる。本工程のアニール処理で細管同士の接合性も向上する。   The phosphor in this phosphor screen plate has crystal distortion due to multiple swaging processes. In order to eliminate this distortion, the high-resolution phosphor screen of the present invention is obtained through an annealing process at a temperature of 100 to 300 ° C. in a neutral or reducing atmosphere. The annealing of this step also improves the bondability between thin tubes.

このようにして得られた高解像度蛍光面板を構成する1本の細管内の充填蛍光体部の直径(画素サイズ)は50〜100μmとなる。
以下本発明に関して、実施例で詳細に説明する。
The diameter (pixel size) of the filled phosphor portion in one narrow tube constituting the high resolution phosphor screen thus obtained is 50 to 100 μm.
Hereinafter, the present invention will be described in detail with reference to examples.

図1に示すように、外径3cm、肉厚が5mm、長さ10cmの銀の第一の中空金属管1の中空部2に0.06モル%のタリウム(Tl)をドープしたヨウ化セシウム(CsI:Tl)蛍光体10gを充填する。充填の際には、振動機(バイブレータ)上に金属管を配置して振動しながら、充填作業を行った。充填密度は約70%であった。   As shown in FIG. 1, cesium iodide doped with 0.06 mol% thallium (Tl) in the hollow portion 2 of a silver first hollow metal tube 1 having an outer diameter of 3 cm, a wall thickness of 5 mm, and a length of 10 cm. 10 g of (CsI: Tl) phosphor is filled. At the time of filling, the filling operation was performed while a metal tube was placed on a vibrator (vibrator) and vibrated. The packing density was about 70%.

次に、前記蛍光体充填金属管をスウェージング装置にかけて、最終的に外径d=1.8mmになるように複数回スウェージング(絞り)加工を繰り返す。   Next, the phosphor-filled metal tube is placed on a swaging device, and swaging (drawing) is repeated a plurality of times so that the outer diameter d is finally 1.8 mm.


次に、スライシングマシーンで長さ10cmに切断して第一の切断細線を製造する(図2参照)。



Next, a first thin cutting wire is manufactured by cutting the slicing machine into a length of 10 cm (see FIG. 2).



次に、図4に示すように複数の第一の切断細線109本を集束し外径3.1cm、内径D=2.1cm、肉厚が5mm、長さ10cmの銀の第二の中空金属管にハニカムマトリックス状に整列して充填する(図4参照)。中空金属管内径と細線外径の比(D/d)=11.6である。



Next, as shown in FIG. 4, a plurality of first cut thin wires 109 are converged to form a silver second hollow metal having an outer diameter of 3.1 cm, an inner diameter D = 2.1 cm, a wall thickness of 5 mm, and a length of 10 cm. The tubes are filled in a honeycomb matrix (see FIG. 4). The ratio (D / d) of the hollow metal tube inner diameter to the fine wire outer diameter = 11.6.


次に、前記蛍光体充填金属管をスウェージング装置にかけて、最終的に外径d=2mmになるように複数回スウェージング(絞り)加工を繰り返す。   Next, the phosphor-filled metal tube is applied to a swaging device, and swaging (drawing) processing is repeated a plurality of times so that the outer diameter d = 2 mm is finally obtained.


次に、スライシングマシーンで長さ10cmに切断して第二の切断細線を製造する。

Next, it is cut into a length of 10 cm with a slicing machine to produce a second cut fine wire.


次に、図4と同様にして複数の第二の切断細線379本を集束し外径5.3cm、内径D=4.3cm、肉厚が5mm、長さ10cmの銀の第三の中空金属管3にハニカム状に整列して充填する。中空金属管内径と細線外径の比(D/d)=21.6である。

Next, in the same manner as in FIG. 4, a plurality of second thin cutting wires 379 are converged to form a third silver hollow metal having an outer diameter of 5.3 cm, an inner diameter D = 4.3 cm, a wall thickness of 5 mm, and a length of 10 cm. The tubes 3 are filled in a honeycomb shape. The ratio of the hollow metal tube inner diameter to the fine wire outer diameter (D / d) = 21.6.

このようにして得られた細管配列した金属管をスウェージング加工して、その直径を4.5cmに絞り、配列した細管同士の隙間をなくし、接着性を向上させる。   The thin tube arrayed metal tubes thus obtained are subjected to a swaging process, the diameter is reduced to 4.5 cm, the gap between the arrayed tubes is eliminated, and the adhesion is improved.

このようにして得られた金属管は所定の厚さたとえば0.5mmの厚さにスライス後、スライス面板を研磨して、蛍光面板が得られる。   The metal tube thus obtained is sliced to a predetermined thickness, for example, 0.5 mm, and then the sliced face plate is polished to obtain a fluorescent faceplate.

この蛍光体の結晶歪みを解消するために、窒素雰囲気中での200〜300℃の温度での1時間のアニール工程を通して、本発明の直径4.5cm、厚さ0.5mmの高解像度蛍光面板が得られる。この蛍光面板を構成する最小の細線中の蛍光体部の直径は約70μmである。   In order to eliminate the crystal distortion of the phosphor, a high-resolution phosphor screen having a diameter of 4.5 cm and a thickness of 0.5 mm according to the present invention is subjected to an annealing process in a nitrogen atmosphere at a temperature of 200 to 300 ° C. for 1 hour. Is obtained. The diameter of the phosphor part in the smallest fine wire constituting this phosphor screen is about 70 μm.

図5は、X線を本発明の高解像度蛍光面板で受け、これを光に変換し光電変換装置(CCD等の2次元撮像素子)で画像化された電気信号の解像度MTFと空間周波数との関係を示すグラフである。細管構造を持たない従来の蛍光面板のMTFと比較して、空間周波数の高い領域でもMTF低下の小さく大幅に解像度特性が改善されていることが分かる。   FIG. 5 shows the X-ray received by the high-resolution phosphor screen of the present invention, converted into light and imaged by a photoelectric conversion device (two-dimensional imaging device such as a CCD), and the resolution MTF and spatial frequency of the electrical signal. It is a graph which shows a relationship. It can be seen that, compared with the MTF of a conventional phosphor screen without a thin tube structure, the resolution characteristics are greatly improved with a small MTF reduction even in a high spatial frequency region.

さらに大きな蛍光面板を得るためには、前記実施例1の中空金属管のサイズを数倍にすれば、数倍の蛍光面板が得られるが、高価な大型スウェージングマシーンが必要になり、コストパフォーマンスの観点からは好ましくない。この代わりに前記実施例1で作成した蛍光面板を利用して複数配列して大面板積の蛍光面板を製造することができる。   In order to obtain an even larger phosphor screen, if the size of the hollow metal tube of Example 1 is increased several times, a phosphor screen of several times can be obtained, but an expensive large swaging machine is required, and cost performance From the viewpoint of Instead of this, a plurality of phosphor screens prepared in Example 1 can be used to produce a large screen phosphor screen.


実施例1で製造した直径4.5cm、厚さ0.5mmの高解像度蛍光面板を1辺3cmの正方形に切断して正方形の高解像度蛍光面板4を得る。複数の正方形蛍光面板4の4つの切断面板に接着材を塗布し、蛍光面板同士の接着は0.1〜0.2mmのアルニウム箔(図示せず)を介して、大型の蛍光面板を作成する。この大型蛍光面板の片面に接着剤を塗布し、あらかじめアルミ箔接着した基板5とアルミ箔を介して接着一体化する。図6に正方形蛍光面板を縦7枚、横7枚に配列した合計49枚の蛍光面板4とアルミ箔接着した基板5上に配置して作成した、1辺21cmの大型高解像度蛍光面板を例として示す。

The high-resolution fluorescent screen plate having a diameter of 4.5 cm and a thickness of 0.5 mm manufactured in Example 1 is cut into a square having a side of 3 cm to obtain a square high-resolution fluorescent screen plate 4. Adhesive material is applied to the four cut face plates of the plurality of square phosphor face plates 4, and the phosphor face plates are bonded to each other to form a large phosphor face plate via an 0.1 to 0.2 mm aluminum foil (not shown). . An adhesive is applied to one surface of the large fluorescent screen plate, and the substrate 5 and the aluminum foil bonded in advance are bonded and integrated through the aluminum foil. FIG. 6 shows an example of a large-sized high-resolution phosphor screen having a side of 21 cm, which is prepared by arranging a total of 49 phosphor screen plates 4 arranged in 7 vertical and 7 horizontal plates and a substrate 5 bonded with aluminum foil. As shown.

基板5はアルミナのようなセラミックスでもよいし、アルミニウム等の金属板でも構わない。   The substrate 5 may be ceramics such as alumina or a metal plate such as aluminum.

配列接着後、蛍光面板を再度研磨して均一性を出してもよい。   After array bonding, the phosphor screen may be polished again to achieve uniformity.

前記実施例において、蛍光体はタリウム付活ヨウ化セシウムCsI:Tlを用いて説明したが、この他にもナトリウム付活ヨウ化セシウムCsI:Na、テルビウム付活酸化硫化ガドリニウムGdS:Tb、ユーロピウム付活フッ化ハロゲン化物バリウムBaF(Cl,Br,I):Eu等を用いて、蛍光体の硬度との組み合わせで中空金属管には適当な硬度を持つ金、銀、鉛、銅、アルミニウム、スズ、白金、亜鉛、鉄、ニッケル、インジウム等の中から適宜選択することで本発明の高解像度蛍光面板を製造することができる。 In the above embodiment, the phosphor is described using thallium activated cesium iodide CsI: Tl. In addition to this, sodium activated cesium iodide CsI: Na, terbium activated gadolinium oxide sulfide Gd 2 O 2 S: Gold, silver, lead, copper with Tb, europium-activated barium fluoride halide BaF (Cl, Br, I): Eu, etc., with appropriate hardness for hollow metal tubes in combination with phosphor hardness , Aluminum, tin, platinum, zinc, iron, nickel, indium, etc., can be selected as appropriate to produce the high-resolution phosphor screen of the present invention.


本発明の高解像度蛍光面板は光電変換装置と組み合わせて、医療用X線診断装置、産業用のIC検査装置に用いて、高解像度の画像を提供し、蛍光面板の蛍光体充填率が高いことから、高感度の画像も提供できる。

The high-resolution phosphor screen of the present invention is used in medical X-ray diagnostic devices and industrial IC inspection devices in combination with photoelectric conversion devices to provide high-resolution images and have a high phosphor filling rate of the phosphor screen. Therefore, a highly sensitive image can also be provided.


1 第一の中空金属管、または第二の中空金属管

第一の中空金属管の中空部に充填した蛍光体粉末、または第二の中空金属管の中空部に集束充填した第一の切断細線、または第三の中空金属管の中空部に集束充填した第二の切断細線

3 第二の中空金属管、または第三の中空金属管

4 正方形型蛍光面板

5 基板



1 1st hollow metal tube or 2nd hollow metal tube

2 Phosphor powder filled in the hollow part of the first hollow metal tube , or the first cut fine wire focused and filled in the hollow part of the second hollow metal tube, or the focused filling in the hollow part of the third hollow metal tube Second cut fine wire

3 Second hollow metal tube or third hollow metal tube

4 square type phosphor screen

5 Substrate


Claims (4)


(1)第一の中空金属管に蛍光体物質を充填して第一の蛍光体充填金属管を作成する蛍光体充填工程と

(2)前記第一の蛍光体充填金属管をスウェージング法で、塑性加工により絞り込み、第一の細線を形成する細線形成工程と

(3)前記第一の細線を所定長に切断して第一の切断細線を作成する切断工程と

(4)複数の前記第一の切断細線を第二の中空金属管に集束充填して第一の細線充填金属管を作成する集束充填工程と、

(5)前記第一の細線充填金属管をスウェージング法で、塑性加工により絞り込み、第二の細線を形成する細線形成工程と

(6)前記第二の細線を所定長に切断して第二の切断細線を作成する切断工程と

(7)複数の前記第二の切断細線を第三の中空金属管に集束充填して第二の細線充填金属管を作成する集束充填工程と、

(8)前記第二の細線充填金属管内の細線同士を圧着するため、スウェージング法で管の直径を絞り込み、絞り込み金属管を作成する圧着絞り込み工程と

(9)前記絞り込み金属管を所定の厚さの蛍光面板に切断する切断工程と

(10)前記蛍光面板を還元または中性雰囲気でアニールするアニール工程と

(11)前記アニールした蛍光面板を研磨する研磨工程

とを備えることを特徴とする高解像度蛍光面板の製造方法。



(1) a phosphor filling step of creating a first phosphor-filled metal tube by filling the first hollow metal tube with a phosphor material;

(2) a thin wire forming step of forming the first fine wire by narrowing the first phosphor-filled metal tube by plastic working by a swaging method;

(3) a cutting step of creating a first cutting fine wire by cutting the first fine wire to a predetermined length

(4) a focusing and filling step of focusing and filling a plurality of the first cut thin wires into a second hollow metal tube to create a first thin wire filling metal tube ;

(5) A fine wire forming step of forming the second fine wire by narrowing the first fine wire-filled metal tube by plastic working by a swaging method;

(6) a cutting step of creating the second thin wire was cut into a predetermined length second cutting fine wire

(7) A focused filling step of focusing and filling a plurality of the second cut thin wires into a third hollow metal tube to create a second thin wire filled metal tube ;

(8) for crimping a thin line between the second fine wire filler metal tube, to narrow down the diameter of the tube in the swaging process, a crimping narrowing step of creating a narrowing metal tube

(9) a cutting step of cutting the narrowed metal tube into a phosphor screen having a predetermined thickness;

(10) An annealing step for annealing the phosphor screen in a reducing or neutral atmosphere;

(11) Polishing process for polishing the annealed phosphor screen

A method for producing a high-resolution phosphor screen, comprising:



(1)前記請求項1記載の製造方法で得られた蛍光面板を複数用意して正方形に切断して複数の正方形蛍光面板を作成する切断工程と

(2)複数の前記正方形蛍光面板の4つの切断面に接着剤を塗布する塗布工程と

(3)複数の前記正方形蛍光面板同士の間には金属薄膜を介して接着し、大型複合蛍光面板を作成する接着形成工程と

(4)前記大型複合蛍光面板の片面に接着剤を塗布してアルミ箔接着した基板に接着する接着工程

とを備えることを特徴とする高解像度蛍光面板の製造方法。

(1) a cutting step of preparing a plurality of phosphor screens obtained by the manufacturing method according to claim 1 and cutting into squares to form a plurality of square phosphor screens;

(2) an application step of applying an adhesive to four cut surfaces of the plurality of square phosphor screens;

(3) An adhesion forming step of bonding a plurality of the square fluorescent screen plates through a metal thin film to create a large composite fluorescent screen plate;

(4) Adhesion step of applying an adhesive to one surface of the large composite phosphor screen and adhering to an aluminum foil bonded substrate

A method for producing a high-resolution phosphor screen, comprising:
請求項1に記載した製造方法で作成されたことを特徴とする高解像度蛍光面板。     A high-resolution phosphor screen produced by the manufacturing method according to claim 1. 請求項2に記載した製造方法で作成されたことを特徴とする高解像度蛍光面板。     A high-resolution phosphor screen produced by the manufacturing method according to claim 2.
JP2013242039A 2013-11-22 2013-11-22 High resolution phosphor screen and method for producing high resolution phosphor screen Expired - Fee Related JP5767765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013242039A JP5767765B2 (en) 2013-11-22 2013-11-22 High resolution phosphor screen and method for producing high resolution phosphor screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013242039A JP5767765B2 (en) 2013-11-22 2013-11-22 High resolution phosphor screen and method for producing high resolution phosphor screen

Publications (2)

Publication Number Publication Date
JP2015102383A JP2015102383A (en) 2015-06-04
JP5767765B2 true JP5767765B2 (en) 2015-08-19

Family

ID=53378203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013242039A Expired - Fee Related JP5767765B2 (en) 2013-11-22 2013-11-22 High resolution phosphor screen and method for producing high resolution phosphor screen

Country Status (1)

Country Link
JP (1) JP5767765B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222598A (en) * 1988-07-12 1990-01-25 Konica Corp Radiation image conversion panel and production thereof
JPH09145844A (en) * 1995-11-24 1997-06-06 Matsushita Electric Ind Co Ltd Radiographic image pickup device

Also Published As

Publication number Publication date
JP2015102383A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
CN102590913A (en) Grid for radiography, radiation image detector, radiation imaging system, and method for manufacturing grid
US20040251420A1 (en) X-ray detectors with a grid structured scintillators
TW201106001A (en) Radiographic detector formed on scintillator
JP2011017683A (en) Radiation image detector, and manufacturing method of the same
WO2014171343A1 (en) Scintillator panel and process for producing same, and radiation detector and process for producing same
US10254415B2 (en) Scintillator panel for X-ray talbot imaging apparatus, image detecting panel for X-ray talbot imaging apparatus, and X-ray talbot imaging apparatus
JP2011257339A (en) Radiation image detection device
US10345456B2 (en) Radiation detector and method for producing a radiation detector
EP3392678B1 (en) Scintillator panel and radiation detector
US9989652B2 (en) Pixelated scintillator with optimized efficiency
KR20210081147A (en) Dual Radiation Detector Having Stack of Curved Scintillator
KR20200075227A (en) High-resolution Hybrid Radiation Detector
JP5767765B2 (en) High resolution phosphor screen and method for producing high resolution phosphor screen
KR20220064678A (en) Radiation Detector using Scintillator having High Sensitivity and High Resolution
JP2019060821A (en) Panel for x-ray talbot imaging
KR101198067B1 (en) Radiation Detection Apparatus using Laminated Type Scintillation Structure
WO2010137384A1 (en) Radiation detection device and method of manufacturing this device
JP6740943B2 (en) Radiation conversion panel and Talbot imager
JP2012058170A (en) Scintillator panel
JP2008032407A (en) Scintillator panel and radiation detector
KR20200009931A (en) Radiation Detector for Implementing Low Dose and High Resolution using Backside Light-Receiving Structure
JP6460440B2 (en) X-ray phosphor plate
KR20210081146A (en) Curved Radiation Detector for Implementing Low Dose and High Resolution using Backside Light-Receiving Structure
JP2018096714A (en) Scintillator plate, radiation detector and radiation measurement system
JP7163651B2 (en) Scintillator panel and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150620

R150 Certificate of patent or registration of utility model

Ref document number: 5767765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees