JP5766643B2 - Water biological treatment equipment - Google Patents

Water biological treatment equipment Download PDF

Info

Publication number
JP5766643B2
JP5766643B2 JP2012067055A JP2012067055A JP5766643B2 JP 5766643 B2 JP5766643 B2 JP 5766643B2 JP 2012067055 A JP2012067055 A JP 2012067055A JP 2012067055 A JP2012067055 A JP 2012067055A JP 5766643 B2 JP5766643 B2 JP 5766643B2
Authority
JP
Japan
Prior art keywords
gas
water
liquid
carrier layer
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012067055A
Other languages
Japanese (ja)
Other versions
JP2013198833A (en
Inventor
三島 浩二
浩二 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2012067055A priority Critical patent/JP5766643B2/en
Publication of JP2013198833A publication Critical patent/JP2013198833A/en
Application granted granted Critical
Publication of JP5766643B2 publication Critical patent/JP5766643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

本発明は、水の生物処理装置に関し、特に、懸濁性物質(SS)、アンモニア、溶存有機物(DOC))等を含む原水を生物処理する装置に関する。   The present invention relates to a biological treatment apparatus for water, and more particularly to an apparatus for biological treatment of raw water containing suspending substances (SS), ammonia, dissolved organic matter (DOC), and the like.

上水や工業用水の水源は河川水、湖沼水、地下水など多岐にわたるが、水源水質は必ずしも良好ではない。水源の上流域で農業や畜産業が盛んな地域、あるいは工場廃水が不十分な処理のまま放流される地域では、原水に窒素、有機物、りん、その他の化学物質が混入する場合がある。 There are a wide variety of water sources such as river water, lake water, and groundwater, but the quality of the water source is not always good. In areas where agriculture and livestock industry are thriving upstream of the water source, or areas where factory wastewater is discharged with insufficient treatment, raw water may contain nitrogen, organic matter, phosphorus, and other chemical substances.

通常、浄水処理及び工業用水処理は、懸濁性物質(SS)の除去を主な目的におくことから、凝集処理、沈殿処理、ろ過処理、及び消毒処理の組み合わせで構成される。これらの工程によってSSやりんは除去されるが、アンモニア(アンモニウムイオン)や溶存有機物(DOC)などの汚染物質はほとんど除去されない。   Usually, water purification treatment and industrial water treatment are mainly composed of a combination of flocculation treatment, precipitation treatment, filtration treatment, and disinfection treatment because the main purpose is to remove suspended substances (SS). SS and phosphorus are removed by these processes, but contaminants such as ammonia (ammonium ions) and dissolved organic matter (DOC) are hardly removed.

これらの汚染物質の除去方法として生物処理法がある。生物処理法では、活性炭、アンスラサイト、砂、セラミックス、あるいはプラスチック性のろ材(微生物担体)を装置に充填し、原水を通水して担体に微生物を生育させて処理を行う。原水の汚染物質濃度が高い場合は、原水を通水しながら底部より空気曝気を行い、処理に必要な酸素を供給する。原水の汚染物質濃度がより高濃度の場合、嫌気処理を行う場合もある。   Biological treatment methods are available as methods for removing these contaminants. In the biological treatment method, activated carbon, anthracite, sand, ceramics, or a plastic filter medium (microorganism carrier) is filled in an apparatus, and raw water is passed through to grow microorganisms on the carrier for treatment. When the concentration of pollutants in the raw water is high, air is aerated from the bottom while passing the raw water to supply oxygen necessary for the treatment. If the pollutant concentration of raw water is higher, anaerobic treatment may be performed.

生物処理装置における原水と微生物担体との接触方式には、固定床式と流動床式とがある。固定床式は、SSが少ない原水への適用に優れ、生物処理とSS除去が同時に行える利点がある。一方、SSが高い原水に適用した場合、固定床の通水抵抗が容易に上昇するため、固定床の洗浄頻度が上がり、水処理効率が下がるデメリットがある。流動床式は、微生物担体と原水の接触効率が高く、反応速度が大きいことから反応槽容積を小さくできる利点がある。また、原水SSの多くは流動床で捕捉されず素通りすることから、SSが高い原水に適用しても長時間の連続処理が可能である。   There are a fixed bed type and a fluidized bed type as a contact method between raw water and a microorganism carrier in a biological treatment apparatus. The fixed bed type is excellent in application to raw water with less SS, and has the advantage that biological treatment and SS removal can be performed simultaneously. On the other hand, when applied to raw water with a high SS, the water flow resistance of the fixed floor easily rises, so there is a demerit that the frequency of washing the fixed floor increases and the water treatment efficiency decreases. The fluidized bed type has an advantage that the reaction tank volume can be reduced because the contact efficiency of the microorganism carrier and the raw water is high and the reaction rate is high. In addition, since most of the raw water SS passes through without being captured in the fluidized bed, continuous treatment for a long time is possible even when applied to raw water with high SS.

固定床及び流動床の高い性能を十分に発揮するには、装置に供給される水や空気を、槽全体に均一に供給し、デッドスペースや偏流を起こさないことが重要である。そのためには、装置底部に気体と液体の気液分配装置を設け、凡そ槽全体に水や空気が均一に吐出されるよう、構造的工夫が図られている。   In order to fully exhibit the high performance of the fixed bed and fluidized bed, it is important to uniformly supply water and air supplied to the apparatus to the entire tank so as not to cause dead space and drift. For this purpose, a gas-liquid distribution device for gas and liquid is provided at the bottom of the device, and structural contrivances are made so that water and air are uniformly discharged over the entire tank.

古典的技術として、槽底部に粒径の異なる数種類の砂利を積層し(砂利支持床)、砂利層に水及び又は空気の導入管を挿入し、導入管に均等に吐出孔を設ける方式が採用されている。さらに、近年では、支持砂利床に代わる気液分配構造体を用いる事例も見受けられ、また、これと砂利支持床の併用も認められる(特許文献1、非特許文献1〜3)。これらの気液分配装置は、空気導入部、水導入部、オリフィス、内部隔壁等を備え、上部にはろ材落下を防ぐために多孔板や粒状物が敷かれる。また、水導入部は処理水の集水機能を兼ねることが多い。このような創意工夫により、水や空気の均一な吐出が可能となっている。しかし、水処理装置に求められる連続稼働時間は、短期ではなく数年の長期に及ぶ。その結果、月単位では安定的に稼働しても、年単位の稼動に伴い、気液分配装置の閉塞や圧力損失増加等の障害が生じる事例が認められている。この一因として原水SS自体による閉塞もあるが、多くの場合は気液分配装置内部での微生物の繁殖、すなわち微生物汚染である。この種の障害は、原水を上向きで流す上向流式固定床や上向式流動床で特に発生しやすい。その理由は、汚染度の大きい処理前原水と接触することによる。微生物汚染による障害を防止する手段として、気液分配装置内部に通常とは逆向きに水を高速で流す水洗浄(水洗)、さらには空気を多量に供給しながら水洗を同時に行う(水空洗)等の物理的な洗浄操作が行われる。これにより、装置の性能は回復するが、その効果は一時的効果に止まり、長期安定運転までには至らぬことが多い。その場合、最終手段として気液分配装置の分解清掃、殺菌剤やスライム除去剤による薬品洗浄が必要になり、長時間の装置停止を余儀なくされ、洗浄コストが増加する。   A classic technique is to stack several types of gravel with different particle sizes at the bottom of the tank (gravel support floor), insert water and / or air introduction pipes into the gravel layer, and provide uniform discharge holes in the introduction pipes Has been. Furthermore, in recent years, there have been cases where a gas-liquid distribution structure instead of a supporting gravel floor is used, and the combined use of this with a gravel supporting floor is also recognized (Patent Document 1, Non-Patent Documents 1 to 3). These gas-liquid distributors are provided with an air introduction part, a water introduction part, an orifice, an internal partition, and the like, and a perforated plate or a granular material is laid on the upper part to prevent the filter medium from falling. Further, the water introduction part often serves as a water collection function for treated water. Such ingenuity makes it possible to discharge water and air uniformly. However, the continuous operation time required for water treatment equipment is not a short period but a long period of several years. As a result, even if the operation is stable on a monthly basis, there are cases where failures such as blockage of the gas-liquid distribution device and an increase in pressure loss occur with the operation of the annual operation. One reason for this is clogging by the raw water SS itself, but in many cases, it is the propagation of microorganisms inside the gas-liquid distributor, that is, microbial contamination. This type of obstacle is particularly likely to occur in upflow fixed beds and upward fluidized beds where raw water flows upward. The reason is due to contact with raw water before treatment having a high degree of contamination. As a means to prevent troubles caused by microbial contamination, water washing (water washing) is performed in such a manner that water flows at a high speed in the opposite direction to the inside of the gas-liquid distributor, and water washing is simultaneously performed while supplying a large amount of air (water washing ) And other physical cleaning operations are performed. As a result, the performance of the apparatus is restored, but the effect is limited to a temporary effect and often does not reach long-term stable operation. In that case, disassembly and cleaning of the gas-liquid distributor and chemical cleaning with a disinfectant and slime remover are necessary as the final means, and the apparatus must be stopped for a long time, increasing the cleaning cost.

生物処理装置において槽底部に発生する微生物汚染の除去は困難な作業である。何故なら、薬品洗浄で用いられる薬品は次亜塩素酸ナトリウムや硫酸、水酸化ナトリウム等であり、微生物にとって毒性が高いからである。これらの薬品は、汚染微生物のみならず、担体に保持されている微生物にとっても大きなダメージとなり、最悪の場合には生物処理装置の機能の大半を喪失する危険すらある。   Removal of microbial contamination generated at the bottom of a tank in a biological treatment apparatus is a difficult task. This is because chemicals used in chemical cleaning are sodium hypochlorite, sulfuric acid, sodium hydroxide, and the like, which are highly toxic to microorganisms. These chemicals cause great damage not only to contaminating microorganisms but also to microorganisms held on the carrier, and in the worst case, there is a risk of losing most of the functions of the biological treatment apparatus.

また担体材質によっては、担体自体が薬品によって強度を損なわれ、担体の崩壊等の二次的なトラブルが発生する場合もある。例えば、活性炭を微生物担体として使用し、薬剤として次亜塩素酸ナトリウムを使用すると、次亜塩素酸ナトリムにより汚染微生物のみではなく活性炭自身の強度も低下し、活性炭の入替えが必要になってしまう。   Further, depending on the material of the carrier, the strength of the carrier itself may be impaired by chemicals, and secondary troubles such as collapse of the carrier may occur. For example, when activated carbon is used as a microbial carrier and sodium hypochlorite is used as a drug, sodium hypochlorite reduces not only the contaminating microorganisms but also the strength of the activated carbon itself, necessitating replacement of the activated carbon.

気液分配装置の洗浄のために、液導入ラインを経由して気液分配装置に次亜塩素酸ナトリウムを注入し、一定時間静止の後にドレンし、残留薬品を幾度かの水洗によりフラッシングすることが行われてきた。しかし、薬品は必ず自然拡散する。従って、担体に保持された微生物の健全性を担保するためには、十分な濃度の薬品で十分な時間をかけて処理することは難しく、得られる洗浄効果は不十分な場合が多かった。   In order to clean the gas-liquid distributor, inject sodium hypochlorite into the gas-liquid distributor via the liquid introduction line, drain after standing for a certain period of time, and flush the residual chemicals by washing with water several times. Has been done. However, chemicals always diffuse naturally. Therefore, in order to ensure the soundness of the microorganisms held on the carrier, it is difficult to treat with a sufficient concentration of chemicals for a sufficient time, and the resulting cleaning effect is often insufficient.

特許第4299396号公報Japanese Patent No. 4299396

水ing株式会社「集水装置トリラテラル」カタログWater ing Co., Ltd. “Collector Trilateral” catalog 水道機工株式会社「スイオーテトラブロック」カタログWaterworks Kiko Co., Ltd. “Suioh Tetra Block” catalog 株式会社神鋼環境ソリューション「上向流式生物接触ろ過設備」カタログhttp://www.jsim.or.jp/newsPDF/kankyo05.pdfShinko Environmental Solution Co., Ltd. “Upward flow biological contact filtration equipment” catalog http://www.jsim.or.jp/newsPDF/kankyo05.pdf

本発明は、固定床式又は流動床式の生物処理装置において、その気液分配装置を薬品洗浄する際、微生物保持担体に生育する微生物及び/又は該微生物保持担体の薬品によるダメージを回避乃至は最小とし、水処理装置の機能を安定に維持することができる水の生物処理装置を提供することを目的とする。   The present invention avoids or damages caused by microorganisms growing on a microorganism holding carrier and / or chemicals of the microorganism holding carrier when the gas-liquid distributor is chemically washed in a fixed bed type or fluidized bed type biological treatment apparatus. It is an object of the present invention to provide a water biological treatment apparatus that can minimize and maintain the function of the water treatment apparatus stably.

本発明によれば、内部に微生物担体を充填してなる微生物担体層と、気体及び/又は液体を均一に分散させて当該微生物担体層に導入する気液分配装置と、を具備する水の生物処理装置であって、当該微生物担体層と当該気液分配装置との間に、洗浄用薬液が当該微生物担体層に拡散することを抑制する微生物担体保護層を設け、当該気液分配装置に薬品の注入及びフラッシング機構を設けたことを特徴とする水の生物処理装置が提供される。   According to the present invention, a water organism comprising: a microbial carrier layer filled with a microbial carrier therein; and a gas-liquid distribution device that uniformly introduces a gas and / or liquid into the microbial carrier layer. A treatment device, provided between the microorganism carrier layer and the gas-liquid distribution device, provided with a microorganism carrier protective layer that prevents the cleaning chemical solution from diffusing into the microorganism carrier layer; There is provided a water biological treatment apparatus characterized in that a water injection and flushing mechanism is provided.

前記微生物担体保護層は、粒状物及び又は多孔板からなることが好ましい。   The microbial carrier protective layer is preferably made of a granular material and / or a perforated plate.

本発明の水の生物処理装置によれば、気液分配装置における微生物汚染の防止や、その洗浄回復性が向上する。本発明は、固定床及び流動床のどちらにも有効であり、特に上向流式水処理に適用した時に大きな効果をもたらす。   According to the biological treatment apparatus for water of the present invention, the prevention of microbial contamination in the gas-liquid distribution apparatus and the cleaning recovery property thereof are improved. The present invention is effective for both a fixed bed and a fluidized bed, and provides a great effect particularly when applied to an upward flow water treatment.

図1は、本発明による水の生物処理装置の一実施形態を示す概略説明図である。FIG. 1 is a schematic explanatory view showing an embodiment of a water biological treatment apparatus according to the present invention. 図2は、上向流式流動床生物処理装置の別の実施形態を示す概略説明図である。FIG. 2 is a schematic explanatory view showing another embodiment of the upward flow type fluidized bed biological treatment apparatus. 図3は、下向流式固定床生物処理装置の実施形態を示す概略説明図である。FIG. 3 is a schematic explanatory view showing an embodiment of a downflow fixed-bed biological treatment apparatus. 図4は、気液分配装置として用いることができるトリラテラルの構成を示す概略説明図である。FIG. 4 is a schematic explanatory diagram showing a trilateral configuration that can be used as a gas-liquid distributor. 図5は、図4に示すトリラテラルの断面図である。FIG. 5 is a cross-sectional view of the trilateral shown in FIG.

実施形態Embodiment

以下、添付図面を参照しながら本発明を説明するが、本発明はこれらに限定されるものではない。
図1は、本発明の一実施形態を示す概略説明図である。図1において、水の生物処理装置1は、内部に微生物担体を充填してなる微生物担体層2と、気体及び/又は液体を均一に分散させて当該微生物担体層2に導入する気液分配装置5と、を具備する。図1に示す装置は、装置底部に気液分配装置5が設けられ、気液分配装置5の上方に微生物担体層2が位置づけられ、原水及び空気を装置下部から導入して装置内部を上向きに流す上向流式流動床生物処理装置である。原水を供給する原水流入ライン6及び空気を供給する空気流入ライン7は、原水及び空気が気液分配装置5を通過して流入するように接続されている。空気流入ライン7は、微生物担体2や気液分配装置5を洗浄するための洗浄空気を導入する他、原水の汚染物質濃度が高い場合に好気性処理のための空気を導入するために使用される。微生物担体層2と気液分配装置5との間には、洗浄用薬液が微生物担体層2に拡散することを防止する微生物担体保護層3が設けられている。微生物担体保護層3は、耐薬品性のあるセラミックスや強化プラスチックの多孔質板材であり、微生物担体の落下を防止すると共に、気液分配装置5からの水及び空気を微生物担体に分散させる。微生物担体保護層3と気液分配装置5との間には、気液分配装置5を洗浄する薬液を導入するための薬品注入ライン10が接続されている。気液分配装置5には、残留薬液をフラッシングするフラッシング機構が設けられている。図1に示す装置におけるフラッシング機構は、原水流入ライン6に接続されたフラッシングライン11からフラッシング水を供給して、残留薬品をフラッシングする機構である。この態様は、微生物担体層2の下部以下まで水抜きを行った後に洗浄薬液を供給する場合に適する。この場合、フラッシング水の供給は、生物処理装置1の微生物担体層2の底部よりも下位レベルとする。気液分配装置5が位置づけられている装置下部には、気液分配装置5の薬液洗浄処理後の排水や生物処理装置1からの排水を排出する排出ライン8も接続されている。なお、9は洗浄薬液を貯蔵する薬液貯槽であり、薬品注入ライン10と接続されている。13は処理水及び洗浄排水の流出ラインであり、水の生物処理装置1からの越流水を排出する。12は洗浄排水の中間排出ラインである。なお、中間排出ラインとは、微生物担体層2の通常の洗浄時(薬液不使用)に、生物処理装置1上部に滞留する洗浄排水を排水する時、排水時間を短縮するために用いるものである。
Hereinafter, the present invention will be described with reference to the accompanying drawings, but the present invention is not limited thereto.
FIG. 1 is a schematic explanatory view showing an embodiment of the present invention. In FIG. 1, a biological treatment apparatus 1 for water includes a microbial carrier layer 2 in which a microbial carrier is filled, and a gas-liquid distribution device that uniformly introduces a gas and / or liquid into the microbial carrier layer 2. And 5. The apparatus shown in FIG. 1 is provided with a gas-liquid distribution apparatus 5 at the bottom of the apparatus, the microorganism carrier layer 2 is positioned above the gas-liquid distribution apparatus 5, and raw water and air are introduced from the lower part of the apparatus so that the inside of the apparatus faces upward. This is an upward flow type fluidized bed biological treatment apparatus. The raw water inflow line 6 for supplying the raw water and the air inflow line 7 for supplying the air are connected so that the raw water and the air pass through the gas-liquid distributor 5. The air inflow line 7 is used not only for introducing cleaning air for cleaning the microorganism carrier 2 and the gas-liquid distribution device 5, but also for introducing air for aerobic treatment when the concentration of pollutants in the raw water is high. The Between the microorganism carrier layer 2 and the gas-liquid distributor 5, there is provided a microorganism carrier protective layer 3 that prevents the cleaning chemical solution from diffusing into the microorganism carrier layer 2. The microorganism carrier protective layer 3 is a porous plate material made of chemically resistant ceramics or reinforced plastic, and prevents the microorganism carrier from falling and disperses water and air from the gas-liquid distributor 5 to the microorganism carrier. A chemical injection line 10 for introducing a chemical solution for cleaning the gas-liquid distribution device 5 is connected between the microorganism carrier protective layer 3 and the gas-liquid distribution device 5. The gas-liquid distributor 5 is provided with a flushing mechanism for flushing the remaining chemical liquid. The flushing mechanism in the apparatus shown in FIG. 1 is a mechanism that flushes residual chemicals by supplying flushing water from a flushing line 11 connected to the raw water inflow line 6. This embodiment is suitable for supplying a cleaning chemical after draining water below the bottom of the microorganism carrier layer 2. In this case, the flushing water is supplied at a lower level than the bottom of the microorganism carrier layer 2 of the biological treatment apparatus 1. A discharge line 8 for discharging the waste water after the chemical liquid cleaning process of the gas-liquid distributor 5 and the waste water from the biological treatment apparatus 1 is also connected to the lower part of the apparatus where the gas-liquid distributor 5 is positioned. Reference numeral 9 denotes a chemical solution storage tank for storing the cleaning chemical solution, which is connected to the chemical injection line 10. Reference numeral 13 denotes an outflow line for treated water and washing waste water, which discharges overflow water from the biological treatment apparatus 1. Reference numeral 12 denotes an intermediate discharge line for washing waste water. The intermediate discharge line is used for shortening the drainage time when draining the cleaning wastewater staying at the top of the biological treatment apparatus 1 during normal cleaning of the microorganism carrier layer 2 (without using a chemical solution). .

図2は、上向流式流動床生物処理装置の別の実施形態を示す概略説明図である。図2に示す生物処理装置において、図1に示す生物処理装置と同じ構成について説明を割愛する。図2において、微生物担体保護層3は、砂利、セラミックス粒子、強化プラスチック粒子などの不活性粒子を充填してなる。また、フラッシング機構は、洗浄薬液流入ライン10に接続され、気液分配装置5のみではなく、洗浄薬液流入ライン内もフラッシングできる。この態様は、生物処理装置1から水抜きを完全に行った後に、フラッシングする場合に適する。この場合、フラッシング水の供給は、微生物担体層2の底部よりも下位レベルとする。   FIG. 2 is a schematic explanatory view showing another embodiment of the upward flow type fluidized bed biological treatment apparatus. In the biological treatment apparatus shown in FIG. 2, the description of the same configuration as that of the biological treatment apparatus shown in FIG. 1 is omitted. In FIG. 2, the microorganism carrier protective layer 3 is filled with inert particles such as gravel, ceramic particles, and reinforced plastic particles. Further, the flushing mechanism is connected to the cleaning chemical solution inflow line 10 and can flush not only the gas-liquid distributor 5 but also the cleaning chemical solution inflow line. This aspect is suitable for the case where flushing is performed after water is completely drained from the biological treatment apparatus 1. In this case, the flushing water is supplied at a lower level than the bottom of the microorganism carrier layer 2.

図3は、下向流式固定床生物処理装置の実施形態を示す概略説明図である。水の生物処理装置1Aでは、原水は生物処理装置1Aの上部から原水流入ライン6を介して流入し、処理水は生物処理装置1Aの下部から排出ライン8を介して流出する。13は洗浄排水の流出ラインであり、生物処理装置1Aの上部の越流水を排出する。14は生物処理装置1Aの底部に接続されている洗浄水流入ラインであり、洗浄用薬液は薬品注入ライン10から供給され、洗浄水流入ライン14を通って気液分配装置5の洗浄に供される。   FIG. 3 is a schematic explanatory view showing an embodiment of a downflow fixed-bed biological treatment apparatus. In the biological treatment apparatus 1A for water, raw water flows from the upper part of the biological treatment apparatus 1A via the raw water inflow line 6, and the treated water flows out from the lower part of the biological treatment apparatus 1A via the discharge line 8. Reference numeral 13 denotes an outflow line for washing wastewater, which discharges overflow water at the top of the biological treatment apparatus 1A. Reference numeral 14 denotes a washing water inflow line connected to the bottom of the biological treatment apparatus 1A. The cleaning chemical solution is supplied from the chemical injection line 10 and is passed through the washing water inflow line 14 to be used for cleaning the gas-liquid distributor 5. The

本発明の生物処理装置に使用できる微生物担体としては、通常の生物処理装置に用いられる微生物担体を特に制限なく用いることができ、粒状活性炭、セラミックス、ゼオライト、ポリウレタンフォーム等を好適に挙げることができる。   As the microbial carrier that can be used in the biological treatment apparatus of the present invention, a microbial carrier used in a normal biological treatment apparatus can be used without particular limitation, and granular activated carbon, ceramics, zeolite, polyurethane foam, and the like can be preferably mentioned. .

本発明の生物処理装置に使用できる気液分配装置5としては、例えば図4及び図5に示すトリラテラル(水ing株式会社製集水装置)を用いることができるが、気液分配装置の機能を満足するものであれば、これに限定されない。トリラテラルは、中空内部を有する矩体15から構成されている。矩体上面に、微生物保持担体が通過しない程度の複数のスリット18が設けられている。矩体内部には、貫通穴19aを設けた仕切り板19が設置されている。水や空気の流入ラインや流出ラインは、仕切り板19で仕切られた矩体内部20に位置づけられる。すなわち、矩体内部20に導入される水と空気は、貫通穴19a及びスリット18を経由してトリラテラル上面から上方に向かって均一に噴出する構造になっている。トリラテラルの矩体上面には洗浄薬液注入ライン10が配置されている。洗浄薬液注入ライン10には、均一に薬液が吐出する複数の穴16があけられている。吐出した洗浄薬液は、トリラテラル内部から噴出する水や空気と共に、生物処理装置内に分配される。なお、洗浄薬液注入ライン10はトリラテラル上面に直接設置してもよいが、数ミリから数十ミリ程度、上面から離して設置してもよい。   As the gas-liquid distributor 5 that can be used in the biological treatment apparatus of the present invention, for example, a trilateral (water collector manufactured by Mizuing Co., Ltd.) shown in FIGS. 4 and 5 can be used. If it satisfies, it will not be limited to this. The trilateral is composed of a rectangular body 15 having a hollow interior. A plurality of slits 18 are provided on the upper surface of the rectangular body so that the microorganism holding carrier does not pass therethrough. A partition plate 19 provided with a through hole 19a is installed inside the rectangular body. The inflow line and the outflow line for water and air are positioned in the rectangular body 20 partitioned by the partition plate 19. That is, the water and air introduced into the rectangular interior 20 are configured to be uniformly ejected upward from the trilateral upper surface via the through holes 19 a and the slits 18. A cleaning liquid injection line 10 is disposed on the upper surface of the trilateral rectangular body. The cleaning chemical liquid injection line 10 has a plurality of holes 16 through which the chemical liquid is uniformly discharged. The discharged cleaning chemical is distributed into the biological treatment apparatus together with water and air ejected from the trilateral interior. The cleaning liquid injection line 10 may be directly installed on the trilateral upper surface, but may be installed several millimeters to several tens of millimeters away from the upper surface.

気液分配装置を洗浄する薬液は、処理対象となる原水の性状によって異なるが、次亜塩素酸ナトリウム、過酸化水素など通常の洗浄薬液を用いることができる。
フラッシング水としては、残留薬液を洗い流すことができるものであればよく、原水、生物処理水、あるいは浄水等を用いることができる。
The chemical solution for cleaning the gas-liquid distributor varies depending on the properties of the raw water to be processed, but a normal cleaning chemical solution such as sodium hypochlorite or hydrogen peroxide can be used.
The flushing water is not particularly limited as long as it can wash away the residual chemical solution, and raw water, biologically treated water, purified water, or the like can be used.

既設の浄水施設に、図2に示す本発明の生物処理装置を設置した実施例を用いて本発明の生物処理装置を説明する。
生物処理装置の反応形式は上向流式流動床法で、微生物担体として有効径0.4mm、均等係数1.3の粒状活性炭を静止層高として1.5m充填し、通水速度(空塔速度)は320〜380m/日とした。原水は、アンモニアで汚染された河川水であり、アンモニア濃度は0.05〜0.2mg/L、SSは5〜50mg/L、DOCは2〜6mg/Lであった。装置底部に集水装置「トリラテラル」(水ing株式会社)を気液分配装置として敷設し、その上面に砂利を0.8m積層し、微生物担体保護層とした。砂利床の下端から0.2mの位置に次亜塩素酸ナトリウム供給用の多孔管を挿入し、次亜塩素酸ナトリウム注入ライン(洗浄薬液流入ライン)を接続した。次亜塩素酸ナトリウム注入ラインの途中には、残留薬液フラッシング用のフラッシング水流入ラインを接続した。
The biological treatment apparatus of this invention is demonstrated using the Example which installed the biological treatment apparatus of this invention shown in FIG. 2 in the existing water purification plant.
The reaction system of the biological treatment equipment is an upflow type fluidized bed method. It is packed with granular activated carbon with an effective diameter of 0.4 mm and a uniformity coefficient of 1.3 as a microorganism carrier as a stationary bed height of 1.5 m, and the water flow rate (superficial velocity) is 320. It was set to 380 m / day. The raw water was river water contaminated with ammonia, and the ammonia concentration was 0.05 to 0.2 mg / L, SS was 5 to 50 mg / L, and DOC was 2 to 6 mg / L. A water collecting device “Tri-Lateral” (Mizuing Co., Ltd.) was laid as a gas-liquid distribution device at the bottom of the device, and 0.8 m of gravel was laminated on the upper surface to form a microorganism carrier protective layer. A porous pipe for supplying sodium hypochlorite was inserted at a position 0.2 m from the lower end of the gravel floor, and a sodium hypochlorite injection line (cleaning liquid inflow line) was connected. In the middle of the sodium hypochlorite injection line, a flushing water inflow line for residual chemical flushing was connected.

表1に生物処理装置の運転条件と経過を示す。   Table 1 shows the operating conditions and progress of the biological treatment apparatus.

Figure 0005766643
条件1は本発明に基づくもので、気液分配装置5と微生物担体保護層3との間の空間で所定の有効塩素濃度(1mg/L)となるように、次亜塩素酸ナトリウム希釈液を注入し、100分間の静置後に水流出ライン8から薬液を排出し、さらにフラッシングライン11に生物処理水を通して洗浄薬液注入ライン10をフラッシングした。薬品洗浄後は通水時の全体圧損が低下したことから、気液分配装置5及びその周辺部の閉塞がなくなったと推定された。また、薬品洗浄前後での生物処理機能の低下は特に認められなかった。さらに、薬品洗浄後の圧損増加は1年間認められなかった。
Figure 0005766643
Condition 1 is based on the present invention. A sodium hypochlorite diluted solution is used so that a predetermined effective chlorine concentration (1 mg / L) is obtained in the space between the gas-liquid distributor 5 and the microorganism carrier protective layer 3. After injecting and leaving still for 100 minutes, the chemical solution was discharged from the water outflow line 8, and the cleaning chemical solution injection line 10 was flushed through the biological treatment water through the flushing line 11. It was estimated that the gas-liquid distribution device 5 and its peripheral portion were not blocked because the overall pressure loss during water passage decreased after chemical cleaning. In addition, there was no particular decrease in biological treatment function before and after chemical cleaning. Furthermore, no increase in pressure loss after chemical cleaning was observed for one year.

条件2は次亜塩素酸ナトリウム溶液の注入方法として本発明を使わない方法である。具体的には、原水流入ライン6から所定の有効塩素濃度(1mg/L)の洗浄水を、凡そ砂利支持床の上端まで張り込み、100分間静置の後、水流出ライン8から薬液を排出した。その後、原水流入ライン6から薬品を含まない水を張り込んでは排出する操作を3回繰り返すことでフラッシングを行った。その結果、ほぼ条件1と同等まで圧損は低下したので、相応の洗浄効果があったといえる。その後の生物処理機能の低下は特に認められなかったが、洗浄から2ヶ月後に圧損が増加し始めたので、再度薬品洗浄を行う必要があった。   Condition 2 is a method that does not use the present invention as a method for injecting a sodium hypochlorite solution. Specifically, wash water having a predetermined effective chlorine concentration (1 mg / L) was applied from the raw water inflow line 6 to the upper end of the gravel support floor, left standing for 100 minutes, and then the chemical solution was discharged from the water outflow line 8. . Thereafter, flushing was performed by repeating the operation of filling and discharging water containing no chemical from the raw water inflow line 6 three times. As a result, the pressure loss decreased to almost the same as Condition 1, so it can be said that there was a corresponding cleaning effect. Although there was no particular decline in the biological treatment function thereafter, pressure loss began to increase 2 months after washing, so it was necessary to perform chemical washing again.

条件3は、条件2の結果をふまえ、有効塩素濃度を3mg/Lに高め、その他の条件は条件2と同じ方法を採った。その結果、洗浄後に圧損は低下したが、生物処理機能は約20%低下し、生物処理水にアンモニアが残留した。その回復には1ヶ月を要した。   Condition 3 was based on the result of condition 2 and the effective chlorine concentration was increased to 3 mg / L. Other conditions were the same as those of condition 2. As a result, the pressure loss decreased after washing, but the biological treatment function was reduced by about 20%, and ammonia remained in the biologically treated water. It took a month to recover.

条件1と条件2の差異の要因は、気液分配装置の洗浄効果の差異と考えられる。すなわち、条件1(本発明)では概ね洗浄が完全に行われたのに対し、条件2では洗浄が不十分となって気液分配装置内部に死滅しなかった汚染微生物が残留した結果、洗浄後2ヶ月で再び圧損が増加したと考えられた。条件3はその反省にもとづいて薬品濃度を3倍に高めて実施したが、生物処理機能の低下をもたらした。これは、支持床上面を狙って薬液を張り込んだものの、100分間で薬品の一部が微生物担体に拡散し、処理に貢献していた担体上の微生物の一部を殺菌したためと考えられた。   The cause of the difference between Condition 1 and Condition 2 is considered to be the difference in the cleaning effect of the gas-liquid distributor. That is, in condition 1 (the present invention), cleaning was performed almost completely, but in condition 2, the cleaning was insufficient and contaminated microorganisms remained inside the gas-liquid distributor. The pressure loss was thought to have increased again in two months. Condition 3 was carried out by increasing the chemical concentration by a factor of 3 based on the reflection, but resulted in a decrease in biological treatment function. This was thought to be due to the disinfection of some of the microorganisms on the carrier that had contributed to the treatment, although some chemicals diffused into the microorganism carrier in 100 minutes, even though the chemical solution was applied to the upper surface of the support floor. .

本発明の生物処理装置は、生物処理装置の気液分配装置の洗浄を確実に行って通水時の圧損増加を回避することが可能で、かつ生物処理機能の低下を伴わない。従って、本発明により、生物処理装置の性能を中長期にわたり安定維持することが可能となる。   The biological treatment apparatus of the present invention can reliably clean the gas-liquid distributor of the biological treatment apparatus to avoid an increase in pressure loss during water flow, and does not involve a decrease in biological treatment function. Therefore, according to the present invention, it is possible to stably maintain the performance of the biological treatment apparatus over the medium to long term.

Claims (2)

内部に微生物担体を充填してなる微生物担体層と、
当該微生物担体層よりも下方に位置づけられている、気体及び/又は液体を均一に分散させて当該微生物担体層に導入する気液分配装置と
当該微生物担体層と当該気液分配装置との間に設けられている、洗浄用薬液が当該微生物担体層に拡散することを抑制する、粒状物及び/又は多孔板からなる微生物担体保護層
当該気液分配装置に接続されている、原水を上向流として供給する原水流入ラインと、
当該気液分配装置と当該微生物担体保護層との間に接続され、当該気液分配装置を洗浄する洗浄用薬液を導入するための薬品注入ラインと、
当該原水流入ラインに接続され、当該気液分配装置に設けられている、当該微生物担体層の底部よりも下位レベルにてフラッシング水を供給し、残留薬品をフラッシングするフラッシング機構と、
具備することを特徴とする上向流式の水の生物処理装置。
A microbial carrier layer filled with a microbial carrier inside;
A liquid dispensing device than the microorganism carrier layer is positioned downward, the uniformly dispersed gas and / or liquid is introduced into the microorganism carrier layer,
Microbial support protection layer is provided, cleaning solution suppresses the diffusion to the microbial support layer, consisting of granules and / or perforated plate between the microorganism carrier layer and the gas-liquid distribution device,
A raw water inflow line connected to the gas-liquid distributor for supplying raw water as an upward flow;
A chemical injection line connected between the gas-liquid distributor and the microorganism carrier protective layer, for introducing a cleaning chemical for cleaning the gas-liquid distributor;
A flushing mechanism connected to the raw water inflow line and provided in the gas-liquid distributor , supplying flushing water at a lower level than the bottom of the microorganism carrier layer, and flushing residual chemicals ;
It is provided with a biological treatment apparatus of water upflow characterized by.
内部に微生物担体を充填してなる微生物担体層と、
当該微生物担体層よりも下方に位置づけられている、気体及び/又は液体を均一に分散させて当該微生物担体層に導入する気液分配装置と、
当該微生物担体層と当該気液分配装置との間に設けられている、洗浄用薬液が当該微生物担体層に拡散することを抑制する、粒状物及び/又は多孔板からなる微生物担体保護層と
当該気液分配装置に接続されている、原水を上向流として供給する原水流入ラインと、
当該気液分配装置に接続され、当該気液分配装置を洗浄する洗浄用薬液を導入するための薬品注入ラインと、
当該薬品注入ラインに接続され、当該気液分配装置に設けられている、当該微生物担体層の底部よりも下位レベルにてフラッシング水を供給し、残留薬品をフラッシングするフラッシング機構と、
を具備することを特徴とする上向流式の水の生物処理装置。
A microbial carrier layer filled with a microbial carrier inside;
A gas-liquid distribution device that is positioned below the microbial carrier layer and uniformly introduces the gas and / or liquid into the microbial carrier layer, and
A microbial carrier protective layer comprising a granular material and / or a perforated plate, which is provided between the microbial carrier layer and the gas-liquid distributor, and prevents the cleaning chemical solution from diffusing into the microbial carrier layer ;
A raw water inflow line connected to the gas-liquid distributor for supplying raw water as an upward flow;
A chemical injection line connected to the gas-liquid distributor and for introducing a cleaning chemical for cleaning the gas-liquid distributor;
A flushing mechanism connected to the chemical injection line and provided in the gas-liquid distributor, supplying flushing water at a lower level than the bottom of the microorganism carrier layer, and flushing residual chemicals;
An upward-flow-type biological treatment apparatus for water.
JP2012067055A 2012-03-23 2012-03-23 Water biological treatment equipment Active JP5766643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067055A JP5766643B2 (en) 2012-03-23 2012-03-23 Water biological treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067055A JP5766643B2 (en) 2012-03-23 2012-03-23 Water biological treatment equipment

Publications (2)

Publication Number Publication Date
JP2013198833A JP2013198833A (en) 2013-10-03
JP5766643B2 true JP5766643B2 (en) 2015-08-19

Family

ID=49519494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067055A Active JP5766643B2 (en) 2012-03-23 2012-03-23 Water biological treatment equipment

Country Status (1)

Country Link
JP (1) JP5766643B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635219Y2 (en) * 1977-08-12 1981-08-19
JPH0615285A (en) * 1992-07-02 1994-01-25 Hazama Gumi Ltd Treatment of agricultural chemical-containing waste water
JP2768892B2 (en) * 1993-08-03 1998-06-25 神鋼パンテツク株式会社 Water distribution device for biofilm filtration equipment
JP2771940B2 (en) * 1993-09-27 1998-07-02 神鋼パンテツク株式会社 Water distribution device for biofilm filtration equipment
JP3605995B2 (en) * 1997-04-01 2004-12-22 日立プラント建設株式会社 Biological activated carbon filtration equipment
JP4299396B2 (en) * 1999-02-24 2009-07-22 株式会社神鋼環境ソリューション Air-water distribution device and water treatment device using the air-water distribution device
JP2004255260A (en) * 2003-02-25 2004-09-16 Sanki Eng Co Ltd Water purifying facility

Also Published As

Publication number Publication date
JP2013198833A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
TWI568687B (en) Suspended media membrane biological reactor system and process including suspension system and multiple biological reactor zones
US7785469B2 (en) Waste water treatment process system
US20140332465A1 (en) Method and apparatus for treating oil containing wastewater
US20150343336A1 (en) Sanitization and regeneration of porous filter media with ozone in backwash
KR100992827B1 (en) Cleaning system for waste-water purifier
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
KR101402687B1 (en) Odor reduction apparatus and odor reduction method using air-apply and sob media
JP5636862B2 (en) Waste water treatment equipment
KR200336701Y1 (en) Polluted river-water purification system using direct aeration
JP5766643B2 (en) Water biological treatment equipment
CN208414137U (en) It is a kind of to integrate anaerobism, aerobic sewage-treatment plant
KR101393533B1 (en) Purification method by system with string biomedia using multi air diffuser and draft tube
CN214244101U (en) Rural sewage treatment system
KR100569704B1 (en) External circulation anaerobic digester using gas lifting
AU2005306597B2 (en) Waste water treatment process system
CN207130116U (en) A kind of mechanical cleaning wastewater treatment equipment
CA2921875C (en) Dual media system for treating wastewater containing selenium
KR100191865B1 (en) Biological and aerobic disposal apparatus and its method of wastewater with closed-type
JP3605995B2 (en) Biological activated carbon filtration equipment
KR102614611B1 (en) Toilet purifier
JP2002301491A (en) Waste water disposal apparatus and method of transferring liquid in the apparatus
KR101193497B1 (en) A sewage disposal facility having high processing apparatus
KR970003588Y1 (en) Waste-water purifier
JP2010172843A (en) Water treatment apparatus and water treatment method
JP2005152829A (en) Unit for cleaning water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150617

R150 Certificate of patent or registration of utility model

Ref document number: 5766643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250