JP5761704B2 - Optical time division multiplexing transmission method and optical time division multiplexing transmission system - Google Patents

Optical time division multiplexing transmission method and optical time division multiplexing transmission system Download PDF

Info

Publication number
JP5761704B2
JP5761704B2 JP2011000122A JP2011000122A JP5761704B2 JP 5761704 B2 JP5761704 B2 JP 5761704B2 JP 2011000122 A JP2011000122 A JP 2011000122A JP 2011000122 A JP2011000122 A JP 2011000122A JP 5761704 B2 JP5761704 B2 JP 5761704B2
Authority
JP
Japan
Prior art keywords
signal
time division
optical time
phase modulation
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011000122A
Other languages
Japanese (ja)
Other versions
JP2012142819A (en
Inventor
隆行 黒須
隆行 黒須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011000122A priority Critical patent/JP5761704B2/en
Publication of JP2012142819A publication Critical patent/JP2012142819A/en
Application granted granted Critical
Publication of JP5761704B2 publication Critical patent/JP5761704B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光時分割多重伝送方法及び光時分割多重伝送システムに関するものである。   The present invention relates to an optical time division multiplexing transmission method and an optical time division multiplexing transmission system.

インターネットの急速な発展により光通信に要求される伝送レートは年々高まっているが、電子デバイスの動作速度は限界に達しようとしている。単位時間に送信できる符号(シンボル)の数をシンボルレートと呼ぶが、電子デバイスの上限を超えるシンボルレートで信号を伝送する為には光領域で信号を多重化する光時分割多重伝送(OTDM)が必要となる。
例えば強度変調方式の送信器がN台有り、それぞれf0[baud/秒]のレートで光信号が出力されているとする。光時分割多重伝送によりこれらN本の光信号をシリアル信号に変換するとf’=N×f0[baud/秒]のシンボルレートで信号の伝送が可能になる(図5参照)。受信器ではOTDM信号をN本のパラレル信号に分割(Demux)しチャンネル毎に信号処理を行う。
Although the transmission rate required for optical communication is increasing year by year due to the rapid development of the Internet, the operation speed of electronic devices is reaching its limit. The number of codes (symbols) that can be transmitted per unit time is called the symbol rate. To transmit a signal at a symbol rate that exceeds the upper limit of the electronic device, optical time division multiplex transmission (OTDM) that multiplexes the signal in the optical domain Is required.
For example, assume that there are N intensity modulation transmitters, and optical signals are output at a rate of f0 [baud / sec], respectively. When these N optical signals are converted into serial signals by optical time division multiplexing transmission, signals can be transmitted at a symbol rate of f ′ = N × f0 [baud / sec] (see FIG. 5). The receiver divides the OTDM signal into N parallel signals (Demux) and performs signal processing for each channel.

このDemux操作を行う為には元の送信器のシンボルレート(=f0)に等しい周波数を持つ基準信号(クロック)が必要となる。したがって、受信器には受信した光信号からこのクロック信号を生成する、いわゆる光クロック抽出機能が要求される。通常、光クロック抽出ではOTDM信号に位相同期した周波数がf‘/Nの電気信号又は光パスル列が抽出される。   In order to perform this Demux operation, a reference signal (clock) having a frequency equal to the symbol rate (= f0) of the original transmitter is required. Therefore, the receiver is required to have a so-called optical clock extraction function for generating this clock signal from the received optical signal. Normally, in the optical clock extraction, an electrical signal or optical pulse train having a frequency f ′ / N that is phase-synchronized with the OTDM signal is extracted.

OTDM方式では多重/分割等の信号処理を電子デバイスの動作限界を超える速度で実行する必要があるが、これには非線形光学効果を応用した光デバイスが利用される。一般的な光デバイスは信号光の入出力ポートと制御光の入力ポートを持ち、制御光のオン/オフにより信号光の強度や位相を制御する。
代表的な超高速光デバイスとしては、非線形ファイバーで生じる4光波混合や半導体サブバンド間遷移(ISBT)が示す相互位相変調を利用したものがある。これまでにISBT光ゲートを用いてシンボルレートが172Gbaud/sのOTDMが実現されている(例えば、非特許文献1参照)。
In the OTDM system, it is necessary to execute signal processing such as multiplexing / division at a speed exceeding the operation limit of the electronic device. For this, an optical device using a nonlinear optical effect is used. A general optical device has an input / output port for signal light and an input port for control light, and controls the intensity and phase of the signal light by turning on / off the control light.
Typical ultrahigh-speed optical devices include those utilizing four-wave mixing generated by nonlinear fibers and cross-phase modulation indicated by semiconductor intersubband transition (ISBT). So far, OTDM with a symbol rate of 172 Gbaud / s has been realized using an ISBT optical gate (see Non-Patent Document 1, for example).

光クロック抽出を実行する方法はいくつか提案されているが、一般的にOTDM信号はチャンネルに関する情報は含んでいないので、抽出されるクロック信号とデータチャンネルの位相関係は必ずしも一定ではなく、図6に示すように、N通りの異なるタイミングでクロック抽出される可能性がある(例えば、非特許文献2参照)。
クロック信号の位相が揺らぐとDemux操作が正確に実行できないので、クロック信号はデータに対して常に一定のタイミングで抽出されることが望ましい。その為の最も単純な方法は、図7に示すように、データと一緒にクロック周波数f0で強度変調された信号を同時に送信することである。
Several methods for performing optical clock extraction have been proposed. Generally, since the OTDM signal does not contain information on the channel, the phase relationship between the extracted clock signal and the data channel is not necessarily constant. As shown in FIG. 5, there is a possibility that clocks are extracted at N different timings (see, for example, Non-Patent Document 2).
Since the Demux operation cannot be performed accurately if the phase of the clock signal fluctuates, it is desirable that the clock signal is always extracted at a constant timing with respect to the data. As shown in FIG. 7, the simplest method for this is to simultaneously transmit a signal whose intensity is modulated at a clock frequency f0 together with data.

ただし、この方法では受信器がクロック信号をデータから分離できるようにデータとは異なる波長を使ってクロックを送信する必要があり、データだけを送信する場合に比べてスペクトルの利用効率が下がるという欠点がある。また、伝送路の持つ分散の為にクロックとデータは異なる速度で伝播するので、伝送路や伝送距離が変動する場合には受信信号と抽出クロックの位相関係は一定に保たれない。   However, this method requires that the clock be transmitted using a wavelength different from that of the data so that the receiver can separate the clock signal from the data, and the spectrum utilization efficiency is lower than when only the data is transmitted. There is. Also, because the clock and data propagate at different speeds due to the dispersion of the transmission path, the phase relationship between the received signal and the extracted clock cannot be kept constant when the transmission path or transmission distance varies.

一方、クロックパルスを送信するかわりに、図8に示すように、OTDM信号にチャンネル識別情報を付加する方法も提案されている(例えば、非特許文献3参照)。
この方法では、OTDM信号の搬送波となるパルスレーザー光に周期的な位相シフトを施すことでOTDM信号に必要とする周波数で強度変調を施している。例えば図8では、チャンネル1の位相だけ他のチャネルの位相からπシフトされており、受信側はチャンネル1に位相同期したクロック周波数をOTDM信号から直接抽出することができる。
この方法では全光パルスの位相関係を常に一定に保つ必要があり、光信号の多重化(MUX)部には高い作製精度が要求される。また、温度変化等に対してもパルス間の位相が変化しないよう光路長にフィードバック制御を施す必要があり、多重度Nが増えるほどシステムが複雑になる。
On the other hand, a method of adding channel identification information to an OTDM signal as shown in FIG. 8 instead of transmitting a clock pulse has been proposed (see, for example, Non-Patent Document 3).
In this method, intensity modulation is performed at a frequency required for the OTDM signal by applying a periodic phase shift to the pulse laser beam which is a carrier wave of the OTDM signal. For example, in FIG. 8, the phase of channel 1 is shifted by π from the phase of other channels, and the receiving side can directly extract the clock frequency phase-synchronized with channel 1 from the OTDM signal.
In this method, it is necessary to always keep the phase relationship of all optical pulses constant, and high fabrication accuracy is required for the optical signal multiplexing (MUX) unit. In addition, it is necessary to perform feedback control on the optical path length so that the phase between pulses does not change even with respect to a temperature change or the like, and the system becomes more complicated as the multiplicity N increases.

黒須隆行他、「光時分割多重を用いたスーパーハイビジョン映像の伝送」、信学技報、IEICE Technical Report、IA2009-91、p.53-p.58、(2010)Takasu Kurosu et al., "Transmission of Super Hi-Vision Video Using Optical Time Division Multiplexing", IEICE Technical Report, IEICE Technical Report, IA2009-91, p.53-p.58, (2010) 青梅恵之、尾路京一、山下育男、猪口勝司、「160Gbit/s光RZ信号からの10GHzクロック信号抽出の検討」、IEEJ Trans.EIS,vol.125,No.10,p.1608-p.1613,(2005)Keiyuki Ome, Kyoichi Onoji, Ikuo Yamashita, Katsuji Higuchi, "Examination of 10GHz clock signal extraction from 160Gbit / s optical RZ signal", IEEJ Trans.EIS, vol.125, No.10, p.1608-p .1613, (2005) 藤井浩三、「超高速光信号処理技術の開発」、沖テクニカルレビュー、第204号、Vol.72、No.4、p.70-p.75、2005年10月Kozo Fujii, “Development of Ultra High-Speed Optical Signal Processing Technology”, Oki Technical Review, No. 204, Vol.72, No.4, p.70-p.75, October 2005

本発明は、上記従来技術の問題点に鑑みなされたものであり、その目的とするところは、スペクトルの利用効率を下げることなく、システム構成が簡素な光時分割多重伝送方法及び光時分割多重伝送システムを得ることである。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an optical time division multiplexing transmission method and an optical time division multiplexing with a simple system configuration without reducing the spectrum utilization efficiency. To get a transmission system.

上記課題は次のような手段により解決される。
(1)特定のチャンネルの信号に位相変調を施すことにより、光時分割多重信号にチャンネル識別情報を付与することを特徴とする光時分割多重伝送方法。
(2)特定のチャンネルの信号に位相変調を施すことによりチャンネル識別情報を付与した光時分割多重信号を送信する送信部と、該光時分割多重信号を受信し該光時分割多重信号から該チャンネル識別情報を抽出する手段を有し、該手段により得られたチャンネル識別情報に基づいて該光時分割多重信号を分割する受信部とを含む光時分割多重伝送システム。
(3)上記チャンネル識別情報を抽出する手段は、遅延干渉計、差動光検出器及びクロック抽出器を含むことを特徴とする(2)に記載の光時分割多重伝送システム。
(4)上記送信部は、光信号多重化部及び該光信号多重化部からの特定のチャンネルの信号光に位相シフトを与える光変調器を含むことを特徴とする(2)又は(3)に記載の光時分割多重伝送システム。
(5)上記送信部は、位相シフトを与えた特定のチャンネルの信号光及び他のチャンネルの信号光を多重化する光信号多重化部を含むことを特徴とする(2)又は(3)に記載の光時分割多重伝送システム。
The above problem is solved by the following means.
(1) An optical time division multiplex transmission method characterized by adding channel identification information to an optical time division multiplexed signal by performing phase modulation on a signal of a specific channel.
(2) a transmission unit that transmits an optical time division multiplexed signal to which channel identification information is given by performing phase modulation on a signal of a specific channel, and receives the optical time division multiplexed signal and receives the optical time division multiplexed signal from the optical time division multiplexed signal. An optical time division multiplex transmission system comprising means for extracting channel identification information, and including a receiving unit for dividing the optical time division multiplexed signal based on the channel identification information obtained by the means.
(3) The optical time division multiplex transmission system according to (2), wherein the means for extracting the channel identification information includes a delay interferometer, a differential photodetector, and a clock extractor.
(4) The transmission unit includes an optical signal multiplexing unit and an optical modulator that gives a phase shift to signal light of a specific channel from the optical signal multiplexing unit (2) or (3) The optical time division multiplex transmission system described in 1.
(5) The transmission unit includes an optical signal multiplexing unit that multiplexes the signal light of a specific channel to which a phase shift is given and the signal light of another channel, according to (2) or (3) The optical time division multiplex transmission system described.

本発明では、OTDM信号から各チャンネルと常に一定の位相関係でクロック信号を抽出できる。したがって、伝送路や伝送距離が変化した場合でも効率良く正確にDemux操作を行うことができる。また、データ自身にクロック情報を載せているので、スペクトルの利用効率が下がることはない。
また、本発明では全光パルスの位相を制御する必要がないため、OTDM信号にチャンネル識別情報を付加する従来の方法と比較してシステム構成が簡素で実用化に適している。
In the present invention, a clock signal can always be extracted from an OTDM signal with a constant phase relationship with each channel. Therefore, even when the transmission path or transmission distance changes, the Demux operation can be performed efficiently and accurately. In addition, since clock information is included in the data itself, the spectrum utilization efficiency does not decrease.
In addition, since it is not necessary to control the phase of all optical pulses in the present invention, the system configuration is simple and suitable for practical use compared to the conventional method of adding channel identification information to the OTDM signal.

本発明の光時分割多重伝送方法の原理を説明する図The figure explaining the principle of the optical time division multiplexing transmission method of this invention レート変換部の構成図Configuration diagram of rate converter 光時分割多重伝送システムの第1の構成例First configuration example of optical time division multiplexing transmission system 光時分割多重伝送システムの第2の構成例Second configuration example of optical time division multiplexing transmission system 光時分割多重伝送の原理を説明する図Diagram explaining the principle of optical time division multiplexing transmission 通常の光クロック抽出におけるクロックとデータの位相関係を説明する図Diagram explaining phase relationship between clock and data in normal optical clock extraction クロックパルスをデータと一緒に配信する方式を説明する図Diagram explaining the method of distributing clock pulses with data 光時分割多重伝送信号にチャンネル識別情報を付加する1つの方法One method for adding channel identification information to an optical time division multiplex transmission signal

本発明は、OTDMにおいて受信側がデータの各チャンネルに対し常に一定のタイミングでクロック信号を抽出することを可能にする。その原理を図1に示す。送信側は、チャンネル識別情報の付与されたOTDM信号を送信する。受信側は受信信号の一部をレート変換部に導き、識別情報を利用してOTDM信号から特定のチャンネルを抜き出しシンボルレートがf0の電気信号を生成する。この電気信号から通常の電子回路を用いてクロックを抽出すれば、OTDM信号の各チャンネルと常に一定の位相関係でクロック信号を抽出できる。   The present invention makes it possible for the receiving side in OTDM to always extract a clock signal at a constant timing for each channel of data. The principle is shown in FIG. The transmission side transmits an OTDM signal to which channel identification information is added. The reception side guides a part of the reception signal to the rate conversion unit, extracts a specific channel from the OTDM signal using the identification information, and generates an electric signal having a symbol rate of f0. If a clock is extracted from this electrical signal using a normal electronic circuit, the clock signal can be extracted with a constant phase relationship with each channel of the OTDM signal.

OTDM信号にチャンネル識別情報を付与する為に、送信側はNチャンネルの信号を多重化(Mux)する前あるいはMuxした後に特定のチャンネル(基準チャンネルと呼ぶ)に位相変調を施す。レート変換部は、位相変調の施されていない光信号が入力された場合には信号を出力せず、位相変調の施された光信号が入力された時には、入力信号の強度に依存する電圧信号を出力するものである。したがって、レート変換部からは基準チャンネルの信号のみが電圧信号に変換され出力される。   In order to add channel identification information to the OTDM signal, the transmission side performs phase modulation on a specific channel (referred to as a reference channel) before or after multiplexing (muxing) the N-channel signal. The rate converter does not output a signal when an optical signal not subjected to phase modulation is input, and a voltage signal depending on the intensity of the input signal when an optical signal subjected to phase modulation is input. Is output. Therefore, only the signal of the reference channel is converted into a voltage signal and output from the rate conversion unit.

レート変換部は、遅延干渉計と差動光受信器から構成される(図2参照)。遅延干渉計は無位相変調光が入力された時は2つの出力ポートから同強度の光が出力されるように調整されており、差動光受信器の出力は0となる。しかし、位相変調光が入力された時は遅延干渉計の2つの出力信号間に強度差が生じ差動光受信器は電圧信号を発生する。
時分割多重後にOTDM信号の特定のチャンネルに位相変調を加えるには、ピコ秒台の非常に高速な位相変調器が必要となる。このような超高速変調は従来の電子デバイスでは実現不可能でも非線形光学効果デバイスを利用すれば実行できる。
The rate conversion unit includes a delay interferometer and a differential optical receiver (see FIG. 2). The delay interferometer is adjusted so that light of the same intensity is output from the two output ports when non-phase modulated light is input, and the output of the differential optical receiver is zero. However, when phase-modulated light is input, an intensity difference occurs between the two output signals of the delay interferometer, and the differential optical receiver generates a voltage signal.
In order to apply phase modulation to a specific channel of an OTDM signal after time division multiplexing, a very high-speed phase modulator in the picosecond range is required. Such ultra-high speed modulation can be performed by using a nonlinear optical effect device even if it cannot be realized by a conventional electronic device.

図3に本発明に係る光時分割多重伝送システムの第1の構成例を示す。
送信側は、N台のシンボルレートがf0の送信器の出力を光時分割多重してシンボルレートがf’(=N×f0)のOTDM信号を生成する。次にこの信号を位相変調器に通して一部のチャンネル(基準チャンネルと呼ぶ)に位相変調を施す。
受信側では信号の一部は遅延干渉計に導かれ、各チャンネル内において1ないし数ビット前のデータと信号が干渉させられる。2つのポートからの光出力はフォトレシーバーで受光され、その強度差が電圧として出力される。この電圧信号はシンボルレートがf0であり、通常のクロック抽出器を用いてクロック信号が抽出される。抽出されたクロック信号はDemux装置に導かれOTDM信号を分離するために利用される。
FIG. 3 shows a first configuration example of an optical time division multiplexing transmission system according to the present invention.
The transmitting side generates an OTDM signal with a symbol rate of f ′ (= N × f0) by optical time division multiplexing the outputs of N transmitters with a symbol rate of f0. Next, this signal is passed through a phase modulator to perform phase modulation on some channels (referred to as reference channels).
On the receiving side, a part of the signal is guided to the delay interferometer, and the data of one or several bits before and the signal are caused to interfere in each channel. The light output from the two ports is received by a photo receiver, and the intensity difference is output as a voltage. This voltage signal has a symbol rate of f0, and a clock signal is extracted using a normal clock extractor. The extracted clock signal is guided to the Demux device and used to separate the OTDM signal.

OTDM信号の特定のチャンネルにのみ位相変調を施すには、超高速動作が可能な非線形光学デバイスを利用する。非線形光学デバイスとしては、位相変調時の強度変調効果が小さい非線形ファイバーやISBT等を用いたものが望ましい。
非線形光学デバイスは、送信器に同期した短パルス光源の発生する光パルス列によって駆動される。繰り返し周波数がf0/2の光パルス列を用いて基準チャンネルのデータに、交互に“0”、“π/2”、“0”、“π/2”、“0”、“π/2”、・・・・と位相変調を加えると、受信部ではシンボルレートがf0の電圧信号が発生する。受信部でシンボルレートがf0/m(m:整数)の電圧信号を得ることができれば、他のパターンを用いてOTDM信号に変調を施してもよい。
In order to perform phase modulation only on a specific channel of the OTDM signal, a non-linear optical device capable of ultra-high speed operation is used. As the nonlinear optical device, a device using a nonlinear fiber, ISBT, or the like having a small intensity modulation effect at the time of phase modulation is desirable.
The nonlinear optical device is driven by an optical pulse train generated by a short pulse light source synchronized with the transmitter. “0”, “π / 2”, “0”, “π / 2”, “0”, “π / 2”, and “0”, “π / 2”, “0”, “π / 2”, ... When phase modulation is applied, a voltage signal with a symbol rate of f0 is generated at the receiver. If the receiving unit can obtain a voltage signal with a symbol rate of f0 / m (m: integer), the OTDM signal may be modulated using another pattern.

図4に本発明に係る光時分割多重伝送システムの第2の構成例を示す。
送信側は、N台のシンボルレートがf0の送信器の内、特定チャンネルの信号に位相変調を施してから時分割多重によりシンボルレートがf’(=N×f0)のOTDM信号を生成する。
受信側では信号の一部は遅延干渉計に導かれ、各チャンネル内において1ないし数ビット前のデータと信号が干渉させられる。2つのポートからの光出力はフォトレシーバーで受光され、その強度差が電圧として出力される。この電圧信号はシンボルレートがf0あるいはその整数分の1なので、通常の電子装置を用いてクロック信号が抽出される。抽出されたクロック信号はDemux装置に導かれOTDM信号を分離するために利用される。
FIG. 4 shows a second configuration example of the optical time division multiplexing transmission system according to the present invention.
The transmitting side generates a OTDM signal with a symbol rate of f ′ (= N × f0) by time division multiplexing after performing phase modulation on a signal of a specific channel among N transmitters with a symbol rate of f0.
On the receiving side, a part of the signal is guided to the delay interferometer, and the data of one or several bits before and the signal are caused to interfere in each channel. The light output from the two ports is received by a photo receiver, and the intensity difference is output as a voltage. Since this voltage signal has a symbol rate of f0 or a fraction thereof, a clock signal is extracted using a normal electronic device. The extracted clock signal is guided to the Demux device and used to separate the OTDM signal.

基準チャンネルのデータに、“π/2”、“-π/2”、“π/2”、“-π/2”、“π/2”、・・・・と交互に位相変調を加えると、受信部ではシンボルレートがf0/2の電圧信号が発生する。受信部でシンボルレートがf0/m(m:整数)の電圧信号を得ることができれば、他のパターンを用いて基準チャンネルに位相変調を施してもよい。   When phase modulation is alternately applied to the reference channel data as “π / 2”, “-π / 2”, “π / 2”, “-π / 2”, “π / 2”,. In the receiving unit, a voltage signal having a symbol rate of f0 / 2 is generated. If the receiving unit can obtain a voltage signal with a symbol rate of f0 / m (m: integer), the reference channel may be phase-modulated using another pattern.

以上、本発明の光時分割多重伝送方法及び光時分割多重伝送システムについて詳細に説明したが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加えうるものである。


The optical time division multiplex transmission method and optical time division multiplex transmission system of the present invention have been described in detail above. However, the present invention is not construed as being limited thereto, and so long as it does not depart from the scope of the present invention. Various changes, modifications, and improvements can be made based on the knowledge of those skilled in the art.


Claims (7)

シンボルレートがf0のNチャンネルのデータからなる光時分割多重信号を送受信する光時分割多重伝送方法であって、
送信側において、該光時分割多重信号の一のデータチャンネルの信号のみに受信側においてシンボルレートがf0の電圧信号を検出し得る程度に該一のデータチャンネルの隣接する信号間でずらした位相変調量で位相変調を施した光時分割多重信号を送信し、
受信側において、該送信された光時分割多重信号を受信し遅延干渉計に入力された該位相変調された一のデータチャンネルの隣接する信号の該位相変調量のずれにより差動光検出器で検出されるシンボルレートがf0の電圧信号からシンボルレートf0のクロック信号を抽出して該受信した光時分割多重信号をシンボルレートがf0のNチャンネルのデータに分割する、
ことを特徴とする光時分割多重伝送方法。
An optical time division multiplex transmission method for transmitting and receiving an optical time division multiplex signal composed of N-channel data with a symbol rate of f0 ,
Phase modulation shifted between adjacent signals of the one data channel to the extent that a voltage signal with a symbol rate of f0 can be detected on the receiving side only for the signal of one data channel of the optical time division multiplexed signal on the transmitting side sending optical time division multiplex signal facilities phase modulation in an amount,
On the receiving side, the differential optical detector receives the transmitted optical time division multiplexed signal and receives the phase modulation amount of the adjacent signal of the one phase-modulated data channel input to the delay interferometer. Extracting a clock signal having a symbol rate f0 from a voltage signal having a detected symbol rate f0, and dividing the received optical time division multiplexed signal into N-channel data having a symbol rate f0;
An optical time division multiplex transmission method.
シンボルレートがf0のNチャンネルのデータからなる光時分割多重信号を送受信する光時分割多重伝送システムであって、
該光時分割多重信号の一のデータチャンネルの信号のみに受信部においてシンボルレートがf0の電圧信号を検出し得る程度に該一のデータチャンネルの隣接する信号間でずらした位相変調量で位相変調を施した光時分割多重信号を送信する送信部と、
送信された光時分割多重信号を受信し遅延干渉計に入力された該位相変調された一のデータチャンネルの隣接する信号の該位相変調量のずれにより差動光検出器で検出されるシンボルレートがf0の電圧信号からシンボルレートf0のクロック信号抽出して受信した光時分割多重信号をシンボルレートがf0のNチャンネルのデータに分割する受信部と、
を含むことを特徴とする光時分割多重伝送システム。
An optical time division multiplexing transmission system for transmitting and receiving an optical time division multiplexing signal composed of N-channel data with a symbol rate of f0,
Phase modulation with a phase modulation amount shifted between adjacent signals of the one data channel to such an extent that a voltage signal with a symbol rate of f0 can be detected in the receiver only for the signal of one data channel of the optical time division multiplexed signal A transmitter for transmitting the optical time division multiplexed signal subjected to
A symbol detected by a differential photodetector by the deviation of the phase modulation amount of the adjacent signal of the one phase-modulated data channel received in the transmitted optical time division multiplexed signal and input to the delay interferometer a reception unit that rate is the symbol rate of the optical time division multiplexed signal by extracting a clock signal and the received symbol rate f0 from a voltage signal f0 is divided into data of N channels f0,
An optical time division multiplex transmission system comprising:
前記一のデータチャンネルのデータ信号にする位相変調は、“0”、“π/2”、“0”、“π/2”、“0”、“π/2”の繰り返し列であることを特徴とする請求項2に記載の光時分割多重伝送システム。 The phase modulation to be the data signal of the one data channel is a repetition sequence of “0”, “π / 2”, “0”, “π / 2”, “0”, “π / 2”. The optical time division multiplex transmission system according to claim 2, wherein: 前記送信部において、前記一のデータチャンネルの信号に施す位相変調をNチャンネルのデータの光信号多重化の前、または、に行うことを特徴とする請求項2乃至請求項3のいずれか1項に記載の光時分割多重伝送システム。 In the transmitting portion, the front phase modulation applied to the signal of one data channel of the optical signal multiplexing of data of N channel, or any of claims 2 to 3, characterized in that after one The optical time division multiplex transmission system according to item. 前記一のデータチャンネルの信号に施す位相変調ISBTデバイスを用いて行うことを特徴とする請求項4に記載する光時分割多重伝送システム。 Optical time division multiplex transmission system according to claim 4, wherein the phase modulation applied to the signal of one data channel is performed using the ISBT device. 前記一のデータチャンネルの信号に施す位相変調はISBTデバイスを用いて光時分割多重化の後に行うことを特徴とする請求項1に記載する光時分割多重伝送方法。 2. The optical time division multiplex transmission method according to claim 1, wherein the phase modulation applied to the signal of the one data channel is performed after optical time division multiplexing using an ISBT device. シンボルレートがf0のNチャンネルのデータからなる光時分割多重信号を送信する光時分割多重伝送送信機であって、An optical time division multiplex transmission transmitter for transmitting an optical time division multiplex signal composed of N channel data having a symbol rate of f0,
該光時分割多重信号の一のデータチャンネルの信号のみに当該光時分割多重信号を受信する受信機においてシンボルレートがf0の電圧信号を検出し得る程度に該一のデータチャンネルの隣接する信号間でずらした位相変調量で位相変調を施した光時分割多重信号を送信することを特徴とする光時分割多重伝送送信機。Between adjacent signals of one data channel to such an extent that a voltage signal having a symbol rate of f0 can be detected in a receiver that receives the optical time division multiplexed signal only for the signal of one data channel of the optical time division multiplexed signal. An optical time division multiplex transmission transmitter that transmits an optical time division multiplex signal subjected to phase modulation with a phase modulation amount shifted by.
JP2011000122A 2011-01-04 2011-01-04 Optical time division multiplexing transmission method and optical time division multiplexing transmission system Expired - Fee Related JP5761704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011000122A JP5761704B2 (en) 2011-01-04 2011-01-04 Optical time division multiplexing transmission method and optical time division multiplexing transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011000122A JP5761704B2 (en) 2011-01-04 2011-01-04 Optical time division multiplexing transmission method and optical time division multiplexing transmission system

Publications (2)

Publication Number Publication Date
JP2012142819A JP2012142819A (en) 2012-07-26
JP5761704B2 true JP5761704B2 (en) 2015-08-12

Family

ID=46678646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011000122A Expired - Fee Related JP5761704B2 (en) 2011-01-04 2011-01-04 Optical time division multiplexing transmission method and optical time division multiplexing transmission system

Country Status (1)

Country Link
JP (1) JP5761704B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201106A (en) * 1999-01-05 2000-07-18 Oki Electric Ind Co Ltd Optical transmission system
US7110677B2 (en) * 2001-09-26 2006-09-19 Celight, Inc. Method and system for optical time division multiplexed fiber communications with coherent detection
JP4419995B2 (en) * 2006-08-16 2010-02-24 日本電気株式会社 Optical receiver evaluation and adjustment method and optical communication system

Also Published As

Publication number Publication date
JP2012142819A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5499632B2 (en) Optical transmitter, optical transmission / reception system, optical transmission method, and optical transmission / reception method
Hirooka et al. Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km
US20060193399A1 (en) Optical communication device
JP5585589B2 (en) Light modulation apparatus and light modulation method
Giddings et al. Experimental demonstration and optimisation of a synchronous clock recovery technique for real-time end-to-end optical OFDM transmission at 11.25 Gb/s over 25km SSMF
US20100014862A1 (en) Mach-Zehnder Light Modulator, Mach-Zehnder Light Modulating Method, Optical Transmitter, Light Modulator, Optical Transmitting Apparatus, and Optical Receiving Apparatus
Tan et al. Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network
Geisler et al. Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation
JP5068240B2 (en) Optical transmission system, transmitter and receiver
Tan et al. Optical Nyquist filtering for elastic OTDM signals: Fundamentals and demonstrations
US10396929B2 (en) All-optical regeneration system for optical wavelength division multiplexed communication systems
Wang et al. Optical Nyquist pulse generation using a time lens with spectral slicing
Nakazawa et al. Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission
EP3497825B1 (en) Encoding for optical transmission
JP5633876B2 (en) Coherent optical time division multiplexed signal demodulation method
JP5761704B2 (en) Optical time division multiplexing transmission method and optical time division multiplexing transmission system
WO2018096866A1 (en) Optical transmission method and optical transmission device
JP6074823B2 (en) Optical time division multiplexing transmission system
JP6304035B2 (en) Optical transmission system, optical phase modulator, and optical transmission method
US9602201B2 (en) Optical multiplexing device and method of generating optical OFDM signal
JP2005006174A (en) Optical time division multiplex transmission apparatus and reception apparatus
Yue et al. Nyquist OTDM signal demultiplexing utilizing a single IQ modulator
Preussler et al. Integrated Nyquist transmitter for data rates up to 100 Gbps
WO2014156203A1 (en) Lightwave communication system
Deng et al. Experimental demonstration and performance evaluation of flexible add/drop operations of DSP-switched ROADMs for cloud access networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150603

R150 Certificate of patent or registration of utility model

Ref document number: 5761704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees