JP5763566B2 - Optical fiber connection member - Google Patents

Optical fiber connection member Download PDF

Info

Publication number
JP5763566B2
JP5763566B2 JP2012026155A JP2012026155A JP5763566B2 JP 5763566 B2 JP5763566 B2 JP 5763566B2 JP 2012026155 A JP2012026155 A JP 2012026155A JP 2012026155 A JP2012026155 A JP 2012026155A JP 5763566 B2 JP5763566 B2 JP 5763566B2
Authority
JP
Japan
Prior art keywords
optical fiber
translucent member
connection
groove
translucent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012026155A
Other languages
Japanese (ja)
Other versions
JP2013164447A (en
Inventor
正徳 田中
正徳 田中
満 木原
満 木原
渡邉 ひろし
ひろし 渡邉
悠一 矢島
悠一 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone East Corp
Original Assignee
Nippon Telegraph and Telephone East Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone East Corp filed Critical Nippon Telegraph and Telephone East Corp
Priority to JP2012026155A priority Critical patent/JP5763566B2/en
Publication of JP2013164447A publication Critical patent/JP2013164447A/en
Application granted granted Critical
Publication of JP5763566B2 publication Critical patent/JP5763566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、光ファイバ接続部材に関するものである。   The present invention relates to an optical fiber connecting member.

メカニカルスプライスなどの光接続部品において、光ファイバの端面は厳密には平坦でないので、V字型の溝に、光ファイバのコアと同等の屈折率を有する整合材が予め塗布されており、この整合材が1μm以下の極わずかな隙間に充填されている(図12(a))。このような光ファイバ接続部材では、接続損失は波長1.31μmで、通常0.3dB以下になる。   In optical connection parts such as mechanical splices, the end face of the optical fiber is not strictly flat. Therefore, a matching material having a refractive index equivalent to that of the core of the optical fiber is applied in advance to the V-shaped groove. The material is filled in a very small gap of 1 μm or less (FIG. 12A). In such an optical fiber connecting member, the connection loss is 1.31 μm and is usually 0.3 dB or less.

図12(a)に示すような状態は、以下のようにして得られる。つまり、図13に示す基板1Aの溝Vには、整合材が予め塗布されており、2つの光ファイバA、Bが、作業者によりに溝Vに挿入され、端面同士が突き合わせられる。これにより、整合材が光ファイバA、Bの端面間の極わずかな隙間に充填される。   The state as shown in FIG. 12A is obtained as follows. That is, the alignment material is previously applied to the groove V of the substrate 1A shown in FIG. 13, and the two optical fibers A and B are inserted into the groove V by the operator, and the end faces are abutted against each other. Thereby, the alignment material is filled in a very small gap between the end faces of the optical fibers A and B.

特開2011−154294号公報JP 2011-154294 A

光アクセスネットワークで用いられる光ファイバ接続部材において、光ファイバの端面間の大きな隙間は性能劣化の要因の一つである。   In an optical fiber connection member used in an optical access network, a large gap between the end faces of the optical fiber is one of the causes of performance deterioration.

光ファイバの端面間に、例えば、100μm程度の大きな隙間がある場合、光ファイバを接続した当初は、大きな隙間を整合材が満たすことで、光ファイバ接続部材での接続損失は1.5dB程度になる(図12(b))。通常、光アクセスネットワークにおける伝送装置間の許容損失(ロス・バジェット)は、伝送装置間の光線路損失に対して、ある程度のマージンをもって設計されている。このため、上記のように光ファイバの端面間に大きな隙間が存在する光ファイバ接続部材が使用されたとしても、直ちに伝送装置間の光線路損失が許容損失を超えて通信断状態に至ることはなく、伝送装置間で正常に通信できてしまう場合が大半である。   For example, when there is a large gap of about 100 μm between the end faces of the optical fibers, the connection loss at the optical fiber connection member is about 1.5 dB by filling the large gap with the matching material at the beginning of connecting the optical fibers. (FIG. 12B). Usually, an allowable loss (loss budget) between transmission apparatuses in an optical access network is designed with a certain margin with respect to an optical line loss between transmission apparatuses. For this reason, even if an optical fiber connection member having a large gap between the end faces of the optical fibers as described above is used, the optical line loss between the transmission devices immediately exceeds the allowable loss and the communication disconnection state is reached. In most cases, communication can be normally performed between transmission apparatuses.

しかしながら、光ファイバ接続部材で用いられる整合材は油(オイル)状の材質であるため、時間経過に伴う温度変化により流動してしまう。これにより、光ファイバの端面間の大きな隙間内では空気層と整合材の混在した状態になりうる(図12(c))。この現象が発生すると、光ファイバ接続部材の特性(接続損失、反射減衰量)が著しく劣化し(図14、図15)、接続損失は30dB以上に達する場合がある。このような著しく大きい接続損失が発生すると、伝送装置間の光線路損失が許容損失を大きく超過し、通信断状態に至る。   However, since the matching material used in the optical fiber connecting member is an oil-like material, it flows due to a temperature change with time. As a result, the air layer and the matching material can be mixed in a large gap between the end faces of the optical fibers (FIG. 12C). When this phenomenon occurs, the characteristics (connection loss, return loss) of the optical fiber connection member are significantly deteriorated (FIGS. 14 and 15), and the connection loss may reach 30 dB or more. When such a remarkably large connection loss occurs, the optical line loss between the transmission devices greatly exceeds the allowable loss, resulting in a communication disconnection state.

また、上記のように光ファイバの端面間の大きな隙間内で、空気層と整合材の混在した状態は、温度変化とともに接続損失を大きく変動させる。このため、伝送装置間で、通信が可能となる状態と通信断となる状態を交互に繰り返す、時々断となるケースがある(図14、図15)。このような時々断では、一般的に故障箇所の特定が困難であり、結果として故障発生から故障回復までに要する時間が長くなるという問題点がある。   Further, as described above, the state in which the air layer and the matching material are mixed in the large gap between the end faces of the optical fibers greatly fluctuates the connection loss as the temperature changes. For this reason, there are cases in which the state where communication is possible and the state where communication is interrupted are repeated alternately between the transmission apparatuses, and sometimes it is interrupted (FIGS. 14 and 15). Such occasional interruptions generally make it difficult to identify the failure location, resulting in a problem that the time required from failure occurrence to failure recovery becomes longer.

