JP5764941B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5764941B2
JP5764941B2 JP2011015747A JP2011015747A JP5764941B2 JP 5764941 B2 JP5764941 B2 JP 5764941B2 JP 2011015747 A JP2011015747 A JP 2011015747A JP 2011015747 A JP2011015747 A JP 2011015747A JP 5764941 B2 JP5764941 B2 JP 5764941B2
Authority
JP
Japan
Prior art keywords
type
width
semiconductor
temperature detection
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011015747A
Other languages
Japanese (ja)
Other versions
JP2012156398A (en
Inventor
圭佑 木村
圭佑 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011015747A priority Critical patent/JP5764941B2/en
Publication of JP2012156398A publication Critical patent/JP2012156398A/en
Application granted granted Critical
Publication of JP5764941B2 publication Critical patent/JP5764941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

本発明は、温度検出素子を備えた半導体装置に関する。   The present invention relates to a semiconductor device provided with a temperature detection element.

半導体装置による発熱を検出するために、半導体装置の基板表面側に温度検出素子が設置されることがある。温度検出素子を設置する場合、通常、セル領域の外部に温度検出素子を設置するための専用領域が形成される。このため、半導体装置のチップサイズが大きくなってしまう。これに対して、特許文献1では、半導体装置のセル領域内の半導体素子構造の近傍に温度検出素子を配置している。これによって、半導体素子の発熱を検出する時間を短縮するとともに、チップサイズが大きくなることを抑制している。温度検出素子は、長方形状のP型半導体とN型半導体とを、その長辺方向に沿って接合させたPN接合を有するダイオードである。   In order to detect heat generated by the semiconductor device, a temperature detection element may be provided on the substrate surface side of the semiconductor device. When the temperature detection element is installed, a dedicated area for installing the temperature detection element is usually formed outside the cell area. This increases the chip size of the semiconductor device. On the other hand, in patent document 1, the temperature detection element is arrange | positioned in the vicinity of the semiconductor element structure in the cell area | region of a semiconductor device. This shortens the time for detecting the heat generation of the semiconductor element and suppresses an increase in the chip size. The temperature detection element is a diode having a PN junction in which a rectangular P-type semiconductor and an N-type semiconductor are joined along the long side direction.

特開2000−31290号公報JP 2000-31290 A

特許文献1において、温度検出素子が半導体素子の発熱を検出する時間をより短縮するためには、長方形状の温度検出素子の短辺方向の幅を小さくして、発熱部からPN接合面までの距離をより小さくすればよい。しかしながら、温度検出素子のP型半導体、N型半導体は、それぞれ配線と電気的に接合するために幅をある程度大きくする必要がある。P型半導体の最小コンタクト幅(本明細書では、半導体と配線が電気的に接合するために必要な幅を最小コンタクト幅という)をWPmin,N型半導体の最小コンタクト幅をWNminとすると、特許文献1では、温度検出素子の幅(長方形状の短辺方向の幅)Wを、W≧WPmin+WNminとする必要がある。   In Patent Document 1, in order to further reduce the time for the temperature detection element to detect the heat generation of the semiconductor element, the width in the short side direction of the rectangular temperature detection element is reduced so that the heat generation part extends to the PN junction surface. What is necessary is just to make distance smaller. However, the P-type semiconductor and the N-type semiconductor of the temperature detection element need to have a certain width to be electrically connected to the wiring. When the minimum contact width of a P-type semiconductor (in this specification, the width necessary for electrical connection between a semiconductor and a wiring is referred to as a minimum contact width) is WPmin, and the minimum contact width of an N-type semiconductor is WNmin 1, the width W of the temperature detection element (width in the short side direction of the rectangular shape) needs to satisfy W ≧ WPmin + WNmin.

本願は、P型領域とN型領域を有する温度検出素子を備えた半導体装置を提供する。この半導体装置の温度検出素子のP型領域は、半導体と配線が電気的に接合するためのP型の接続部と、P型の接続部から、半導体装置の表面に沿う第1方向に延びるP型接合部とを有しており、N型領域は、半導体と配線が電気的に接合するためのN型の接続部と、N型の接続部からP型接合部に沿って第1方向と逆方向に延びると共にP型接合部と接合しているN型接合部とを有するN型領域とを有している。P型接合部の半導体装置の表面に沿うとともに第1方向に直交する第2方向の幅は、P型の接続部の第2方向の幅よりも狭く、N型接合部の第2方向の幅は、N型の接続部の第2方向の幅よりも狭い。
The present application provides a semiconductor device including a temperature detection element having a P-type region and an N-type region. The P-type region of the temperature detection element of the semiconductor device has a P-type connection portion for electrically connecting the semiconductor and the wiring , and P extending from the P-type connection portion in the first direction along the surface of the semiconductor device. The N-type region includes an N-type connection portion for electrically connecting the semiconductor and the wiring , and a first direction from the N-type connection portion along the P-type junction portion. An N-type region extending in the opposite direction and having an N-type junction joined to the P-type junction. The width in the second direction along the surface of the semiconductor device of the P-type junction and orthogonal to the first direction is narrower than the width in the second direction of the P-type connection , and the width of the N-type junction in the second direction. Is narrower than the width of the N-type connecting portion in the second direction.

上記の半導体装置によれば、P型接合部の第2方向の幅およびN型接合部の第2方向の幅を狭くして、発熱部からPN接合面までの距離をより小さくして、温度検出素子が半導体素子の発熱を検出する時間をより短縮することと、P型の接続部の第2方向の幅およびN型の接続部の第2方向の幅を広くして、P型領域、N型領域と配線との電気的接合を確保することを両立できる。
According to the semiconductor device described above, the width in the second direction of the P-type junction and the width in the second direction of the N-type junction are narrowed, and the distance from the heat generating part to the PN junction surface is further reduced. The detection element can further reduce the time for detecting the heat generation of the semiconductor element, and the width of the P-type connection portion in the second direction and the width of the N-type connection portion in the second direction can be increased. It is possible to ensure both electrical connection between the N-type region and the wiring.

温度検出素子の第2方向の幅は、P型の接続部の第2方向の幅以下であってもよく、N型の接続部の第2方向の幅以下であってもよい。
The width of the temperature detection element in the second direction may be equal to or smaller than the width of the P-type connection portion in the second direction, or may be equal to or smaller than the width of the N-type connection portion in the second direction.

半導体素子が絶縁ゲート型の半導体素子である場合には、絶縁ゲートの長手方向は第1方向と平行であることが好ましい。
When the semiconductor element is an insulated gate semiconductor element , the longitudinal direction of the insulated gate is preferably parallel to the first direction.

P型領域とN型領域の接合する部分の端部に、ポリシリコン領域が形成されていてもよい。   A polysilicon region may be formed at the end of the portion where the P-type region and the N-type region are joined.

半導体基板を平面視したときに、P型接合部とN型接合部は、P型の接続部とN型の接続部とに挟まれる領域内に配置されていてもよい。
When the semiconductor substrate is viewed in plan, the P-type junction and the N-type junction may be arranged in a region sandwiched between the P-type connection and the N-type connection.

本願によれば、温度検出素子が半導体素子の発熱を検出する時間をより短縮することと、P型領域、N型領域と配線との電気的接合を確保することを両立できる。   According to the present application, it is possible to further reduce the time for the temperature detection element to detect the heat generation of the semiconductor element and to ensure the electrical connection between the P-type region and the N-type region and the wiring.

実施例1の半導体装置の平面図である。1 is a plan view of a semiconductor device of Example 1. FIG. 図1の温度検出素子の近傍の拡大図であり、表面電極を除去した状態を示している。FIG. 2 is an enlarged view of the vicinity of the temperature detection element in FIG. 1 and shows a state where a surface electrode is removed. 図2のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 実施例1に係る温度検出素子の平面図である。3 is a plan view of a temperature detection element according to Embodiment 1. FIG. 変形例に係る温度検出素子の平面図である。It is a top view of the temperature detection element which concerns on a modification. 変形例に係る温度検出素子の平面図である。It is a top view of the temperature detection element which concerns on a modification. 変形例に係る温度検出素子の平面図である。It is a top view of the temperature detection element which concerns on a modification. 変形例に係る温度検出素子の平面図である。It is a top view of the temperature detection element which concerns on a modification. 変形例に係る温度検出素子の平面図である。It is a top view of the temperature detection element which concerns on a modification. 変形例に係る温度検出素子の平面図である。It is a top view of the temperature detection element which concerns on a modification. 変形例に係る温度検出素子の平面図である。It is a top view of the temperature detection element which concerns on a modification. 変形例に係る温度検出素子の平面図である。It is a top view of the temperature detection element which concerns on a modification.

本願は、P型領域とN型領域を有する温度検出素子を備えた半導体装置を開示する。この半導体装置の温度検出素子のP型領域は、P型コンタクト部と、P型コンタクト部から第1方向に延びるP型接合部とを有しており、N型領域は、N型コンタクト部と、N型コンタクト部からP型接合部に沿って第1方向と逆方向に延びると共にP型接合部と接合しているN型接合部とを有している。P型接合部の第1方向に直交する第2方向の幅は、P型コンタクト部の第2方向の幅よりも狭く、N型接合部の第2方向の幅は、N型コンタクト部の第2方向の幅よりも狭い。   The present application discloses a semiconductor device including a temperature detection element having a P-type region and an N-type region. The P-type region of the temperature detection element of this semiconductor device has a P-type contact portion and a P-type junction extending from the P-type contact portion in the first direction, and the N-type region includes the N-type contact portion and And an N-type junction extending from the N-type contact portion along the P-type junction in the direction opposite to the first direction and joined to the P-type junction. The width in the second direction perpendicular to the first direction of the P-type junction is narrower than the width in the second direction of the P-type contact, and the width in the second direction of the N-type junction is the same as that of the N-type contact. It is narrower than the width in two directions.

上記の半導体装置によれば、P型接合部の第2方向の幅およびN型接合部の第2方向の幅を狭くして、発熱部からPN接合面までの距離をより小さくして、温度検出素子が半導体素子の発熱を検出する時間をより短縮することと、P型コンタクト部の第2方向の幅およびN型コンタクト部の第2方向の幅を広くして、P型領域、N型領域と配線との電気的接合を確保することを両立できる。   According to the semiconductor device described above, the width in the second direction of the P-type junction and the width in the second direction of the N-type junction are narrowed, and the distance from the heat generating part to the PN junction surface is further reduced. The detection element further reduces the time for detecting the heat generation of the semiconductor element, and the width of the P-type contact portion in the second direction and the width of the N-type contact portion in the second direction are increased to increase the P-type region and the N-type. It is possible to ensure electrical connection between the region and the wiring.

P型領域の第2方向の幅は、P型コンタクト部において最も広く、N型領域の第2方向の幅は、N型コンタクト部において最も広い。例えば、P型コンタクト部の第2方向の幅をP型半導体の最小コンタクト幅WPminとし、N型コンタクト部の第2方向の幅をN型半導体の最小コンタクト幅をWNminとなるように設計することができる。この場合に、半導体装置を平面視したときに、P型接合部とN型接合部がP型コンタクト部とN型コンタクト部とに挟まれる領域内に配置することで、温度検出素子の第2方向の幅Wは、W<WPmin+WNminとすることができる。本願によれば、従来の温度検出素子よりも幅が狭く、素子領域とPN接合面との距離が小さくできるため、温度検出時間がより短い温度検出素子を備えた半導体装置を提供することができる。   The width of the P-type region in the second direction is the widest in the P-type contact portion, and the width of the N-type region in the second direction is the widest in the N-type contact portion. For example, the width of the P-type contact portion in the second direction is set to the minimum contact width WPmin of the P-type semiconductor, and the width of the N-type contact portion in the second direction is set to be the minimum contact width of the N-type semiconductor WNmin. Can do. In this case, when the semiconductor device is viewed in plan, the P-type junction and the N-type junction are arranged in a region sandwiched between the P-type contact and the N-type contact so that the second of the temperature detection elements is arranged. The direction width W can be W <WPmin + WNmin. According to the present application, since the width is narrower than that of the conventional temperature detection element and the distance between the element region and the PN junction surface can be reduced, a semiconductor device including a temperature detection element with a shorter temperature detection time can be provided. .

温度検出素子の第2方向の幅は、P型コンタクト部の第2方向の幅以下であってもよく、N型コンタクト部の第2方向の幅以下であってもよい。温度検出素子の第2方向の幅Wは、WPminとWNminのうちのいずれか広い方の幅まで小さくすることができる。また、P型接合部およびN型接合部の第2方向の幅の和は、温度検出素子の第2方向の幅よりもさらに小さくすることもできる。   The width of the temperature detection element in the second direction may be equal to or smaller than the width of the P-type contact portion in the second direction, or may be equal to or smaller than the width of the N-type contact portion in the second direction. The width W of the temperature detection element in the second direction can be reduced to the wider one of WPmin and WNmin. Further, the sum of the widths of the P-type junction and the N-type junction in the second direction can be made smaller than the width of the temperature detection element in the second direction.

半導体装置に絶縁ゲート型の半導体素子が形成されている場合には、絶縁ゲートの長手方向は、第1方向と平行であることが好ましい。なお、絶縁ゲートは、直線状に限定されず、曲線状、矩形状であってもよい。例えば、絶縁ゲートの長手方向が円弧状の場合には、第1方向はその円弧に沿う方向となり、その円弧の法線ベクトルが第2方向となる。   In the case where an insulated gate semiconductor element is formed in the semiconductor device, the longitudinal direction of the insulated gate is preferably parallel to the first direction. Note that the insulated gate is not limited to a linear shape, and may be a curved shape or a rectangular shape. For example, when the longitudinal direction of the insulated gate is an arc, the first direction is a direction along the arc, and the normal vector of the arc is the second direction.

P型領域とN型領域の接合する部分の端部に、ポリシリコン領域が形成されていてもよい。ポリシリコン領域によって、P型領域とN型領域の接合する部分の端部から電流漏れが発生することが抑制される。   A polysilicon region may be formed at the end of the portion where the P-type region and the N-type region are joined. The polysilicon region suppresses current leakage from the end of the portion where the P-type region and the N-type region are joined.

図1に示すように、半導体装置10は、半導体基板100と、半導体基板100の表面に形成された表面電極101a〜101c、小信号パッド102a〜102eおよび温度検出素子120とを備えている。半導体基板100の表面電極101a〜101cおよび小信号パッド102a〜102eが形成されていない領域には絶縁膜104が形成されており、温度検出素子120は絶縁膜104の表面に形成されている(図3参照)。なお、半導体基板100上には、ゲート配線も形成されているが、図1では図示を省略している。温度検出素子120は、半導体装置10を平面視したときの中央部に形成されている。半導体装置10を平面視したときの中央部は、半導体装置10が発熱した場合に温度が上昇しやすい部分である。このように、温度検出素子は、半導体装置が発熱した場合に温度が上昇し易い部分に形成されることが好ましい。   As shown in FIG. 1, the semiconductor device 10 includes a semiconductor substrate 100, surface electrodes 101 a to 101 c, small signal pads 102 a to 102 e, and a temperature detection element 120 formed on the surface of the semiconductor substrate 100. An insulating film 104 is formed in a region of the semiconductor substrate 100 where the surface electrodes 101a to 101c and the small signal pads 102a to 102e are not formed, and the temperature detecting element 120 is formed on the surface of the insulating film 104 (FIG. 3). A gate wiring is also formed on the semiconductor substrate 100, but is not shown in FIG. The temperature detecting element 120 is formed at the center when the semiconductor device 10 is viewed in plan. The central portion of the semiconductor device 10 when viewed in plan is a portion where the temperature easily rises when the semiconductor device 10 generates heat. Thus, the temperature detection element is preferably formed in a portion where the temperature is likely to rise when the semiconductor device generates heat.

図2に示すように、温度検出素子120は、P型領域121とN型領域122とを備えている。P型領域121は、P型半導体材料によって形成されており、P型接合部121aと、配線123と電気的に接続するP型コンタクト部121bとを備えている。N型領域122は、N型半導体材料によって形成されており、N型接合部122aと、配線124と電気的に接続するN型コンタクト部122bとを備えている。P型コンタクト部121bは、P型領域121のY方向の幅が最も広い部分であり、X方向に一定の幅を有している。N型コンタクト部122bは、N型領域122のY方向の幅が最も広い部分であり、X方向に一定の幅を有している。   As shown in FIG. 2, the temperature detection element 120 includes a P-type region 121 and an N-type region 122. The P-type region 121 is formed of a P-type semiconductor material, and includes a P-type joint portion 121 a and a P-type contact portion 121 b that is electrically connected to the wiring 123. The N-type region 122 is formed of an N-type semiconductor material, and includes an N-type junction portion 122 a and an N-type contact portion 122 b that is electrically connected to the wiring 124. The P-type contact portion 121b is a portion having the widest width in the Y direction of the P-type region 121, and has a constant width in the X direction. The N-type contact portion 122b is a portion having the widest width in the Y direction of the N-type region 122, and has a constant width in the X direction.

P型接合部121aは、P型コンタクト部121bからX軸の正方向(第1方向)に延びている。N型接合部122aは、N型コンタクト部122bからX軸の負方向に延びている。P型領域121およびN型領域122はL字形状であり、互いに接合して長方形状の温度検出素子120を構成している。温度検出素子120は長辺がX方向に平行かつ短辺がY方向に平行な長方形状である。P型接合部121aとN型接合部122aとは、X方向に平行な面において接合している。P型接合部121aのX軸の正方向の端部において、P型接合部121aのY方向(第1方向に直交する第2方向)に平行な面は、N型コンタクト部122bと接合している。N型接合部122aのX軸の負方向の端部において、N型接合部122aのY方向に平行な面は、P型コンタクト部121bと接合している。半導体装置10を平面視したときに、P型接合部121aとN型接合部122aは、P型コンタクト部121bとN型コンタクト部122bとに挟まれる領域内に配置されている。   The P-type joint portion 121a extends from the P-type contact portion 121b in the positive direction (first direction) of the X axis. The N-type joint portion 122a extends from the N-type contact portion 122b in the negative direction of the X axis. The P-type region 121 and the N-type region 122 are L-shaped, and are joined together to form a rectangular temperature detection element 120. The temperature detection element 120 has a rectangular shape with a long side parallel to the X direction and a short side parallel to the Y direction. The P-type joint 121a and the N-type joint 122a are joined on a plane parallel to the X direction. A surface parallel to the Y direction (second direction orthogonal to the first direction) of the P-type joint 121a at the end of the P-type joint 121a in the positive direction of the X axis is joined to the N-type contact 122b. Yes. At the end of the N-type joint 122a in the negative direction of the X-axis, the surface parallel to the Y direction of the N-type joint 122a is joined to the P-type contact part 121b. When the semiconductor device 10 is viewed in plan, the P-type junction 121a and the N-type junction 122a are arranged in a region sandwiched between the P-type contact 121b and the N-type contact 122b.

図2および図3に示すように、温度検出素子120は、半導体素子が形成されている素子領域111bの間に形成されており、温度検出素子120の下方には半導体素子は形成されていない。半導体基板100上において、素子領域111bのX方向の両側にはゲート配線112bが形成されており、そのさらに外側に、温度検出素子120と接続する配線123,124が形成されている。素子領域111bには、トレンチゲート14を有する半導体素子が形成されている。トレンチゲート14は、長手方向がX方向に平行となるように形成されており、温度検出素子120の長辺方向と、トレンチゲート14の長手方向は平行である。図3では、半導体素子の一例として、トレンチゲート14を有する半導体素子を図示しているが、半導体素子の形態はこれに限定されない。例えば、プレーナゲート型の半導体素子であってもよいし、ダイオード等の絶縁ゲートを有さない半導体素子であってもよい。プレーナゲート型の半導体素子が形成されている場合には、図3と同様に、温度検出素子の長辺方向とプレーナゲートの長手方向が平行となるように配置されることが好ましい。   As shown in FIGS. 2 and 3, the temperature detection element 120 is formed between the element regions 111 b where the semiconductor elements are formed, and no semiconductor element is formed below the temperature detection element 120. On the semiconductor substrate 100, gate wirings 112b are formed on both sides of the element region 111b in the X direction, and wirings 123 and 124 connected to the temperature detection element 120 are formed on the outer sides thereof. A semiconductor element having a trench gate 14 is formed in the element region 111b. The trench gate 14 is formed so that the longitudinal direction is parallel to the X direction, and the long side direction of the temperature detection element 120 and the longitudinal direction of the trench gate 14 are parallel. In FIG. 3, a semiconductor element having the trench gate 14 is illustrated as an example of the semiconductor element, but the form of the semiconductor element is not limited to this. For example, it may be a planar gate type semiconductor element or a semiconductor element having no insulated gate such as a diode. When a planar gate type semiconductor element is formed, it is preferable that the long side direction of the temperature detecting element and the longitudinal direction of the planar gate are arranged in parallel as in FIG.

図4に示すように、温度検出素子120では、P型コンタクト部121bの幅W1とN型コンタクト部122bの幅W2は同一であり、温度検出素子120の幅Wは、W=W1=W2である。Y方向に沿うP型接合部121aの幅は、P型コンタクト部121bの幅W1よりも狭く、Y方向に沿うN型接合部122aの幅は、N型コンタクト部122bの幅W2よりも狭い。Y方向に沿うP型接合部121aの幅とN型接合部122aの幅の和はWである。   As shown in FIG. 4, in the temperature detection element 120, the width W1 of the P-type contact portion 121b and the width W2 of the N-type contact portion 122b are the same, and the width W of the temperature detection element 120 is W = W1 = W2. is there. The width of the P-type joint portion 121a along the Y direction is narrower than the width W1 of the P-type contact portion 121b, and the width of the N-type joint portion 122a along the Y direction is narrower than the width W2 of the N-type contact portion 122b. The sum of the width of the P-type joint 121a and the width of the N-type joint 122a along the Y direction is W.

上記のとおり、実施例1係る半導体装置10によれば、温度検出素子120において、Y方向に沿うP型接合部121aの幅およびN型接合部122aの幅(すなわち、P型接合部121aのY方向の幅およびN型接合部122aのY方向の幅)を狭くして、発熱部である素子領域111bからP型接合部121aとN型接合部122aとのPN接合面までのY方向の距離をより小さくすることと、Y方向に沿うP型コンタクト部121bの幅W1およびN型コンタクト部122bの幅W2(P型コンタクト部121bのY方向の幅W1およびN型コンタクト部122bのY方向の幅W2)を広くすることを両立することができる。このため、温度検出素子120が素子領域111aからの発熱を検出する時間をより短縮することと、P型領域121およびN型領域122と配線123,124との電気的接合を確保することを両立できる。   As described above, according to the semiconductor device 10 according to the first embodiment, in the temperature detection element 120, the width of the P-type junction 121a and the width of the N-type junction 122a along the Y direction (that is, Y of the P-type junction 121a). The width in the direction and the width in the Y direction of the N-type junction 122a) are reduced, and the distance in the Y direction from the element region 111b, which is the heat generating portion, to the PN junction surface between the P-type junction 121a and the N-type junction 122a And the width W1 of the P-type contact portion 121b and the width W2 of the N-type contact portion 122b along the Y direction (the width W1 of the P-type contact portion 121b in the Y direction and the width of the N-type contact portion 122b in the Y direction). It is possible to make the width W2) wide. For this reason, it is possible to further shorten the time for the temperature detection element 120 to detect the heat generation from the element region 111a and to ensure electrical connection between the P-type region 121 and the N-type region 122 and the wirings 123 and 124. it can.

また、上記の半導体装置10によれば、P型半導体の最小コンタクト幅がWPminであり、N型半導体の最小コンタクト幅がWNminである場合に、温度検出素子120の幅Wは、W<WPmin+WNminとすることができる。例えば、P型半導体の最小コンタクト幅WPminがN型半導体の最小コンタクト幅WNmin以下である場合(WPmin≦WNmin)には、W=W1=W2(=WNmin)と設計することができる。逆に、P型半導体の最小コンタクト幅WPminがN型半導体の最小コンタクト幅WNmin以上である場合(WPmin≧WNmin)には、W=W1(=WPmin)=W2と設計することができる。温度検出素子120の幅Wは、WPminとWNminのうちのいずれか広い方の幅まで小さくすることができる。本実施例によれば、従来の温度検出素子よりも幅が狭く、温度検出時間がより短い温度検出素子を備えた半導体装置を提供することができる。   Further, according to the semiconductor device 10 described above, when the minimum contact width of the P-type semiconductor is WPmin and the minimum contact width of the N-type semiconductor is WNmin, the width W of the temperature detection element 120 is W <WPmin + WNmin. can do. For example, when the minimum contact width WPmin of the P-type semiconductor is equal to or smaller than the minimum contact width WNmin of the N-type semiconductor (WPmin ≦ WNmin), it can be designed as W = W1 = W2 (= WNmin). Conversely, when the minimum contact width WPmin of the P-type semiconductor is equal to or larger than the minimum contact width WNmin of the N-type semiconductor (WPmin ≧ WNmin), it can be designed as W = W1 (= WPmin) = W2. The width W of the temperature detection element 120 can be reduced to the wider one of WPmin and WNmin. According to this embodiment, it is possible to provide a semiconductor device including a temperature detection element that is narrower than a conventional temperature detection element and has a shorter temperature detection time.

(変形例)
P型領域とN型領域の形状は、実施例1において説明したL字形状に限定されない。例えば、図5に示すように、温度検出素子130は、平面視したときに矩形波状のP型接合部131aとN型接合部132aを備えており、P型接合部131aとN型接合部132aがその矩形面で互いに接合して、PN接合面となっていてもよい。実施例1と同様に、P型コンタクト部131bは、P型領域131のY方向の幅が最も広い部分であり、X方向に一定の幅を有している。N型コンタクト部132bは、N型領域132のY方向の幅が最も広い部分であり、X方向に一定の幅を有している。P型接合部131aのX軸の正方向の端部はN型コンタクト部132bと接合しており、N型接合部132aのX軸の負方向の端部はP型コンタクト部131bと接合している。
(Modification)
The shapes of the P-type region and the N-type region are not limited to the L-shape described in the first embodiment. For example, as shown in FIG. 5, the temperature detection element 130 includes a rectangular wave-shaped P-type joint 131a and an N-type joint 132a when viewed in plan, and the P-type joint 131a and the N-type joint 132a. May be bonded to each other at the rectangular surfaces to form a PN junction surface. Similar to the first embodiment, the P-type contact portion 131b is a portion of the P-type region 131 having the widest width in the Y direction, and has a constant width in the X direction. The N-type contact portion 132b is a portion having the widest width in the Y direction of the N-type region 132, and has a constant width in the X direction. The positive end of the X-axis of the P-type joint 131a is joined to the N-type contact 132b, and the negative end of the X-axis of the N-type joint 132a is joined to the P-type contact 131b. Yes.

また、図6に示すように、温度検出素子140は、平面視したときに波形状のP型接合部141aとN型接合部142aを備えており、P型接合部141aとN型接合部142aがその波形面で互いに接合して、PN接合面となっていてもよい。実施例1と同様に、P型コンタクト部141bは、P型領域141のY方向の幅が最も広い部分であり、X方向に一定の幅を有している。N型コンタクト部142bは、N型領域142のY方向の幅が最も広い部分であり、X方向に一定の幅を有している。P型接合部141aのX軸の正方向の端部はN型コンタクト部142bと接合しており、N型接合部142aのX軸の負方向の端部はP型コンタクト部141bと接合している。図5,6に示すように、温度検出素子130,140のPN接合面は、温度検出素子120と比べて広くなっている。P型接合部とN型接合部の形状を適宜変化させることによって、PN接合面の面積を適切に変化させることが可能となる。   Further, as shown in FIG. 6, the temperature detecting element 140 includes a P-shaped joint portion 141a and an N-type joint portion 142a having a wave shape when viewed in plan, and the P-type joint portion 141a and the N-type joint portion 142a. May be joined to each other on the corrugated surface to form a PN junction surface. As in the first embodiment, the P-type contact portion 141b is a portion having the widest width in the Y direction of the P-type region 141, and has a constant width in the X direction. The N-type contact portion 142b is a portion having the widest width in the Y direction of the N-type region 142, and has a constant width in the X direction. The positive end of the X-axis of the P-type joint 141a is joined to the N-type contact 142b, and the negative end of the X-axis of the N-type joint 142a is joined to the P-type contact 141b. Yes. As shown in FIGS. 5 and 6, the PN junction surfaces of the temperature detection elements 130 and 140 are wider than those of the temperature detection element 120. By appropriately changing the shapes of the P-type junction and the N-type junction, the area of the PN junction surface can be appropriately changed.

また、図7に示すように、温度検出素子150は、平面視したときに三角形状のP型接合部151aとN型接合部152aを備えており、これらが互いに接合して、PN接合面となっていてもよい。P型領域151のX軸の負方向の端面がP型コンタクト部151bであり、P型領域151においてY方向の幅が最も広い。N型領域152のX軸の正方向の端面がN型コンタクト部152bであり、N型領域152においてY方向の幅が最も広い。温度検知素子150の配線(図示しない)は、端面であるP型コンタクト部151bおよびN型コンタクト部152bにそれぞれ接合されている。P型コンタクト部151bのY方向の幅は、P型接合部151aよりも広く、N型コンタクト部152bのY方向の幅は、N型接合部151aよりも広い。このように、P型コンタクト部151bおよびN型コンタクト部152bは、X軸方向に一定の幅を有していなくてもよい。P型接合部151aのX軸の正方向の端部はN型コンタクト部152bに達しており、N型接合部152aのX軸の負方向の端部はP型コンタクト部151bに達している。なお、図5〜7に示す温度検出素子の上記に説明した以外の構成については、実施例1の温度検出素子120と同様であるから、参照番号の120番台をそれぞれ130番台、140番台、150番台に読み替えることによって、重複説明を省略する。   Further, as shown in FIG. 7, the temperature detection element 150 includes a triangular P-type joint 151 a and an N-type joint 152 a in plan view, and these are joined together to form a PN junction surface. It may be. An end surface in the negative direction of the X-axis of the P-type region 151 is a P-type contact portion 151b, and the P-type region 151 has the widest width in the Y direction. An end surface in the positive direction of the X axis of the N-type region 152 is an N-type contact portion 152b, and the N-type region 152 has the widest width in the Y direction. The wiring (not shown) of the temperature detection element 150 is joined to the P-type contact portion 151b and the N-type contact portion 152b, which are end faces. The width of the P-type contact portion 151b in the Y direction is wider than that of the P-type junction portion 151a, and the width of the N-type contact portion 152b in the Y direction is wider than that of the N-type junction portion 151a. Thus, the P-type contact portion 151b and the N-type contact portion 152b do not have to have a certain width in the X-axis direction. An end in the positive direction of the X axis of the P-type joint 151a reaches the N-type contact portion 152b, and an end in the negative direction of the X-axis of the N-type joint 152a reaches the P-type contact 151b. Since the configuration of the temperature detection element shown in FIGS. 5 to 7 other than those described above is the same as that of the temperature detection element 120 of the first embodiment, the 120th reference numbers are the 130th, 140th, and 150th, respectively. Duplicated explanation is omitted by replacing it with the base.

さらに、図8〜図11に示すように、温度検出素子120,130,140,150のP型領域121,131,141,151とN型領域122,132,142,152の接合する部分の端部に、さらにポリシリコン領域126,127,136,137,146,147,156,157が形成されていてもよい。高抵抗のポリシリコン領域によって、P型領域121,131,141,151とN型領域122,132,142,152の接合する部分の端部(PN接合面の端部)から電流漏れが発生することを抑制することができる。高抵抗のポリシリコン領域は、半導体装置の製造工程において、P型領域とN型領域にイオン注入を行う際に、P型領域とN型領域の接合する部分の端部にマスキング等を行ってイオンを注入しないようにすることによって、容易に形成することができる。   Further, as shown in FIGS. 8 to 11, the ends of the joining portions of the P-type regions 121, 131, 141, 151 and the N-type regions 122, 132, 142, 152 of the temperature detection elements 120, 130, 140, 150 are joined. Further, polysilicon regions 126, 127, 136, 137, 146, 147, 156, and 157 may be formed in the portion. Due to the high-resistance polysilicon region, current leakage occurs from the end portion (end portion of the PN junction surface) where the P-type regions 121, 131, 141, 151 and the N-type regions 122, 132, 142, 152 are joined. This can be suppressed. In the manufacturing process of a semiconductor device, the high-resistance polysilicon region is formed by performing masking or the like on the end portion of the junction between the P-type region and the N-type region when ion implantation is performed on the P-type region and the N-type region. It can be easily formed by not implanting ions.

上記の実施例および変形例においては、長方形状の温度検出素子を例示して説明したが、温度検出素子の形状はこれに限定されない。例えば、図12に示すように、円弧状の温度検出素子160であってもよい。この場合、第1方向は円弧の周に沿う矢印Lの方向であり、第2方向は、円弧の半径方向を示す矢印Rの方向である。温度検出素子の第1方向が曲線状である以外は、実施例1の温度検出素子120と同様であるから、参照番号の120番台を160番台に読み替えることによって、重複説明を省略する。半導体装置の素子領域に円弧状の絶縁ゲートが形成されている場合には、図12に示すような温度検出素子160を好適に用いることができる。温度検出素子160の第1方向と、円弧状の絶縁ゲートの長手方向が平行になるように温度検出素子160を配置すれば、素子領域と温度検出素子160との距離を小さくすることができる。このように、温度検出素子の形状は、絶縁ゲートの形状や素子領域の形状に応じて変更し、素子領域と温度検出素子のPN接合面との距離が小さくなるようにすることができる。なお、第2方向に沿うP型接合部およびN型接合部の幅の和は、温度検出素子の幅よりもさらに小さくすることもできる。   In the above embodiments and modifications, the rectangular temperature detection element has been described as an example, but the shape of the temperature detection element is not limited to this. For example, as shown in FIG. 12, an arc-shaped temperature detection element 160 may be used. In this case, the first direction is the direction of the arrow L along the circumference of the arc, and the second direction is the direction of the arrow R indicating the radial direction of the arc. Since the first direction of the temperature detecting element is the same as that of the temperature detecting element 120 of the first embodiment except that the first direction is curved, the duplicated explanation is omitted by replacing the reference number 120 series with the 160 series. In the case where an arc-shaped insulated gate is formed in the element region of the semiconductor device, a temperature detecting element 160 as shown in FIG. 12 can be suitably used. If the temperature detection element 160 is arranged so that the first direction of the temperature detection element 160 is parallel to the longitudinal direction of the arc-shaped insulated gate, the distance between the element region and the temperature detection element 160 can be reduced. Thus, the shape of the temperature detection element can be changed according to the shape of the insulated gate and the shape of the element region so that the distance between the element region and the PN junction surface of the temperature detection element can be reduced. In addition, the sum of the widths of the P-type junction and the N-type junction along the second direction can be made smaller than the width of the temperature detection element.

また、上記の実施例および変形例においては、温度検出素子は、半導体装置を平面視したときの中央部に1つ形成されていたが、これに限定されない。温度検出素子は、半導体基板上のどの位置に形成してもよく、複数個形成してもよい。例えば、それぞれの素子領域の中央部に1つずつ形成してもよい。   Further, in the above-described embodiments and modifications, one temperature detection element is formed at the center when the semiconductor device is viewed in plan, but the present invention is not limited to this. The temperature detection element may be formed at any position on the semiconductor substrate, or a plurality of temperature detection elements may be formed. For example, one may be formed at the center of each element region.

以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the Example of this invention was described in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

10 半導体装置
14 トレンチゲート
100 半導体基板
101a〜101c 表面電極
102a〜102e 小信号パッド
104 絶縁膜
111b 素子領域
112b ゲート配線
120,130,140,150,160 温度検出素子
126,127,136,137,146,147,156,157 ポリシリコン領域
121,131,141,151,161 P型領域
121a,131a,141a,151a,161a P型接合部
121b,131b,141b,151b,161b P型コンタクト部
122,132,142,152,162 N型領域
122a,132a,142a,152a,162a N型接合部
122b,132b,142b,152b,162b N型コンタクト部
123,124 配線
DESCRIPTION OF SYMBOLS 10 Semiconductor device 14 Trench gate 100 Semiconductor substrate 101a-101c Surface electrode 102a-102e Small signal pad 104 Insulating film 111b Element area | region 112b Gate wiring 120,130,140,150,160 Temperature detection element 126,127,136,137,146 , 147, 156, 157 Polysilicon regions 121, 131, 141, 151, 161 P-type regions 121a, 131a, 141a, 151a, 161a P-type junctions 121b, 131b, 141b, 151b, 161b P-type contact portions 122, 132 , 142, 152, 162 N-type regions 122a, 132a, 142a, 152a, 162a N-type junctions 122b, 132b, 142b, 152b, 162b N-type contact parts 123, 124

Claims (6)

一方の表面側に半導体素子が形成された半導体基板と、
半導体基板の一方の表面側に絶縁膜を介して配置されており、半導体基板を平面視したときに半導体素子と重ならない位置に配置されており、P型領域とN型領域を有しており、半導体基板に形成された半導体素子の温度を検出する温度検出素子と、を備えた半導体装置であって、
P型領域は、半導体と配線が電気的に接合するためのP型の接続部と、P型の接続部から半導体基板の表面に沿う第1方向に延びるP型接合部とを有しており、
N型領域は、半導体と配線が電気的に接合するためのN型の接続部と、N型の接続部からP型接合部に沿って第1方向と逆方向に延びると共にP型接合部と接合しているN型接合部とを有しており、
P型接合部の半導体基板の表面に沿うとともに第1方向に直交する第2方向の幅は、P型の接続部の第2方向の幅よりも狭く、
N型接合部の第2方向の幅は、N型の接続部の第2方向の幅よりも狭い、半導体装置。
A semiconductor substrate having a semiconductor element formed on one surface side;
Are arranged via an insulating film on one surface side of the semiconductor substrate, it is disposed at a position not overlapping with the semiconductor device in a plan view of the semiconductor substrate, and have a P-type region and the N-type region A temperature detecting element for detecting the temperature of the semiconductor element formed on the semiconductor substrate , and a semiconductor device comprising:
The P-type region has a P-type connection for electrically connecting the semiconductor and the wiring, and a P-type connection extending from the P-type connection in the first direction along the surface of the semiconductor substrate. ,
The N-type region includes an N-type connection portion for electrically connecting the semiconductor and the wiring, and extends from the N-type connection portion along the P-type junction portion in the direction opposite to the first direction, and the P-type junction portion. An N-type joint that is joined,
The width of the second direction along the surface of the semiconductor substrate of the P-type junction and orthogonal to the first direction is narrower than the width of the P-type connection portion in the second direction.
The width of the N-type junction in the second direction is narrower than the width of the N-type connection in the second direction.
温度検出素子の第2方向の幅は、P型の接続部の第2方向の幅以下である、請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein a width of the temperature detection element in the second direction is equal to or smaller than a width of the P-type connection portion in the second direction. 温度検出素子の第2方向の幅は、N型の接続部の第2方向の幅以下である、請求項1または2に記載の半導体装置。   3. The semiconductor device according to claim 1, wherein a width of the temperature detection element in the second direction is equal to or smaller than a width of the N-type connection portion in the second direction. 前記半導体素子は、絶縁ゲート型の半導体素子であり、絶縁ゲートの長手方向は第1方向に平行である、請求項1〜3のいずれか一項に記載の半導体装置。 The semiconductor device according to claim 1, wherein the semiconductor element is an insulated gate semiconductor element , and a longitudinal direction of the insulated gate is parallel to the first direction. P型領域とN型領域の接合する部分の端部に、ポリシリコン領域が形成されている、請求項1〜4のいずれか一項に記載の半導体装置。   The semiconductor device according to claim 1, wherein a polysilicon region is formed at an end portion of a portion where the P-type region and the N-type region are joined. 半導体基板を平面視したときに、P型接合部とN型接合部は、P型の接続部とN型の接続部とに挟まれる領域内に配置されている、請求項1〜5のいずれか一項に記載の半導体装置。
6. The semiconductor device according to claim 1, wherein the P-type junction and the N-type junction are arranged in a region sandwiched between the P-type connection and the N-type connection when the semiconductor substrate is viewed in plan. The semiconductor device according to claim 1.
JP2011015747A 2011-01-27 2011-01-27 Semiconductor device Expired - Fee Related JP5764941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011015747A JP5764941B2 (en) 2011-01-27 2011-01-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015747A JP5764941B2 (en) 2011-01-27 2011-01-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2012156398A JP2012156398A (en) 2012-08-16
JP5764941B2 true JP5764941B2 (en) 2015-08-19

Family

ID=46837794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015747A Expired - Fee Related JP5764941B2 (en) 2011-01-27 2011-01-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5764941B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094392B2 (en) * 2013-06-11 2017-03-15 株式会社デンソー Semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297392A (en) * 1994-04-22 1995-11-10 Fuji Electric Co Ltd Semiconductor element equipment with temperature detecting part
JP2000031290A (en) * 1998-07-10 2000-01-28 Nissan Motor Co Ltd Semiconductor device
JP4703502B2 (en) * 2006-07-05 2011-06-15 三菱電機株式会社 Temperature sensor and infrared solid-state imaging device

Also Published As

Publication number Publication date
JP2012156398A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
TWI567975B (en) Super junction semiconductor device
JP4017258B2 (en) Semiconductor device
KR20110054662A (en) Connection tab for connecting battery cells and battery module using the same
JP2011171363A (en) Pin diode
US20100019331A1 (en) Hall-effect magnetic sensors with improved magnetic responsivity and methods for manufacturing the same
JP2011124375A (en) Thermoelectric device and thermoelectric module
JP5764941B2 (en) Semiconductor device
TWI771465B (en) Semiconductor devices with bent portions
TW200950060A (en) Semiconductor device
CN105977297B (en) Semiconductor device with a plurality of semiconductor chips
JP6278549B2 (en) Semiconductor device
JP2011134951A (en) Semiconductor device
JP2018088445A (en) Thermoelectric conversion device, laminate thermoelectric conversion device, and heat radiation structure
TWI611558B (en) Method and structure for multi-cell devices without physical isolation
US11125803B2 (en) Method of measuring semiconductor device by applying voltage to the semiconductor device using probe needle
JP2011238844A (en) Semiconductor device
JP7192509B2 (en) Thermoelectric conversion element
TWI462268B (en) High voltage semiconductor and operating method thereof
JP2018046125A (en) Semiconductor module
US7075159B2 (en) Horizontal MOS transistor
JP2010238796A (en) Semiconductor device
TWI226093B (en) Testing structure of multi-direction leakage current path
JP6271157B2 (en) Semiconductor device
JP2004186538A (en) Thermoelectric conversion element and its manufacturing method
JP2018063767A (en) Cooling member and battery module having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R151 Written notification of patent or utility model registration

Ref document number: 5764941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees