JP5767093B2 - Sulfur trioxide decomposition catalyst and hydrogen generation method - Google Patents

Sulfur trioxide decomposition catalyst and hydrogen generation method Download PDF

Info

Publication number
JP5767093B2
JP5767093B2 JP2011260754A JP2011260754A JP5767093B2 JP 5767093 B2 JP5767093 B2 JP 5767093B2 JP 2011260754 A JP2011260754 A JP 2011260754A JP 2011260754 A JP2011260754 A JP 2011260754A JP 5767093 B2 JP5767093 B2 JP 5767093B2
Authority
JP
Japan
Prior art keywords
sulfur trioxide
vanadium
catalyst
copper
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011260754A
Other languages
Japanese (ja)
Other versions
JP2013111542A (en
Inventor
竹島 伸一
伸一 竹島
町田 正人
正人 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
Toyota Motor Corp
Original Assignee
Kumamoto University NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC, Toyota Motor Corp filed Critical Kumamoto University NUC
Priority to JP2011260754A priority Critical patent/JP5767093B2/en
Publication of JP2013111542A publication Critical patent/JP2013111542A/en
Application granted granted Critical
Publication of JP5767093B2 publication Critical patent/JP5767093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

本発明は、三酸化硫黄(SO)分解用触媒に関する。また、本発明は、三酸化硫黄分解用触媒を用いて三酸化硫黄を分解する工程を含む水素生成方法に関する。 The present invention relates to a catalyst for decomposing sulfur trioxide (SO 3 ). The present invention also relates to a hydrogen generation method including a step of decomposing sulfur trioxide using a sulfur trioxide decomposition catalyst.

近年、地球温暖化等の問題から、燃焼時に二酸化炭素を生成しないクリーンエネルギーとしての水素が注目されている。   In recent years, hydrogen has been attracting attention as a clean energy that does not generate carbon dioxide during combustion due to problems such as global warming.

水素の生成のためには一般に、下記式(A1)及び(A2)で示される炭化水素燃料の水蒸気改質が用いられている:
(A1)C + nHO → nCO + (n+m/2)H
(A2)CO + HO → CO + H
全反応:C + 2nHO → nCO + (2n+m/2)H
In general, steam reforming of hydrocarbon fuels represented by the following formulas (A1) and (A2) is used for the production of hydrogen:
(A1) C n H m + nH 2 O → nCO + (n + m / 2) H 2
(A2) CO + H 2 O → CO 2 + H 2
Total reaction: C n H m + 2nH 2 O → nCO 2 + (2n + m / 2) H 2

したがって、水素の燃焼自体は二酸化炭素を生成させないものの、水素の生成においては二酸化炭素を発生させていることが一般的であった。   Therefore, although combustion of hydrogen itself does not generate carbon dioxide, it is general that carbon dioxide is generated in the generation of hydrogen.

これに関して、炭化水素燃料を用いずに水素を生成させるための方法として、太陽熱エネルギー又は原子力熱エネルギーを用いることが提案されている(特許文献1、非特許文献1)。   In this regard, it has been proposed to use solar thermal energy or nuclear thermal energy as a method for generating hydrogen without using a hydrocarbon fuel (Patent Document 1, Non-Patent Document 1).

熱エネルギーを利用して水から水素を生成させる方法としては、下記式(B1)〜(B3)で示されるI−S(ヨウ素−イオウ)サイクル法と呼ばれる方法が提案されている:
(B1)HSO(液体)
→ HO(気体) + SO(気体) + 1/2O(気体)
(反応温度=約950℃、ΔH=188.8kJ/mol−H
(B2)I(液体) + SO(気体) + 2HO(液体)
→ 2HI(液体) + HSO(液体)
(反応温度=約130℃、ΔH=−31.8kJ/mol−H
(B3)2HI(液体) → H(気体) + I(気体)
(反応温度=約400℃、ΔH=146.3kJ/mol−H
As a method for generating hydrogen from water using thermal energy, a method called an IS (iodine-sulfur) cycle method represented by the following formulas (B1) to (B3) has been proposed:
(B1) H 2 SO 4 (Liquid)
→ H 2 O (gas) + SO 2 (gas) + 1 / 2O 2 (gas)
(Reaction temperature = about 950 ° C., ΔH = 188.8 kJ / mol-H 2 )
(B2) I 2 (liquid) + SO 2 (gas) + 2H 2 O (liquid)
→ 2HI (liquid) + H 2 SO 4 (a liquid)
(Reaction temperature = about 130 ° C., ΔH = −31.8 kJ / mol-H 2 )
(B3) 2HI (liquid) → H 2 (gas) + I 2 (gas)
(Reaction temperature = about 400 ° C., ΔH = 146.3 kJ / mol-H 2 )

上記式(B1)〜(B3)で示されるI−S(ヨウ素−イオウ)サイクル法の全反応は下記のとおりである:
O → H + 1/2O
(ΔH=286.5kJ/mol−H(高位発熱量基準)
(ΔH=241.5kJ/mol−H(低位発熱量基準)
The overall reaction of the IS (iodine-sulfur) cycle method represented by the above formulas (B1) to (B3) is as follows:
H 2 O → H 2 + 1 / 2O 2
(ΔH = 286.5 kJ / mol-H 2 (based on higher heating value)
(ΔH = 241.5 kJ / mol-H 2 (low heating value standard)

ここで、上記式(B1)の反応は、下記式(B1−1)及び(B1−2)の2つの素反応に分けることができる:
(B1−1)HSO(液体) → HO(気体) + SO(気体)
(反応温度=約300℃、ΔH=90.9kJ/mol−H
(B1−2)SO(気体) → SO(気体) + 1/2O(気体)
(反応温度=約950℃、ΔH=97.9kJ/mol−H
Here, the reaction of the above formula (B1) can be divided into two elementary reactions of the following formulas (B1-1) and (B1-2):
(B1-1) H 2 SO 4 (liquid) → H 2 O (gas) + SO 3 (gas)
(Reaction temperature = about 300 ° C., ΔH = 90.9 kJ / mol-H 2 )
(B1-2) SO 3 (gas) → SO 2 (gas) + 1 / 2O 2 (gas)
(Reaction temperature = about 950 ° C., ΔH = 97.9 kJ / mol-H 2 )

すなわち、I−Sサイクル法で水素を生成する場合、式(B1−2)の三酸化硫黄(SO)分解反応において最も高い温度を必要とし、この反応で必要とされる高温を得ることが容易でなかった。 That is, when hydrogen is produced by the IS cycle method, the highest temperature is required in the sulfur trioxide (SO 3 ) decomposition reaction of the formula (B1-2), and the high temperature required for this reaction can be obtained. It was not easy.

このような問題に関して、非特許文献1では、熱源として太陽熱エネルギーを用いつつ、必要に応じて天然ガスを燃焼させて、追加の熱エネルギーを得るとしている。   Regarding such a problem, Non-Patent Document 1 describes that additional heat energy is obtained by burning natural gas as necessary while using solar thermal energy as a heat source.

また、式(B1−2)の三酸化硫黄分解反応において必要とされる温度を低下させるために、白金触媒を用いることが提案されている。しかしながら、この反応において白金触媒を用いる場合、触媒の使用開始時には高い特性を有するものの、反応によって生成する酸素によって白金が酸化され、白金粒子が粗大化することにより触媒活性が低下することが知られている。また、白金触媒は高価であることから、産業的な規模においては用いることが難しい。   In addition, it has been proposed to use a platinum catalyst in order to reduce the temperature required in the sulfur trioxide decomposition reaction of the formula (B1-2). However, when a platinum catalyst is used in this reaction, although it has high characteristics at the start of use of the catalyst, it is known that platinum is oxidized by oxygen generated by the reaction, and the catalyst activity decreases due to coarsening of platinum particles. ing. Also, platinum catalysts are expensive and difficult to use on an industrial scale.

これに関して、非特許文献2では、三酸化硫黄分解反応において必要とされる温度を低下させるために、白金(Pt)、クロム(Cr)、鉄(Fe)、及びそれらの酸化物からなる群より選択される触媒をアルミナ担体に担持させて用いることを提案している。   In this regard, in Non-Patent Document 2, in order to reduce the temperature required in the sulfur trioxide decomposition reaction, from the group consisting of platinum (Pt), chromium (Cr), iron (Fe), and oxides thereof. It has been proposed to use a selected catalyst supported on an alumina support.

また、I−Sサイクル法に関して、特許文献2では、上記式(B2)で表される反応、すなわちヨウ素、二酸化硫黄及び水から、ヨウ化水素及び硫酸を得る反応において、二酸化硫黄と水との反応をカチオン交換膜の正極側で行わせ、かつヨウ素の反応をカチオン交換膜の負極側で行わせることによって、その後の分離操作を省略することを提案している。   Regarding the IS cycle method, in Patent Document 2, in the reaction represented by the above formula (B2), that is, in the reaction for obtaining hydrogen iodide and sulfuric acid from iodine, sulfur dioxide and water, sulfur dioxide and water are mixed. It is proposed that the subsequent separation operation is omitted by allowing the reaction to be performed on the positive electrode side of the cation exchange membrane and the reaction of iodine to be performed on the negative electrode side of the cation exchange membrane.

なお、I−Sサイクル法以外にも、熱エネルギーを利用して水素を生成する方法として、ウエスティングハウス・サイクル、Ispra−Mark 13サイクル法、ロスアラモス・サイエンスラボラトリ・サイクル法等が知られているが、これらの方法においても、式(B1−2)でのようにして、三酸化硫黄を二酸化硫黄と水素とに分解することが必要とされている。   In addition to the IS cycle method, Westinghouse cycle, Ispra-Mark 13 cycle method, Los Alamos Science Laboratory cycle method, and the like are known as methods for generating hydrogen using thermal energy. Also in these methods, it is necessary to decompose sulfur trioxide into sulfur dioxide and hydrogen as in formula (B1-2).

特開2007−218604号公報JP 2007-218604 A 特開2005−041764号公報Japanese Patent Laid-Open No. 2005-041764

A.Giaconia, et al., International Journal of Hydrogen Energy, 32, 469−481(2007)A. Giaconia, et al. , International Journal of Hydroenergy, 32, 469-481 (2007). H.Tagawa, et al.,International Journal of Hydrogen Energy, 14, 11−17(1989)H. Tagawa, et al. , International Journal of Hydrology Energy, 14, 11-17 (1989).

本発明では、三酸化硫黄分解触媒、特に水から水素を生成する際に必要とされる温度を低下させることができる三酸化硫黄分解触媒を提供する。   The present invention provides a sulfur trioxide decomposition catalyst, particularly a sulfur trioxide decomposition catalyst that can lower the temperature required when hydrogen is produced from water.

本件発明者は、鋭意検討の結果、下記の本発明に想到した。   As a result of intensive studies, the present inventor has arrived at the present invention described below.

〈1〉銅とバナジウムとの複合酸化物がシリカ担体に担持されてなり、かつラマン分光分析において、バナジウム−酸素(V−O)結合に起因する920cm−1付近のピークの高さが、下記の(a)及び(b)の少なくとも一方の条件を満たす、三酸化硫黄分解触媒:
(a)前記920cm−1付近のピークの高さが、バナジウム−酸素(V−O)結合に起因する他のピークの最大高さの3.0倍以下、及び
(b)前記920cm−1付近のピークの半値幅が、30cm−1以上。
〈2〉前記複合酸化物において、銅とバナジウムとの原子比が、1:9〜9:1である、上記〈1〉項に記載の触媒。
〈3〉条件(a)を少なくとも満たす、上記〈1〉又は〈2〉項に記載の触媒。
〈4〉条件(b)を少なくとも満たす、上記〈1〉又は〈2〉項に記載の触媒。
〈5〉条件(a)において、前記920cm−1付近のピークの高さが、バナジウム−酸素(V−O)結合に起因する他のピークの最大高さの1.5倍以下である、上記〈1〉〜〈4〉項のいずれか一項に記載の触媒。
〈6〉条件(b)において、前記920cm−1付近のピークの半値幅が、40cm−1以上である、上記〈1〉〜〈5〉項のいずれか一項に記載の触媒。
〈7〉前記シリカ担体が、細孔構造を有する多孔質シリカ担体である、上記〈1〉〜〈6〉項のいずれか一項に記載の触媒。
〈8〉前記複合酸化物が、前記多孔質シリカ担体の細孔構造内に担持されており、且つ
前記多孔質シリカ担体の細孔分布において、シリカの一次粒子間の間隙に起因するピークが、細孔径5〜50nmの範囲にあり、且つシリカ粒子内の細孔構造に起因するピークが、細孔径1〜5nmの範囲にある、
上記〈7〉項に記載の触媒。
〈9〉(a)銅塩の水溶液及びバナジウム塩の水溶液の一方の水溶液を、シリカ担体に吸水させ、乾燥及び仮焼成すること、
(b)工程(a)の後で、銅塩の水溶液及びバナジウム塩の水溶液の他方の水溶液を、前記シリカ担体に吸水させ、乾燥及び仮焼成すること、そして
(c)工程(b)の後で、得られた前記シリカ担体を700℃以上の温度で焼成すること
を含み、かつ
工程(c)における前記熱処理の前に、前記シリカ担体が700℃以上の熱処理を受けていない、
三酸化硫黄分解触媒の製造方法。
〈10〉(a)銅塩及びバナジウム塩を含有する水溶液を、シリカ担体に吸水させ、乾燥及び仮焼成すること、
(b)工程(a)の後で、得られた前記シリカ担体を700℃以上の温度で焼成すること
を含み、かつ
工程(b)における前記熱処理の前に、前記シリカ担体が700℃以上の熱処理を受けていない、
三酸化硫黄分解触媒の製造方法。
〈11〉上記〈1〉〜〈8〉項のいずれか一項に記載の三酸化硫黄分解触媒を用いて、三酸化硫黄を二酸化硫黄と酸素とに分解することを含む、二酸化硫黄の生成方法。
〈12〉前記分解を800℃以下の温度で行う、上記〈11〉項に記載の方法。
〈13〉水を、水素及び酸素に分解することを含む、水素生成方法であって、下記式(X1)で示される反応で、硫酸を、水、二酸化硫黄、及び酸素に分解することを含み、且つ下記式(X1)で示される反応の素反応である式(X1−1)及び(X1−2)の素反応のうち、式(X1−2)の素反応を、上記〈11〉又は〈12〉項に記載の方法によって行う、水素生成方法:
(X1)HSO → HO + SO + 1/2O
(X1−1)HSO → HO + SO
(X1−2)SO → SO + 1/2O
〈14〉I−Sサイクル法、ウエスティングハウス・サイクル法、Ispra−Mark 13サイクル法、又はロスアラモス・サイエンスラボラトリ・サイクル法である、上記〈13〉項に記載の水素生成方法。
<1> A complex oxide of copper and vanadium is supported on a silica carrier, and in Raman spectroscopic analysis, the peak height in the vicinity of 920 cm −1 due to the vanadium-oxygen (VO) bond is The sulfur trioxide decomposition catalyst that satisfies at least one of the conditions (a) and (b):
(A) The height of the peak in the vicinity of 920 cm −1 is not more than 3.0 times the maximum height of the other peak due to the vanadium-oxygen (V—O) bond, and (b) in the vicinity of 920 cm −1. The half-width of the peak of 30 cm −1 or more.
<2> The catalyst according to <1>, wherein the composite oxide has an atomic ratio of copper to vanadium of 1: 9 to 9: 1.
<3> The catalyst according to <1> or <2>, which satisfies at least the condition (a).
<4> The catalyst according to <1> or <2>, which satisfies at least the condition (b).
<5> In the condition (a), the height of the peak in the vicinity of 920 cm −1 is 1.5 times or less the maximum height of other peaks caused by vanadium-oxygen (VO) bonds. The catalyst according to any one of <1> to <4>.
In <6> conditions (b), the half width of the peak in the vicinity of the 920 cm -1 is at 40 cm -1 or more, the <1> to <5> catalyst according to any one of claims.
<7> The catalyst according to any one of <1> to <6>, wherein the silica support is a porous silica support having a pore structure.
<8> The composite oxide is supported in the pore structure of the porous silica support, and in the pore distribution of the porous silica support, a peak due to a gap between primary particles of silica, The pore diameter is in the range of 5 to 50 nm, and the peak due to the pore structure in the silica particles is in the range of the pore diameter of 1 to 5 nm.
The catalyst according to <7> above.
<9> (a) One of an aqueous solution of a copper salt and an aqueous solution of a vanadium salt is absorbed by a silica carrier, dried and calcined,
(B) After step (a), the other aqueous solution of the copper salt solution and the vanadium salt solution is absorbed by the silica carrier, dried and calcined, and (c) after step (b) And firing the obtained silica support at a temperature of 700 ° C. or higher, and before the heat treatment in the step (c), the silica support has not been subjected to a heat treatment of 700 ° C. or higher.
A method for producing a sulfur trioxide decomposition catalyst.
<10> (a) causing an aqueous solution containing a copper salt and a vanadium salt to be absorbed by a silica carrier, drying and pre-baking;
(B) after step (a), including firing the obtained silica support at a temperature of 700 ° C. or higher, and before the heat treatment in step (b), the silica support is 700 ° C. or higher. Not heat-treated,
A method for producing a sulfur trioxide decomposition catalyst.
<11> A method for producing sulfur dioxide, comprising decomposing sulfur trioxide into sulfur dioxide and oxygen using the sulfur trioxide decomposition catalyst according to any one of <1> to <8> above. .
<12> The method according to <11>, wherein the decomposition is performed at a temperature of 800 ° C. or lower.
<13> A hydrogen generation method including decomposing water into hydrogen and oxygen, comprising decomposing sulfuric acid into water, sulfur dioxide, and oxygen in a reaction represented by the following formula (X1): Among the elementary reactions of the formulas (X1-1) and (X1-2) that are elementary reactions of the reaction represented by the following formula (X1), the elementary reaction of the formula (X1-2) is the above <11> or The method for producing hydrogen performed by the method according to <12>:
(X1) H 2 SO 4 → H 2 O + SO 2 + 1 / 2O 2
(X1-1) H 2 SO 4 → H 2 O + SO 3
(X1-2) SO 3 → SO 2 + 1 / 2O 2
<14> The hydrogen generation method according to <13>, which is an IS cycle method, a Westinghouse cycle method, an Ispra-Mark 13 cycle method, or a Los Alamos Science Laboratory cycle method.

本発明の三酸化硫黄分解触媒によれば、三酸化硫黄分解反応に必要とされる温度を低下させることができる。また、本発明の二酸化硫黄生成方法によれば、比較的低い温度において、三酸化硫黄を分解して二酸化硫黄を得ることができる。さらに、本発明の水素生成方法によれば、比較的低い温度において、水を分解して水素を得ることができる。   According to the sulfur trioxide decomposition catalyst of the present invention, the temperature required for the sulfur trioxide decomposition reaction can be lowered. Moreover, according to the sulfur dioxide production method of the present invention, sulfur trioxide can be decomposed to obtain sulfur dioxide at a relatively low temperature. Furthermore, according to the hydrogen production method of the present invention, hydrogen can be obtained by decomposing water at a relatively low temperature.

図1は、ピロバナジン酸銅の(a)結晶構造及び(b)バナジン酸結合を示す図である。FIG. 1 is a diagram showing (a) crystal structure and (b) vanadate bond of copper pyrovanadate. 図2は、本発明の三酸化硫黄分解触媒による触媒反応過程を示す概念図である。FIG. 2 is a conceptual diagram showing a catalytic reaction process by the sulfur trioxide decomposition catalyst of the present invention. 図3は、(a)本発明の三酸化硫黄分解触媒の製造過程、及び(b)従来の三酸化硫黄分解触媒の製造過程を説明するための図である。FIG. 3 is a diagram for explaining (a) a process for producing a sulfur trioxide decomposition catalyst of the present invention and (b) a process for producing a conventional sulfur trioxide decomposition catalyst. 図4は、参考例1で単身触媒として用いた複合金属酸化物についてのX線回折分析の結果を示す図である。FIG. 4 is a diagram showing the results of X-ray diffraction analysis of the composite metal oxide used as a single catalyst in Reference Example 1. 図5は、実施例、比較例及び参考例の三酸化硫黄分解触媒の評価のために用いた装置を示す図である。FIG. 5 is a diagram showing an apparatus used for evaluating the sulfur trioxide decomposition catalysts of Examples, Comparative Examples, and Reference Examples. 図6は、実施例1の三酸化硫黄分解触媒の評価における温度変化と転化率変化との関係を示す図である。FIG. 6 is a graph showing the relationship between temperature change and conversion rate change in the evaluation of the sulfur trioxide decomposition catalyst of Example 1. 図7は、実施例1の三酸化硫黄分解触媒の走査透過型電子顕微鏡(STEM)写真を示す図である。なお、図7(a)〜(c)はそれぞれ、600℃、750℃及び800℃の温度での三酸化硫黄分解反応に用いた後の触媒についての写真である。FIG. 7 is a scanning transmission electron microscope (STEM) photograph of the sulfur trioxide decomposition catalyst of Example 1. 7A to 7C are photographs of the catalyst after being used for the sulfur trioxide decomposition reaction at temperatures of 600 ° C., 750 ° C., and 800 ° C., respectively. 図8は、実施例1のXRD(X線回折)分析結果を示す図である。なお、図8は、800℃の温度での三酸化硫黄分解反応に用いた後の触媒についての評価結果である。FIG. 8 is a graph showing the results of XRD (X-ray diffraction) analysis of Example 1. In addition, FIG. 8 is an evaluation result about the catalyst after using it for the sulfur trioxide decomposition | disassembly reaction at the temperature of 800 degreeC. 図9は、ケイ素(Si)、バナジウム(V)、及び銅(Cu)についての実施例1の三酸化硫黄分解触媒のEDS(エネルギー分散形X線分光)分析結果を、STEM−HAADF(走査透過電子顕微鏡(高角度散乱暗視野法))による分析結果と併せて示す図である。なお、図8は、800℃の温度での三酸化硫黄分解反応に用いた後の触媒についての評価結果である。FIG. 9 shows the results of EDS (energy dispersive X-ray spectroscopy) analysis of the sulfur trioxide decomposition catalyst of Example 1 for silicon (Si), vanadium (V), and copper (Cu), and STEM-HAADF (scanning transmission). It is a figure shown together with the analysis result by an electron microscope (high angle scattering dark field method). In addition, FIG. 8 is an evaluation result about the catalyst after using it for the sulfur trioxide decomposition | disassembly reaction at the temperature of 800 degreeC. 図10は、実施例1の三酸化硫黄分解触媒のラマン散乱分析結果を、比較のためのバナジン酸銅(Cu)、酸化銅(CuO)及び五酸化バナジウム(V)についての分析結果と併せて示す図である。なお、図10は、650℃及び800℃の温度での三酸化硫黄分解反応に用いた後の触媒(Cu−V−O/SiO(650℃)及びCu−V−O/SiO(800℃))についての評価結果である。FIG. 10 shows the results of Raman scattering analysis of the sulfur trioxide decomposition catalyst of Example 1, copper vanadate (Cu 2 V 2 O 7 ), copper oxide (CuO), and vanadium pentoxide (V 2 O 5 ) for comparison. It is a figure shown together with the analysis result about). FIG. 10 shows the catalyst (Cu—V—O / SiO 2 (650 ° C.) and Cu—V—O / SiO 2 (800) after use in the sulfur trioxide decomposition reaction at temperatures of 650 ° C. and 800 ° C. It is an evaluation result about ℃)).

(三酸化硫黄分解触媒)
本発明の三酸化硫黄分解触媒は、銅とバナジウムとの複合酸化物がシリカ担体に担持されてなる。ここで、この本発明の三酸化硫黄分解触媒では、複合酸化物の結晶の対称性が低下している。すなわち、本発明の三酸化硫黄分解触媒では、銅とバナジウムとの複合酸化物の結晶が歪んでいる。このような結晶の歪みは例えば、銅とバナジウムとの複合酸化物が、充分に薄い層としてシリカ担体に担持されており、かつシリカ担体が、この複合酸化物に化学的に影響を与えることによって達成されると考えられる。
(Sulfur trioxide decomposition catalyst)
The sulfur trioxide decomposition catalyst of the present invention comprises a composite oxide of copper and vanadium supported on a silica carrier. Here, in the sulfur trioxide decomposition catalyst of the present invention, the symmetry of the crystal of the composite oxide is lowered. That is, in the sulfur trioxide decomposition catalyst of the present invention, the crystal of the composite oxide of copper and vanadium is distorted. Such crystal distortion is caused by, for example, a composite oxide of copper and vanadium being supported on a silica support as a sufficiently thin layer, and the silica support chemically affecting the composite oxide. Expected to be achieved.

理論に限定されるものではないが、本発明の三酸化硫黄分解触媒でのように、銅とバナジウムとの複合酸化物の結晶が歪んでいる場合、バナジウム−酸素(V−O)結合の一部が、他のバナジウム−酸素(V−O)結合よりも切れやすくなっていると考えられる。このようにバナジウム−酸素(V−O)結合が切れやすくなっている場所では、比較的容易に酸素が脱離して、酸素欠陥が形成され、この酸素欠陥において三酸化硫黄の吸着及び分解が進行すると考えられる。   Although not limited to theory, when the complex oxide crystal of copper and vanadium is distorted as in the sulfur trioxide decomposition catalyst of the present invention, one of the vanadium-oxygen (VO) bonds is present. It is considered that the portion is easier to break than other vanadium-oxygen (VO) bonds. In such a place where the vanadium-oxygen (VO) bond is easily broken, oxygen is desorbed relatively easily and oxygen defects are formed, and adsorption and decomposition of sulfur trioxide proceed in these oxygen defects. I think that.

これに関して、本発明の三酸化硫黄分解触媒では、銅とバナジウムとの複合酸化物が図1に示すようなピロバナジン酸銅(Cu)構造を有すると考えられる。なお、図1では、ピロバナジン酸銅の(a)結晶構造及び(b)バナジン酸結合を示している。 In this regard, in the sulfur trioxide decomposition catalyst of the present invention, it is considered that the composite oxide of copper and vanadium has a copper pyrovanadate (Cu 2 V 2 O 7 ) structure as shown in FIG. FIG. 1 shows (a) crystal structure and (b) vanadate bond of copper pyrovanadate.

したがって、本発明の三酸化硫黄分解触媒では、図2に示すようにして三酸化硫黄の分解反応が促進されると考えられる。具体的には、銅とバナジウムとの複合酸化物の結晶が歪んでいる場合、この複合酸化物において、バナジウム−酸素(V−O)結合の一部(点線)が、他のバナジウム−酸素(V−O)結合(実線)よりも長く、それによって切れやすくなっており(図2(a))、この結合が切れて酸素が脱離すると、その位置が酸素欠陥(図2(b))となり、三酸化硫黄がこの酸素欠陥に吸着し(図2(c))、そして分解されて、二酸化硫黄が生成する(図2(d))と考えられる。   Therefore, it is considered that the sulfur trioxide decomposition catalyst of the present invention promotes the sulfur trioxide decomposition reaction as shown in FIG. Specifically, when the crystal of the composite oxide of copper and vanadium is distorted, in this composite oxide, a part of the vanadium-oxygen (VO) bond (dotted line) is converted to other vanadium-oxygen ( VO) longer than the bond (solid line) and thereby easily broken (FIG. 2 (a)). When this bond is broken and oxygen is desorbed, the position is an oxygen defect (FIG. 2 (b)). Thus, it is considered that sulfur trioxide is adsorbed on this oxygen defect (FIG. 2 (c)) and decomposed to produce sulfur dioxide (FIG. 2 (d)).

このように銅とバナジウムとの複合酸化物の結晶が歪んでいることは、ラマン分光分析において、対称性の低下、すなわちピークの高さの低下及び/又はピークのブロード化として確認できる。したがって例えば、本発明の三酸化硫黄分解触媒は、ラマン分光分析において、バナジウム−酸素(V−O)結合に起因する920cm−1付近のピークが、下記の(a)及び(b)の少なくとも一方の条件を満たしている:
(a)上記920cm−1付近のピークの高さが、バナジウム−酸素(V−O)結合に起因する他のピークの最大高さの3.0倍以下、2.5倍以下、2.0倍以下、1.5倍以下、又は1.0倍以下、及び
(b)上記920cm−1付近のピークの半値幅が、30cm−1以上、40cm−1以上、50cm−1以上。
It can be confirmed that the crystal of the complex oxide of copper and vanadium is distorted as described above in Raman spectroscopic analysis as a decrease in symmetry, that is, a decrease in peak height and / or a broadening of peaks. Therefore, for example, in the sulfur trioxide decomposition catalyst of the present invention, in the Raman spectroscopic analysis, a peak near 920 cm −1 due to the vanadium-oxygen (VO) bond has at least one of the following (a) and (b): Meet the conditions:
(A) The peak height in the vicinity of 920 cm −1 is 3.0 times or less, 2.5 times or less, and 2.0 times or less the maximum height of the other peaks caused by the vanadium-oxygen (V—O) bond. fold or less, 1.5 times or less, or 1.0 times or less, and (b) half-width of the peak in the vicinity of the 920 cm -1 is, 30 cm -1 or more, 40 cm -1 or more, 50 cm -1 or more.

本発明の三酸化硫黄分解触媒によれば、式(B1−2)の三酸化硫黄分解反応に必要とされる温度を低下させ、例えば700℃以下程度の温度において、実質的な速度で三酸化硫黄分解反応を進行させることができる。   According to the sulfur trioxide decomposition catalyst of the present invention, the temperature required for the sulfur trioxide decomposition reaction of the formula (B1-2) is decreased, for example, at a substantial rate at a temperature of about 700 ° C. or less. The sulfur decomposition reaction can proceed.

上記記載のように、三酸化硫黄を分解する従来の方法では、1000℃近い温度を用いることが一般的であった。しかしながら、このような高温に耐えられる材料は非常に限定されており、またかなり高価なものであった。   As described above, in the conventional method for decomposing sulfur trioxide, a temperature close to 1000 ° C. was generally used. However, materials that can withstand such high temperatures are very limited and quite expensive.

また、1000℃近い高温は、太陽エネルギーからは安価に得ることが困難であった。すなわち例えば、太陽熱エネルギーを得る集光装置としては、パラボリックディッシュ型集光装置、ソーラータワー型集光装置、及びパラボリックトラフ型集光装置が知られているが、これらのうちで構造が簡単で、コストが安く、且つ大規模なプラントに適しているパラボリックトラフ型集光装置では、太陽エネルギーの収集と放射によるエネルギーの散逸との釣り合いから、1000℃近い高温での太陽エネルギーの収集は非現実的である。   Moreover, it was difficult to obtain a high temperature close to 1000 ° C. from solar energy at low cost. That is, for example, as a concentrating device for obtaining solar thermal energy, a parabolic dish type concentrating device, a solar tower type concentrating device, and a parabolic trough type concentrating device are known, and among these, the structure is simple, In a parabolic trough concentrator that is inexpensive and suitable for large-scale plants, it is impractical to collect solar energy at high temperatures close to 1000 ° C due to the balance between solar energy collection and energy dissipation due to radiation. It is.

したがって、本発明の三酸化硫黄分解触媒によって、三酸化硫黄分解反応に必要とされる温度を低下させ、例えば700℃程度の温度において、実質的な速度で三酸化硫黄分解反応を進行するようにすることは、産業的な価値が非常に大きい。   Therefore, the sulfur trioxide decomposition catalyst of the present invention reduces the temperature required for the sulfur trioxide decomposition reaction so that the sulfur trioxide decomposition reaction proceeds at a substantial rate at a temperature of about 700 ° C., for example. The industrial value is very large.

(三酸化硫黄分解触媒−複合酸化物)
本発明の三酸化硫黄分解触媒の複合酸化物において、銅とバナジウムとの原子比(銅:バナジウム)は例えば、1:9〜9:1、2:8〜8:2、3:7〜7:3、又は4:6〜6:4にすることができる。
(Sulfur trioxide decomposition catalyst-composite oxide)
In the composite oxide of the sulfur trioxide decomposition catalyst of the present invention, the atomic ratio of copper to vanadium (copper: vanadium) is, for example, 1: 9-9: 1, 2: 8-8: 2, 3: 7-7. : 3, or 4: 6 to 6: 4.

本発明の三酸化硫黄分解触媒では例えば、銅及びバナジウムの合計量が担体100gに対して、0.01mol以上、0.05mol以上、0.10mol以上となる割合で、複合金属酸化物をシリカ担体に担持することができる。また、この担持量は例えば、担体100gに対して、2.00mol以下、1.00mol以下、又は0.50mol以下の割合にすることができる。   In the sulfur trioxide decomposition catalyst of the present invention, for example, the composite metal oxide is added to the silica support at a ratio such that the total amount of copper and vanadium is 0.01 mol or more, 0.05 mol or more, 0.10 mol or more with respect to 100 g of the support. It can be supported on. Moreover, this carrying amount can be made into the ratio of 2.00 mol or less, 1.00 mol or less, or 0.50 mol or less with respect to 100g of support | carriers, for example.

(三酸化硫黄分解触媒−製造方法)
本発明の三酸化硫黄分解触媒は、任意の方法で得ることができる。
(Sulfur trioxide decomposition catalyst-production method)
The sulfur trioxide decomposition catalyst of the present invention can be obtained by any method.

例えば、本発明の三酸化硫黄分解触媒は、銅塩の水溶液を、担体に吸水させ、乾燥及び仮焼成し、バナジウム塩の水溶液を、担体に吸水させ、乾燥及び仮焼成し、そしてその後で、得られた担体を焼成することによって得ることができる。また、これとは反対に、本発明の三酸化硫黄分解触媒は、バナジウム塩の水溶液を先に担体に吸水させ、乾燥及び仮焼成し、銅塩の水溶液を、担体に吸水させ、乾燥及び仮焼成し、そしてその後で、得られた担体を焼成することによって得ることができる。また、銅塩及びバナジウム塩を、これらの共沈が可能なように選択する場合、銅塩及びバナジウム塩の両方を含有する水溶液を、担体に吸水させ、乾燥及び仮焼成し、そしてその後で、得られた担体を焼成することによって、本発明の三酸化硫黄分解触媒を得ることもできる。   For example, the sulfur trioxide decomposition catalyst of the present invention allows an aqueous solution of a copper salt to be absorbed into a support, dried and calcined, an aqueous solution of a vanadium salt to be absorbed into a support, dried and calcined, and thereafter The obtained carrier can be obtained by firing. On the other hand, the sulfur trioxide decomposition catalyst of the present invention first absorbs the vanadium salt aqueous solution on the carrier, and then dries and pre-calcinates the copper salt aqueous solution on the carrier to dry and temporarily It can be obtained by calcining and then calcining the resulting support. In addition, when the copper salt and the vanadium salt are selected so that they can be co-precipitated, an aqueous solution containing both the copper salt and the vanadium salt is absorbed into the support, dried and calcined, and thereafter By calcining the obtained support, the sulfur trioxide decomposition catalyst of the present invention can also be obtained.

なお、本発明の三酸化硫黄分解触媒の製造においては、銅とバナジウムとの複合酸化物が、充分に薄い層としてシリカ担体に担持されており、かつシリカ担体に少なくとも部分的に影響され、それによってこの複合酸化物の結晶の対称性が低下するようにすることが必要である。   In the production of the sulfur trioxide decomposition catalyst of the present invention, the composite oxide of copper and vanadium is supported on the silica support as a sufficiently thin layer, and is at least partially affected by the silica support. Therefore, it is necessary to reduce the symmetry of the complex oxide crystal.

これに関して、本発明の三酸化硫黄分解触媒を製造する上記の方法においては、銅塩及びバナジウム塩の水溶液を先に担体に吸水させ、乾燥及び仮焼成して得られたシリカ担体を、比較的高温で焼成すること、並びにこのようにして焼成されるシリカ担体が、この焼成の前に比較的高温での熱処理を受けていないことが好ましい。   In this regard, in the above method for producing the sulfur trioxide decomposition catalyst of the present invention, a silica carrier obtained by first absorbing an aqueous solution of a copper salt and a vanadium salt into a carrier, drying and pre-baking, It is preferred that the firing is carried out at a high temperature and that the silica support thus fired is not subjected to a heat treatment at a relatively high temperature prior to this firing.

このように、高温での熱処理を受けていないシリカ担体では、水酸基、タングリングボンド、微細な凹凸形状等の不安定部分が比較的多く表面に残されている。したがって、図3(a)に示すように、このような表面上に複合酸化物前駆体を担持し、これらを共に焼成する場合、これらの不安定部分が、焼成の間に、その上に担持された複合酸化物前駆体に作用し、複合酸化物を充分に薄い層状にし、かつ/又は得られる複合酸化物の結晶の対称性を低下させると考えられる。これに関して、微細な凹凸形状が焼成の間に平坦化される場合、シリカ担体の表面と、その上に担持された複合酸化物前駆体及び複合酸化物との混和が促進されると考えられる。   As described above, in the silica carrier that has not been subjected to the heat treatment at a high temperature, relatively many unstable parts such as hydroxyl groups, tangling bonds, and fine irregularities are left on the surface. Therefore, as shown in FIG. 3 (a), when a composite oxide precursor is supported on such a surface and these are fired together, these unstable portions are supported on it during firing. It is considered that it acts on the composite oxide precursor thus formed, makes the composite oxide into a sufficiently thin layer, and / or reduces the crystal symmetry of the resulting composite oxide. In this regard, when the fine uneven shape is flattened during firing, it is considered that the mixing of the surface of the silica support with the composite oxide precursor and composite oxide supported thereon is promoted.

これに対して、高温での熱処理を受けているシリカ担体では、水酸基、タングリングボンド、微細な凹凸形状等の不安定部分が、高温での熱処理によって減少している。したがって、図3(b)に示すように、このような表面上に複合酸化物前駆体を担持し、これらを共に焼成する場合であっても、シリカ担体の表面がその上に担持された複合酸化物前駆体に対して与える影響が小さいと考えられる。   On the other hand, in a silica carrier that has been subjected to heat treatment at high temperature, unstable parts such as hydroxyl groups, tangling bonds, and fine irregularities are reduced by heat treatment at high temperature. Accordingly, as shown in FIG. 3 (b), even when the composite oxide precursor is supported on such a surface and these are fired together, the composite having the surface of the silica support supported thereon is obtained. The effect on the oxide precursor is considered to be small.

本発明の方法において多孔質シリカ担体を焼成する温度は、600℃以上、650℃以上、700℃以上、750℃以上、800℃以上であってよい。   The temperature for calcining the porous silica support in the method of the present invention may be 600 ° C. or higher, 650 ° C. or higher, 700 ° C. or higher, 750 ° C. or higher, or 800 ° C. or higher.

また、本発明の方法において多孔質シリカ担体を焼成する雰囲気は、任意の雰囲気であってよく、例えば空気のような酸素含有雰囲気、窒素又はアルゴンのような不活性雰囲気、又は硫酸雰囲気若しくは三酸化硫黄雰囲気のような酸化雰囲気であってよい。   The atmosphere for firing the porous silica support in the method of the present invention may be any atmosphere, for example, an oxygen-containing atmosphere such as air, an inert atmosphere such as nitrogen or argon, a sulfuric acid atmosphere or trioxide It may be an oxidizing atmosphere such as a sulfur atmosphere.

なお、本発明の方法における焼成は、本発明の三酸化硫黄分解触媒の使用の間に行ってもよい。すなわち、最終的な焼成を行わずに本発明の三酸化硫黄分解触媒を装置に装填し、そして三酸化硫黄分解反応を少なくとも一時的に、上記の焼成温度よりも高い温度において行うことによって、焼成を達成することもできる。   The calcination in the method of the present invention may be performed during use of the sulfur trioxide decomposition catalyst of the present invention. That is, the sulfur trioxide decomposition catalyst of the present invention is loaded in the apparatus without performing the final calcination, and the sulfur trioxide decomposition reaction is performed at least temporarily at a temperature higher than the above-described calcination temperature. Can also be achieved.

(三酸化硫黄分解触媒−担体)
本発明の三酸化硫黄分解触媒において用いられるシリカ担体は、銅とバナジウムとの複合酸化物に少なくとも部分的に影響を与え、それによってこの複合酸化物の結晶の対称性を低下させる範囲で、任意のシリカ担体を用いることができる。
(Sulfur trioxide decomposition catalyst-carrier)
The silica support used in the sulfur trioxide decomposition catalyst of the present invention is optional insofar as it affects at least partially the composite oxide of copper and vanadium, thereby reducing the crystal symmetry of the composite oxide. The silica support can be used.

したがって、三酸化硫黄分解触媒を製造する本発明の方法において用いられるシリカ担体は、水酸基、タングリングボンド、微細な凹凸形状等の不安定部分を表面に有するシリカ担体、例えば700℃以上、650℃以上、600℃以上、又は550℃以上の熱処理を受けていないシリカ担体であってよい。   Therefore, the silica support used in the method of the present invention for producing the sulfur trioxide decomposition catalyst is a silica support having an unstable portion such as a hydroxyl group, a tangling bond, or a fine uneven shape on the surface, for example, 700 ° C. or higher, 650 ° C. As described above, it may be a silica carrier that has not been subjected to heat treatment at 600 ° C. or higher or 550 ° C. or higher.

このようなシリカ担体としては特に、細孔構造を有する多孔質シリカ担体を用いることができる。この場合、好ましくは、複合酸化物が多孔質シリカ担体の細孔構造内に担持されている。   In particular, a porous silica carrier having a pore structure can be used as such a silica carrier. In this case, preferably, the composite oxide is supported in the pore structure of the porous silica support.

このような多孔質シリカ担体は、メソポーラスシリカ担体、例えばKIT−6のような立方晶メソポーラスシリカであってよい。また、このような多孔質シリカ担体は例えば、多孔質シリカ担体の細孔分布において、シリカの一次粒子間の間隙に起因するピークが、細孔径5〜50nm、特に細孔径5〜30nmの範囲にあり、且つシリカ粒子内の細孔構造に起因するピークが、細孔径1〜5nm、特に細孔径2〜4nmの範囲にある多孔質シリカ担体であってよい。   Such a porous silica support may be a mesoporous silica support, for example a cubic mesoporous silica such as KIT-6. In addition, in such a porous silica carrier, for example, in the pore distribution of the porous silica carrier, the peak due to the gap between the primary particles of the silica is in the range of the pore diameter of 5 to 50 nm, particularly the pore diameter of 5 to 30 nm. There may be a porous silica carrier having a peak due to the pore structure in the silica particles and having a pore diameter of 1 to 5 nm, particularly a pore diameter of 2 to 4 nm.

このように、細孔構造を有する多孔質シリカ担体を用いる場合、複合酸化物が、多孔質シリカ担体の細孔構造表面近傍に担持され、それによって複合酸化物粒子のシンタリングが抑制される。理論に限定されるわけではないが、このように非常に微細な状態で維持されている複合酸化物粒子では、触媒の微粒子化によって、触媒の表面積が100倍程度に増大されるだけでなく、触媒の表面の性質が変化して、複合酸化物の触媒性能が改良される場合もあると考えられる。   Thus, when using the porous silica support | carrier which has a pore structure, composite oxide is carry | supported by the pore structure surface vicinity of a porous silica support | carrier, and, thereby, sintering of composite oxide particle is suppressed. Although not limited to theory, in the composite oxide particles that are maintained in such a very fine state, not only the surface area of the catalyst is increased by about 100 times by the atomization of the catalyst, It is considered that the catalyst performance of the composite oxide may be improved by changing the properties of the surface of the catalyst.

また、細孔構造を有する多孔質シリカ担体の細孔分布において、二元の細孔分布となることにより細孔径が数nmの表面積の広い活性部位に、十〜数十nmの細孔から拡散速度の速い気相ガスが高速に供給されることによって、複合酸化物粒子と三酸化硫黄との接触の機会が多く、それによって触媒性能を改良すると考えられる。   Moreover, in the pore distribution of the porous silica support having a pore structure, it is diffused from the pores of 10 to several tens of nm to the active site having a large surface area with a pore diameter of several nm by forming a binary pore distribution. It is considered that the high-speed gas phase gas is supplied at a high speed, so that there are many opportunities for contact between the composite oxide particles and sulfur trioxide, thereby improving the catalyst performance.

なお、細孔構造を有する多孔質シリカ担体は例えば、特開2008−12382に記載の方法によって得ることができる。   In addition, the porous silica support | carrier which has a pore structure can be obtained by the method of Unexamined-Japanese-Patent No. 2008-12382, for example.

(二酸化硫黄の生成方法)
二酸化硫黄を生成する本発明の方法は、本発明の三酸化硫黄分解触媒を用いて、三酸化硫黄を二酸化硫黄と酸素とに分解することを含む。ここで、この方法は、本発明の三酸化硫黄分解触媒を用いることによって、三酸化硫黄を分解する従来の方法よりも低い温度、例えば800℃以下、750℃以下、700℃以下、650℃以下の温度で実施することができる。
(Method for producing sulfur dioxide)
The method of the present invention for producing sulfur dioxide includes decomposing sulfur trioxide into sulfur dioxide and oxygen using the sulfur trioxide decomposition catalyst of the present invention. Here, in this method, by using the sulfur trioxide decomposition catalyst of the present invention, the temperature is lower than the conventional method of decomposing sulfur trioxide, for example, 800 ° C. or less, 750 ° C. or less, 700 ° C. or less, 650 ° C. or less. Can be carried out at the following temperatures.

(水素生成方法)
水素を生成する本発明の方法は、水を、水素及び酸素に分解すること、例えばI−Sサイクル法、ウエスティングハウス・サイクル法、Ispra−Mark 13サイクル法、又はロスアラモス・サイエンスラボラトリ・サイクル法によって、水を水素及び酸素に分解することを含む。ここで、この本発明の方法は、下記式(X1)で示される反応で、硫酸を、水、二酸化硫黄、及び酸素に分解することを含み、且つ下記式(X1)で示される反応の素反応である式(X1−1)及び(X1−2)の素反応のうち、式(X1−2)の素反応を、二酸化硫黄を生成する本発明の方法によって行う:
(X1)HSO → HO + SO + 1/2O
(X1−1)HSO → HO + SO
(X1−2)SO → SO + 1/2O
(Hydrogen generation method)
The method of the present invention for producing hydrogen comprises decomposing water into hydrogen and oxygen, such as by the IS cycle method, Westinghouse cycle method, Ispra-Mark 13 cycle method, or Los Alamos Science Laboratory cycle method. Decomposing water into hydrogen and oxygen. Here, the method of the present invention includes decomposition of sulfuric acid into water, sulfur dioxide, and oxygen in the reaction represented by the following formula (X1), and the element of the reaction represented by the following formula (X1). Of the elementary reactions of formulas (X1-1) and (X1-2) that are reactions, the elementary reaction of formula (X1-2) is carried out by the method of the present invention for producing sulfur dioxide:
(X1) H 2 SO 4 → H 2 O + SO 2 + 1 / 2O 2
(X1-1) H 2 SO 4 → H 2 O + SO 3
(X1-2) SO 3 → SO 2 + 1 / 2O 2

すなわち、例えば、水素を生成する本発明の方法は、下記式(X1)〜(X3)で示されるI−S(ヨウ素−イオウ)サイクル法において、式(X1)の反応の素反応である式(X1−1)及び(X1−2)の素反応のうち、式(X1−2)の素反応を、二酸化硫黄を生成する本発明の方法によって行うことを含む:
(X1)HSO → HO + SO + 1/2O
(X1−1)HSO → HO + SO
(X1−2)SO → SO + 1/2O
(X2)I + SO + 2HO → 2HI + HSO
(X3)2HI → H + I
全反応:HO → H + 1/2O
That is, for example, the method of the present invention for generating hydrogen is an elementary reaction of the reaction of the formula (X1) in the IS (iodine-sulfur) cycle method represented by the following formulas (X1) to (X3). Among the elementary reactions of (X1-1) and (X1-2), the elementary reaction of the formula (X1-2) is carried out by the method of the present invention for producing sulfur dioxide:
(X1) H 2 SO 4 → H 2 O + SO 2 + 1 / 2O 2
(X1-1) H 2 SO 4 → H 2 O + SO 3
(X1-2) SO 3 → SO 2 + 1 / 2O 2
(X2) I 2 + SO 2 + 2H 2 O → 2HI + H 2 SO 4
(X3) 2HI → H 2 + I 2
Total reaction: H 2 O → H 2 + 1 / 2O 2

また、例えば、水素を生成する本発明の方法は、下記式(X1)、(X4)及び(X5)で示されるウエスティングハウス・サイクル法において、式(X1)の反応の素反応である式(X1−1)及び(X1−2)の素反応のうち、式(X1−2)の素反応を、二酸化硫黄を生成する本発明の方法によって行うことを含む:
(X1)HSO → HO + SO + 1/2O
(X1−1)HSO → HO + SO
(X1−2)SO → SO + 1/2O
(X4)SO + 2HO → HSO
(X5)HSO + HO+ → H + HSO(電気分解)
全反応:HO → H + 1/2O
In addition, for example, the method of the present invention for generating hydrogen is a formula (X1), (X4) and a Westinghouse cycle method represented by the following formula (X1): Among the elementary reactions of X1-1) and (X1-2), the elementary reaction of the formula (X1-2) is carried out by the method of the present invention for producing sulfur dioxide:
(X1) H 2 SO 4 → H 2 O + SO 2 + 1 / 2O 2
(X1-1) H 2 SO 4 → H 2 O + SO 3
(X1-2) SO 3 → SO 2 + 1 / 2O 2
(X4) SO 2 + 2H 2 O → H 2 SO 3
(X5) H 2 SO 3 + H 2 O + → H 2 + H 2 SO 4 (electrolysis)
Total reaction: H 2 O → H 2 + 1 / 2O 2

さらに、例えば、水素を生成する本発明の方法は、下記式(X1)、(X6)及び(X7)で示されるIspra−Mark 13サイクル法において、式(X1)の反応の素反応である式(X1−1)及び(X1−2)の素反応のうち、式(X1−2)の素反応を、二酸化硫黄を生成する本発明の方法によって行うことを含む:
(X1)HSO → HO + SO + 1/2O
(X1−1)HSO → HO + SO
(X1−2)SO → SO + 1/2O
(X6)2HBr → Br + H
(X7)Br + SO + 2HO+ → 2HBr + HSO
全反応:HO → H + 1/2O
Further, for example, the method of the present invention for generating hydrogen is a formula that is an elementary reaction of the reaction of the formula (X1) in the Ispra-Mark 13 cycle method represented by the following formulas (X1), (X6), and (X7). Among the elementary reactions of (X1-1) and (X1-2), the elementary reaction of the formula (X1-2) is carried out by the method of the present invention for producing sulfur dioxide:
(X1) H 2 SO 4 → H 2 O + SO 2 + 1 / 2O 2
(X1-1) H 2 SO 4 → H 2 O + SO 3
(X1-2) SO 3 → SO 2 + 1 / 2O 2
(X6) 2HBr → Br 2 + H 2
(X7) Br 2 + SO 2 + 2H 2 O + → 2HBr + H 2 SO 4
Total reaction: H 2 O → H 2 + 1 / 2O 2

さらに、例えば、水素を生成する本発明の方法は、下記式(X1)、及び(X8)〜(X10)で示されるロスアラモス・サイエンスラボラトリ・サイクル法において、式(X1)の反応の素反応である式(X1−1)及び(X1−2)の素反応のうち、式(X1−2)の素反応を、二酸化硫黄を生成する本発明の方法によって行うことを含む:
(X1)HSO → HO + SO + 1/2O
(X1−1)HSO → HO + SO
(X1−2)SO → SO + 1/2O
(X8)Br + SO + 2HO+ → 2HBr + HSO
(X9)2CrBr → 2CrBr + Br
(X10)2HBr + 2CrBr → 2CrBr + H
全反応:HO → H + 1/2O
Further, for example, the method of the present invention for producing hydrogen is an elementary reaction of the reaction of the formula (X1) in the Los Alamos Science Laboratory cycle method represented by the following formulas (X1) and (X8) to (X10). Among elementary reactions of the formulas (X1-1) and (X1-2), the elementary reaction of the formula (X1-2) is carried out by the method of the present invention for producing sulfur dioxide:
(X1) H 2 SO 4 → H 2 O + SO 2 + 1 / 2O 2
(X1-1) H 2 SO 4 → H 2 O + SO 3
(X1-2) SO 3 → SO 2 + 1 / 2O 2
(X8) Br 2 + SO 2 + 2H 2 O + → 2HBr + H 2 SO 4
(X9) 2CrBr 3 → 2CrBr 2 + Br 2
(X10) 2HBr + 2CrBr 2 → 2CrBr 3 + H 2
Total reaction: H 2 O → H 2 + 1 / 2O 2

《参考例1及び比較例1〜3》
以下の参考例及び比較例では、銅(Cu)とバナジウム(V)との複合金属酸化物が、三酸化硫黄分解触媒として優れた性質を有することを示す。
<< Reference Example 1 and Comparative Examples 1-3 >>
In the following reference examples and comparative examples, it is shown that a composite metal oxide of copper (Cu) and vanadium (V) has excellent properties as a sulfur trioxide decomposition catalyst.

《参考例1》
参考例1では、銅(Cu)とバナジウム(V)との複合金属酸化物(Cu−V−O)を単身触媒として用いた。
<< Reference Example 1 >>
In Reference Example 1, a composite metal oxide (Cu—V—O) of copper (Cu) and vanadium (V) was used as a single catalyst.

(単身触媒の製造)
参考例1の単身触媒は、それぞれの金属の原子比が1:1である酸化銅及び酸化バナジウムを、乳鉢で粉砕し、良く混合し、アルミナ性るつぼに入れ、そして750℃で12時間にわたって焼成して得た。得られた単身触媒についてのX線回折分析(XRD)結果を図4に示す。
(Manufacture of single catalyst)
In the single catalyst of Reference Example 1, copper oxide and vanadium oxide having an atomic ratio of 1: 1 of each metal are pulverized in a mortar, mixed well, placed in an alumina crucible, and calcined at 750 ° C. for 12 hours. I got it. The X-ray diffraction analysis (XRD) result of the obtained single catalyst is shown in FIG.

《比較例1》
比較例1では、銅(Cu)の酸化物(Cu−O)を単身触媒として用いた。ここでは、参考例1で原料として用いた酸化銅をそのまま単身触媒として用いた。
<< Comparative Example 1 >>
In Comparative Example 1, copper (Cu) oxide (Cu—O) was used as a single catalyst. Here, the copper oxide used as a raw material in Reference Example 1 was used as a single catalyst as it was.

《比較例2》
比較例2では、バナジウム(V)の酸化物(V−O)を触媒として用いた。ここでは、参考例1で原料として用いた酸化バナジウムをそのまま単身触媒として用いた。
<< Comparative Example 2 >>
In Comparative Example 2, vanadium (V) oxide (VO) was used as a catalyst. Here, the vanadium oxide used as a raw material in Reference Example 1 was used as it was as a single catalyst.

《比較例3》
比較例3では触媒を用いなかった。
<< Comparative Example 3 >>
In Comparative Example 3, no catalyst was used.

(評価(転化率))
図5に示す固定床流通反応装置を用いて、参考例1及び比較例1〜3の単身触媒について、下記式(X1−2)の三酸化硫黄分解反応の転化率を評価した:
(X1−2)SO → SO + 1/2O
(Evaluation (conversion rate))
Using the fixed bed flow reactor shown in FIG. 5, the conversion rate of the sulfur trioxide decomposition reaction of the following formula (X1-2) was evaluated for the single catalysts of Reference Example 1 and Comparative Examples 1-3:
(X1-2) SO 3 → SO 2 + 1 / 2O 2

具体的には、三酸化硫黄分解反応の転化率は、図5に関して下記で説明するようにして評価した。   Specifically, the conversion rate of the sulfur trioxide decomposition reaction was evaluated as described below with reference to FIG.

14〜20メッシュに調整した0.5gの単身触媒又は担持触媒を、触媒床10として、石英製反応管4(内径10mm)に充填した。窒素(N)(100mL/分)及び47重量%硫酸(HSO)水溶液(50μL/分)を、それぞれ窒素供給部1及び硫酸供給部3から、石英製反応管4の下段に供給した。 A quartz reaction tube 4 (inner diameter 10 mm) was packed as a catalyst bed 10 with 0.5 g of a single catalyst or a supported catalyst adjusted to 14 to 20 mesh. Nitrogen (N 2 ) (100 mL / min) and 47 wt% sulfuric acid (H 2 SO 4 ) aqueous solution (50 μL / min) are supplied to the lower stage of the quartz reaction tube 4 from the nitrogen supply unit 1 and the sulfuric acid supply unit 3, respectively. did.

石英製反応管4の下段に供給された硫酸(HSO)は、石英製反応管4の下段及び中段において加熱されて、三酸化硫黄(SO)及び酸素(O)に分解し、そして触媒床10に流入した(SO:4.5mol%、HO:31mol%、N:残部、0℃換算ガス流量:148.5cm/分、重量流量比(W/F比):5.61×10−5g・h/cm、気体時空間速度(GHSV:Gas Hourly Space Velocity):約15,000h−1)。 The sulfuric acid (H 2 SO 4 ) supplied to the lower stage of the quartz reaction tube 4 is heated in the lower and middle stages of the quartz reaction tube 4 and decomposed into sulfur trioxide (SO 3 ) and oxygen (O 2 ). And flow into the catalyst bed 10 (SO 3 : 4.5 mol%, H 2 O: 31 mol%, N 2 : remainder, 0 ° C. converted gas flow rate: 148.5 cm 3 / min, weight flow rate ratio (W / F ratio) ): 5.61 × 10 −5 g · h / cm 3 , Gas Hourly Space Velocity (about 15,000 h −1 )).

ここで、石英製反応管4は、下段がヒーター4aによって約400℃に加熱されており、かつ中段がヒーター4bによって約600℃に加熱されていた。また、石英製反応管4の上段は、ヒーター4cによって初めに約600℃に加熱されており、定常状態になった後で、650℃に加熱した。   Here, in the quartz reaction tube 4, the lower stage was heated to about 400 ° C. by the heater 4a, and the middle stage was heated to about 600 ° C. by the heater 4b. The upper stage of the quartz reaction tube 4 was initially heated to about 600 ° C. by the heater 4c, and after reaching a steady state, was heated to 650 ° C.

石英製反応管4の上段をヒーター4cによって650℃に加熱した後で、石英製反応管4からの流出ガスを、空冷し、その後で、0.05Mのヨウ素(I)溶液にバブリングして、ヨウ素溶液に二酸化硫黄(SO)を吸収させた。0.025Mのチオ硫酸ナトリウム(Na)溶液を用いて、二酸化硫黄を吸収したヨウ素溶液にヨードメトリー滴定を行って、吸収された二酸化硫黄の量を求めた。 After heating the upper stage of the quartz reaction tube 4 to 650 ° C. by the heater 4c, the outflow gas from the quartz reaction tube 4 is air-cooled and then bubbled into a 0.05M iodine (I 2 ) solution. Then, sulfur dioxide (SO 2 ) was absorbed in the iodine solution. Using an 0.025 M sodium thiosulfate (Na 2 S 2 O 3 ) solution, iodometric titration was performed on the iodine solution that had absorbed sulfur dioxide to determine the amount of absorbed sulfur dioxide.

また、ヨウ素溶液にバブリングした後の流出ガスは、ドライアイス・エタノール混合物で冷却し、残留している二酸化硫黄及び三酸化硫黄をミストアブソーバー及びシリカゲルで完全に除去し、その後で、磁気圧力酸素計(堀場製作所のMPA3000)及びガスクロマトグラフ(島津製作所のGC8A、モレキュラーシーブ5A、TCD検出器)を用いて、酸素(O)の量を求めた。 The effluent gas after bubbling into the iodine solution is cooled with a dry ice / ethanol mixture, and the remaining sulfur dioxide and sulfur trioxide are completely removed with a mistabsorber and silica gel. The amount of oxygen (O 2 ) was determined using (Horiba MPA3000) and gas chromatograph (Shimadzu GC8A, molecular sieve 5A, TCD detector).

三酸化硫黄(SO)から二酸化硫黄(SO)への平衡転化率に対する到達率は、上記のようにして求めた二酸化硫黄及び酸素の量から計算した。 The arrival rate with respect to the equilibrium conversion rate from sulfur trioxide (SO 3 ) to sulfur dioxide (SO 2 ) was calculated from the amounts of sulfur dioxide and oxygen determined as described above.

参考例及び比較例についての評価結果を、下記の表1に示す。   The evaluation results for the reference example and the comparative example are shown in Table 1 below.

表1からは、参考例1の触媒が、比較例1〜3の触媒と比較して、650℃という比較的低い温度において、有意に好ましい三酸化硫黄分解特性を有していることが理解される。   From Table 1, it is understood that the catalyst of Reference Example 1 has significantly preferable sulfur trioxide decomposition characteristics at a relatively low temperature of 650 ° C. as compared with the catalysts of Comparative Examples 1 to 3. The

なお、上記の比較例2で用いられている酸化バナジウム、特に五酸化バナジウム(V)は、下記式(C−1)〜(C−3)で示される反応で硫酸を製造する接触法と呼ばれる方法において、二酸化硫黄を酸化させて三酸化硫黄を得る式(C−2)の反応を促進するために用いられている:
(C−1)S(固体) + O(気体) → SO(気体)
(C−2)2SO(気体) + O(気体) → 2SO(気体)
(C−3)SO(気体) + HO(液体) → HSO(液体)
The vanadium oxide used in Comparative Example 2 above, particularly vanadium pentoxide (V 2 O 5 ), is a contact that produces sulfuric acid by the reactions represented by the following formulas (C-1) to (C-3). Is used to promote the reaction of formula (C-2) to oxidize sulfur dioxide to obtain sulfur trioxide:
(C-1) S (solid) + O 2 (gas) → SO 2 (gas)
(C-2) 2SO 2 (gas) + O 2 (gas) → 2SO 3 (gas)
(C-3) SO 3 (gas) + H 2 O (liquid) → H 2 SO 4 (liquid)

しかしながら、酸化バナジウムを用いている比較例2は、参考例1と比較して有意に劣った転化率を示していた。   However, Comparative Example 2 using vanadium oxide showed a significantly inferior conversion compared to Reference Example 1.

《実施例1、並びに参考例2及び3》
実施例1及び参考例2では、550℃において焼成して得たシリカ担体を原料として用いる場合(実施例1)と、800℃において焼成して得たシリカ担体を原料として用いる場合(比較例1)の違いについて評価した。また、参考例3では、触媒金属として白金を用いて評価を行った。
<< Example 1 and Reference Examples 2 and 3 >>
In Example 1 and Reference Example 2, a case where a silica carrier obtained by firing at 550 ° C. is used as a raw material (Example 1), and a case where a silica carrier obtained by firing at 800 ° C. is used as a raw material (Comparative Example 1). ) Was evaluated. In Reference Example 3, the evaluation was performed using platinum as the catalyst metal.

《実施例1》
実施例1では、銅(Cu)とバナジウム(V)との複合金属酸化物(Cu−V−O)が多孔質シリカ担体に担持されてなる触媒を用いた。ここで、用いられている多孔質シリカ担体は、空気中において550℃で焼成して得たものである。
Example 1
In Example 1, a catalyst in which a composite metal oxide (Cu—V—O) of copper (Cu) and vanadium (V) was supported on a porous silica carrier was used. Here, the porous silica carrier used is obtained by firing at 550 ° C. in air.

具体的には、実施例1の触媒は下記のようにして製造した。   Specifically, the catalyst of Example 1 was produced as follows.

(多孔質シリカ担体の製造)
多孔質シリカ担体は、立方晶メソポーラスシリカ(KIT−6)であり、下記のようにして製造した。
(Production of porous silica support)
The porous silica carrier was cubic mesoporous silica (KIT-6) and was produced as follows.

(1)蒸留水144mLに、7.9gの35質量%塩酸(HCl)及び4.0gの非イオン性界面活性剤(Pluronic(商標)P−123)を添加し、得られた水溶液を35℃の温度において撹拌して、成分を溶解。
(2)得られた混合物に、4.0gの1−ブタノールを添加し、混合物が透明になるまで、35℃の温度において撹拌し、それによって、非イオン性界面活性剤を自己配列。
(3)得られた混合物に、シリカ源としての8.6gのテトラエトキシシラン(TEOS)を添加し、35℃の温度において24時間にわたって強撹拌し、自己整列している非イオン性界面活性剤をテンプレートとして、テトラエトキシシラン(TEOS)を加水分解。
(4)100℃の温度において24時間にわたって静置し、その後、洗浄せずにそのまま110℃の温度において24時間にわたって乾燥。
(6)8mlの35質量%塩酸と120mLのエタノールとの混合物中において、1.5時間にわたって撹拌して洗浄。
(7)110℃の温度において24時間にわたって乾燥し、そして3℃/分の昇温速度で550℃まで加熱して、この温度で5時間にわたって焼成して、立方晶メソポーラスシリカ(KIT−6)を取得。
(1) To 144 mL of distilled water, 7.9 g of 35% by mass hydrochloric acid (HCl) and 4.0 g of nonionic surfactant (Pluronic ™ P-123) are added, and the resulting aqueous solution is 35 ° C. Stir at the temperature of to dissolve the ingredients.
(2) To the resulting mixture, 4.0 g of 1-butanol is added and stirred at a temperature of 35 ° C. until the mixture is clear, thereby self-aligning the nonionic surfactant.
(3) A non-ionic surfactant that is self-aligned by adding 8.6 g of tetraethoxysilane (TEOS) as a silica source to the resulting mixture and vigorously stirring at a temperature of 35 ° C. for 24 hours. Tetraethoxysilane (TEOS) is hydrolyzed using as a template.
(4) It is allowed to stand at a temperature of 100 ° C. for 24 hours, and then dried at a temperature of 110 ° C. for 24 hours without washing.
(6) Wash with stirring for 1.5 hours in a mixture of 8 ml of 35% by weight hydrochloric acid and 120 mL of ethanol.
(7) Drying at a temperature of 110 ° C. for 24 hours and heating to 550 ° C. at a heating rate of 3 ° C./min, followed by firing at this temperature for 5 hours to obtain cubic mesoporous silica (KIT-6) Get.

(複合金属酸化物の担持)
複合酸化物は、吸水担持法によって、多孔質シリカ担体に担持した。具体的には、初めに、銅の硝酸塩を水に溶解した水溶液を作り、この水溶液を担体に吸水させ、150℃で乾燥し、350℃で1時間にわたって仮焼成した。次に、メタバナジン酸アンモニウムを水に溶解し、この水溶液を担体に吸水させ、150℃で乾燥し、350℃で1時間にわたって仮焼成した。最後に、得られた担体を600℃で2時間にわたって焼成して、複合酸化物を担持している多孔質シリカ担体を得た。
(Supporting complex metal oxides)
The composite oxide was supported on a porous silica support by a water absorption support method. Specifically, first, an aqueous solution in which copper nitrate was dissolved in water was prepared, this aqueous solution was absorbed by a carrier, dried at 150 ° C., and pre-baked at 350 ° C. for 1 hour. Next, ammonium metavanadate was dissolved in water, this aqueous solution was absorbed by the carrier, dried at 150 ° C., and temporarily calcined at 350 ° C. for 1 hour. Finally, the obtained carrier was calcined at 600 ° C. for 2 hours to obtain a porous silica carrier carrying a composite oxide.

なお、担持量は、銅が0.12mol/100g−担体、かつバナジウムが0.12mol/100g−担体とした。   The supported amount was 0.12 mol / 100 g-carrier for copper and 0.12 mol / 100 g-carrier for vanadium.

《参考例2》
参考例2では、銅(Cu)とバナジウム(V)との複合金属酸化物(Cu−V−O)が多孔質シリカ担体に担持されてなる触媒を用いた。ここで、用いられている多孔質シリカ担体は、空気中において800℃で焼成して得たものである。
<< Reference Example 2 >>
In Reference Example 2, a catalyst in which a composite metal oxide (Cu—V—O) of copper (Cu) and vanadium (V) was supported on a porous silica carrier was used. Here, the porous silica carrier used is obtained by firing at 800 ° C. in air.

具体的には、参考例2の触媒は下記のようにして製造した。   Specifically, the catalyst of Reference Example 2 was produced as follows.

(多孔質シリカ担体の製造)
多孔質シリカ担体は、特開2008−12382に記載の方法と類似の方法によって製造した。すなわち、多孔質シリカ担体は、下記のようにして製造した。
(Production of porous silica support)
The porous silica support was produced by a method similar to the method described in JP-A-2008-12382. That is, the porous silica carrier was produced as follows.

蒸留水6L(リットル)に、セチルトリメチルアンモニウムクロライド1kgを溶解した。得られた水溶液を2時間にわたって撹拌して、セチルトリメチルアンモニウムクロライドを自己配列させた。次に、セチルトリメチルアンモニウムクロライドを自己配列させた溶液に、テトラエトキシシランとアンモニア水を添加して、溶液のpHを9.5にした。   1 kg of cetyltrimethylammonium chloride was dissolved in 6 L (liter) of distilled water. The resulting aqueous solution was stirred for 2 hours to self-align cetyltrimethylammonium chloride. Next, tetraethoxysilane and aqueous ammonia were added to a solution in which cetyltrimethylammonium chloride was self-aligned to adjust the pH of the solution to 9.5.

この溶液中において、テトラエトキシシランを30時間にわたって加水分解して、配列したヘキサデシルアミンの周りにシリカを析出させて、ナノサイズの細孔を有する一次粒子からなる二次粒子を形成し、多孔質シリカ担体前駆体を得た。   In this solution, tetraethoxysilane is hydrolyzed for 30 hours to precipitate silica around the arranged hexadecylamine to form secondary particles composed of primary particles having nano-sized pores. A silica support precursor was obtained.

その後、得られた多孔質シリカ担体前駆体を、エタノール水で洗浄し、ろ過し、乾燥して、800℃の空気中で2時間にわたって焼成して、多孔質シリカ担体を得た。   Thereafter, the obtained porous silica carrier precursor was washed with ethanol water, filtered, dried, and calcined in air at 800 ° C. for 2 hours to obtain a porous silica carrier.

ここで得られた多孔質シリカ担体は、シリカの細孔構造に起因する2.7nm付近の細孔、及びシリカの一次粒子間の間隙に起因する10nm強の細孔を有していた。   The porous silica support obtained here had pores near 2.7 nm caused by the pore structure of silica and pores slightly over 10 nm caused by gaps between primary particles of silica.

(複合金属酸化物の担持)
実施例1と同様にして、銅とバナジウムの複合酸化物を多孔質シリカ担体に担持した。
(Supporting complex metal oxides)
In the same manner as in Example 1, a composite oxide of copper and vanadium was supported on a porous silica support.

《参考例3》
参考例3では、γ−アルミナ担体に白金を担持して、担持触媒を製造した。ここでは、担持量を0.5g−Pt/100g−担体とした。
<< Reference Example 3 >>
In Reference Example 3, a supported catalyst was produced by supporting platinum on a γ-alumina support. Here, the carrying amount was 0.5 g-Pt / 100 g-carrier.

(評価(転化率))
上記参考例1等でのようにして評価を行った。ただし、実施例1についての評価では、石英製反応管4の上段が約600℃で定常状態になった後で、図6で示すようにして加熱温度を変化させて評価を行った。加熱温度の変化と併せて、三酸化硫黄(SO)から二酸化硫黄(SO)への転化率の変化を図6に示している。
(Evaluation (conversion rate))
Evaluation was performed as in Reference Example 1 above. However, in the evaluation for Example 1, after the upper stage of the quartz reaction tube 4 reached a steady state at about 600 ° C., the evaluation was performed by changing the heating temperature as shown in FIG. Along with the change in the heating temperature, the change in the conversion rate from sulfur trioxide (SO 3 ) to sulfur dioxide (SO 2 ) is shown in FIG.

図6で示されているように、加熱温度600℃及び650℃においては、一時的に転化率が大きくなるものの、この転化率はすぐに小さくなった。   As shown in FIG. 6, at the heating temperatures of 600 ° C. and 650 ° C., although the conversion rate temporarily increased, this conversion rate immediately decreased.

その後、加熱温度を700℃、750℃及び800℃にすると、転化率が有意に大きくなった。これらの温度での転化率は、対応する温度における平衡転化率に対して100%近かった。   Thereafter, when the heating temperature was set to 700 ° C., 750 ° C., and 800 ° C., the conversion rate was significantly increased. The conversion at these temperatures was close to 100% relative to the equilibrium conversion at the corresponding temperature.

その後、再び加熱温度を600℃及び650℃まで加熱温度を低下させると、予想外に、転化率は最初に加熱温度を600℃及び650℃にしたときの転化率よりも有意に大きくなった。600℃の温度での転化率は、この温度での平衡転化率に対して79.8%であった。また、評価開始から10時間後の加熱温度650℃の状態での転化率は、対応する温度における平衡転化率に対して100%近かった。なお、650℃の温度での転化率をその後27時間にわたって評価したところ、転化率がほぼ維持されていることが確認された。   Thereafter, when the heating temperature was lowered again to 600 ° C. and 650 ° C., unexpectedly, the conversion rate was significantly higher than the conversion rate when the heating temperature was initially 600 ° C. and 650 ° C. The conversion at a temperature of 600 ° C. was 79.8% with respect to the equilibrium conversion at this temperature. Further, the conversion rate at a heating temperature of 650 ° C. 10 hours after the start of evaluation was close to 100% with respect to the equilibrium conversion rate at the corresponding temperature. When the conversion rate at a temperature of 650 ° C. was evaluated over the next 27 hours, it was confirmed that the conversion rate was substantially maintained.

参考例2についての評価では、図6で示すようにして加熱温度を変化させたところ、評価開始から10時間後の加熱温度650℃の状態において、この温度における平衡転化率に対する到達率は88.5%であった。実施例1では、対応する到達率は100%近かったので、参考例2の触媒と比較して、実施例1の三酸化硫黄分解触媒が有意に優れていることが理解される。   In the evaluation of Reference Example 2, when the heating temperature was changed as shown in FIG. 6, the reaching rate with respect to the equilibrium conversion rate at this temperature was 88.degree. It was 5%. In Example 1, since the corresponding arrival rate was close to 100%, it is understood that the sulfur trioxide decomposition catalyst of Example 1 is significantly superior to the catalyst of Reference Example 2.

参考例3についての評価では、図6で示すようにして加熱温度を変化させたところ、評価開始から10時間後の加熱温度650℃の状態において、対応する温度における平衡転化率に対して62.7%であった。実施例1では、対応する到達率は100%近かったので、参考例3の触媒と比較して、実施例1の三酸化硫黄分解触媒が有意に優れていることが理解される。   In the evaluation of Reference Example 3, when the heating temperature was changed as shown in FIG. 6, the equilibrium conversion rate at the corresponding temperature in the state of the heating temperature of 650 ° C. 10 hours after the start of the evaluation was 62. 7%. In Example 1, since the corresponding arrival rate was close to 100%, it is understood that the sulfur trioxide decomposition catalyst of Example 1 is significantly superior to the catalyst of Reference Example 3.

(評価(STEM分析))
実施例1で用いた三酸化硫黄分解触媒について、600℃、750℃及び800℃の温度での三酸化硫黄分解反応に用いた後で、走査透過型電子顕微鏡(STEM)よる分析を行った。得られた結果をそれぞれ図7(a)〜(c)に示す。
(Evaluation (STEM analysis))
About the sulfur trioxide decomposition catalyst used in Example 1, after using it for the sulfur trioxide decomposition reaction at the temperature of 600 degreeC, 750 degreeC, and 800 degreeC, the analysis by a scanning transmission electron microscope (STEM) was performed. The obtained results are shown in FIGS.

600℃の温度での三酸化硫黄分解反応に用いた後の触媒(図7(a))では、シリカ担体の細孔に由来する孔(白く抜けた部分)、及び担体に担持されている銅とバナジウムとの複合酸化物(Cu−V−O)が確認できた。   In the catalyst after being used for the sulfur trioxide decomposition reaction at a temperature of 600 ° C. (FIG. 7A), pores derived from the pores of the silica support (portions whitened) and the copper supported on the support And vanadium complex oxide (Cu-VO) could be confirmed.

また、750℃の温度での三酸化硫黄分解反応に用いた後の触媒(図7(b))では、シリカ担体の細孔に由来する孔が潰れ、全体として収縮していた。   In addition, in the catalyst after being used for the sulfur trioxide decomposition reaction at a temperature of 750 ° C. (FIG. 7B), the pores derived from the pores of the silica support were crushed and contracted as a whole.

さらに、800℃の温度での三酸化硫黄分解反応に用いた後の触媒(図7(c))では、シリカ担体のシンタリングが大きく進行し、それによって表面積が小さく、かつシリカゲルのような形態となっていた。   Further, in the catalyst after being used for the sulfur trioxide decomposition reaction at a temperature of 800 ° C. (FIG. 7C), the sintering of the silica carrier proceeds greatly, thereby reducing the surface area and the form like silica gel. It was.

これら図7(a)〜(c)から明らかなように、シリカ担体は加熱によって大きく劣化していた。しかしながら、三酸化硫黄分解触媒としての性質は、800℃の温度での使用後に改良されていたことから、担体に担持された銅とバナジウムとの複合酸化物の物性が改良されていたことが理解される。   As is clear from FIGS. 7A to 7C, the silica support was greatly deteriorated by heating. However, the property as a sulfur trioxide decomposition catalyst was improved after use at a temperature of 800 ° C., so it was understood that the physical properties of the composite oxide of copper and vanadium supported on the support were improved. Is done.

(評価(XRD分析))
800℃の温度での三酸化硫黄分解反応に用いた後の触媒を、XRD(X線回折)分析で評価した。評価結果を図8に示す。
(Evaluation (XRD analysis))
The catalyst after use in the sulfur trioxide decomposition reaction at a temperature of 800 ° C. was evaluated by XRD (X-ray diffraction) analysis. The evaluation results are shown in FIG.

図8のXRD分析結果からは、硫酸銅(CuSO)に帰属される弱いピークが観測され、これは、極微量の硫酸銅の存在を示唆している。また、XRD分析結果では、それ以外の明確なピークが示されていないことから、大部分の成分が非常に均一に分散していると考えられる。なお、650℃の温度での三酸化硫黄分解反応に用いた後の触媒についてん6XRD分析でも、800℃の場合と同様な結果が得られた。 From the XRD analysis result of FIG. 8, a weak peak attributed to copper sulfate (CuSO 4 ) is observed, suggesting the presence of a trace amount of copper sulfate. In addition, since the XRD analysis results do not show any other clear peak, it is considered that most of the components are very uniformly dispersed. In addition, in the 6XRD analysis of the catalyst after being used for the sulfur trioxide decomposition reaction at a temperature of 650 ° C., the same result as in the case of 800 ° C. was obtained.

(評価(EDS分析))
800℃の温度での三酸化硫黄分解反応に用いた後の触媒を、ケイ素(Si)、バナジウム(V)、及び銅(Cu)についてのEDS(エネルギー分散形X線分光)分析で評価した。評価結果を、STEM−HAADF(走査透過電子顕微鏡(高角度散乱暗視野法))による分析結果と併せて、図9に示す。
(Evaluation (EDS analysis))
The catalyst after use in the sulfur trioxide decomposition reaction at a temperature of 800 ° C. was evaluated by EDS (energy dispersive X-ray spectroscopy) analysis for silicon (Si), vanadium (V), and copper (Cu). The evaluation results are shown in FIG. 9 together with the analysis results by STEM-HAADF (scanning transmission electron microscope (high angle scattering dark field method)).

図9のESD分析結果からは、担体に担持されている触媒成分であるCu及びVの分布が、担体の構成元素であるSiの分布と同様であることが分かる。これは、触媒成分である銅とバナジウムとの複合酸化物が、シリカ担体上に薄膜状で堆積していることを示している。なお、担体上に担持されているCuは部分的に凝縮している箇所があるが、これは、硫酸銅として析出した部分であると考えられる。   From the ESD analysis results in FIG. 9, it can be seen that the distribution of Cu and V, which are catalyst components supported on the carrier, is similar to the distribution of Si, which is a constituent element of the carrier. This indicates that the composite oxide of copper and vanadium, which are catalyst components, is deposited in a thin film on the silica support. In addition, although Cu currently carry | supported on the support | carrier has the location which is partially condensed, it is thought that this is the part which precipitated as copper sulfate.

(評価(ラマン散乱分析))
650℃及び800℃の温度での三酸化硫黄分解反応に用いた後の触媒(Cu−V−O/SiO(650℃)及びCu−V−O/SiO(800℃))を、ラマン散乱分析で評価した。評価結果を、比較のためのバナジン酸銅(Cu)、酸化銅(CuO)及び五酸化バナジウム(V)についての分析結果と併せて、図10に示す。なお、バナジン酸銅(Cu)についての分析結果は、高さを0.5倍(×0.5)して表している。
(Evaluation (Raman scattering analysis))
650 ° C. and 800 ° C. of the temperature in the sulfur trioxide decomposition reaction catalyst after used in the (Cu-V-O / SiO 2 (650 ℃) and Cu-V-O / SiO 2 (800 ℃)) and Raman It was evaluated by scattering analysis. The evaluation results are shown in FIG. 10 together with the analysis results for copper vanadate (Cu 2 V 2 O 7 ), copper oxide (CuO), and vanadium pentoxide (V 2 O 5 ) for comparison. Incidentally, the analysis results for the vanadate copper (Cu 2 V 2 O 7) represents to 0.5 times the height (× 0.5).

図10のラマン散乱分析結果によれば、650℃の温度での三酸化硫黄分解反応に用いた後の触媒(Cu−V−O/SiO(650℃))では、バナジン酸銅(Cu)と同様なラマン散乱プロファイルが得られた。 According to the Raman scattering analysis result of FIG. 10, in the catalyst (Cu—V—O / SiO 2 (650 ° C.)) used for the sulfur trioxide decomposition reaction at a temperature of 650 ° C., copper vanadate (Cu 2 A Raman scattering profile similar to that of V 2 O 7 ) was obtained.

このプロファイルでは、920cm−1付近に存在するピーク、すなわちピロバナジン酸(V)構造の両端のVOの対称収縮振動(対称性最大)に由来するピークが、最大のピークであった。具体的には、このプロファイルでは、920cm−1付近のピークの高さが、バナジウム−酸素(V−O)結合に起因する他のピークの最大高さの約3.9倍になっていた。また、この触媒(Cu−V−O/SiO(650℃))では、920cm−1付近のピークの半値幅が、約25cm−1になっていた。 In this profile, the peak present in the vicinity of 920 cm −1 , that is, the peak derived from the symmetrical contraction vibration (maximum symmetry) of VO 3 at both ends of the pyrovanadic acid (V 2 O 7 ) structure was the maximum peak. Specifically, in this profile, the peak height in the vicinity of 920 cm −1 was about 3.9 times the maximum height of other peaks due to vanadium-oxygen (V—O) bonds. Further, in the catalyst (Cu-V-O / SiO 2 (650 ℃)), the half width of the peak near 920 cm -1, were to about 25 cm -1.

これに対して、800℃の温度での三酸化硫黄分解反応に用いた後の触媒(Cu−V−O/SiO(800℃))では、920cm−1付近のこのピークが低く、かつブロードになっていた。具体的には、このプロファイルでは、920cm−1付近のピークの高さが、バナジウム−酸素(V−O)結合に起因する他のピークの最大高さの約0.9倍になっていた。また、この触媒(Cu−V−O/SiO(800℃))では、920cm−1付近のピークの半値幅が、約59cm−1になっていた。 On the other hand, in the catalyst (Cu—V—O / SiO 2 (800 ° C.)) used for the sulfur trioxide decomposition reaction at a temperature of 800 ° C., this peak around 920 cm −1 is low and broad. It was. Specifically, in this profile, the peak height in the vicinity of 920 cm −1 was about 0.9 times the maximum height of other peaks due to vanadium-oxygen (V—O) bonds. Further, in the catalyst (Cu-V-O / SiO 2 (800 ℃)), the half width of the peak near 920 cm -1, were to about 59cm -1.

これは、ピロバナジン酸(V)構造が変化して結晶が歪み、それによってピロバナジン酸(V)構造の両端のVOの対称性が低下したことを示している。この対称性の低下は、バナジウムと酸素との間の結合の一部が、バナジウムと酸素との間の他の結合よりも長く、それによって切れやすくなっていることを意味すると考えられる。 This indicates that the pyrovanadic acid (V 2 O 7 ) structure was changed and the crystal was distorted, thereby reducing the symmetry of VO 3 at both ends of the pyrovanadic acid (V 2 O 7 ) structure. This decrease in symmetry is believed to mean that some of the bonds between vanadium and oxygen are longer than other bonds between vanadium and oxygen, thereby making it easier to break.

1 窒素供給部
3 硫酸供給部
4 石英製反応管
4a、4b、4c ヒーター
10 触媒床
DESCRIPTION OF SYMBOLS 1 Nitrogen supply part 3 Sulfuric acid supply part 4 Quartz reaction tube 4a, 4b, 4c Heater 10 Catalyst bed

Claims (14)

銅とバナジウムとの複合酸化物がシリカ担体に担持されてなり、前記複合酸化物がピロバナジン酸銅であり、かつラマン分光分析において、バナジウム−酸素(V−O)結合に起因する920cm−1付近のピークの高さが、下記の(a)及び(b)の少なくとも一方の条件を満たす、三酸化硫黄分解触媒:
(a)前記920cm−1付近のピークの高さが、バナジウム−酸素(V−O)結合に起因する他のピークの最大高さの3.0倍以下、及び
(b)前記920cm−1付近のピークの半値幅が、30cm−1以上。
A composite oxide of copper and vanadium is supported on a silica support, the composite oxide is copper pyrovanadate, and in the Raman spectroscopic analysis, near 920 cm −1 due to a vanadium-oxygen (VO) bond The sulfur trioxide decomposition catalyst satisfying at least one of the following conditions (a) and (b):
(A) The height of the peak in the vicinity of 920 cm −1 is not more than 3.0 times the maximum height of other peaks caused by vanadium-oxygen (V—O) bonds, and (b) in the vicinity of 920 cm −1. The half-width of the peak of 30 cm −1 or more.
前記複合酸化物において、銅とバナジウムとの原子比が、1:9〜9:1である、請求項1に記載の触媒。   The catalyst according to claim 1, wherein the composite oxide has an atomic ratio of copper to vanadium of 1: 9 to 9: 1. 条件(a)を少なくとも満たす、請求項1又は2に記載の触媒。   The catalyst according to claim 1 or 2, which satisfies at least the condition (a). 条件(b)を少なくとも満たす、請求項1又は2に記載の触媒。   The catalyst according to claim 1 or 2, wherein at least the condition (b) is satisfied. 条件(a)において、前記920cm−1付近のピークの高さが、バナジウム−酸素(V−O)結合に起因する他のピークの最大高さの1.5倍以下である、請求項1〜4のいずれか一項に記載の触媒。 In the condition (a), the height of the peak in the vicinity of 920 cm −1 is 1.5 times or less the maximum height of the other peak due to the vanadium-oxygen (V—O) bond. 5. The catalyst according to any one of 4 above. 条件(b)において、前記920cm−1付近のピークの半値幅が、40cm−1以上である、請求項1〜5のいずれか一項に記載の触媒。 In condition (b), the half width of the peak in the vicinity of the 920 cm -1 is at 40 cm -1 or more, the catalyst according to any one of claims 1 to 5. 前記シリカ担体が、細孔構造を有する多孔質シリカ担体である、請求項1〜6のいずれか一項に記載の触媒。   The catalyst according to any one of claims 1 to 6, wherein the silica support is a porous silica support having a pore structure. 前記複合酸化物が、前記多孔質シリカ担体の細孔構造内に担持されており、且つ
前記多孔質シリカ担体の細孔分布において、シリカの一次粒子間の間隙に起因するピークが、細孔径5〜50nmの範囲にあり、且つシリカ粒子内の細孔構造に起因するピークが、細孔径1〜5nmの範囲にある、
請求項7に記載の触媒。
The composite oxide is supported in the pore structure of the porous silica carrier, and in the pore distribution of the porous silica carrier, the peak due to the gap between the primary particles of silica has a pore diameter of 5 The peak due to the pore structure in the silica particles in the range of ˜50 nm is in the range of the pore diameter of 1 to 5 nm.
The catalyst according to claim 7.
(a)銅塩の水溶液及びバナジウム塩の水溶液の一方の水溶液を、シリカ担体に吸水させ、乾燥及び仮焼成すること、
(b)工程(a)の後で、銅塩の水溶液及びバナジウム塩の水溶液の他方の水溶液を、前記シリカ担体に吸水させ、乾燥及び仮焼成すること、そして
(c)工程(b)の後で、得られた前記シリカ担体を700℃以上の温度で焼成して、前記シリカ担体上にピロバナジン酸銅を形成すること
を含み、かつ
工程(c)における前記熱処理の前に、前記シリカ担体が700℃以上の熱処理を受けていない、
三酸化硫黄分解触媒の製造方法。
(A) One of an aqueous solution of a copper salt and an aqueous solution of a vanadium salt is absorbed by a silica carrier, dried and calcined,
(B) After step (a), the other aqueous solution of the copper salt solution and the vanadium salt solution is absorbed by the silica carrier, dried and calcined, and (c) after step (b) And calcining the obtained silica support at a temperature of 700 ° C. or higher to form copper pyrovanadate on the silica support , and before the heat treatment in the step (c), Not subjected to heat treatment of 700 ° C or higher,
A method for producing a sulfur trioxide decomposition catalyst.
(a)銅塩及びバナジウム塩を含有する水溶液を、シリカ担体に吸水させ、乾燥及び仮焼成すること、
(b)工程(a)の後で、得られた前記シリカ担体を700℃以上の温度で焼成して、前記シリカ担体上にピロバナジン酸銅を形成すること
を含み、かつ
工程(b)における前記熱処理の前に、前記シリカ担体が700℃以上の熱処理を受けていない、
三酸化硫黄分解触媒の製造方法。
(A) making an aqueous solution containing a copper salt and a vanadium salt absorb water in a silica carrier, drying and pre-baking;
(B) after step (a), calcining the obtained silica support at a temperature of 700 ° C. or higher to form copper pyrovanadate on the silica support; and in step (b) Before the heat treatment, the silica support has not been subjected to a heat treatment of 700 ° C. or higher,
A method for producing a sulfur trioxide decomposition catalyst.
請求項1〜8のいずれか一項に記載の三酸化硫黄分解触媒を用いて、三酸化硫黄を二酸化硫黄と酸素とに分解することを含む、二酸化硫黄の生成方法。   A method for producing sulfur dioxide, comprising decomposing sulfur trioxide into sulfur dioxide and oxygen using the sulfur trioxide decomposition catalyst according to any one of claims 1 to 8. 前記分解を800℃以下の温度で行う、請求項11に記載の方法。   The method according to claim 11, wherein the decomposition is performed at a temperature of 800 ° C. or less. 水を、水素及び酸素に分解することを含む、水素生成方法であって、下記式(X1)で示される反応で、硫酸を、水、二酸化硫黄、及び酸素に分解することを含み、且つ下記式(X1)で示される反応の素反応である式(X1−1)及び(X1−2)の素反応のうち、式(X1−2)の素反応を、請求項11又は12に記載の方法によって行う、水素生成方法:
(X1)HSO → HO + SO + 1/2O
(X1−1)HSO → HO + SO
(X1−2)SO → SO + 1/2O
A method for producing hydrogen comprising decomposing water into hydrogen and oxygen, comprising decomposing sulfuric acid into water, sulfur dioxide, and oxygen in a reaction represented by the following formula (X1): The elementary reaction of the formula (X1-2) among the elementary reactions of the formulas (X1-1) and (X1-2), which is an elementary reaction of the reaction represented by the formula (X1), is described in claim 11 or 12. Method for generating hydrogen by the method:
(X1) H 2 SO 4 → H 2 O + SO 2 + 1 / 2O 2
(X1-1) H 2 SO 4 → H 2 O + SO 3
(X1-2) SO 3 → SO 2 + 1 / 2O 2
I−Sサイクル法、ウエスティングハウス・サイクル法、Ispra−Mark 13サイクル法、又はロスアラモス・サイエンスラボラトリ・サイクル法である、請求項13に記載の水素生成方法。   The hydrogen generation method according to claim 13, which is an IS cycle method, a Westinghouse cycle method, an Ispra-Mark 13 cycle method, or a Los Alamos Science Laboratory cycle method.
JP2011260754A 2011-11-29 2011-11-29 Sulfur trioxide decomposition catalyst and hydrogen generation method Expired - Fee Related JP5767093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011260754A JP5767093B2 (en) 2011-11-29 2011-11-29 Sulfur trioxide decomposition catalyst and hydrogen generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011260754A JP5767093B2 (en) 2011-11-29 2011-11-29 Sulfur trioxide decomposition catalyst and hydrogen generation method

Publications (2)

Publication Number Publication Date
JP2013111542A JP2013111542A (en) 2013-06-10
JP5767093B2 true JP5767093B2 (en) 2015-08-19

Family

ID=48707670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011260754A Expired - Fee Related JP5767093B2 (en) 2011-11-29 2011-11-29 Sulfur trioxide decomposition catalyst and hydrogen generation method

Country Status (1)

Country Link
JP (1) JP5767093B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015120116A (en) 2013-12-24 2015-07-02 トヨタ自動車株式会社 Sulfur trioxide decomposition catalyst, method for producing the same, and method for generating hydrogen using the same
US11390522B2 (en) 2016-04-28 2022-07-19 Indian Institute Of Technology, Delhi Process for conversion of sulfur trioxide and hydrogen production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347164A (en) * 2000-04-11 2001-12-18 Dmc 2 Degussa Metals Catalysts Cerdec Ag Method for producing vanadia scr catalyst supported on titania
JP2004255299A (en) * 2003-02-26 2004-09-16 Matsushita Electric Ind Co Ltd Filter for supporting catalyst, solvent drying method and method for supporting catalyst on filter using the method
US7541012B2 (en) * 2004-07-07 2009-06-02 The Hong Kong University Of Science And Technology Catalytic material and method of production thereof
JP5387561B2 (en) * 2010-12-28 2014-01-15 トヨタ自動車株式会社 Hydrogen production method
JP5497688B2 (en) * 2011-05-25 2014-05-21 トヨタ自動車株式会社 Sulfur trioxide decomposition catalyst and hydrogen generation method

Also Published As

Publication number Publication date
JP2013111542A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
JP5490074B2 (en) Sulfur trioxide decomposition catalyst and hydrogen generation method
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
JP5497688B2 (en) Sulfur trioxide decomposition catalyst and hydrogen generation method
JP5387561B2 (en) Hydrogen production method
CN113385185A (en) High-activity and selective perovskite type photo-thermal catalyst and preparation method and application thereof
KR101565982B1 (en) Fabrication method of SCR catalyst added carbon material supported vanadium
Dong et al. Construction of surface oxygen vacancy active sites upon MnOx/AC composite catalysts for efficient coupling adsorption and oxidation of toluene
JP5767093B2 (en) Sulfur trioxide decomposition catalyst and hydrogen generation method
Qiu et al. Insights into the structure-performance relationship of CuOx-CeO2 catalysts for preferential oxidation of CO: Investigation on thermally induced copper migration process
CN107008334A (en) A kind of method of modifying of photocatalytic hydrogen production by water decomposition catalyst
KR101565976B1 (en) Synthesis method of Carbon material supported vanadium
Teng et al. Carbon nanotubes-templated assembly of LaCoO3 nanowires at low temperatures and its excellent catalytic properties for CO oxidation
JP2015120116A (en) Sulfur trioxide decomposition catalyst, method for producing the same, and method for generating hydrogen using the same
JP2019034277A (en) Carrier catalyst, generation method of sulfur dioxide, and hydrogen generation method
JPH11139826A (en) Production of laminar compound having interlaminar crosslinked structure
JPWO2019138536A1 (en) Methanol steam reforming catalyst, methanol steam reforming apparatus, and hydrogen generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150618

R151 Written notification of patent or utility model registration

Ref document number: 5767093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees