JP5767528B2 - PTFE and modified PTFE film processing method and medical rubber plug manufacturing method - Google Patents
PTFE and modified PTFE film processing method and medical rubber plug manufacturing method Download PDFInfo
- Publication number
- JP5767528B2 JP5767528B2 JP2011174990A JP2011174990A JP5767528B2 JP 5767528 B2 JP5767528 B2 JP 5767528B2 JP 2011174990 A JP2011174990 A JP 2011174990A JP 2011174990 A JP2011174990 A JP 2011174990A JP 5767528 B2 JP5767528 B2 JP 5767528B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- ptfe
- ptfe film
- cooling
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
Description
本発明は、例えばゴム成形品をラミネートするPTFEフィルムおよびPTFEフィルムがラミネートされた医療用ゴム栓の製造方法に関する。 The present invention relates to a PTFE film for laminating, for example, a rubber molded product and a method for producing a medical rubber stopper laminated with a PTFE film.
例えば、医薬品等が充填された容器の(医療用)ゴム栓に用いられるゴム部材に求められる機能は、密封状態を維持することであり、具体的には外部からの気体または微生物の進入のおそれがないこととされる。この機能のため、気体透過性の小さなブチルゴムを原材料とし、ゴム弾性による応力を利用して微生物が進入するおそれのある容器との隙間を埋めるのが一般的な手法である。 For example, a function required for a rubber member used for a (medical) rubber stopper of a container filled with pharmaceuticals or the like is to maintain a sealed state, and specifically, there is a risk of ingress of gas or microorganisms from the outside. It is said that there is no. For this function, it is common practice to use butyl rubber, which has a low gas permeability, as a raw material, and to fill a gap with a container into which microorganisms may enter using stress due to rubber elasticity.
しかし、ブチルゴム自体が粘着性の強い原材料でありかつゴム弾性により圧縮された状態で使用されるため、容器等に密着した状態での移動が円滑でなく、摺動する部分に使用する場合には非常な困難が伴う。
この摺動性が悪いという問題に対しては、摺動面にシリコーンオイルを塗布して解決することが行われている(特許文献1,2)。しかし、近年シリコーンオイルの薬液に与える影響が懸念されており、シリコーンオイルの塗布が制限される場面がしばしば見られるようになった。
However, since butyl rubber itself is a highly sticky raw material and is used in a compressed state due to rubber elasticity, the movement in a state of being in close contact with a container or the like is not smooth, and when used for sliding parts It is very difficult.
To solve this problem of poor slidability, silicone oil is applied to the sliding surface (Patent Documents 1 and 2). However, in recent years, there is a concern about the influence of silicone oil on chemicals, and there are many cases where the application of silicone oil is restricted.
シリコーンオイルの塗布を行わないで摺動性を向上させる手段として、ゴム部材の表面に摺動性の良いフィルム等をラミネートする方法が考えられる。ラミネートするフィルムとしては、摺動性が良いこと、化学的に安定なこと、耐熱性が高いこと、などからフッ素樹脂によるフィルムが好適であり、特にポリテトラフルオロエチレン(PTFE)フィルムが好適と考えられる。 As a means for improving the slidability without applying silicone oil, a method of laminating a film having good slidability on the surface of the rubber member is conceivable. As a film to be laminated, a film made of a fluororesin is preferable because it has good slidability, chemical stability, and high heat resistance, and a polytetrafluoroethylene (PTFE) film is particularly preferable. It is done.
摺動性の問題とは別に、ゴム部材と薬液との接触を回避したいという要求もある。ゴム
部材から薬液への溶出、または薬液からゴム部材への進入を防ぐためである。
ゴム部材の表面に薬液が接するのを妨げるには、薬液の透過性を有しないフィルムなどでラミネートする方法が考えられる。この目的に対しても、化学的に安定なこと、耐熱性が高いことなどから、PTFE等のフッ素樹脂によるフィルムが好適と考えられる。
Apart from the problem of slidability, there is also a demand to avoid contact between the rubber member and the chemical solution. This is to prevent elution from the rubber member into the chemical solution or entry from the chemical solution into the rubber member.