以上により、光ファイバ接続を行う際は、光ファイバの端面間に大きな隙間が発生しないように接続することが重要である。しかしながら、現状では、光ファイバの端面間に大きな隙間が発生しても、上記で述べたように整合材が大きな隙間を充たすことで、接続特性は著しく劣化せず、接続損失の測定等では大きな隙間の発生を判断することはできない。   As described above, when connecting optical fibers, it is important to connect so that no large gap is generated between the end faces of the optical fibers. However, at present, even if a large gap is generated between the end faces of the optical fibers, the connection characteristics are not significantly degraded by filling the large gap as described above, and the connection loss measurement is large. The occurrence of a gap cannot be determined.

また、もし大きな隙間の有無を確認する場合、大掛かりな測定器が必要であり、メカニカルスプライス等の光ファイバ接続部材が通常使用される屋外環境下では、接続当初に光ファイバの端面間に発生した大きな隙間の有無を確認することは非常に困難である。   Also, if you want to check the presence of a large gap, a large measuring instrument is required, and in an outdoor environment where optical fiber connection members such as mechanical splices are normally used, this occurs between the end faces of the optical fiber at the beginning of connection. It is very difficult to confirm the presence or absence of a large gap.

本発明は、上記の課題に鑑みてなされたものであり、その目的とするところは、接続すべき光ファイバの端面間において、大きな隙間がある場合には必ず接続性能が劣化し、一定以下の隙間となった場合に接続性能が良好な状態となることで、接続当初に光ファイバの端面間に大きな隙間が発生したかどうかを判断することができ、これにより、未然に大きな隙間の発生を防止することが可能な光ファイバ接続部材を提供することにある。   The present invention has been made in view of the above problems, and the purpose of the present invention is to make sure that the connection performance deteriorates when there is a large gap between the end faces of the optical fibers to be connected. When the gap becomes a gap, the connection performance becomes good, so that it can be determined whether a large gap has occurred between the end faces of the optical fiber at the beginning of the connection. An object of the present invention is to provide an optical fiber connecting member that can be prevented.

上記の課題を解決するために、本発明は、溝を有する基板と、前記溝に配置された2つの光ファイバの先端を内包する透光部材とを備え、一方の前記光ファイバの中心軸の延長線と透光部材の界面との交点において、当該透光部材の法線と当該コアの中心軸とのなす角度が0度より大きい光ファイバ接続部材であって、前記光ファイバ接続部材での接続損失は、前記光ファイバが後退するにしたがって増加し、前記先端が前記透光部材に内包されているときの増加率よりも前記先端が前記透光部材から離れるときの増加率の方が大きいことを特徴とするIn order to solve the above-described problems, the present invention includes a substrate having a groove and a translucent member that encloses the tips of two optical fibers disposed in the groove, and the central axis of one of the optical fibers is provided. at the intersection between the interface of the extension line and the translucent member, the normal to the angle between the center axis of the core of the light transmitting member is of a size not optical fiber connecting member than 0 degrees, in the optical fiber connecting member The connection loss of the optical fiber increases as the optical fiber recedes, and the rate of increase when the tip is separated from the light transmissive member is greater than the rate of increase when the tip is contained in the light transmissive member. It is large .

例えば、前記透光部材は、弾力性を有する固体である。   For example, the translucent member is a solid having elasticity.

例えば、前記基板は、前記透光部材が配置される溝を有する。   For example, the substrate has a groove in which the translucent member is disposed.

例えば、前記透光部材は、当該透光部材が配置される溝に当該透光部材を配置する際に把持される把持部と一体に構成されている。   For example, the translucent member is configured integrally with a grip portion that is gripped when the translucent member is disposed in a groove in which the translucent member is disposed.

例えば、前記透光部材は、前記透光部材の原料を前記透光部材が配置される溝に塗布し、当該原料を硬化させたものである。   For example, the translucent member is obtained by applying the raw material of the translucent member to a groove in which the translucent member is disposed and curing the raw material.

例えば、前記透光部材は、対向する2つの前記光ファイバの中心軸と、当該各中心軸に交差する2つの界面を有する透光部材であり、一方の前記光ファイバの中心軸と前記透光部材の界面に対する法線とのなす角度と、他方の前記光ファイバの中心軸と前記透光部材の界面に対する法線とのなす角度とが相違する。   For example, the translucent member is a translucent member having a central axis of two optical fibers facing each other and two interfaces intersecting the central axes, and the central axis of one of the optical fibers and the translucent light The angle formed by the normal to the interface of the member is different from the angle formed by the central axis of the other optical fiber and the normal to the interface of the translucent member.

例えば、前記光ファイバは空孔ファイバである。   For example, the optical fiber is a hole fiber.

本発明の光ファイバ接続部材によれば、対向する光ファイバの中心軸(光軸)の延長線と、光ファイバの中間に配置された透光部材の界面(境界面)との交点において、透光部材の法線とコアの中心軸とのなす角度が0度より大きいので、光ファイバの端面間に大きな隙間がある場合は、必ず接続特性が悪化し、これにより、大きな隙間が発生していることがわかり、再度接続をやり直すことで接続当初に大きな隙間の発生を防止することが可能となる。また、弾力性を持ち、形状を維持し続ける透光部材を用いるので、光ファイバ接続が良好な場合は、その状態を維持することができる。   According to the optical fiber connecting member of the present invention, at the intersection of the extension line of the central axis (optical axis) of the opposing optical fiber and the interface (boundary surface) of the light transmitting member disposed in the middle of the optical fiber, Since the angle formed between the normal of the optical member and the central axis of the core is greater than 0 degrees, if there is a large gap between the end faces of the optical fiber, the connection characteristics are always deteriorated. As a result, it is possible to prevent the occurrence of a large gap at the beginning of the connection by reconnecting. In addition, since a light-transmitting member that has elasticity and keeps its shape is used, the state can be maintained when the optical fiber connection is good.

本実施の形態に係る光ファイバ接続部材の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the optical fiber connection member which concerns on this Embodiment. 光ファイバ接続部材による光ファイバ接続の第1段階を示す図である。It is a figure which shows the 1st step of the optical fiber connection by an optical fiber connection member. 光ファイバ接続部材による光ファイバ接続の第2段階を示す図である。It is a figure which shows the 2nd step of the optical fiber connection by an optical fiber connection member. 光ファイバ接続部材による光ファイバ接続の第3段階を示す図である。It is a figure which shows the 3rd step of the optical fiber connection by an optical fiber connection member. 光ファイバが接続された状態の光ファイバ接続部材を示す斜視図である。It is a perspective view which shows the optical fiber connection member of the state to which the optical fiber was connected. 図6(a)は、図4の状態における光ファイバA、Bと透光部材4を示す平面図であり、良好な状態の図である。図6(b)は、良好でない状態の光ファイバA、Bと透光部材4を示す平面図である。FIG. 6A is a plan view showing the optical fibers A and B and the translucent member 4 in the state shown in FIG. FIG. 6B is a plan view showing the optical fibers A and B and the translucent member 4 in an unfavorable state. 図6(b)に示す状態における角度θと接続損失の関係を示す図である。It is a figure which shows the relationship between angle (theta) and a connection loss in the state shown in FIG.6 (b). 光ファイバA、Bの端面間の距離lと接続損失の関係を示す図である。It is a figure which shows the relationship between the distance l between the end surfaces of the optical fibers A and B, and a connection loss. 変形例1に係る透光部材4の形状を示す図である。It is a figure which shows the shape of the translucent member 4 which concerns on the modification 1. FIG. 図10(a)は、変形例1に係る光ファイバA、Bと透光部材4を示す平面図である。図10(b)は、光ファイバBの先端が図10(a)に示した透光部材4に内包され、かつ、光ファイバAと透光部材4の間に隙間Sがある状態を示す平面図である。図10(c)は、光ファイバAの先端が図10(a)に示した透光部材4に内包され、かつ、光ファイバBと透光部材4の間に隙間Sがある状態を示す平面図である。FIG. 10A is a plan view showing the optical fibers A and B and the translucent member 4 according to the first modification. FIG. 10B is a plan view showing a state in which the tip of the optical fiber B is included in the light transmitting member 4 shown in FIG. 10A and there is a gap S between the optical fiber A and the light transmitting member 4. FIG. FIG. 10C is a plan view showing a state in which the tip of the optical fiber A is included in the light transmissive member 4 shown in FIG. 10A and there is a gap S between the optical fiber B and the light transmissive member 4. FIG. 変形例3に係る光ファイバ接続の形態を示す斜視図である。It is a perspective view which shows the form of the optical fiber connection which concerns on the modification 3. 従来の光ファイバ接続部材により接続された光ファイバの端面間を示す図である。It is a figure which shows between the end surfaces of the optical fiber connected by the conventional optical fiber connection member. 従来の光ファイバ接続部材により光ファイバが接続される様子を示す部分的な斜視図である。It is a fragmentary perspective view which shows a mode that an optical fiber is connected by the conventional optical fiber connection member. 温度サイクル試験時の光ファイバの端面間に間隙がある温度変化と接続損失の関係を示す図である。It is a figure which shows the relationship between the temperature change with a space | gap between the end surfaces of the optical fiber at the time of a temperature cycle test, and a connection loss. 温度サイクル試験時の光ファイバの端面間に間隙がある温度変化と反射減衰量の関係を示す図である。It is a figure which shows the relationship between the temperature change with a space | gap between the end surfaces of the optical fiber at the time of a temperature cycle test, and a return loss.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施の形態に係る光ファイバ接続部材の概略構成を示す斜視図である。   FIG. 1 is a perspective view showing a schematic configuration of an optical fiber connecting member according to the present embodiment.

本実施の形態に係る光ファイバ接続部材(以下、単に光ファイバ接続部材という)は、例えば、メカニカルスプライスのように、2つの光ファイバ(ここでは、光ファイバA、Bという)を光学的に接続する部材であり、基板1、2と、合わせた状態の基板1、2を挟んで固定する固定部材3と、図1では省略するが、透光部材4とを備える。   The optical fiber connection member according to the present embodiment (hereinafter simply referred to as an optical fiber connection member) optically connects two optical fibers (here, referred to as optical fibers A and B) like a mechanical splice, for example. 1, the substrates 1 and 2, the fixing member 3 that fixes the substrates 1 and 2 in a combined state, and the light-transmitting member 4 though omitted in FIG. 1.

基板1、2における光ファイバの長手方向の長さLは、例えば、約4cmである。基板1、2における光ファイバの長手方向に垂直な幅Wは、例えば、約4mmである。基板1、2における光ファイバの長手方向に垂直な高さH1、H2は、例えば、約2mmである。   The length L in the longitudinal direction of the optical fiber in the substrates 1 and 2 is, for example, about 4 cm. The width W perpendicular to the longitudinal direction of the optical fiber in the substrates 1 and 2 is, for example, about 4 mm. The heights H1 and H2 perpendicular to the longitudinal direction of the optical fibers in the substrates 1 and 2 are, for example, about 2 mm.

図2は、光ファイバ接続部材による光ファイバ接続の第1段階を示す図であり、図1の光ファイバ接続箇所Cを分解して示す斜視図である。   FIG. 2 is a diagram showing a first stage of optical fiber connection by the optical fiber connection member, and is an exploded perspective view showing the optical fiber connection portion C of FIG.

基板1は、断面がV字型の溝Vと、溝Vに交差する溝Gとを有する。   The substrate 1 has a groove V having a V-shaped cross section and a groove G intersecting the groove V.

溝Gは、溝Vに対して直行しておらず、傾いて交差している。   The groove G is not perpendicular to the groove V, but intersects with an inclination.

溝Gは、透光部材4に合わせた形状を有しており、透光部材4は溝Gに配置される。よって、容易に透光部材4を所定の位置に配置することができる。また、溝Gの寸法は透光部材4より若干大きい程度であり、ほぼ同じである。よって、光ファイバ接続部材内で透光部材4の移動を防止することができる。   The groove G has a shape that matches the translucent member 4, and the translucent member 4 is disposed in the groove G. Therefore, the translucent member 4 can be easily disposed at a predetermined position. Moreover, the dimension of the groove | channel G is a little larger than the translucent member 4, and is substantially the same. Therefore, the movement of the translucent member 4 can be prevented in the optical fiber connecting member.

透光部材4は、光ファイバと同等の屈折率で光を透過させる性質を有しているが、従来の整合材のように流動性を有するものではなく、通常は、同一の形状を維持する。   The translucent member 4 has a property of transmitting light with a refractive index equivalent to that of an optical fiber, but does not have fluidity like a conventional matching material, and normally maintains the same shape. .

さらに詳しくは、透光部材4は、アクリル系やシリコン系の樹脂で作られたものであり、弾力性を有する。アクリル系やシリコン系の樹脂で作られた透光部材4は、一般には、長時間が経過しても形状を変えず、また、気泡を含まないように作ることができる。   More specifically, the translucent member 4 is made of an acrylic or silicon resin and has elasticity. The translucent member 4 made of an acrylic or silicon resin can generally be made so as not to change its shape even after a long period of time and does not contain bubbles.

透光部材4の溝Vに交差する部分の幅4Wは、例えば、約115μmであり、透光部材4における溝Gの深さ方向の高さ4Hは、例えば、約500μmである。溝Gの深さは、例えば、透光部材4の高さ4Hより若干浅い。   The width 4W of the portion intersecting the groove V of the translucent member 4 is, for example, about 115 μm, and the height 4H in the depth direction of the groove G in the translucent member 4 is, for example, about 500 μm. The depth of the groove G is slightly shallower than the height 4H of the translucent member 4, for example.

透光部材4は、透光部材4を溝Gに配置する際に把持される把持部41と一体に構成される。把持部41は、例えば、円形状であり、その直径41Dは、例えば、約1.44mmである。透光部材4が把持部41を有するので、溝Gの一部は、把持部41に合わせた形状を有している。   The translucent member 4 is configured integrally with a grip portion 41 that is gripped when the translucent member 4 is disposed in the groove G. The grip 41 is, for example, circular, and the diameter 41D is, for example, about 1.44 mm. Since the translucent member 4 includes the grip portion 41, a part of the groove G has a shape that matches the grip portion 41.

透光部材4は把持部41を有するので、ピンセットなどで把持部41を把持することで、溝Gに対し透光部材4を容易に配置することができる。   Since the translucent member 4 includes the grip portion 41, the translucent member 4 can be easily disposed in the groove G by gripping the grip portion 41 with tweezers or the like.

例えば、作業者は、そのようにして、透光部材4を溝Gに配置し、基板1、2を突き合わせる。   For example, the worker arranges the translucent member 4 in the groove G and abuts the substrates 1 and 2 in such a manner.

図3は、光ファイバ接続部材による光ファイバ接続の第2段階を示す図であり、図1の光ファイバ接続箇所Cを示す斜視図である。   FIG. 3 is a view showing a second stage of optical fiber connection by the optical fiber connection member, and is a perspective view showing an optical fiber connection portion C in FIG.

溝Gの深さは、透光部材4の高さより若干浅いので、透光部材4の上部が溝Gから突出している。   Since the depth of the groove G is slightly shallower than the height of the translucent member 4, the upper portion of the translucent member 4 protrudes from the groove G.

光ファイバAは、作業者により、溝Vに挿入され、透光部材4へ一方の側から進んでくる。一方、光ファイバBも、作業者により、溝Vに挿入され、透光部材4へ他方の側から進んでくる。光ファイバA、Bの各コアの中心軸(光軸)は互いに一致している。   The optical fiber A is inserted into the groove V by the operator and proceeds to the light transmitting member 4 from one side. On the other hand, the optical fiber B is also inserted into the groove V by the operator, and proceeds to the translucent member 4 from the other side. The central axes (optical axes) of the cores of the optical fibers A and B coincide with each other.

図4は、光ファイバ接続部材による光ファイバ接続の第3段階を示す図であり、図1の光ファイバ接続箇所Cを示す斜視図である。   4 is a diagram showing a third stage of optical fiber connection by the optical fiber connection member, and is a perspective view showing an optical fiber connection portion C in FIG.

溝Vを透光部材4へ進んできた光ファイバA、Bの先端は、透光部材4に進入し、これにより、透光部材4が、光ファイバA、Bの先端(端面)を内包することとなる。   The tips of the optical fibers A and B that have traveled through the groove V to the light transmissive member 4 enter the light transmissive member 4, and thereby the light transmissive member 4 includes the tips (end surfaces) of the optical fibers A and B. It will be.

光ファイバA、Bが接続されたことは、例えば、図5に示すように光ファイバA、Bが撓むことで確認することができる。   The connection of the optical fibers A and B can be confirmed, for example, by bending the optical fibers A and B as shown in FIG.

その後、図1に示すように、作業者は、固定部材3で基板1、2を挟み込み、基板1、2の位置が固定される。また、基板1、2により、光ファイバA、Bは、移動しないように位置を固定される。   Thereafter, as shown in FIG. 1, the operator sandwiches the substrates 1 and 2 with the fixing member 3, and the positions of the substrates 1 and 2 are fixed. Further, the positions of the optical fibers A and B are fixed by the substrates 1 and 2 so as not to move.

図6(a)は、図4の状態における光ファイバA、Bと透光部材4を示す平面図である。   FIG. 6A is a plan view showing the optical fibers A and B and the translucent member 4 in the state of FIG.

透光部材4は、コアACの中心軸の延長線と、透光部材4の界面4Sとの交点AIにおいて、透光部材4の法線4HとコアACの中心軸とのなす角度θが0度より大きくなるように配置されている。つまり、コアACに対し、透光部材4は斜めに配置される。光ファイバBについても同様である。   The translucent member 4 has an angle θ between the normal 4H of the translucent member 4 and the central axis of the core AC at an intersection AI between the extension line of the central axis of the core AC and the interface 4S of the translucent member 4. It is arranged to be larger than the degree. That is, the translucent member 4 is disposed obliquely with respect to the core AC. The same applies to the optical fiber B.

かかる配置は、透光部材4が溝Gに配置されることで、安定的に維持することができる。   Such an arrangement can be stably maintained by arranging the translucent member 4 in the groove G.

光ファイバA、Bの先端は、透光部材4に進入し、透光部材4に内包されている。   The tips of the optical fibers A and B enter the translucent member 4 and are contained in the translucent member 4.

よって、光ファイバAと透光部材4の接触面A1は、すなわち、光ファイバAの端面であるから、光ファイバAのコアACに対してほぼ垂直である。光ファイバBについても同様である。   Therefore, since the contact surface A1 between the optical fiber A and the translucent member 4 is the end surface of the optical fiber A, it is substantially perpendicular to the core AC of the optical fiber A. The same applies to the optical fiber B.

コアACを進行してきた光Kは、接触面A1で進行方向を変えず、光ファイバBのコアに十分に入射する。つまり、同図は、良好な状態の図である。この良好な接続状態の中で、光ファイバの端面間が1μm以下の極わずかな隙間になった時の接続損失は波長1.31μmで、0.3dB以下になる。   The light K traveling through the core AC is sufficiently incident on the core of the optical fiber B without changing the traveling direction at the contact surface A1. That is, this figure is a figure in a good state. In this good connection state, the connection loss when the gap between the end faces of the optical fiber becomes a very small gap of 1 μm or less is 1.31 μm and 0.3 dB or less.

図6(b)は、良好でない状態の光ファイバA、Bと透光部材4を示す平面図である。   FIG. 6B is a plan view showing the optical fibers A and B and the translucent member 4 in an unfavorable state.

光ファイバAの先端は透光部材4に内包されておらず、その間には間隙Sができている。光ファイバBについても同様である。   The tip of the optical fiber A is not enclosed in the translucent member 4, and a gap S is formed between them. The same applies to the optical fiber B.

前述のように、角度θは0度より大きいので、透光部材4の界面4S(AIを含む)は、コアACの延長方向、つまり、光Kの進行方向に対して傾いている。これにより、光Kは、透光部材4に入射する際、AI(入射位置)で進行方向を変える。その結果、光Kは、例えば、光ファイバBのコアBCに十分に入射せず、接続損失が増加する。   As described above, since the angle θ is larger than 0 degree, the interface 4S (including AI) of the translucent member 4 is inclined with respect to the extending direction of the core AC, that is, the traveling direction of the light K. Thereby, when the light K enters the translucent member 4, the traveling direction is changed by AI (incident position). As a result, the light K does not sufficiently enter the core BC of the optical fiber B, for example, and the connection loss increases.

つまり、本実施の形態では、図らずも間隙Sができてしまった場合においては、接続損失が大きく、つまり,接続時にこのような良好でない接続状態を判断することが可能になる。   In other words, in the present embodiment, when the gap S is formed unexpectedly, the connection loss is large, that is, it is possible to determine such a poor connection state at the time of connection.

図7は、図6(b)に示す状態における角度θと接続損失の関係を示す図である。この図から、角度θが大きくなると、接続損失も大きくなることが分る。よって、図6(b)に示す状態の接続損失を意図的に大きくしたい場合は、角度θを大きく設計すればよく、接続損失の値は角度θを制御することで、変化させることができる。例えば、 図6(b)に示す、コアACの中心軸延長線上の透光部材4の厚さdが120μmの場合、角度θが15.1度なら、接続損失は20dB程度である。よって、角度θを16.0度に設定した場合、20dB以上の接続損失を測定したならば、逆に、図6(b)に示す状態が発生していると判断すればよい。   FIG. 7 is a diagram showing the relationship between the angle θ and the connection loss in the state shown in FIG. From this figure, it can be seen that the connection loss increases as the angle θ increases. Therefore, in order to intentionally increase the connection loss in the state shown in FIG. 6B, the angle θ should be designed to be large, and the value of the connection loss can be changed by controlling the angle θ. For example, when the thickness d of the translucent member 4 on the central axis extension line of the core AC shown in FIG. 6B is 120 μm, if the angle θ is 15.1 degrees, the connection loss is about 20 dB. Therefore, when the angle θ is set to 16.0 degrees, if a connection loss of 20 dB or more is measured, it may be determined that the state shown in FIG.

なお、接続損失は、厚さd、角度θに伴い変化するので、図6(b)に示す状態が発生している場合は、厚さdと角度θに応じた接続損失が発生する。その場合には、図6(b)に示す状態が発生していると判断すればよい。   Since the connection loss changes with the thickness d and the angle θ, the connection loss according to the thickness d and the angle θ occurs when the state shown in FIG. 6B occurs. In that case, it may be determined that the state shown in FIG.

図8は、光ファイバA、Bの端面間の距離lと接続損失の関係を示す図である。   FIG. 8 is a diagram showing the relationship between the distance l between the end faces of the optical fibers A and B and the connection loss.

距離lが短く、つまり、光ファイバA、Bの先端が、双方とも透光部材4に進入して内包されている場合は、接続損失は小さい。光ファイバAのコアを進行してきた光は、進行方向を変えず、光ファイバBのコアに十分に入射する。   When the distance l is short, that is, when both ends of the optical fibers A and B enter the translucent member 4 and are included, the connection loss is small. The light traveling through the core of the optical fiber A is sufficiently incident on the core of the optical fiber B without changing the traveling direction.

例えば、光ファイバA、Bの先端が、双方とも透光部材4に完全には進入しておらず、距離lが光ファイバA、Bの中心軸上にある透光部材4の厚さdと同一であった場合、そのような距離lを境に、接続損失は急激に増加する。光ファイバAのコアを進行してきた光は、進行方向を変えはじめる。   For example, the tips of the optical fibers A and B are not completely inserted into the transparent member 4, and the distance d is the thickness d of the transparent member 4 on the central axis of the optical fibers A and B. If they are the same, the connection loss rapidly increases at such a distance l. The light traveling through the core of the optical fiber A begins to change its traveling direction.

そして、例えば、光ファイバAが、透光部材4に全く進入しておらず、光ファイバA、Bの端面間に大きな間隙ができている場合には、距離lはさらに長く、透光部材4の厚さdより長くなる。そのような距離lでは、接続損失は更に大きい。図示しないが、光ファイバAのコアを進行してきた光は、進行方向を変え、これにより、光ファイバBのコアには十分な光が入射しない。   For example, when the optical fiber A has not entered the translucent member 4 at all and a large gap is formed between the end faces of the optical fibers A and B, the distance l is longer, and the translucent member 4 It becomes longer than the thickness d. At such a distance l, the connection loss is even greater. Although not shown in the drawing, the light traveling through the core of the optical fiber A changes its traveling direction, so that sufficient light does not enter the core of the optical fiber B.

当該光ファイバ接続部材において、良好な接続状態と良好でない接続状態の各々で発生する接続損失を次のように設定することで、光ファイバの接続状態の良否を判断することができる。つまり、良好な接続状態で発生する接続損失は予め設定した閾値(例えば、2dB)以下とし、かつ、良好でない接続状態で発生する接続損失は、伝送装置間の許容損失を光線路損失が大きく超過するような値以上(例えば、20dB以上)とする。   In the optical fiber connecting member, it is possible to determine whether the optical fiber connection state is good or not by setting the connection loss generated in each of the good connection state and the poor connection state as follows. In other words, the connection loss that occurs in a good connection state is set to a predetermined threshold (for example, 2 dB) or less, and the connection loss that occurs in an unsatisfactory connection state greatly exceeds the permissible loss between transmission devices. It is made more than such value (for example, 20 dB or more).

また、光ファイバA、Bの接続点での光の反射減衰量は、規定された反射減衰量の閾値以上である必要がある。反射減衰量とは、光ファイバの接続点での光の反射量の多さを示す指標である。現在使用されているメカニカルスプライスや現場組立光コネクタ、工場作製の光コネクタの反射減衰量は40dB以上であることが規定されている。   Further, the return loss of light at the connection point of the optical fibers A and B needs to be equal to or greater than a prescribed return loss threshold. The return loss is an index indicating the amount of reflection of light at the connection point of the optical fiber. It is stipulated that the return loss of currently used mechanical splices, field assembly optical connectors, and factory-made optical connectors is 40 dB or more.

図示しないが、光ファイバ同士の接続が良好な場合には、反射減衰量は40dB以上と極めて大きく、光ファイバ同士の接続が良好でない場合には、反射減衰量は14.7dB程度(空気のフレネル反射)であることが判っている。   Although not shown, when the connection between the optical fibers is good, the return loss is as large as 40 dB or more, and when the connection between the optical fibers is not good, the return loss is about 14.7 dB (air Fresnel). It is known that this is a reflection.

よって、反射減衰量とその閾値との比較によっても、光ファイバの接続状態の良否を判定することができ、その判定も、接続損失の場合と同様の閾値設定により行うことができる。   Therefore, whether the optical fiber connection state is good or not can also be determined by comparing the return loss amount and the threshold value, and the determination can also be performed by setting the threshold value in the same manner as in the case of the connection loss.

(変形例1)
透光部材4の形状としては、本実施の形態の透光部材4のような形状の他に、例えば、図9の(a)〜(f)に示すように、平行四辺形(台形でもよい)、三角形(直角三角形や二等辺三角形)、円形、半円形、楕円形であってもよい。
(Modification 1)
As the shape of the translucent member 4, in addition to the shape of the translucent member 4 of the present embodiment, for example, as shown in FIGS. 9A to 9F, a parallelogram (a trapezoid may be used). ), A triangle (a right triangle or an isosceles triangle), a circle, a semicircle, and an ellipse.

図9の角度θは、図6の角度θに相当するものであり、角度θが0度より大きくなるように透光部材4を配置すれば、同様の効果が期待できる。   The angle θ in FIG. 9 corresponds to the angle θ in FIG. 6, and the same effect can be expected if the translucent member 4 is arranged so that the angle θ is greater than 0 degrees.

また、例えば、図10(a)に示すように、コアACの中心軸と透光部材4の法線4HAとのなす角θAと、コアBCの中心軸と透光部材4の法線4HBとのなす角θBは0度以上の角度であるが、必ずしも同一の角度でなくてもよい。   Further, for example, as shown in FIG. 10A, an angle θA formed between the central axis of the core AC and the normal line 4HA of the translucent member 4, and the central axis of the core BC and the normal line 4HB of the translucent member 4 The angle θB formed by is an angle of 0 ° or more, but is not necessarily the same angle.

図10(a)に示すように、角度θAが0度に近く、角度θBが角度θAに比べ極めて大きい(90度以下)形状を考えると、光ファイバBが透光部材4に内包され、かつ、光ファイバAと透光部材4の間に隙間Sが発生している場合(図10(b))と、光ファイバAが透光部材4に内包され、かつ、光ファイバBと透光部材4の間に隙間Sが発生している場合(図10(c))とでは、発生する接続損失が異なる。   As shown in FIG. 10A, when considering a shape in which the angle θA is close to 0 degrees and the angle θB is extremely large (90 degrees or less) compared to the angle θA, the optical fiber B is included in the translucent member 4 and When the gap S is generated between the optical fiber A and the translucent member 4 (FIG. 10B), the optical fiber A is included in the translucent member 4, and the optical fiber B and the translucent member 4 is different from the case where the gap S is generated between the four (FIG. 10C).

これにより、例えば、光ファイバAから光ファイバBの方向に接続損失を測定した場合、図10(b)の状態で測定される接続損失は、図10(c)の状態で測定される接続損失よりも小さくなる。よって、光ファイバの接続箇所が確認できない場合でも、接続損失を測定することで、その値の大小から光ファイバの接続状態を予測することもできる。   Thereby, for example, when the connection loss is measured in the direction from the optical fiber A to the optical fiber B, the connection loss measured in the state of FIG. 10B is the connection loss measured in the state of FIG. Smaller than. Therefore, even when the connection location of the optical fiber cannot be confirmed, the connection state of the optical fiber can be predicted from the magnitude of the value by measuring the connection loss.

なお、透光部材4が配置される溝Gについては、こうした透光部材4の形状に合わせたものとすればよい。また、図示しないが、これらの形状を有する透光部材4についても、把持部41と一体に構成すれば、作業性を高めることができる。   In addition, what is necessary is just to make it match | combine with the shape of such a translucent member 4 about the groove | channel G in which the translucent member 4 is arrange | positioned. Moreover, although not shown in figure, if the translucent member 4 which has these shapes is also comprised integrally with the holding part 41, workability | operativity can be improved.

(変形例2)
また、予め一定の形状を有する透光部材4を溝Gに配置するのでなく、透光部材4の原料(例えば、オイル状である樹脂の原料)を溝Gに塗布し、紫外線照射による硬化、高温化による硬化、湿度による硬化、化学変化による硬化などの処理を行い、こうして、溝Gにおいて透光部材4を形成してもよい。この場合、透光部材4を把持する必要がないので、把持部41は不要であり、溝Gもそのような形状とすればよい。
(Modification 2)
Further, instead of disposing the translucent member 4 having a certain shape in advance in the groove G, the raw material of the translucent member 4 (for example, an oily resin raw material) is applied to the groove G and cured by ultraviolet irradiation. The light transmissive member 4 may be formed in the groove G by performing processing such as curing due to high temperature, curing due to humidity, and curing due to chemical change. In this case, since it is not necessary to hold the translucent member 4, the holding part 41 is unnecessary, and the groove G may have such a shape.

変形例2によれば、例えば、光ファイバ接続部材を大量に製造するにあたり、各透光部材4を置いておく場所を用意する必要がなく、好適である。   According to the second modification, for example, when a large number of optical fiber connection members are manufactured, it is not necessary to prepare a place where each light transmissive member 4 is placed, which is preferable.

また、原料は、例えばオイル状であるから、透光部材4を溝Gに密着させることが容易であり、この点でも好適である。   Further, since the raw material is, for example, oily, it is easy to make the translucent member 4 closely contact with the groove G, which is also preferable in this respect.

(変形例3)
光ファイバ接続を行う形態として、例えば、メカニカルスプライス機構を有した現場組立型コネクタのように、一方の光ファイバ(例えば、光ファイバA)が、内蔵ファイバとして予めコネクタ内部のメカニカルスプライス機構内に図11のように配置され、先端が透光部材4に内包されている。この状態で、他方の光ファイバ(例えば、光ファイバB)のみが作業者によりV字型の溝に挿入され、その結果、図4のように配置される形態もあり得る。
(Modification 3)
As a form for performing the optical fiber connection, for example, one optical fiber (for example, optical fiber A) is preliminarily shown in the mechanical splice mechanism inside the connector as a built-in fiber, such as a field assembly type connector having a mechanical splice mechanism. 11, and the tip is included in the translucent member 4. In this state, only the other optical fiber (for example, the optical fiber B) is inserted into the V-shaped groove by the operator, and as a result, it may be arranged as shown in FIG.

(変形例4)
当該光ファイバ接続部材で接続する対象の光ファイバは、現在使用されているシングルモードファイバや多モードファイバなどの石英系光ファイバだけでなく、フォトニック結晶ファイバやホーリーファイバなどの空孔ファイバやプラスチックファイバにも利用できる。
(Modification 4)
The target optical fiber to be connected with the optical fiber connecting member is not only a silica-based optical fiber such as a single mode fiber or a multimode fiber currently used, but also a hole fiber or a plastic such as a photonic crystal fiber or a holey fiber. It can also be used for fiber.

特に、空孔ファイバの場合、従来のオイル状の整合材を空孔ファイバの接続部に用いると、整合材が当該ファイバ中の空孔にしみこんで、接続や伝送性能を劣化させる問題があった。弾力性を有する固体である透光部材を用いれば、上記の問題も解決できるため、より効果的である。   In particular, in the case of a holey fiber, when a conventional oil-like matching material is used for a hole fiber connecting portion, there is a problem that the matching material penetrates into holes in the fiber and deteriorates connection and transmission performance. . If a translucent member that is a solid having elasticity is used, the above problem can be solved, which is more effective.

以上説明したように、本実施の形態の光ファイバ接続部材によれば、図6(a)に示したように、コア(AC)の中心軸の延長線と、透光部材4の界面(4S)との交点(AI)において、透光部材4の法線(4H)とコア(AC)の中心軸とのなす角度(θ)が0度より大きいので、光ファイバ(A、B)の先端が透光部材4に内包された場合、つまり端面間の隙間が一定以下の場合には良好な接続特性が得られ、その良好な接続特性が継続し、一方、図6(b)に示したように、光ファイバ(A、B)の先端が透光部材4に内包されない場合、つまり光ファイバ(A、B)の端面間に大きな隙間がある場合には、接続特性は必ず悪化するので、そのような接続状態は、接続損失等を測定すれば容易に判断することができる。   As described above, according to the optical fiber connecting member of the present embodiment, as shown in FIG. 6A, the extension line of the central axis of the core (AC) and the interface (4S) of the translucent member 4 ), The angle (θ) between the normal line (4H) of the translucent member 4 and the central axis of the core (AC) is greater than 0 degrees, so that the tip of the optical fiber (A, B) Is contained in the translucent member 4, that is, when the gap between the end faces is below a certain level, good connection characteristics are obtained, and the good connection characteristics continue, whereas, as shown in FIG. Thus, when the tip of the optical fiber (A, B) is not encapsulated in the translucent member 4, that is, when there is a large gap between the end faces of the optical fiber (A, B), the connection characteristics are necessarily deteriorated. Such a connection state can be easily determined by measuring a connection loss or the like.

また、透光部材4は、例示したように、例えば、アクリル系やシリコン系の樹脂であるので、長時間が経過しても形状を変えず、また、気泡を含まないように作ることができ、好適である。   Further, as illustrated, the translucent member 4 is, for example, an acrylic or silicon resin, so that it does not change its shape even after a long time has passed and can be made so as not to contain bubbles. Is preferable.

また、基板1は、透光部材4が配置される溝を有するので、透光部材4を所定の位置に容易に配置でき、また、透光部材4の移動を防止することができる。   Moreover, since the board | substrate 1 has the groove | channel where the translucent member 4 is arrange | positioned, the translucent member 4 can be easily arrange | positioned in a predetermined position, and the movement of the translucent member 4 can be prevented.

また、透光部材4は、透光部材4を溝Gに配置する際に把持される把持部41と一体に構成されているので、溝Gに対し透光部材4を容易に配置することができる。なお、把持部41を設けなくても、透光部材4を配置できるのであれば、把持部41は勿論必要ではない。   Moreover, since the translucent member 4 is integrally formed with the grip portion 41 that is gripped when the translucent member 4 is disposed in the groove G, the translucent member 4 can be easily disposed in the groove G. it can. Of course, the gripping portion 41 is not necessary as long as the translucent member 4 can be disposed without providing the gripping portion 41.

また、透光部材4の原料を、透光部材4が配置される溝に塗布し、原料を硬化させることで、例えば、光ファイバ接続部材を大量に製造するにあたり、各透光部材4を置いておく場所を用意する必要がなく、好適である。また、原料は、例えばオイル状であるから、透光部材4を溝Gに密着させることが容易であり、好適である。   Further, by applying the raw material of the translucent member 4 to the groove in which the translucent member 4 is disposed and curing the raw material, for example, when manufacturing a large number of optical fiber connection members, each translucent member 4 is placed. It is not necessary to prepare a place to keep, which is preferable. In addition, since the raw material is, for example, oily, it is easy to make the translucent member 4 in close contact with the groove G, which is preferable.

1、1A、2…基板
3…固定部材
4…透光部材
41…把持部
4H、4HA、4HB…透光部材4の法線
4S…透光部材4の界面
A、B…光ファイバ
A1…光ファイバAと透光部材4の接触面
AC…光ファイバAのコア
AI…コアACの中心軸の延長線と、透光部材4の界面4Sとの交点
BC…光ファイバBのコア
C…光ファイバ接続箇所
d…コアACの中心軸延長線上の透光部材4の厚さ
G、V…溝
K…光
l…光ファイバA、Bの端面間の距離
S…光ファイバA、Bと透光部材4の間隙
θ…コアACの中心軸の延長線と、透光部材4の界面4Sとの交点AIにおいて、透光部材4の法線4HとコアACの中心軸とのなす角度(0度より大きい)
θA…コアACの中心軸と透光部材4の法線4HAとのなす角(0度より大きい)
θB…コアBCの中心軸と透光部材4の法線4HBとのなす角(0度より大きい)
DESCRIPTION OF SYMBOLS 1, 1A, 2 ... Board | substrate 3 ... Fixed member 4 ... Translucent member 41 ... Grip part 4H, 4HA, 4HB ... Normal of translucent member 4 4S ... Interface of translucent member 4 A, B ... Optical fiber A1 ... Light Contact surface of fiber A and translucent member 4 AC: core of optical fiber A AI: intersection of extension line of central axis of core AC and interface 4S of translucent member 4 BC: core of optical fiber B C: optical fiber Connection location d: thickness of translucent member 4 on the central axis extension line of core AC G, V ... groove K ... light 1 ... distance between end faces of optical fibers A, B S: optical fibers A, B and translucent member 4, the angle θ between the normal line 4H of the translucent member 4 and the central axis of the core AC at the intersection AI of the extension line of the central axis of the core AC and the interface 4S of the translucent member 4 large)
θA: Angle formed by the central axis of the core AC and the normal 4HA of the translucent member 4 (greater than 0 degrees)
θB ... Angle formed by the central axis of the core BC and the normal 4HB of the translucent member 4 (greater than 0 degrees)

Claims (7)

溝を有する基板と、
前記溝に配置された2つの光ファイバの先端を内包する透光部材とを備え、
一方の前記光ファイバの中心軸の延長線と透光部材の界面との交点において、当該透光部材の法線と当該コアの中心軸とのなす角度が0度より大き
ファイバ接続部材であって、
前記光ファイバ接続部材での接続損失は、前記光ファイバが後退するにしたがって増加し、前記先端が前記透光部材に内包されているときの増加率よりも前記先端が前記透光部材から離れるときの増加率の方が大きい
ことを特徴とする光ファイバ接続部材
A substrate having a groove;
A translucent member containing the ends of two optical fibers arranged in the groove,
At the intersection between the interface of the extension line and the translucent member of the central axis of one of the optical fiber, the angle between the center axis of the normal to the core of the light transmitting member is greater than 0 degrees
An optical fiber connecting member,
When the optical fiber is retracted, the connection loss at the optical fiber connection member increases, and when the tip moves away from the light transmissive member than the rate of increase when the tip is included in the light transmissive member. The rate of increase is greater
An optical fiber connecting member .
前記透光部材は、弾力性を有する固体であることを特徴とする請求項1記載の光ファイバ接続部材。   The optical fiber connecting member according to claim 1, wherein the translucent member is a solid having elasticity. 前記基板は、前記透光部材が配置される溝を有する
ことを特徴とする請求項1または2記載の光ファイバ接続部材。
The optical fiber connection member according to claim 1, wherein the substrate has a groove in which the translucent member is disposed.
前記透光部材は、当該透光部材が配置される溝に当該透光部材を配置する際に把持される把持部と一体に構成されている
ことを特徴とする請求項3記載の光ファイバ接続部材。
The optical fiber connection according to claim 3, wherein the translucent member is configured integrally with a grip portion that is gripped when the translucent member is disposed in a groove in which the translucent member is disposed. Element.
前記透光部材は、前記透光部材の原料を前記透光部材が配置される溝に塗布し、当該原料を硬化させたものである
ことを特徴とする請求項3記載の光ファイバ接続部材。
The optical fiber connecting member according to claim 3, wherein the light transmissive member is obtained by applying a raw material of the light transmissive member to a groove in which the light transmissive member is disposed and curing the raw material.
前記透光部材は、対向する2つの前記光ファイバの中心軸と、当該各中心軸に交差する2つの界面を有する透光部材であり、
一方の前記光ファイバの中心軸と前記透光部材の界面に対する法線とのなす角度と、他方の前記光ファイバの中心軸と前記透光部材の界面に対する法線とのなす角度とが相違する
ことを特徴とする請求項1ないし5のいずれかに記載の光ファイバ接続部材。
The translucent member is a translucent member having a central axis of two optical fibers facing each other and two interfaces intersecting the central axes.
The angle formed between the central axis of one of the optical fibers and the normal to the interface of the light transmitting member is different from the angle formed between the central axis of the other optical fiber and the normal to the interface of the light transmitting member. The optical fiber connecting member according to any one of claims 1 to 5, wherein
前記光ファイバは空孔ファイバである
ことを特徴とする請求項1ないし6のいずれかに記載の光ファイバ接続部材。
The optical fiber connecting member according to claim 1, wherein the optical fiber is a hole fiber.
JP2012026155A 2012-02-09 2012-02-09 Optical fiber connection member Active JP5763566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012026155A JP5763566B2 (en) 2012-02-09 2012-02-09 Optical fiber connection member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026155A JP5763566B2 (en) 2012-02-09 2012-02-09 Optical fiber connection member

Publications (2)

Publication Number Publication Date
JP2013164447A JP2013164447A (en) 2013-08-22
JP5763566B2 true JP5763566B2 (en) 2015-08-12

Family

ID=49175839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026155A Active JP5763566B2 (en) 2012-02-09 2012-02-09 Optical fiber connection member

Country Status (1)

Country Link
JP (1) JP5763566B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588041A (en) * 1991-09-30 1993-04-09 Nippon Telegr & Teleph Corp <Ntt> Optical connecting circuit of optical fiber
JP3881564B2 (en) * 2002-02-27 2007-02-14 京セラ株式会社 Optical fiber fixture connection structure
JP2007298783A (en) * 2006-05-01 2007-11-15 Tokyo Tsushinki Kogyo Kk Optical fiber connector
JP2009042335A (en) * 2007-08-07 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> Splicing structure of optical fiber and method of splicing optical fiber
US20110104388A1 (en) * 2009-11-02 2011-05-05 Harris Corporation Method for making an optical device including a curable index matching elastomeric solid layer

Also Published As

Publication number Publication date
JP2013164447A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
US9709750B1 (en) 2-dimensional fiber array structure
US10514512B2 (en) Optical connector
US9851521B2 (en) Connectorized optical chip assembly
JP6366602B2 (en) Multichannel optical connector with coupling lens
CN108351478B (en) Optical connector and optical coupling structure
JP2021157194A (en) Optical ferrule having waveguide access impossible space
JP6407360B2 (en) Multi-fiber optical connector
WO2017074670A1 (en) Traceable cable assembly and connector
US9632258B2 (en) Optical connector ferrule
US10025040B2 (en) Connector for multilayered optical waveguide
US10007073B2 (en) Optical component including a high-relative-refractive-index-index-difference optical fiber a single-mode optical fiber an optical device and a fixing member to fix a relative opsition
WO2019131098A1 (en) Optical connector and optical connection structure
WO2017195636A1 (en) Optical connector and optical coupling structure
JP2014052405A (en) Method for forming polymer waveguide array connector of single mode
JPWO2020149262A1 (en) Optical connector and optical connection structure
JPWO2014034726A1 (en) Optical fiber coupling member and method of manufacturing optical fiber coupling member
JP6502142B2 (en) Optical fiber ferrule, optical connector system, and method of manufacturing optical fiber ferrule
US20140086532A1 (en) Optical Coupling Device, Optical Communication System and Method of Manufacture
JP5763566B2 (en) Optical fiber connection member
US7620278B2 (en) Optical waveguide device
JP5547686B2 (en) Fan-out parts for multi-core fiber
US20140133805A1 (en) Optical fiber connector and optical fiber assembling method
JP2010066474A (en) Optical connection structure
WO2020091015A1 (en) Optical connection component
TWI504957B (en) Optical fiber connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150611

R150 Certificate of patent or registration of utility model

Ref document number: 5763566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250