JP5763880B2 - Regenerative treatment materials - Google Patents

Regenerative treatment materials Download PDF

Info

Publication number
JP5763880B2
JP5763880B2 JP2009281382A JP2009281382A JP5763880B2 JP 5763880 B2 JP5763880 B2 JP 5763880B2 JP 2009281382 A JP2009281382 A JP 2009281382A JP 2009281382 A JP2009281382 A JP 2009281382A JP 5763880 B2 JP5763880 B2 JP 5763880B2
Authority
JP
Japan
Prior art keywords
prp
coated
woven fabric
regenerative
periosteum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009281382A
Other languages
Japanese (ja)
Other versions
JP2011120763A (en
Inventor
知之 川瀬
知之 川瀬
一博 奥田
一博 奥田
悠 中島
悠 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University
Original Assignee
Niigata University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University filed Critical Niigata University
Priority to JP2009281382A priority Critical patent/JP5763880B2/en
Publication of JP2011120763A publication Critical patent/JP2011120763A/en
Application granted granted Critical
Publication of JP5763880B2 publication Critical patent/JP5763880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)

Description

本発明は、再生治療用材料に関し、具体的には、固体支持体にコーティングされた後に凍結乾燥された多血小板血漿を含む再生治療用材料に関する。   The present invention relates to a regenerative therapeutic material, and more particularly to a regenerative therapeutic material comprising platelet-rich plasma that has been coated on a solid support and then lyophilized.

ヒト血液から分画した多血小板血漿(platelet rich plasma、以下、「PRP」という。)は、フィブリン糊として50年以上昔から外科手術に頻繁に用いられてきた。また、21世紀に入ると、口腔外科の分野においてPRP中に細胞増殖因子が濃縮されて含まれていることが注目され、現在、再生医療のみならず美容外科の分野での応用が進んでいる。しかし、長期保存ができないことからいずれの場合も用時調製が原則である(特許文献1)。1990年代から、緊急時への対応や野戦病院での応急手当などへの汎用性を拡大させるために、凍結乾燥によるPRP保存技術の開発が進んだ。また、肝臓の再生を目的としたPRPの多量保存法のひとつとして凍結乾燥法の研究が進められている。ただし、これらの凍結乾燥PRPは水溶液に溶解させるのに注意を要するのが課題として残されている(非特許文献1)。   Platelet rich plasma (hereinafter referred to as “PRP”) fractionated from human blood has been frequently used in surgery as a fibrin glue for more than 50 years. In the 21st century, it has been noticed that cell growth factors are concentrated and contained in PRP in the field of oral surgery, and is now being applied in the field of cosmetic surgery as well as regenerative medicine. . However, since it cannot be stored for a long time, preparation in use is a principle in any case (Patent Document 1). Since the 1990s, the development of PRP storage technology by freeze-drying has progressed in order to expand the versatility for emergency response and first aid in field hospitals. In addition, a lyophilization method is being studied as one of the methods for preserving a large amount of PRP for the purpose of liver regeneration. However, it remains a problem that these freeze-dried PRPs require attention to be dissolved in an aqueous solution (Non-patent Document 1).

国際公開第WO2007/027178号公報パンフレットPamphlet of International Publication No. WO2007 / 027178

Wolkers,W.F.ら、Cryobiology、42:79−87(2001)Walkers, W.M. F. Et al., Cryobiology, 42: 79-87 (2001).

そこで、多血小板血漿を利用する再生治療用材料であって、用時調製又は冷凍保存を必要としない再生治療用材料を開発する必要がある。   Therefore, it is necessary to develop a regenerative treatment material that uses platelet-rich plasma and that does not require preparation or frozen storage at the time of use.

本発明は、固体支持体にコーティングされた後に凍結乾燥された多血小板血漿を含み、前記多血小板血漿が凍結乾燥されてから少なくとも1日間冷蔵保存された後に使用される、再生治療用材料を提供する。   The present invention provides a regenerative therapeutic material comprising platelet-rich plasma that has been coated on a solid support and then freeze-dried, and is used after the platelet-rich plasma has been refrigerated and stored for at least one day. To do.

本発明の再生治療用材料は、前記多血小板血漿が凍結乾燥されてから少なくとも30日間冷蔵保存された後に使用される場合がある。   The regenerative treatment material of the present invention may be used after the platelet-rich plasma has been refrigerated for at least 30 days after lyophilization.

本発明の再生治療用材料において、前記固体支持体は、繊維製品、多孔性基材、粒状体及び発泡体からなるグループから選択される場合がある。   In the regenerative treatment material of the present invention, the solid support may be selected from the group consisting of a textile product, a porous substrate, a granular material, and a foam.

本発明の再生治療用材料において、前記固体支持体は生分解性材料でできている場合がある。   In the regenerative treatment material of the present invention, the solid support may be made of a biodegradable material.

本発明の再生治療用材料において、前記固体支持体は、前記多血小板血漿がコーティングされる前に、細胞−基質間接着レセプターのリガンドがコーティングされる場合がある。   In the regenerative therapeutic material of the present invention, the solid support may be coated with a ligand of a cell-substrate adhesion receptor before the platelet-rich plasma is coated.

本発明の再生治療用材料において、前記リガンドはアテロコラーゲンの場合がある。   In the regenerative treatment material of the present invention, the ligand may be atelocollagen.

本発明において、固体支持体とは、多血小板血漿をコーティングしてから凍結乾燥されるまでの間、ほぼ一定の形状を保つことができることを条件として、いかなる材質及び形状であってもかまわない。本発明における固体支持体の好ましい材質は、ポリグリコール酸、ポリ乳酸及びこれらの共重合体のような短期吸収性の生分解性ポリマー又は生体吸収性ポリマーと、プロパンジオール、ポリ(L−ラクチド−コ−イプシロン−カプロラクトン)、ポリカプロラクトン及びこれらの共重合体のような長期分解性の生分解性ポリマー又は生体吸収性ポリマーと、ポリブチレンサクシネート、ポリビニルアルコール、キトサンその他の生分解性ポリマー又は生体吸収性ポリマーと、非生分解性ポリマーの絹とを含むが、これらに限定されない。本発明における固体支持体の好ましい形状は、織物、編物、不織布、ステッチ、綿、布、紙、フィルター等の繊維製品と、粒状体及び発泡体を含む多孔性基材とを含むが、これらに限定されない。好ましい繊維製品には、メッシュ、ガーゼ地のような織物の他、編物、不織布、ステッチ、綿のように、創傷被覆材として慣用されるものを含む。   In the present invention, the solid support may be of any material and shape as long as it can maintain a substantially constant shape during the period from coating of platelet-rich plasma to lyophilization. Preferred materials for the solid support in the present invention are short-term absorbable biodegradable polymers or bioabsorbable polymers such as polyglycolic acid, polylactic acid and copolymers thereof, propanediol, poly (L-lactide- Co-epsilon-caprolactone), polycaprolactone and their copolymers, and biodegradable or bioabsorbable polymers that are long-term degradable and polybutylene succinate, polyvinyl alcohol, chitosan and other biodegradable polymers or bio Including, but not limited to, absorbent polymers and non-biodegradable polymer silk. Preferred shapes of the solid support in the present invention include textile products such as woven fabrics, knitted fabrics, nonwoven fabrics, stitches, cotton, cloth, paper, filters, and porous substrates including granular materials and foams. It is not limited. Preferred textiles include those commonly used as wound dressings such as knitted fabrics, non-woven fabrics, stitches and cotton, as well as woven fabrics such as meshes and gauze fabrics.

本発明において用いられる用語「コーティング」とは、PRPや、アテロコラーゲンのようなリガンドを含む溶液に、固体支持体が覆われることを指す。すなわちコーティングとは、PRPが前記固体支持体の表面で凝固することの他に、前記溶液が前記固体支持体の繊維間隙や細孔を通って毛細管現象で浸透することや、前記溶液の存在下で前記固体支持体が溶解又は分解するために前記固体支持体の表面に前記溶液の層又は膜が形成されることによって、前記固体支持体に前記溶液が吸収されることを含む広い意味を有する。   The term “coating” used in the present invention means that a solid support is covered with a solution containing a ligand such as PRP or atelocollagen. That is, the coating means that the PRP is solidified on the surface of the solid support, the solution penetrates through the fiber gaps and pores of the solid support by capillarity, and the presence of the solution. The solid support has a broad meaning including that the solution is absorbed by the solid support by forming a layer or membrane of the solution on the surface of the solid support in order to dissolve or decompose the solid support. .

本発明においてPRPは、所要の細胞増殖促進活性、創傷治癒促進活性等を有すること、及び、血液製剤としての安全性が確保されることを条件として、いかなる出所のものであってもかまわない。しかし、種特異性を考慮すると、再生治療の対象となる患者と同じ種の個体に由来することが好ましい。また、血液製剤としての安全性を担保するためには、PRPは、再生治療の対象となる患者自身から採取された血液から精製されることがより好ましい。PRPの調製は、例えば、Okuda,K.ら(J.Periodontol.74:849−857(2003))及び特開2004−201799号明細書に従って行う。簡潔には、患者から採血した新鮮な全血をクエン酸及びブドウ糖を含む抗凝固剤を添加した10mL遠心管に分注し、最短径約57mm、最長径約140mmのスウィングバケット型ロータで2,400rpm、10分間遠心する。遠心分離すると、赤血球が沈殿し、上清の血漿との間に血小板が集まる。次に、血小板及び血漿を別の10mL遠心管に移して3,600rpm、15分間遠心して、血小板を沈殿させ、最少量の血漿中に懸濁して回収した分画を多血小板血漿として使用する。本発明の多血小板血漿は患者から採取した新鮮なものを使用する場合もあるが、凍結保存したものを使用する場合もある。また、PRPの提供者は、患者自身であることが好ましい。しかし、血液製剤としての安全性が確保されることを条件として、献血のように患者以外の人間から採取された血液から調製されたPRPを用いる場合もある。   In the present invention, PRP may be of any origin, provided that it has the required cell growth promoting activity, wound healing promoting activity, etc., and safety as a blood product is ensured. However, in consideration of species specificity, it is preferably derived from an individual of the same species as the patient to be subjected to regenerative treatment. Moreover, in order to ensure the safety as a blood product, it is more preferable that the PRP is purified from blood collected from the patient who is the subject of regenerative treatment. The preparation of PRP is described, for example, in Okuda, K .; (J. Periodontol. 74: 849-857 (2003)) and JP-A-2004-201799. Briefly, fresh whole blood collected from a patient is dispensed into a 10 mL centrifuge tube to which an anticoagulant containing citric acid and glucose is added, and a swing bucket rotor with a shortest diameter of about 57 mm and a longest diameter of about 140 mm is used. Centrifuge at 400 rpm for 10 minutes. When centrifuged, red blood cells are precipitated and platelets are collected between the supernatant plasma. Next, the platelets and plasma are transferred to another 10 mL centrifuge tube, centrifuged at 3,600 rpm for 15 minutes to precipitate the platelets, and the fraction collected by suspending in a minimum amount of plasma is used as platelet-rich plasma. The platelet-rich plasma of the present invention may be freshly collected from a patient or may be cryopreserved. Moreover, it is preferable that the provider of PRP is the patient himself. However, on the condition that safety as a blood product is ensured, PRP prepared from blood collected from humans other than patients, such as blood donation, may be used.

本発明において、凍結乾燥は、冷却及び/又は減圧によって乾燥させることを指し、遠心分離を伴う場合がある。例えば、PRPや、アテロコラーゲンのようなリガンドでコーティングされた織布が、−80°Cのディープフリーザー内で約1時間予備凍結され、その後、凍結乾燥装置で−45°C、20Paで約10分間処理される場合がある。完全に凍結乾燥させるために、さらに20ないし50分間処理される場合もある。   In the present invention, lyophilization refers to drying by cooling and / or reduced pressure, and may be accompanied by centrifugation. For example, a woven fabric coated with a ligand such as PRP or atelocollagen is pre-frozen in a deep freezer at −80 ° C. for about 1 hour, and then at −45 ° C. and 20 Pa for about 10 minutes in a freeze drying apparatus. May be processed. In order to completely freeze-dry, it may be treated for another 20 to 50 minutes.

本発明において、冷蔵保存とは、−80°Cないし−20°Cの保存のための冷凍庫を必要としない、室温より低いいずれかの温度で保存することを指し、0°Cないし10°Cの範囲の温度での保存が好ましく、4°Cないし10°Cの範囲の温度での保存がより好ましい。   In the present invention, refrigerated storage means storage at any temperature lower than room temperature that does not require a freezer for storage at -80 ° C to -20 ° C. Storage at a temperature in the range of 4 ° C to 10 ° C is more preferable.

本発明において、細胞−基質間接着とは、細胞と細胞外マトリクスとの接着や、細胞と培養容器の表面との接着を指す。本発明における細胞−基質間接着レセプターのリガンドは、コラーゲン及びアテロコラーゲンや、フィブロネクチン、ラミニンを含むが、これらに限定されない。   In the present invention, cell-substrate adhesion refers to adhesion between cells and extracellular matrix, and adhesion between cells and the surface of a culture vessel. The ligand of the cell-matrix adhesion receptor in the present invention includes, but is not limited to, collagen and atelocollagen, fibronectin and laminin.

本発明の再生治療用材料は、創傷被覆材や、硬組織及び/又は軟組織の欠損部分に包埋するインプラント材として利用できる。また、従来の凍結乾燥PRPの代替品として、細胞増殖因子の供給源等の目的で利用することができる。   The material for regenerative treatment of the present invention can be used as a wound dressing material or an implant material embedded in a defect portion of hard tissue and / or soft tissue. Moreover, it can utilize for the objectives, such as a supply source of a cell growth factor, as a substitute of the conventional freeze-dried PRP.

本発明の再生治療用材料は少なくとも1日間冷蔵保存された後に使用されるため、用時調製の必要がない。そこで、遠心機等の設備がない小規模の医療機関での再生治療に特に有用である。また本発明の再生治療用材料は冷蔵保存が可能なので、輸送及び保存にドライアイス、ディープフリーザー等の必要がない。そのため、エネルギー消費の点からも凍結PRPの代替品として有用である。   Since the regenerative treatment material of the present invention is used after being refrigerated for at least one day, there is no need for preparation at the time of use. Therefore, it is particularly useful for regenerative treatment in a small medical institution that does not have equipment such as a centrifuge. In addition, since the regenerative treatment material of the present invention can be refrigerated, there is no need for dry ice, deep freezer, etc. for transportation and storage. Therefore, it is useful as a substitute for frozen PRP from the viewpoint of energy consumption.

(生命倫理)
ヒト由来の培養細胞、PRP及びラットを使用するにあたって、新潟大学医歯学総合病院の倫理規定に基づき作成した実験計画を新潟大学歯学部倫理委員会で承認を受けた。さらに、インフォームドコンセントにより、その都度、提供者に対して骨膜細胞及びPRPの採取と実験への供与について説明し、書面による同意を得た。
(Bioethics)
When using cultured cells, PRP and rats derived from humans, an experimental plan based on the ethical rules of Niigata University Medical and Dental General Hospital was approved by the Niigata University School of Dentistry Ethics Committee. Furthermore, with informed consent, each time the donor was explained about the collection of periosteal cells and PRP and the donation to the experiment, and written consent was obtained.

PRPコーティング織布のヒト骨膜由来培養細胞の増殖への影響を調べる実験結果の棒グラフ。The bar graph of the experimental result which investigates the influence on the proliferation of the human periosteum origin cultured cell of a PRP coating woven fabric. 生体吸収性織布を用いないで処置された対照実験のラットの創傷組織(A)と、PRPがコーティングされた生体吸収性織布を用いて処置されたラットの創傷組織(B)とのヘマトキシリン・エオジン染色された組織の光学顕微鏡写真。Hematoxylin between control rat wound tissue (A) treated without bioabsorbable fabric and rat wound tissue (B) treated with PRP-coated bioabsorbable fabric -Optical micrograph of tissue stained with eosin. アテロコラーゲン及びPRPでコーティングされた生体吸収性織布上で培養された骨膜片初代培養の隣接する薄切切片に、それぞれ、ヘマトキシリン・エオジン染色(A)及びフォン・コッサ染色(B)を施した組織標本の光学顕微鏡写真。Tissues that were subjected to hematoxylin and eosin staining (A) and von Kossa staining (B), respectively, on adjacent thin slices of periosteum primary culture cultured on bioabsorbable woven fabric coated with atelocollagen and PRP Optical micrograph of the specimen.

以下に説明する本発明の実施例は例示のみを目的とし、本発明の技術的範囲を限定するものではない。本発明の技術的範囲は特許請求の範囲の記載によってのみ限定される。   The embodiments of the present invention described below are for illustrative purposes only and are not intended to limit the technical scope of the present invention. The technical scope of the present invention is limited only by the appended claims.

ヒト骨膜由来培養細胞の増殖促進効果
PRPの調製
患者から採血した新鮮な全血がクエン酸及びブドウ糖を含む抗凝固剤を添加した10mL遠心管に分注され、最短径約57mm、最長径約140mmのスウィングバケット型ロータで2,400rpm、10分間遠心された。遠心分離により赤血球が沈殿し、上清の血漿との間に血小板が集まった。前記血小板及び血漿が別の10mL遠心管に回収され、3,600rpm、15分間遠心された。沈殿した血小板は最少量の血漿中に懸濁して回収され、これが多血小板血漿として使用された。
Growth promotion effect of human periosteum-derived cultured cells Preparation of PRP Fresh whole blood collected from a patient was dispensed into a 10 mL centrifuge tube to which an anticoagulant containing citric acid and glucose was added, and the shortest diameter was about 57 mm and the longest diameter was about 140 mm. Were centrifuged at 2,400 rpm for 10 minutes. Red blood cells were precipitated by centrifugation, and platelets gathered with the supernatant plasma. The platelets and plasma were collected in another 10 mL centrifuge tube and centrifuged at 3,600 rpm for 15 minutes. Precipitated platelets were collected by suspending in a minimal amount of plasma, which was used as platelet rich plasma.

PRPコーティング織布の調製
5、mm×5mm及び5mm×10mmの生体吸収性織布(バイクリルメッシュ、カタログ番号:VICRYL WOVEN MESH (Polyglactin 910) VWMM、ジョンソン・エンド・ジョンソン株式会社)が、それぞれ、前記PRP30μL及び60μLで室温、3−5分間コーティングされた。前記織布は、−80°Cのディープフリーザー内で約1時間予備凍結され、その後、凍結乾燥装置で−45°C、20Paで30ないし60分間処理された。(以下、それぞれ「PRP×1」及び「PRP×2」という。)。前記PRPコーティング織布は、使用まで冷蔵庫で貯蔵及び保存された。
Preparation of PRP coated woven fabric 5, mm × 5 mm and 5 mm × 10 mm bioabsorbable woven fabric (Bikerill mesh, catalog number: VICRYL WOVEN MESH (Polyglactin 910) VWMM, Johnson & Johnson Co., Ltd.) Coated with 30 μL and 60 μL of PRP at room temperature for 3-5 minutes. The woven fabric was pre-frozen in a deep freezer at −80 ° C. for about 1 hour, and then treated in a freeze drying apparatus at −45 ° C. and 20 Pa for 30 to 60 minutes. (Hereinafter referred to as “PRP × 1” and “PRP × 2”, respectively). The PRP coated woven fabric was stored and stored in a refrigerator until use.

細胞
患者から採取された骨膜片由来の培養細胞(以下、「ヒト骨膜由来培養細胞」という。)が用いられた。ウシ胎児血清が10%添加されたダルベッコ変法イーグル培地での継代6回目の前記ヒト骨膜由来培養細胞は、セルインサート(ベクトン・ディキンソン、#353090)付きの6ウェルプレート(ベクトン・ディキンソン、#353502又は#55467)にウェルあたり1×10個となるように播種された。培養は、ウシ胎児血清が1%添加されたダルベッコ変法イーグル培地(以下、「分化用培地」という。)をウェルに2mL、セルインサートに1mL添加して、37°C、5%CO及び飽和水蒸気雰囲気下で2日間行なわれた。前記セルインサートには、前記骨膜片を採取したのと同一の患者由来のPRP×1又はPRP×2が1枚浸漬された。対照実験は、PRPをコーティングしない織布を使用した培養と、PRP×1及びPRP×2を使用せず分化用培地のみの培養とであった。
Cells Cultured cells derived from periosteum pieces collected from patients (hereinafter referred to as “human periosteum-derived cultured cells”) were used. The 6th passage of human periosteum-derived cultured cells in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum was a 6-well plate (Becton Dickinson, # 35390) with a cell insert (Becton Dickinson, # 353090). 353502 or # 55467) at 1 × 10 5 per well. The culture was performed by adding 2 mL of Dulbecco's modified Eagle's medium (hereinafter referred to as “differentiation medium”) supplemented with 1% fetal calf serum to the wells and 1 mL to the cell insert, 37 ° C., 5% CO 2 and It was carried out for 2 days under a saturated steam atmosphere. One PRP × 1 or PRP × 2 derived from the same patient from which the periosteum pieces were collected was immersed in the cell insert. Control experiments were a culture using a woven fabric not coated with PRP, and a culture using only differentiation medium without using PRP × 1 and PRP × 2.

細胞増殖の定量
2日間の培養後、細胞は解離され、粒子数計測分析装置(CDA−100X、シスメックス社)で細胞数が測定された。
Quantification of cell proliferation After culturing for 2 days, the cells were dissociated, and the number of cells was measured with a particle count analyzer (CDA-100X, Sysmex).

結果
図1は、PRPコーティング織布のヒト骨膜由来培養細胞の増殖への影響を調べる実験結果の棒グラフである。図1に示すとおり、ウェルあたりの細胞数は、対照実験では1.0×10個、PRP×1を用いた場合には1.2×10個、PRP×2を用いた場合には1.4×10個であった。この結果は、PRPコーティングバイクリルメッシュのサイズが大きいほど、細胞増殖を促進する活性が高いことを示唆する。なお、PRPをコーティングしない生体吸収性織布は、細胞増殖促進活性を示さなかった(図示されない)。また、本実施例では冷蔵庫での貯蔵期間が1日のPRPコーティング織布を用いたが、貯蔵期間が30日のPRPコーティング織布でも、同様の細胞増殖促進活性が認められた。
Results FIG. 1 is a bar graph of experimental results examining the effect of PRP-coated woven fabric on the proliferation of cultured cells from human periosteum. As shown in FIG. 1, the number of cells per well was 1.0 × 10 5 in the control experiment, 1.2 × 10 5 when using PRP × 1, and when using PRP × 2. It was 1.4 × 10 5 pieces. This result suggests that the greater the size of the PRP-coated bicyclyl mesh, the higher the activity of promoting cell proliferation. The bioabsorbable woven fabric not coated with PRP did not show cell growth promoting activity (not shown). In this example, a PRP-coated woven fabric with a storage period of 1 day in the refrigerator was used, but the same cell growth promoting activity was observed with a PRP-coated woven cloth with a storage period of 30 days.

ラット皮膚創傷の治癒促進効果
創傷及び処置
局部麻酔されたラット(F334、オス、6週齢)背部の表皮が、10mm×10mm切開除去された。PRPをコーティングした10mm×10mmの生体吸収性織布(バイクリルメッシュ、カタログ番号:VICRYL WOVEN MESH (Polyglactin 910) VWMM、ジョンソン・エンド・ジョンソン株式会社)が創傷部位に留置され、その上から外科用ポリウレタンフィルム(サージット、ニプロ)が貼付された。対照実験は、生体吸収性織布を留置せず外科用ポリウレタンフィルムだけを創傷部位に貼付したラットであった。
Effect of promoting healing of rat skin wound Wound and treatment The epidermis on the back of a locally anesthetized rat (F334, male, 6 weeks old) was incised and removed by 10 mm × 10 mm. A 10 mm × 10 mm bioabsorbable woven fabric coated with PRP (Bikerill mesh, catalog number: VICRYL WOVEN MESH (Polyglactin 910) VWMM, Johnson & Johnson Co., Ltd.) is placed at the wound site, and a surgical polyurethane is placed thereon Film (Surget, Nipro) was attached. The control experiment was a rat in which only the surgical polyurethane film was applied to the wound site without placing the bioabsorbable woven fabric.

組織学的観察
創傷処置の5日後に創傷組織が摘出され、光学顕微鏡観察用組織標本が作製された。薄切切片の作製及びヘマトキシリン・エオジン染色は、当業者に周知の標準的な方法に従って実施された。
Histological observation Wound tissue was removed 5 days after wound treatment, and a tissue specimen for light microscope observation was prepared. Thin section preparation and hematoxylin and eosin staining were performed according to standard methods well known to those skilled in the art.

結果
図2は、生体吸収性織布を用いないで処置された対照実験のラットの創傷組織(A)と、PRPがコーティングされた生体吸収性織布を用いて処置されたラットの創傷組織(B)とのヘマトキシリン・エオジン染色された組織の光学顕微鏡写真である。図2(A)のアステリク(*)で示される部分は、皮下に形成された肉芽組織である。対照実験の創傷組織(A)では、創傷部分の皮下の一部にしか肉芽組織が形成されなかったのに対し、PRPがコーティングされた生体吸収性織布で処置された創傷組織(B)では、創傷部分の皮下全体に肉芽組織が形成された。この結果は、PRPをコーティングした生体吸収性織布に創傷治癒促進作用があることを示す。また、本実施例では冷蔵庫での貯蔵期間が1日のPRPコーティング織布を用いたが、貯蔵期間が30日のPRPコーティング織布でも、同様の創傷治癒促進作用が認められた。
Results FIG. 2 shows the rat wound tissue (A) from a control experiment treated without a bioabsorbable woven fabric and the rat wound tissue treated with a bioabsorbable woven fabric coated with PRP (A). It is an optical microscope photograph of the tissue stained with hematoxylin and eosin with B). The portion indicated by the asterisk (*) in FIG. 2 (A) is a granulation tissue formed subcutaneously. In the wound tissue (A) of the control experiment, granulation tissue was formed only in the subcutaneous part of the wound part, whereas in the wound tissue (B) treated with the bioresorbable woven fabric coated with PRP. A granulation tissue was formed throughout the subcutaneous part of the wound part. This result shows that the bioresorbable woven fabric coated with PRP has an effect of promoting wound healing. In this example, a PRP-coated woven fabric with a storage period of 1 day in the refrigerator was used, but a similar wound healing promoting effect was observed with a PRP-coated woven cloth with a storage period of 30 days.

ヒト骨膜片初代培養での細胞遊走及び細胞分化促進効果
ヒト骨膜片培養用PRPコーティング織布の調製
実施例1で用いた生体吸収性織布(バイクリルメッシュ)は、予めステアリン酸カルシウムでコーティングされており、PRPをコーティングしただけではヒト細胞が付着し難いので、ヒト骨膜片細胞の培養基材としては適さない。そこで、本実施例のヒト骨膜片の初代培養のための生体吸収性織布は、PRPのコーティングに先立って、アテロコラーゲンでコーティングされた。具体的には、7−10mm×7−10mmの生体吸収性織布(バイクリルメッシュ、カタログ番号:VICRYL WOVEN MESH (Polyglactin 910) VWMM、ジョンソン・エンド・ジョンソン株式会社)が、3mg/mLのウシ真皮由来アテロコラーゲン(高研、IPC−30)溶液50μLで15−30分間コーティングされてから、滅菌蒸留水で3回軽くリンスされ、ガーゼ上で乾燥された後、実施例1で調製されたPRP120μLで室温、3−5分間コーティングされた。
Cell migration and cell differentiation promoting effect in human periosteum primary culture Preparation of PRP-coated woven fabric for human periosteum culture The bioabsorbable woven fabric (bicyclyl mesh) used in Example 1 is pre-coated with calcium stearate. In addition, since it is difficult for human cells to adhere only by coating with PRP, it is not suitable as a culture substrate for human periosteum fragments. Therefore, the bioabsorbable woven fabric for primary culture of the human periosteum piece of this example was coated with atelocollagen prior to the PRP coating. Specifically, a 7-10 mm × 7-10 mm bioabsorbable woven fabric (Bikerill mesh, catalog number: VICRYL WOVEN MESH (Polyglactin 910) VWMM, Johnson & Johnson Co., Ltd.) is a 3 mg / mL bovine dermis After coating with 50 μL of derived atelocollagen (Koken, IPC-30) solution for 15-30 minutes, lightly rinsed 3 times with sterile distilled water, dried on gauze and then room temperature with 120 μL of PRP prepared in Example 1 3-5 minutes.

ヒト骨膜片の処理
PRPを提供した患者から採取された骨膜片は、培地で湿したガーゼの上に戴せて無菌的に培養室に運ばれ、クリーンベンチ内で以下の作業に供された。前記骨膜片は、PBSで3回洗浄されてから、アテロコラーゲン及びPRPをコーティングした織布の上に中央に戴置された。前記織布上の骨膜片は、プラスチックディッシュ中で、25μg/mLビタミンC及び10%ウシ胎児血清が含まれるメディウム199培養液を用いて合計26日間培養された。
Treatment of human periosteum pieces Periosteum pieces collected from a patient who provided PRP were put on a gauze moistened with a medium and aseptically transferred to a culture room, and were subjected to the following operations in a clean bench. The periosteum pieces were washed three times with PBS and then placed in the center on a woven fabric coated with atelocollagen and PRP. The periosteum pieces on the woven fabric were cultured in a plastic dish with a medium 199 medium containing 25 μg / mL vitamin C and 10% fetal calf serum for a total of 26 days.

骨芽細胞への分化
前記骨膜片の初代培養は、19日後に培地を、10nMのデキサメタゾン、10mMのβ−グリセロリン酸、25μg/mLビタミンC及び10%ウシ胎児血清が含まれるメディウム199培養液に切り替えて、さらに7日間培養された。
Differentiation into osteoblasts The primary culture of the periosteum piece was carried out after 19 days in a medium 199 medium containing 10 nM dexamethasone, 10 mM β-glycerophosphate, 25 μg / mL vitamin C and 10% fetal calf serum. After switching, the cells were further cultured for 7 days.

骨膜片初代培養の組織学的観察
初代培養開始から26日後、前記織布上の骨膜片培養の組織標本が作製された。薄切切片の作製、ヘマトキシリン・エオジン染色及びフォン・コッサ染色は、当業者に周知の標準的な方法に従って実施された。
Histological observation of primary culture of periosteum 26 days after the start of primary culture, a tissue specimen of periosteum culture on the woven fabric was prepared. Thin section preparation, hematoxylin-eosin staining and von Kossa staining were performed according to standard methods well known to those skilled in the art.

図3は、アテロコラーゲン及びPRPでコーティングされた生体吸収性織布上で培養された骨膜片初代培養の隣接する薄切切片に、それぞれ、ヘマトキシリン・エオジン染色(A)及びフォン・コッサ染色(B)を施した組織標本の光学顕微鏡写真である。ヘマトキシリン・エオジン染色標本(A)では、骨膜片からの活発な細胞遊走が観察された。フォン・コッサ染色標本(B)では、骨膜片の中心に黒く染色された部分が観察され、骨膜片内部での石灰化物の沈着が認められた。この結果から、アテロコラーゲン及びPRPでコーティングされた織布は、骨膜片からの細胞遊走及び骨膜片での石灰化を促進することが示された。また本実施例では、アテロコラーゲン及びPRPでコーティングされた織布は冷蔵庫で1日貯蔵後実験に供された。しかし、貯蔵期間が30日のコーティング織布でも、同様の細胞遊走及び細胞分化促進効果が認められた。
FIG. 3 shows hematoxylin-eosin staining (A) and von Kossa staining (B) on adjacent slices of primary periosteum cultures cultured on bioabsorbable woven fabric coated with atelocollagen and PRP, respectively. It is the optical microscope photograph of the tissue specimen which gave. In the hematoxylin-eosin stained specimen (A), active cell migration from the periosteum pieces was observed. In the von Kossa-stained specimen (B), a black stained portion was observed at the center of the periosteum piece, and calcified deposits were observed inside the periosteum piece. From this result, it was shown that the woven fabric coated with atelocollagen and PRP promotes cell migration from the periosteum piece and calcification in the periosteum piece. In this example, the woven fabric coated with atelocollagen and PRP was subjected to an experiment after being stored in a refrigerator for 1 day. However, the same cell migration and cell differentiation promoting effects were observed even in the coated woven fabric having a storage period of 30 days.

Claims (5)

生体吸収性織布にコーティングされた後に凍結乾燥された多血小板血漿を含ことを特徴とする、再生治療のための冷蔵保存用材料。 Characterized in including that the platelet-rich plasma which has been lyophilized after being coated bioabsorbable fabric, cold storage material for regenerative therapy. 前記再生治療のための冷蔵保存用材料が長期保存用であることを特徴とする、請求項1に記載の再生治療のための冷蔵保存治療用材料。 Wherein the refrigerated material for the regeneration treatment is for long-term storage, refrigerated therapeutic materials for regenerative therapy of claim 1. 前記生体吸収性織布グリコール酸及び乳酸のポリエステルポリマーでできていることを特徴とする、請求項1又は2に記載の再生治療のための冷蔵保存用材料。 The refrigerated storage material for regenerative treatment according to claim 1 or 2, wherein the bioabsorbable woven fabric is made of a polyester polymer of glycolic acid and lactic acid . 前記固体支持体は、前記多血小板血漿がコーティングされる前に、細胞−基質間接着レセプターのリガンドがコーティングされることを特徴とする、請求項1ないし3のいずれか1つに記載の再生治療のための冷蔵保存用材料。 The regenerative treatment according to any one of claims 1 to 3, wherein the solid support is coated with a ligand of a cell-substrate adhesion receptor before the platelet-rich plasma is coated. Material for refrigerated storage for. 前記リガンドはアテロコラーゲンであることを特徴とする、請求項4に記載の再生治療のための冷蔵保存用材料。
5. The refrigerated storage material for regenerative treatment according to claim 4, wherein the ligand is atelocollagen.
JP2009281382A 2009-12-11 2009-12-11 Regenerative treatment materials Active JP5763880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009281382A JP5763880B2 (en) 2009-12-11 2009-12-11 Regenerative treatment materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009281382A JP5763880B2 (en) 2009-12-11 2009-12-11 Regenerative treatment materials

Publications (2)

Publication Number Publication Date
JP2011120763A JP2011120763A (en) 2011-06-23
JP5763880B2 true JP5763880B2 (en) 2015-08-12

Family

ID=44285313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009281382A Active JP5763880B2 (en) 2009-12-11 2009-12-11 Regenerative treatment materials

Country Status (1)

Country Link
JP (1) JP5763880B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495449B1 (en) 2013-11-12 2015-02-23 전북대학교산학협력단 Method for manufacturing a platelet patch
JP7110360B2 (en) 2017-10-09 2022-08-01 テルモ ビーシーティー バイオテクノロジーズ,エルエルシー Freeze-drying method
US11604026B2 (en) 2019-03-14 2023-03-14 Terumo Bct Biotechnologies, Llc Lyophilization loading tray assembly and system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123576A (en) * 2002-09-30 2004-04-22 Medgel Corp Sustained release preparation containing platelet-rich plasma
JP4364696B2 (en) * 2004-03-30 2009-11-18 ニプロ株式会社 Tissue or organ regeneration material
CA2630783C (en) * 2005-12-02 2015-10-13 Sunstar Suisse Sa Biocompatible material having biocompatible non-woven nano- or micro-fiber fabric produced by electrospinning method, and method for production of the material
US8277837B2 (en) * 2006-01-11 2012-10-02 Entegrion, Inc. Hemostatic textile
US8092837B2 (en) * 2007-04-27 2012-01-10 Biomet Manufacturing Corp Fibrin based glue with functionalized hydrophilic polymer protein binding agent
ATE530576T1 (en) * 2007-08-01 2011-11-15 Ethicon Inc COLLAGEN-ASSOCIATED PEPTIDES AND THEIR USE

Also Published As

Publication number Publication date
JP2011120763A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
Mir et al. Synthetic polymeric biomaterials for wound healing: a review
Jayarama Reddy et al. Nanofibrous structured biomimetic strategies for skin tissue regeneration
EP2441477B1 (en) Wound-covering material
MacNeil Biomaterials for tissue engineering of skin
Haldar et al. Bioengineered smart trilayer skin tissue substitute for efficient deep wound healing
Límová Active wound coverings: bioengineered skin and dermal substitutes
Wang et al. Fabrication and characterization of poly (l-lactide-co-glycolide) knitted mesh-reinforced collagen–chitosan hybrid scaffolds for dermal tissue engineering
KR100860896B1 (en) Bioabsorbable Wound Dressing
Lou et al. Bi-layer scaffold of chitosan/PCL-nanofibrous mat and PLLA-microporous disc for skin tissue engineering
AU2010209342B2 (en) Wound dressings, methods and apparatus for making same and storage and use thereof
Wang et al. Polyurethane membrane/knitted mesh-reinforced collagen–chitosan bilayer dermal substitute for the repair of full-thickness skin defects via a two-step procedure
Sharma et al. Development of a one-step approach for the reconstruction of full thickness skin defects using minced split thickness skin grafts and biodegradable synthetic scaffolds as a dermal substitute
JP2011172592A (en) Surgical device for skin therapy or testing
JP4273450B2 (en) Tissue regeneration substrate, transplant material, and production method thereof
Heffner et al. Bone marrow-derived mesenchymal stromal cells and platelet-rich plasma on a collagen matrix to improve fascial healing
Arasteh et al. Efficient wound healing using a synthetic nanofibrous bilayer skin substitute in murine model
Kubo et al. Spongy matrix of hyaluronic acid and collagen as a cultured dermal substitute: evaluation in an animal test
JP5763880B2 (en) Regenerative treatment materials
Ghosh et al. Single unit functionally graded bioresorbable electrospun scaffold for scar-free full-thickness skin wound healing
Kashiwa et al. Treatment of full‐thickness skin defect with concomitant grafting of 6‐fold extended mesh auto‐skin and allogeneic cultured dermal substitute
KR20220018481A (en) Tissue-derived porous matrix and method of making and using the same
JP2010500335A (en) How to treat skin wounds
Cai et al. Development potential of extracellular matrix hydrogels as hemostatic materials
Takahashi et al. Newly developed tissue-engineered material for reconstruction of vascular wall without cell seeding
US20120004199A1 (en) Scaffolds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150612

R150 Certificate of patent or registration of utility model

Ref document number: 5763880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250