In order to prevent the chemical liquid from coming into contact with the surface of the rubber member, a method of laminating with a film or the like that does not have a chemical liquid permeability can be considered. For this purpose, a film made of a fluororesin such as PTFE is considered preferable because it is chemically stable and has high heat resistance.
PTFEフィルムをラミネートしたゴム部材を製造する工程としては、平坦な加硫前のゴムシートとPTFEフィルムとを重ね合わせ、ゴムプレス成形によって加硫接着を行いながら立体的なゴム栓形状に成形する工程が予想される。このような成形の場合、通常は成形前後でフィルムの表面積が変化する。
実際にゴムプレス成形によりラミネート品を成形してみると、PTFEフィルムの表面積が増大する場合には、増大した表面積に応じてPTFEフィルムは延伸され、成形後のPTFEフィルムの厚みは、延伸(面積増大)の程度に対応する減少が観察される。
As a process for producing a rubber member laminated with a PTFE film, a flat unvulcanized rubber sheet and a PTFE film are laminated and molded into a three-dimensional rubber plug shape while performing vulcanization adhesion by rubber press molding. Is expected. In such molding, the surface area of the film usually changes before and after molding.
When a laminate product is actually molded by rubber press molding, when the surface area of the PTFE film increases, the PTFE film is stretched according to the increased surface area, and the thickness of the PTFE film after molding is stretched (area A decrease corresponding to the degree of increase is observed.
しかしながら、PTFEフィルムは延伸されることにより結晶化し、ミクロボイド(小さい空隙)と呼ばれる空隙が発生することが知られている。また、甚だしくは、多孔質のフィルムになることが知られている。これらの空隙は、ゴム部材に求められる密閉性に悪影響を与える。また、ゴム部材と薬液とが接触する用途に使用される場合、ゴム部材と薬液との接触を防止することができず、空隙の存在は好ましいものではない。 However, it is known that a PTFE film crystallizes by being stretched to generate voids called microvoids (small voids). Further, it is known to become a porous film. These voids adversely affect the sealing properties required for the rubber member. Further, when the rubber member and the chemical solution are used for an application, the contact between the rubber member and the chemical solution cannot be prevented, and the presence of voids is not preferable.
本発明は、上述の問題に鑑みてなされたもので、延伸処理では空隙が生じにくいPTFEフィルム、変成PTFEフィルムの加工方法、および医療用ゴム栓の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, PTFE film voids hardly occur in the rolled Shin processing, and to provide a processing method of the modified PTFE film, and a manufacturing method of a medical rubber stopper.
本発明に係るPTFEおよび変性PTFEフィルムの加工方法は、PTFEまたは変性PTFEのフィルムをその融点以上に加熱する加熱工程と、前記融点以上に加熱された前記フィルムを10℃/分以上の冷却速度で前記融点をまたいで冷却する冷却工程と、からなる。そして、前記加熱工程および冷却工程は、前記フィルムの両面を鉄板で挟んで行う。 The processing method of the PTFE and modified PTFE film according to the present invention includes a heating step of heating the PTFE or modified PTFE film to the melting point or higher, and the film heated to the melting point or higher at a cooling rate of 10 ° C./min or more. And a cooling step for cooling across the melting point. And the said heating process and cooling process are performed by pinching both surfaces of the said film with an iron plate.
本発明に係る医療用ゴム栓の製造方法は、PTFEまたは変性PTFEのフィルムをその融点以上に加熱する加熱工程と、前記融点以上に加熱された前記フィルムを10℃/分以上の冷却速度で前記融点をまたいで冷却する冷却工程と、冷却された前記フィルムをゴム部材と一体化し加硫成形する工程と、からなる。前記加熱工程および冷却工程は、前記フィルムの両面を鉄板で挟んで行う。 The method for producing a medical rubber plug according to the present invention includes a heating step of heating a PTFE or modified PTFE film to a melting point or higher, and the film heated to the melting point or higher at a cooling rate of 10 ° C./min or more. It comprises a cooling step of cooling across the melting point and a step of vulcanizing and molding the cooled film with a rubber member. The heating step and the cooling step are performed by sandwiching both surfaces of the film with iron plates.
いずれの方法も、前記加熱工程前の前記フィルムの厚みが、0.05mm以上0.3mm以下が好ましい。In any method, the thickness of the film before the heating step is preferably 0.05 mm or more and 0.3 mm or less.
本発明によると、延伸処理で空隙が生じにくいPTFEおよび変性PTFEのフィルム、ラミネートされたPTFEフィルムの空隙が僅かな医療用ゴム栓を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the rubber plug for medical treatment with few gaps of the film of PTFE and modified PTFE and the laminated PTFE film in which voids are less likely to be generated by stretching treatment can be provided.
一般に、高分子化合物である樹脂の結晶化度は、その分子量および分子量分布等により影響を受けるが、熱履歴によっても変化する。具体的には、融点以上の温度で融解した後急速に冷却をすると、結晶化が進む前に立体構造が固定されて結晶化度が低くなる。これとは逆に、融解させた後にゆっくりと冷却した場合には、結晶化度が高くなる。また、融解熱は結晶を融解するために必要な熱量であるため、結晶化度が低い高分子では融解熱は小さくなる。このことは、フッ素樹脂(PTFE)についても同様である。 In general, the crystallinity of a resin, which is a polymer compound, is affected by its molecular weight, molecular weight distribution, and the like, but also changes depending on the thermal history. Specifically, if the cooling is rapidly performed after melting at a temperature equal to or higher than the melting point, the three-dimensional structure is fixed before the crystallization proceeds and the crystallinity becomes low. On the other hand, when it is slowly cooled after melting, the degree of crystallinity increases. Further, since the heat of fusion is the amount of heat necessary to melt the crystal, the heat of fusion is small for a polymer having a low crystallinity. The same applies to fluororesin (PTFE).
そこで、延伸処理で空隙が生じにくいPTFEフィルムを得るという課題を解決するために、本発明者はPTFEフィルムの結晶化度の指標として融解熱を選択して検討した。
そして、指標としての融解熱を一定値以下にすれば、延伸処理において空隙が生じにくいPTFEフィルムが得られることを発見した。
表1はPTFEフィルムの熱履歴を異ならせて融解熱を変化させ、融解熱と空隙を生ずる程度との関係を求めたものである。
Therefore, in order to solve the problem of obtaining a PTFE film in which voids are hardly generated by stretching, the present inventor selected and studied heat of fusion as an index of crystallinity of the PTFE film.
And when the heat of fusion as a parameter | index was made into a fixed value or less, it discovered that the PTFE film which a space | gap does not easily produce in an extending | stretching process was obtained.
Table 1 shows the relationship between the heat of fusion and the degree of formation of voids by changing the heat of fusion of the PTFE film to change the heat of fusion.
PTFEは、融点以上の温度でも流動性を示さないため、一般の熱可塑性樹脂のように押出機からダイを経由させてフィルムを成形する方法ではなく、フィルム化するには一般にスカイブ法が用いられる。スカイブ法は、PTFEパウダーを原料として円筒状の圧縮成形体を作成し、融点以上の温度で焼成したのち、所望の厚みのフィルムに削り出す方法である。 Since PTFE does not exhibit fluidity even at temperatures above the melting point, it is not a method of forming a film from an extruder through a die like a general thermoplastic resin, but a skive method is generally used to form a film. . The skive method is a method in which a cylindrical compression-molded body is produced using PTFE powder as a raw material, fired at a temperature equal to or higher than the melting point, and then cut into a film having a desired thickness.
工業的には、圧縮成形体のサイズが大きい方がコスト的に有利であるが、焼成後の冷却において冷媒(環境)との温度差を大きくすると、PTFEの低い熱伝導率のために内部に温度勾配が生じ、結晶化度を均一にすることができない。
したがって、圧縮成形体の結晶化度を均一にするため、工業的には冷却を徐々に行うのが一般的である。具体的には、冷却速度を50℃/時間よりも緩やかにすることが通常であり、このように冷却された成形体から切削したフィルムの融解熱は28mJ/mg程度である。
Industrially, the larger size of the compression-molded body is advantageous in terms of cost. However, when the temperature difference from the refrigerant (environment) is increased in the cooling after firing, the temperature is increased due to the low thermal conductivity of PTFE. A temperature gradient occurs and the crystallinity cannot be made uniform.
Therefore, in order to make the degree of crystallinity of the compression-molded body uniform, cooling is generally performed gradually industrially. Specifically, the cooling rate is usually made slower than 50 ° C./hour, and the heat of fusion of the film cut from the molded body thus cooled is about 28 mJ / mg.
表1において使用されたPTFEフィルムも、スカイブ法により製造されたものである。
PTFEフィルムは、日本バルカー社において厚さ0.1mmに切削されたものを使用した。
表1における加熱は、PTFEフィルムを一定の大きさの矩形に切り分け、両面を平らな鉄板で挟み、350℃に設定した恒温槽に一定時間入れることにより行った。
The PTFE film used in Table 1 is also produced by the skive method.
The PTFE film used was cut to a thickness of 0.1 mm by Nippon Valqua Company.
The heating in Table 1 was performed by cutting the PTFE film into rectangles of a certain size, sandwiching both sides with flat iron plates, and placing them in a thermostat set at 350 ° C. for a certain period of time.
実施例1における冷却は、PTFEフィルムが鉄板に挟まれた状態のまま常温(25℃前後)の水に投入して行った。実施例2における冷却は、加熱後に、PTFEフィルムを入れたまま恒温槽内を降温条件−10℃/分で温度低下させることにより行った。
結晶化度を低下させる処理において、PTFEフィルムを鉄板で挟んだのは、急冷時の熱収縮によるPTFEフィルムの変形を防ぐためである。
The cooling in Example 1 was performed by putting it in water at room temperature (around 25 ° C.) with the PTFE film sandwiched between iron plates. Cooling in Example 2 was performed by lowering the temperature in the thermostatic chamber at −10 ° C./min while the PTFE film was put after heating.
The reason why the PTFE film is sandwiched between the iron plates in the process of reducing the crystallinity is to prevent deformation of the PTFE film due to thermal shrinkage during rapid cooling.
表1における融解熱は、JIS K7122「プラスチックの転移熱測定方法」に従って測定した結果である。使用したDSC装置は、エスアイアイ・ナノテクノロジー株式会社製DSC6220である。測定には略8mgのPTFEフィルムを試験片に用い、昇温速度を10℃/分とした。融解熱は、PTFEの融点である330℃近辺の吸熱部位の面積から算出した。 The heat of fusion in Table 1 is the result of measurement according to JIS K7122 “Method of measuring the transition heat of plastic”. The DSC apparatus used is DSC6220 manufactured by SII Nano Technology. For the measurement, approximately 8 mg of PTFE film was used as a test piece, and the heating rate was 10 ° C./min. The heat of fusion was calculated from the area of the endothermic site near 330 ° C., which is the melting point of PTFE.
空隙の数を測定するための試料は、次のようにして調製した。
実施例1,2および比較例1のPTFEフィルムについて、その表面をイオンビーム処理し、厚さ2mmのシート状に成形した未加硫のハロゲン化ブチルゴム(ゴム部材)に積層してプレス加硫した。プレス加硫のための金型は、内径12mm、高さ7mmの医療用ゴム栓を模したキャビティ9個を有するものである。
A sample for measuring the number of voids was prepared as follows.
The PTFE films of Examples 1 and 2 and Comparative Example 1 were subjected to ion beam treatment, laminated on unvulcanized halogenated butyl rubber (rubber member) formed into a sheet having a thickness of 2 mm, and press vulcanized. . A mold for press vulcanization has nine cavities imitating a medical rubber stopper having an inner diameter of 12 mm and a height of 7 mm.
プレス加硫には、架橋剤として2−ジ−n−ブチルアミノ−4,6−ジメルカプト−s−トリアジン(三協化成株式会社製、ジスネット(登録商標))を使用した。プレス加硫は、180℃、20MPaの条件で5分行った。
表2はPTFEフィルムを除くプレス加硫における原材料および使用割合を示すものである。
For the press vulcanization, 2-di-n-butylamino-4,6-dimercapto-s-triazine (manufactured by Sankyo Kasei Co., Ltd., Disnet (registered trademark)) was used as a crosslinking agent. The press vulcanization was performed for 5 minutes under the conditions of 180 ° C. and 20 MPa.
Table 2 shows raw materials and use ratios in press vulcanization excluding the PTFE film.
フィルムの表面積は、プレス加硫処理により113平方mmから376平方mmに変化し、略3倍に延伸された。
空隙の有無は、実施例1,2および比較例1のPTFEフィルムを使用して加硫成形されたそれぞれ9個の医療用ゴム栓状の成形品について、キーエンス社製デジタルマイクロスコープVHX−600を使用し、倍率150倍でその表面を観察して確認した。
The surface area of the film was changed from 113 square mm to 376 square mm by press vulcanization, and stretched approximately 3 times.
Regarding the presence or absence of voids, the digital microscope VHX-600 manufactured by Keyence Co., Ltd. was used for each of 9 medical rubber plug-shaped molded products vulcanized and molded using the PTFE films of Examples 1 and 2 and Comparative Example 1. Used and confirmed by observing the surface at a magnification of 150 times.
表1における空隙の数は、成形品におけるPTFEフィルムを貫通する孔のうち最長部分の長さが100μm以上の孔を数えたものである。
表1から判るように、加硫成形により生ずる空隙の数は、未処理のPTFEを使用した成形品(比較例1)が成形品1個あたり8.7であったのに対して、融解熱を23mJ/mgに低下させる処理を行った成形品(実施例2)では空隙が成形品1個あたり0.5個未満となり、融解熱を19mJ/mgにまで低下させる処理を行った成形品(実施例1)では空隙が観察されなかった。
The number of voids in Table 1 is the number of holes having a length of the longest portion of 100 μm or more among the holes penetrating the PTFE film in the molded product.
As can be seen from Table 1, the number of voids produced by vulcanization molding was 8.7 for each molded product (comparative example 1) using untreated PTFE, whereas the heat of fusion. In the molded product (Example 2) subjected to the treatment for reducing the slag to 23 mJ / mg, the voids were less than 0.5 per molded product, and the molded product subjected to the treatment for reducing the heat of fusion to 19 mJ / mg ( No voids were observed in Example 1).
PTFEフィルムの結晶化度を下げる処理における、加熱と冷却の方法に特に指定はないが、急冷時の熱収縮によるPTFEフィルムの変形を防ぐ工夫が必要である。PTFEフィルムの熱収縮による変形を防ぐには、小規模処理では、例えばPTFEフィルムの両面を平らな鉄板で挟む等で対処し、大規模処理では、長尺ロールからのPTFEフィルムを、繰り出しを断続的に行い停止時に鉄板で挟んで加熱および冷却を行うバッチ式処理、または繰り出しを連続的に行い、PTFEフィルムの両面を挟みPTFEフィルムとともに移動する耐熱平板を介して加熱および冷却を行う連続式処理が採用される。 There is no particular designation for the heating and cooling methods in the process of reducing the crystallinity of the PTFE film, but it is necessary to devise measures to prevent deformation of the PTFE film due to thermal shrinkage during rapid cooling. In order to prevent deformation of PTFE film due to heat shrinkage, in small scale processing, for example, both sides of the PTFE film are sandwiched between flat iron plates. In large scale processing, the PTFE film from a long roll is intermittently fed. Batch processing that heats and cools between steel plates at the time of stopping, or continuous processing that heats and cools through a heat-resistant flat plate that performs continuous feeding and sandwiches both sides of the PTFE film and moves with the PTFE film Is adopted.
結晶化度を低下させる処理における加熱速度は、特に指定がないが、PTFEフィルムが融点以上の温度に確実に達していればよい。加熱後の冷却速度に関しても特に指定はないが、融点をまたぐ時点での冷却速度が10℃/分以上が好ましく、100℃/分以上であることがより好ましい。急冷の目的は結晶化度の制御であり、融点より十分に温度が低下した後の冷却速度は特に指定しない。 The heating rate in the treatment for reducing the crystallinity is not particularly specified, but it is sufficient that the PTFE film surely reaches a temperature equal to or higher than the melting point. The cooling rate after heating is not particularly specified, but the cooling rate at the time of crossing the melting point is preferably 10 ° C./min or more, and more preferably 100 ° C./min or more. The purpose of the rapid cooling is to control the crystallinity, and the cooling rate after the temperature is sufficiently lowered from the melting point is not specified.
使用するPTFEフィルムの厚みは特に制限がないが、急冷効果を得るためには0.3mm以下が好ましく、0.2mm以下が更に好ましい。加硫成形処理においてフィルムとしての形態を維持するにはある程度の強度を持つことが好ましく、PTFEフィルムは、0.05mm以上の厚みを持つことが好ましい。つまり、PTFEフィルムの厚みは、0.05mm以上0.2mm以下が好ましい。 Although there is no restriction | limiting in particular in the thickness of the PTFE film to be used, 0.3 mm or less is preferable and 0.2 mm or less is still more preferable in order to acquire the rapid cooling effect. In order to maintain the film form in the vulcanization molding treatment, it is preferable that the film has a certain degree of strength, and the PTFE film preferably has a thickness of 0.05 mm or more. That is, the thickness of the PTFE film is preferably 0.05 mm or more and 0.2 mm or less.
PTFEフィルムがラミネートされたゴム栓を製造するためには、PTFEフィルムとゴムとの接着が必要である。延伸後に空隙のないPTFEフィルムを得るには、PTFEフィルムを高温で加熱する処理を伴うため、ゴム部材への接着処理は結晶化度の制御のあとに行うことが好ましい。接着が困難なPTFEフィルムをゴム部材に接着可能とする処理は、既知の方法で行えばよい。例えば、金属ナトリウムと液体アンモニアとを使用してPTFEフィルムの接着面を化学的に処理する方法(ナトリウム−アンモニア処理)、プラズマ処理等でPTFEフィルムの接着面の構造を物理的に変化させる方法等が挙げられる。ナトリウム−アンモニア処理は接着強度を高くすることができ、化学的な処理であるため結晶化度への影響が少なく好ましい。プラズマ処理は、着色のない接着処理が可能なため、好ましい。 In order to manufacture a rubber plug laminated with a PTFE film, adhesion between the PTFE film and rubber is necessary. In order to obtain a PTFE film having no voids after stretching, a process of heating the PTFE film at a high temperature is involved. Therefore, the adhesion treatment to the rubber member is preferably performed after controlling the crystallinity. What is necessary is just to perform the process which makes it possible to adhere | attach the PTFE film which is hard to adhere | attach on a rubber member by a known method. For example, a method of chemically treating the adhesive surface of the PTFE film using sodium metal and liquid ammonia (sodium-ammonia treatment), a method of physically changing the structure of the adhesive surface of the PTFE film by plasma treatment, etc. Is mentioned. Sodium-ammonia treatment is preferable because it can increase the adhesive strength and is a chemical treatment, and thus has little influence on crystallinity. The plasma treatment is preferable because an adhesion treatment without coloring is possible.
使用するフィルムの材料は、PTFEの他に変性PTFE、例えばパーフルオロアルコキシド変性PTFEを使用することができる。変性PTFEフィルムについても、融解熱を23mJ/mg以下に、好ましくは19mJ/mgにまで低下させる処理を行うことにより、加硫成形において空隙の発生を防ぐことができる。 As the material of the film to be used, modified PTFE such as perfluoroalkoxide modified PTFE can be used in addition to PTFE. With respect to the modified PTFE film, the generation of voids can be prevented in vulcanization molding by performing a treatment for reducing the heat of fusion to 23 mJ / mg or less, preferably to 19 mJ / mg.
本発明は、ゴム成形品をラミネートするPTFEおよび変性PTFEのフィルムならびにPTFEまたは変性PTFEのフィルムがラミネートされた医療用ゴム栓に利用することができる。 The present invention may be a film of the film and PTFE or modified PTFE of the PTFE and modified PTFE laminated rubber molded article is used for a medical rubber stopper laminated.
Claims (4)
前記融点以上に加熱された前記フィルムを10℃/分以上の冷却速度で前記融点をまたいで冷却する冷却工程と、からなり、
前記加熱工程および冷却工程は、前記フィルムの両面を鉄板で挟んで行う
ことを特徴とするPTFEおよび変性PTFEのフィルムの加工方法。 A heating step of heating the PTFE or modified PTFE film above its melting point;
A cooling step of cooling across the melting point heated the film a 10 ° C. / min or higher cooling rate than the melting point, Ri Tona,
The PTFE and modified PTFE film processing method, wherein the heating step and the cooling step are performed by sandwiching both surfaces of the film between iron plates .
請求項1に記載のPTFEおよび変性PTFEのフィルムの加工方法。The processing method of the film of PTFE and modified PTFE of Claim 1.
前記融点以上に加熱された前記フィルムを10℃/分以上の冷却速度で前記融点をまたいで冷却する冷却工程と、
冷却された前記フィルムをゴム部材と一体化し加硫成形する工程と、からなり、
前記加熱工程および冷却工程は、前記フィルムの両面を鉄板で挟んで行う
ことを特徴とする医療用ゴム栓の製造方法。 A heating step of heating the PTFE or modified PTFE film above its melting point;
A cooling step of cooling the film heated above the melting point across the melting point at a cooling rate of 10 ° C./min or more;
The cooled the film and a step of vulcanizing integrated with a rubber member, Ri Tona,
The method for producing a medical rubber plug, wherein the heating step and the cooling step are performed by sandwiching both surfaces of the film between iron plates .
請求項3に記載の医療用ゴム栓の製造方法。The manufacturing method of the medical rubber stopper of Claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011174990A JP5767528B2 (en) | 2011-08-10 | 2011-08-10 | PTFE and modified PTFE film processing method and medical rubber plug manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011174990A JP5767528B2 (en) | 2011-08-10 | 2011-08-10 | PTFE and modified PTFE film processing method and medical rubber plug manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013035988A JP2013035988A (en) | 2013-02-21 |
JP5767528B2 true JP5767528B2 (en) | 2015-08-19 |
Family
ID=47885886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011174990A Active JP5767528B2 (en) | 2011-08-10 | 2011-08-10 | PTFE and modified PTFE film processing method and medical rubber plug manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5767528B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6288558B2 (en) * | 2014-03-28 | 2018-03-07 | 大日本印刷株式会社 | Plasma-treated surface-smoothing fluororesin film and method for producing the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS549119A (en) * | 1977-06-23 | 1979-01-23 | Kawasaki Steel Co | Cooling method of cast strips in continuous casting |
JP3476478B2 (en) * | 1991-08-26 | 2003-12-10 | 大日商事株式会社 | Manufacturing method of synthetic resin products with identification mark |
JP3221074B2 (en) * | 1992-06-23 | 2001-10-22 | 住友電気工業株式会社 | Method for producing continuous molded article of high crystallinity polytetrafluoroethylene |
JPH06287541A (en) * | 1993-03-31 | 1994-10-11 | Nippon Valqua Ind Ltd | Covering and sealing material made using fluororesin |
JP2002209975A (en) * | 2001-01-19 | 2002-07-30 | Daikyo Seiko Ltd | Laminated rubber stopper for medical vial |
JP4659241B2 (en) * | 2001-03-19 | 2011-03-30 | ジャパンゴアテックス株式会社 | Polytetrafluoroethylene membrane and method for producing the same |
JP4307863B2 (en) * | 2003-02-13 | 2009-08-05 | ユニマテック株式会社 | Fluorine-containing copolymer and process for producing the same |
JP3691044B1 (en) * | 2004-03-09 | 2005-08-31 | ジャパンゴアテックス株式会社 | Elastic member, toner fixing unit and fixing device, and method of manufacturing elastic member |
-
2011
- 2011-08-10 JP JP2011174990A patent/JP5767528B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013035988A (en) | 2013-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010038800A1 (en) | Moldable polytetrafluoroethylene resin, application product, and process for producing same | |
TW201412833A (en) | Modified fluorine-containing copolymer, fluorine resin molded article, and method for manufacturing fluorine resin molded article | |
JP2017503052A (en) | Oriented fluoropolymer film | |
TWI731889B (en) | Resin film and its manufacturing method | |
CN104608448A (en) | Two-way stretch polylactic acid film capable of being directly thermally sealed and preparation method of two-way stretch polylactic acid film | |
Su et al. | Heat‐sealing properties of soy protein isolate/poly (vinyl alcohol) blend films: effect of the heat‐sealing temperature | |
JP2016536391A5 (en) | ||
JP2012025159A5 (en) | ||
TW202039665A (en) | Novel foaming process for production of foam materials | |
TW200833510A (en) | Method for forming porous PTFE layer, and porous PTFE layer and molded product that are obtained by the forming method | |
JP5767528B2 (en) | PTFE and modified PTFE film processing method and medical rubber plug manufacturing method | |
TW201406793A (en) | Modified fluorine-containing copolymer, fluorine resin molded article, and method for manufacturing fluorine resin molded article | |
JP4858545B2 (en) | Polytetrafluoroethylene molded body and method for producing the same | |
EP2695720A1 (en) | Method for producing transparent recycled sheet, and transparent recycled sheet | |
TW200831266A (en) | Method for preparation of microcellular foam with uniform foaming ratio and extruding and foaming system for the same | |
JP7049971B2 (en) | Molding method for polyarylene ether ketone resin sheet | |
JP2016172322A (en) | Method for producing fiber-reinforced thermoplastic resin-molded article | |
KR101497097B1 (en) | Method of manufacturing thermoplastic-resin sheet/film | |
TWI418575B (en) | Production method of heat-resistant polylactic acid element | |
EP4007688A1 (en) | Adjustable cte polymer compositions for extrusion and additive manufacturing processes | |
EP2611539B1 (en) | Method of bonding | |
CN111333980B (en) | Fluororubber and thermal expansion forming method | |
US8796413B2 (en) | Polymer material and method for producing same | |
CN108943515B (en) | Integral forming method of thermoplastic polyurethane component by using plate vulcanizing equipment | |
KR101967770B1 (en) | Manufacturing method of polycarbonate film having micro unevenness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140617 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150304 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150511 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150619 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5767528 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |