JP5756684B2 - Carbon fiber manufacturing method - Google Patents

Carbon fiber manufacturing method Download PDF

Info

Publication number
JP5756684B2
JP5756684B2 JP2011133953A JP2011133953A JP5756684B2 JP 5756684 B2 JP5756684 B2 JP 5756684B2 JP 2011133953 A JP2011133953 A JP 2011133953A JP 2011133953 A JP2011133953 A JP 2011133953A JP 5756684 B2 JP5756684 B2 JP 5756684B2
Authority
JP
Japan
Prior art keywords
tow
storage container
guide bar
tension
acrylic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011133953A
Other languages
Japanese (ja)
Other versions
JP2011202341A (en
Inventor
洋二 畑中
洋二 畑中
暁 加地
暁 加地
川村 篤志
篤志 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2011133953A priority Critical patent/JP5756684B2/en
Publication of JP2011202341A publication Critical patent/JP2011202341A/en
Application granted granted Critical
Publication of JP5756684B2 publication Critical patent/JP5756684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

本発明は、アクリル繊維トウとして、集合小トウに分割することができるアクリル繊維トウ(以下、単にトウという場合もある。)にも適用可能である炭素繊維の製造方法、特に、品位、物性に優れた炭素繊維を得るために前駆体であるアクリル繊維トウを非捲縮糸とした場合に収納容器からの引き出し性に優れ、安定に炭素繊維製造工程にトウを連続供給する方法に関する。更に詳しくは、製造コストが低く、生産性に優れ、糸切れ、毛羽の発生が少ない、分割することのできるアクリル繊維トウを用いた炭素繊維の製造方法であって、耐炎化工程で均一、かつ、安定に耐炎化処理を行うことが可能な炭素繊維の製造方法に関する。   The present invention can be applied to an acrylic fiber tow (hereinafter sometimes simply referred to as “tow”) that can be divided into aggregated small tows as an acrylic fiber tow, particularly in terms of quality and physical properties. The present invention relates to a method for continuously supplying tow stably to a carbon fiber production process, which has excellent drawability from a storage container when acrylic fiber tow as a precursor is non-crimped yarn in order to obtain excellent carbon fiber. More specifically, it is a method for producing carbon fiber using acrylic fiber tow that is low in production cost, excellent in productivity, low in yarn breakage and fluff generation, and can be divided, and is uniform in the flameproofing step, and The present invention also relates to a method for producing a carbon fiber capable of stably performing a flameproofing treatment.

炭素繊維は、通常フィラメント数1000〜30000本の少数のフィラメントからなり、その前駆体であるアクリル繊維トウの梱包形態は一般にボビン巻きである。そこで炭素繊維製造工程においては、ボビンに巻き取られた前駆体をボビンから巻き戻した後、フィラメント密度を110〜5500dtex/mmとなるように、櫛ガイドまたは溝ローラーで規制して耐炎化工程に供給する方法が提案されている。炭素繊維の製造コストを下げるためには、一般にフィラメント数が40000本以上のいわゆるラージトウを使用すれば、生産能力が上がり効果的であるが、ラージトウをボビン巻きすることが困難なため、収納容器に振り込んで梱包するのが一般的である。   Carbon fiber usually consists of a small number of filaments having 1000 to 30000 filaments, and the packaging form of acrylic fiber tow which is a precursor thereof is generally bobbin-wound. Therefore, in the carbon fiber manufacturing process, after the precursor wound on the bobbin is unwound from the bobbin, the filament density is regulated by a comb guide or a groove roller so that the filament density becomes 110 to 5500 dtex / mm. A supply method has been proposed. In order to reduce the production cost of carbon fiber, it is generally effective to increase the production capacity by using so-called large tow with 40000 or more filaments, but it is difficult to bobbin large tow. It is common to transfer and pack.

従来、収納容器からトウを引き上げる技術は、衣料用繊維トウで用いられる整トウ技術が一般的であるが、その際の要求事項は、トウを長手方向に沿ってほぼ平行に重ねてカット工程へ供給することができればよく、トウを均一に、かつ、シート状に拡げる必要がなく、また、小トウへ分割する必要もなかった。一方、炭素繊維前駆体としてのトウを収納容器から引き上げる際に、トウの厚みむら、捩れ(撚り)が発生すると、耐炎化工程において反応熱が蓄積し、蓄熱により糸切れが発生したり、部分的に多くの毛羽が発生し、ローラーに巻き付きが生じる等の問題がある。   Conventionally, as a technique for pulling up the tow from the storage container, the toning technique used in the fiber tow for clothing is generally used, but the requirement at that time is that the tows are stacked substantially in parallel along the longitudinal direction to the cutting process. It was sufficient if the tow could be supplied, and it was not necessary to spread the tow uniformly and into a sheet, and it was not necessary to divide it into small tows. On the other hand, when the tow as a carbon fiber precursor is pulled up from the storage container, if uneven tow thickness or twist (twist) occurs, reaction heat accumulates in the flameproofing process, and yarn breakage may occur due to heat accumulation, In particular, there are problems such as generation of a lot of fluff and winding of the roller.

従来の技術として、収納容器から所定の引き上げ高さに整トウガイドを配置する方法が開示されている(例えば特許文献1参照)が、整トウガイドにフィードされる前に、引き上げ高さ分のトウの自重によって捩れ(撚り)を解除する必要があり、特にトウが非捲縮糸である場合、安定して捩れを解除することができなかった。   As a conventional technique, there is disclosed a method of arranging the adjusting tow guide at a predetermined lifting height from the storage container (see, for example, Patent Document 1). It is necessary to release the twist (twisting) due to the weight of the tow. In particular, when the tow is a non-crimped yarn, the twist cannot be stably released.

特開平11−229241号公報Japanese Patent Laid-Open No. 11-229241

本発明は、炭素繊維製造工程において、収納容器から鉛直に引き上げられるトウに、自重に加えて一定の張力を付与することにより、引き上げられるトウが、折れ曲がったり、捩れ(撚り)たりすることなく引き上げられ、引き続く焼成工程における糸切れや、毛羽発生による巻き付きを防止し、アクリル繊維トウから炭素繊維を生産性よく製造しようとするものである。   In the carbon fiber manufacturing process, the present invention provides a tow that is pulled up vertically from a storage container by applying a certain tension in addition to its own weight, so that the tow that is pulled up is not bent or twisted. Thus, it is intended to prevent yarn breakage in the subsequent firing step and wrapping due to generation of fluff, and to produce carbon fiber from acrylic fiber tow with high productivity.

すなわち本発明の要旨は、収納容器にシート状でトラバースされ収納されたアクリル繊維トウを鉛直方向に引き上げて、整トウガイドを介して焼成工程に送って炭素繊維を製造する方法であって、前記収納容器と前記整トウガイドの間に、アクリル繊維トウに対し、自重に加えて更に張力を付与する張力付与手段を配し、前記張力付与手段が、少なくとも3本の固定バーからなる箱上部ガイドバーであり、アクリル繊維トウに更に付与する張力f(g)を、下式(2)及び(3)を満たしながら、かつ下式()の範囲として、折れ曲がりや捩れを生じさせることなく整トウガイドに供給する、炭素繊維の製造方法である。
F×1.0×10−5≦f≦{F×(Y−700)/99}×8.5×10−6・・・(4)
f=f ×EXP(μθ) ・・・(2)
=F×h ×10 −7 ・・・(3)
ここで、Y(mm)は前記張力付与手段から前記整トウガイドまでの鉛直方向の引き上げ高さであって、Yの最大値が2500であり、Fはアクリル繊維トウの総繊度(dtex
)であり、 は前記箱上部ガイドバーまでのアクリル繊維トウの自重による張力(g)、μは動摩擦係数、θは前記箱上部ガイドバーへの抱き角(rad)、h は前記収納容器内のアクリル繊維トウの最上層面から前記箱上部ガイドバーの、アクリル繊維トウが最初に接触する部位までの距離(mm)を示す。但し、h に関しては、アクリル繊維トウを鉛直方向に引き上げるにつれて変動するため、アクリル繊維トウの最上層面が前記収納容器の最上部にあるときと最下部にあるときの2パターンにおいて、前記箱上部ガイドバーまでの自重による張力f を算出し、前記箱上部ガイドバーの抱き角θ、取り付け間隔、設置位置を設定する。収納容器内におけるトウのトラバース幅X(mm)が400≦X≦2,000、収納容器の高さH(mm)が50≦H≦2,000の範囲であり、Fはアクリル繊維トウの総繊度(dtex)である。
That is, the gist of the present invention is a method for producing a carbon fiber by pulling up an acrylic fiber tow traversed and stored in a sheet shape in a storage container in a vertical direction and sending it to a firing step through a tow guide, A tension applying means for further applying tension to the acrylic fiber tow in addition to its own weight is disposed between the storage container and the adjusting tow guide, and the tension applying means is a box upper guide comprising at least three fixed bars. The tension f (g) , which is a bar and is further applied to the acrylic fiber tow, satisfies the following formulas (2) and (3) and falls within the range of the following formula ( 4 ) without causing bending or twisting. It is a manufacturing method of carbon fiber supplied to a tow guide.
F × 1.0 × 10 −5 ≦ f ≦ {F × (Y−700) / 99} × 8.5 × 10 −6 (4)
f = f 0 × EXP (μθ) (2)
f 0 = F × h 0 × 10 −7 (3)
Here, Y (mm) is the vertical pulling height from the tension applying means to the adjusting tow guide, the maximum value of Y is 2500, and F is the total fineness (dtex) of the acrylic fiber tow
F 0 is the tension (g) due to the weight of the acrylic fiber tow up to the box upper guide bar, μ is the coefficient of dynamic friction, θ is the holding angle (rad) to the box upper guide bar, and h 0 is the storage The distance (mm) from the uppermost layer surface of the acrylic fiber tow in a container to the site | part which the acrylic fiber tow contacts first of the box upper guide bar is shown. However, with respect to h 0, in 2 pattern when to vary as pulling the acrylic fiber tow in the vertical direction, at the bottom and when the uppermost surface of the acrylic fiber tow at the top of the container, the box upper The tension f 0 due to the dead weight to the guide bar is calculated, and the holding angle θ, the mounting interval, and the installation position of the box upper guide bar are set. The tow traverse width X (mm) in the storage container is in the range of 400 ≦ X ≦ 2,000, the height H (mm) of the storage container is in the range of 50 ≦ H ≦ 2,000, and F is the total acrylic fiber tow Fineness (dtex).

前記張力付与手段は、少なくとも3本の固定バーからなることが好ましい。   The tension applying means preferably comprises at least three fixing bars.

収納容器内におけるトウのトラバース幅X(mm)が400≦X≦2,000、収納容器の高さH(mm)が50≦H≦2,000の範囲であり、Yの最大値が10Xである請求項1又は2に記載の炭素繊維の製造方法、がより好ましい The tow traverse width X (mm) in the storage container is in the range of 400 ≦ X ≦ 2,000, the height H (mm) of the storage container is in the range of 50 ≦ H ≦ 2,000, and the maximum value of Y is 10X The carbon fiber production method according to claim 1 or 2 is more preferred .

本発明によれば、炭素繊維製造工程において、収納容器から鉛直に引き上げられるトウに、さらに張力を付与し、収納容器から引き上げられるトウに、折れ曲がりや捩れ(撚り)を生じさせることなく整トウガイドに供給することができ、焼成工程における糸切れを防止し、炭素繊維の生産性を向上することができる。   According to the present invention, in the carbon fiber manufacturing process, tension is further applied to the tow that is pulled up vertically from the storage container, and the tow that is pulled up from the storage container does not cause bending or twisting (twisting). The yarn can be prevented from being broken in the firing step, and the productivity of the carbon fiber can be improved.

以下、本発明について、実施の態様を詳細に説明する。
本発明において、炭素繊維の前駆体であるアクリル繊維トウは、シート状でトラバースされて、前後、左右に振られながら、収納容器に振り込まれる。トウが収納された収納容器は、前駆体製造工程から耐炎化工程を経る炭素繊維製造工程へ移送され、例えば直置き、又は、台車やパレット等に積み替えられて静置された後、トウが収納容器から鉛直方向に引き上げられ整トウされる。
Hereinafter, embodiments of the present invention will be described in detail.
In the present invention, the acrylic fiber tow, which is a carbon fiber precursor, is traversed in the form of a sheet, and is transferred into the storage container while being shaken back and forth and left and right. The storage container in which the tow is stored is transferred from the precursor manufacturing process to the carbon fiber manufacturing process that goes through the flameproofing process. For example, the storage container is placed directly, or transferred to a cart, pallet, etc. It is pulled up from the container in the vertical direction and trimmed.

トラバースされて収納容器に収納されたアクリル繊維トウを、鉛直方向に引き上げ焼成する炭素繊維の製造方法において、本発明は、整トウガイドへトウの捩れや撚りがフィードされるのを防ぐため、整トウガイドと収納容器との間に張力付与手段を設け、アクリル繊維トウに対し、自重に加えて一定範囲の張力を更に付与する。   In the carbon fiber manufacturing method in which the acrylic fiber tow traversed and stored in the storage container is pulled up and fired in the vertical direction, the present invention prevents the tow twist or twist from being fed to the adjusting tow guide. A tension applying means is provided between the toe guide and the storage container to further apply a certain range of tension to the acrylic fiber tow in addition to its own weight.

張力付与手段は必ずしも限定されないが、収納容器と整トウガイドとの間に、少なくとも3本の固定バーを配置し、固定バーによって張力を付与することが好ましい。   The tension applying means is not necessarily limited, but it is preferable to dispose at least three fixing bars between the storage container and the towing guide and apply the tension by the fixing bars.

トウのトラバースに伴い、固定バーへのトウの抱き角など接触状態の変化があるため、少なくとも3本の固定バーを配置すると、連続して張力を付与し続けることができ、また、トウが通過する間隔すなわちクリアランスを、トウの厚みに極めて近い間隔とする必要もなく、調整が容易となり、かつ撚れが生じた場合でも引っかかりが生じることはない。
また、箱内でのトウのトラバースされた配置状態によって、接触状態の変化により摩擦によって付加される張力の変動が大きくなることもない。
As the tow traverse changes the contact state, such as the tow angle of the tow, it is possible to continue to apply tension continuously by placing at least three fixed bars, and the tow passes It is not necessary to set the interval, that is, the clearance to be very close to the thickness of the tow, adjustment is easy, and even when twisting occurs, no catching occurs.
Further, due to the traversed arrangement state of the tows in the box, the variation of the tension applied by friction due to the change of the contact state does not increase.

アクリル繊維トウから炭素繊維を製造するための焼成工程は、通常耐炎化工程とそれに引き続く炭素化工程とからなる。本発明の製造方法に用いるアクリル繊維トウは、1本のトウ形態を用いることができる以外にも、1本のトウ形態を保ちながら、2本以上の複数の小トウに分割することのできるアクリル繊維トウや、主に耐炎化工程通過後に得られる耐炎繊維として供されるトウも用いることができる。複数の小トウに分割可能なアクリル繊維トウは、所定数の複数の糸条群が並行してなるトウに各糸条群の側端部(耳部)で互いに弱く交絡し合い、シート状に保持させた形態であることが好ましい。   The firing process for producing carbon fibers from acrylic fiber tows usually comprises a flameproofing process followed by a carbonization process. The acrylic fiber tow used in the production method of the present invention can be divided into two or more small tows while maintaining one tow form, in addition to using one tow form. A fiber tow and a tow provided as a flame resistant fiber obtained mainly after passing through the flame resistance process can also be used. Acrylic fiber tows that can be divided into a plurality of small tows are weakly entangled with each other at the side ends (ears) of a plurality of yarn groups in parallel with each other at a side end (ear portion) of the yarn groups. A retained form is preferred.

炭素繊維の前駆体であるアクリル繊維トウは、アクリロニトリル単位90〜99.9質量%に対し、他の共重合可能なモノマー単位を0.1〜10質量%の割合で共重合させたアクリロニトリル共重合体を紡糸して得られるアクリル繊維トウである。アクリロニトリルと共重合可能な他の単量体としては、例えばアクリル酸、メタクリル酸、イタコン酸等の不飽和カルボン酸又はその塩、メチルアクリレート、エチルアクリレート、メチルメタクリレート、アクリルアミド、メタクリルアミド、2−ヒドロキシエチルアクリロニトリル、クロロアクリルニトリル等である。   Acrylic fiber tow, which is a precursor of carbon fiber, is an acrylonitrile copolymer obtained by copolymerizing other copolymerizable monomer units at a ratio of 0.1 to 10% by mass with respect to 90 to 99.9% by mass of acrylonitrile units. This is an acrylic fiber tow obtained by spinning the coalescence. Examples of other monomers copolymerizable with acrylonitrile include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid or salts thereof, methyl acrylate, ethyl acrylate, methyl methacrylate, acrylamide, methacrylamide, 2-hydroxy Examples thereof include ethylacrylonitrile and chloroacrylonitrile.

次に、添付の図面に基づいて説明する。図1に示した様に、トウ3の引き上げ高さY(mm)とは、収納容器1の上部に設けた張力付与手段4がアクリル繊維トウに接触する部位の最上部から、整トウガイド2のうち、アクリル繊維トウが最初に接触する部位までの距離をいう。   Next, a description will be given based on the attached drawings. As shown in FIG. 1, the lifting height Y (mm) of the tow 3 is determined from the top of the portion where the tension applying means 4 provided on the upper portion of the storage container 1 contacts the acrylic fiber tow, and the adjusting tow guide 2. Among them, it means the distance to the part where the acrylic fiber tow first contacts.

このときトウ3の引き上げ高さY(mm)は、図2に示すように収納容器1内におけるトウのトラバース幅をX(mm)、収納容器1の高さをH(mm)としたとき、Yの最小値が2XまたはH+700の何れか大きい数値、且つYの最大値が10Xになるように設定することが好ましい。ここでトラバース幅Xは400≦X≦2,000、収納容器1の高さHは50≦H≦2,000の範囲が好ましい。   At this time, the lifting height Y (mm) of the tow 3 is, as shown in FIG. 2, when the traverse width of the tow in the storage container 1 is X (mm) and the height of the storage container 1 is H (mm), It is preferable to set so that the minimum value of Y is a larger value of 2X or H + 700 and the maximum value of Y is 10X. Here, the traverse width X is preferably in the range of 400 ≦ X ≦ 2,000, and the height H of the storage container 1 is preferably in the range of 50 ≦ H ≦ 2,000.

整トウガイド2は、少なくとも2本、好ましくは3本以上のガイドバーから構成される。係るガイドバーは平ガイドバー(軸方向に直線状のガイドバー)であっても、湾曲ガイドバー(軸方向に、ある曲率で湾曲したガイドバー)であってもよい。トウ3は、図3に1例として示した様にガイドバーに互い違いに接触させつつ通し次の工程に送られる。
必要に応じ整トウ後にピンガイドなど小トウ単位に分割する工程を設けることも可能である。
The toning guide 2 is composed of at least two, preferably three or more guide bars. Such a guide bar may be a flat guide bar (a linear guide bar in the axial direction) or a curved guide bar (a guide bar curved in the axial direction with a certain curvature). As shown as an example in FIG. 3, the tow 3 is passed through the next process while being alternately brought into contact with the guide bar.
It is also possible to provide a step of dividing into small toe units such as pin guides after adjusting tow as necessary.

トウの引き上げ高さYの最大値が2500であれば、整トウガイド2の設置高さが高くなりすぎて糸掛け等の作業性が悪くなることがない。また、クリール設備が大きくなり過ぎて、製造コストが上昇することもない。 If the maximum value of the tow pulling height Y is 2500 , the installation height of the adjusting tow guide 2 will not be too high, and workability such as threading will not deteriorate. In addition, the creel equipment does not become too large and the manufacturing cost does not increase.

一方、引き上げ高さYの最小値が2XまたはH+700の何れか大きいほうであれば、トウの自重による張力が大きくなるので、整トウガイド2を構成する複数のガイドバー上で糸揺れが多発することがなく、湾曲ガイドを用いた場合でも、走行糸条の片寄りや、トウ側端部の折れ曲がりや、捩れ(撚り)が発生し難い。従って収納容器を複数隣接して配置する場合であっても、隣接する収納容器から引き上げられたトウが互いに接触しないように、収納容器同士の間隔を広くする必要がなく、クリール設備面積が大きくなって製造コストが上昇することもない。 On the other hand, if the minimum value of the pulling height Y is 2X or H + 700, whichever is larger, the tension due to the tow's own weight increases, so that the yarn sway frequently occurs on the plurality of guide bars constituting the adjusting tow guide 2. Even when the curved guide is used, the running yarn is not easily displaced, the toe side end portion is bent or twisted (twisted) hardly occurs. Accordingly, even when a plurality of storage containers are arranged adjacent to each other, it is not necessary to widen the interval between the storage containers so that the tows pulled up from the adjacent storage containers do not contact each other, and the area of the creel facility increases. Manufacturing costs do not increase.

図3には、整トウガイドバーA〜Eの配置の1例を示す。ガイドバーA〜Eは平ガイドと、湾曲ガイドから構成することができる。この場合、A〜Cを平ガイド、D〜Eを湾曲ガイドとする組合せや、A、C、Eを平ガイド、B、Dを湾曲ガイドとする組合せなどが用いられる。図3には5本のガイドバーによって構成される整トウガイドの例を示しているが、必ずしも5本に限定されるわけではなく、トウの走行状態などから適宜その構成本数を決定すればよい。   FIG. 3 shows an example of the arrangement of the towing guide bars A to E. The guide bars A to E can be composed of a flat guide and a curved guide. In this case, a combination in which A to C are flat guides and D to E are curved guides, or a combination in which A, C, and E are flat guides, and B and D are curved guides is used. FIG. 3 shows an example of a toning guide composed of five guide bars. However, the number is not necessarily limited to five, and the number of components may be determined as appropriate based on the running state of the tow. .

次に、図4に収納容器1よりトウ3を鉛直方向に引き上げ、整トウし、焼成工程に供給する際に、収納容器1の上部に設けた張力付与手段として、鉛直方向に並んだ3本のバーによる箱上部ガイドバー4を用いた場合の実施の態様を示す。収納容器の上部に取り付けられる箱上部ガイドバー4には平ガイドバーが用いられる。なお、ガイドバーの材質は特に限定されないが、耐久性及びコストを考慮すれば、鉄、ステンレス等の金属、またはセラミックが好ましい。ガイドバーの直径も特に制約を受けるものではないが、収納容器1に直接取り付けることが好ましいことを考慮すると、直径15mm〜50mm程度のものが好適である。   Next, in FIG. 4, when the tow 3 is pulled up from the storage container 1 in the vertical direction, adjusted tow, and supplied to the firing process, three pieces arranged in the vertical direction as tension applying means provided on the upper part of the storage container 1. The embodiment in the case of using the box upper guide bar 4 by the bar of FIG. A flat guide bar is used for the box upper guide bar 4 attached to the upper part of the storage container. The material of the guide bar is not particularly limited, but considering durability and cost, metals such as iron and stainless steel, or ceramics are preferable. The diameter of the guide bar is not particularly limited, but considering that it is preferable to directly attach the guide bar to the storage container 1, a diameter of about 15 mm to 50 mm is preferable.

また、張力付与手段により付与する張力f(g)は、引き上げ高さY(mm)及びトウの総繊度F(dtex)より、下式(1)の範囲である場合に一定の効果が期待できる
F×5.0×10−6≦f≦{F×(Y−700)/99}×10−5 ・・・(1)
本発明における付与する張力fの値の範囲は、さらに安定したトウ3の引き上げを考慮すると、下式(4)を満足する範囲である。
F×1.0×10 −5 ≦f≦{F×(Y−700)/99}×8.5×10 −6 ・・・(4)
Further, when the tension f (g) applied by the tension applying means is within the range of the following formula (1) from the pulling height Y (mm) and the total fineness F (dtex) of the tow , a certain effect can be expected. .
F × 5.0 × 10 −6 ≦ f ≦ {F × (Y−700) / 99} × 10 −5 (1)
The range of the value of the applied tension f in the present invention is a range that satisfies the following formula (4) in consideration of the more stable pulling of the tow 3.
F × 1.0 × 10 −5 ≦ f ≦ {F × (Y−700) / 99} × 8.5 × 10 −6 (4)

ここで決定したfの値及び下式(2)及び(3)を用いて箱上部ガイドバー4への抱き角を算出し、箱上部ガイドバー4の取り付け間隔や設置位置を設定することができる。
f=f×EXP(μθ) ・・・(2)
=F×h0×10−7 ・・・(3)
The holding angle to the box upper guide bar 4 can be calculated using the value of f determined here and the following equations (2) and (3), and the mounting interval and installation position of the box upper guide bar 4 can be set. .
f = f 0 × EXP (μθ) (2)
f 0 = F × h0 × 10 −7 (3)

ここでfは箱上部ガイドバー4までの自重による張力(g)、μは動摩擦係数、θは箱上部ガイドバー4への抱き角(rad)、h0は収納容器1内のトウの最上層面から箱上部ガイドバー4の、トウが最初に接触する部位までの距離(mm)を示(θ:箱上部ガイドバー4への抱き角とは、図9に示すように、各ガイドバーにトウがまきついた部分の合計の角度である。図9の例ではθ=θ1+θ2+θ3である)。 Here, f 0 is the tension (g) due to its own weight up to the box upper guide bar 4, μ is the coefficient of dynamic friction, θ is the holding angle (rad) to the box upper guide bar 4, and h 0 is the uppermost surface of the tow in the storage container 1. the box upper guide bar 4 from to indicate the distance (mm) until the site where the toe first contacts (theta: the embracing angle to the box upper guide bar 4, as shown in FIG. 9, each guide bar This is the total angle of the portion where the tows are strewn (in the example of FIG. 9, θ = θ1 + θ2 + θ3 ).

但し、h0に関しては、トウ3を鉛直方向に引き上げるにつれて変動するため、トウの最上層面が収納容器1の最上部にあるときと最下部にあるときの2パターンにおいて、箱上部ガイドバー4までの自重による張力f  However, h0 varies as the tow 3 is pulled up in the vertical direction, so that the upper layer surface of the tow 3 is located at the top and the bottom of the storage container 1, and the pattern up to the box upper guide bar 4 is reached. Tension f due to its own weight 0 を算出し、箱上部ガイドバー4の抱き角θ、取り付け間隔、設置位置を設定する。Is calculated, and the holding angle θ, the mounting interval, and the installation position of the box upper guide bar 4 are set.

本発明において、付与する張力を{F×(Y−700)/99}×8.5×10  In the present invention, the applied tension is {F × (Y−700) / 99} × 8.5 × 10. −6-6 (g)以下とすることにより、トウ3を引き上げている際に捩れ(撚り)が発生した場合も、トウ3を拘束する力が強すぎず、引き上げ高さYの間で捩れ(撚り)を戻すことができる。一方、付与する張力がF×1.0×10(G) By making the following, even when twisting (twisting) occurs when pulling up the tow 3, the force that restrains the tow 3 is not too strong, and twisting (twisting) between the lifting heights Y is performed. Can be returned. On the other hand, the applied tension is F × 1.0 × 10 −5-5 (g)以上とすることにより、引き上げ高さYの間でのトウ3の揺れが抑えられ、整トウガイド2において、トウ側端部の折れ曲がりや捩れ(撚り)が発生が抑えられる。(G) By setting it as the above, the shake of the tow | toe 3 between the raising height Y is suppressed, and the bending and twisting (twisting) of a toe side edge part are suppressed in the adjusting tow guide 2. FIG.

図5、図6は、収納容器1のトウの末端と収納容器1’のトウの先端を共に耐炎化処理し、高速流体処理によって接続することにより、2箱以上のトウ3を鉛直方向に引き上げ、整トウし、焼成工程に連続供給する際の箱上部ガイドバー4の態様を示す。図5においては、収納容器1と収納容器1’を、トウ3を鉛直方向に引き上げた後のトウ3の進行方向と直交する方向に並べた配置となっており、図6においては、収納容器1と収納容器1’を、トウ3を鉛直方向に引き上げた後のトウ3の進行方向と平行に並べた配置となっている。   FIGS. 5 and 6 show that the toe end of the storage container 1 and the toe end of the storage container 1 ′ are both flameproofed and connected by high-speed fluid processing to pull up two or more boxes of tows 3 in the vertical direction. The aspect of the box upper guide bar 4 at the time of adjusting and towing and continuously supplying to the baking process is shown. In FIG. 5, the storage container 1 and the storage container 1 ′ are arranged in a direction perpendicular to the advancing direction of the tow 3 after the tow 3 is pulled up in the vertical direction. In FIG. 1 and the storage container 1 ′ are arranged in parallel with the traveling direction of the tow 3 after the tow 3 is pulled up in the vertical direction.

図5のような配置にした場合には、収納容器1と収納容器1’兼用の箱上部ガイドバー4の取り付け間隔や設置位置は、図4で示した箱上部ガイドバー4と同様に鉛直方向に並んだ3本のバーの軸方向の長さを延長することで対応できる。しかしながら、図6のような配置にした場合には、どちらか一方の収納容器の真上に箱上部ガイドバー4を取り付けると、もう一方のトウ3を引き上げる際のガイドバーへの抱き角θが大きくなり、付与する張力fも大きくなる。   In the case of the arrangement as shown in FIG. 5, the mounting interval and the installation position of the container 1 and the container upper guide bar 4 serving as the container 1 ′ are set in the vertical direction as in the case of the box upper guide bar 4 shown in FIG. This can be dealt with by extending the axial length of the three bars arranged in a row. However, in the case of the arrangement as shown in FIG. 6, if the box upper guide bar 4 is attached directly above one of the storage containers, the holding angle θ to the guide bar when the other tow 3 is pulled up is increased. As a result, the applied tension f increases.

付与する張力fが上述の式(1)の範囲に入っていれば、どちらか一方の収納容器の真上に箱上部ガイドバー4を取り付けても問題ないが、収納容器1と収納容器1’の間に箱上部ガイドバー4を設置する方が、ガイドバーへの抱き角θの差が少なくなるため好ましい。箱上部ガイドバー4を、鉛直方向に並んだ3本のバー(丸棒)とした場合でも若干のガイドバーへの抱き角θの差が生じるため、抱き角θの差がないように、図7のような、最下部に横方向に二本のバーを配置し、その上部に鉛直方向に2本のバーを配置した箱上部ガイドバーの形状とするのが良い。   If the tension f to be applied is within the range of the above formula (1), there is no problem even if the box upper guide bar 4 is attached directly above one of the storage containers, but the storage container 1 and the storage container 1 ′. It is preferable to install the box upper guide bar 4 between the two because the difference in the holding angle θ with respect to the guide bar is reduced. Even when the box upper guide bar 4 is made of three bars (round bars) arranged in the vertical direction, a slight difference in the holding angle θ with respect to the guide bar occurs, so that there is no difference in the holding angle θ. As shown in FIG. 7, it is preferable to form the shape of a box upper guide bar in which two bars are arranged in the horizontal direction at the bottom and two bars are arranged in the vertical direction at the top.

本発明はアクリル繊維トウの繊度が38000〜1650000dtexのトウを用いることが好ましく、またトウの形態は、38000dtex以上275000dtex以下の小トウへ分割することができるアクリル繊維トウを用いることも可能である。さらに、本発明には、小トウへの分割することができない総繊度165000〜9900000dtexのアクリル繊維トウを用いることも可能である。   In the present invention, it is preferable to use a tow whose acrylic fiber tow has a fineness of 38000 to 1650000 dtex, and it is also possible to use an acrylic fiber tow that can be divided into small tows of 38000 dtex or more and 275000 dtex or less. Furthermore, in the present invention, it is also possible to use an acrylic fiber tow having a total fineness of 165000 to 990000 dtex that cannot be divided into small tows.

整トウ後のトウの糸条密度は2200〜8250dtex/mmの範囲にすることが好ましい。ここで糸条密度とは、糸条幅1mm当たりの総繊度を指し、総繊度(dtex)/糸幅(mm)で算出する。炭素繊維製造工程では、クリールから耐炎化工程に送られる糸条密度を規制することで多糸条並列運転が可能となり、製造コストを下げることができるが、糸条密度が8250dtex/mm以下であるとトウに厚みむらが生じ難く、耐炎化工程において反応熱による蓄熱が起こる可能性が低く、糸切れ等の問題は生じない。また、糸条密度が2200dtex/mmより大きいと、クリール設備が大幅に大きくなっ
て製造コストが上昇することもない。
It is preferable that the yarn density of the tow after trimming is in the range of 2200-8250 dtex / mm. Here, the yarn density refers to the total fineness per 1 mm of the yarn width, and is calculated by total fineness (dtex) / yarn width (mm). In the carbon fiber manufacturing process, by controlling the yarn density sent from the creel to the flameproofing process, parallel operation of multiple yarns becomes possible and the manufacturing cost can be reduced, but the yarn density is 8250 dtex / mm or less. The tow is less likely to have uneven thickness, and the possibility of heat accumulation due to reaction heat in the flameproofing process is low, and problems such as yarn breakage do not occur. On the other hand, if the yarn density is larger than 2200 dtex / mm, the creel equipment is greatly increased, and the production cost does not increase.

次に、本発明の実施例を挙げてより具体的に説明する。
<実施例1>
総繊度60000dtexのアクリル繊維トウ3を、高さ1000mmの収納容器1にトウのトラバース幅Xを720mmとして振り込んで収納した。
Next, examples of the present invention will be described in more detail.
<Example 1>
The acrylic fiber tow 3 having a total fineness of 60000 dtex was stored in a storage container 1 having a height of 1000 mm by swinging the tow traverse width X to 720 mm.

次に、トウ密度を2200〜8250dtex/mmに規制するための整トウガイド2を配するにあたって、引き上げ高さY(mm)=2500とした。また、整トウガイド2は、直径20mmの平ガイドバー(表面粗度:Ra 3.2a)をA、C、Eの3本と、湾曲ガイドバー(曲率半径:600mm、表面粗度:Ra 3.2a)B、D2本を用いて図3に示すように構成した。   Next, when arranging the adjusting tow guide 2 for regulating the tow density to 2200-8250 dtex / mm, the lifting height Y (mm) = 2500 was set. In addition, the toe guide 2 has a flat guide bar (surface roughness: Ra 3.2a) having a diameter of 20 mm, three of A, C, and E, and a curved guide bar (curvature radius: 600 mm, surface roughness: Ra 3). .2a) The configuration shown in FIG.

箱上部ガイドバー4は、直径20mmの平ガイドバー(表面粗度:Ra 3.2a)を3本用いて、図4に示すように収納容器上部に垂直方向に並べて配置した。箱上部ガイドバー4の取り付け間隔と取り付け高さは、付与する張力fの範囲が上記(1)式より0.3≦f≦10.9となるため、収納容器1の最下部においてトウ3に付与する張力f=9.0(g)と設定し、動摩擦係数μ=0.28として、上記式(2)、(3)により算出した結果、取り付け間隔を70mm、最下部となるバーの取り付け高さを収納容器1の最下部より1100mmとした。この箱上部ガイドバー4の構成にて、収納容器1箱分のトウ3を引き上げる際に付与される張力範囲は、引き上げ開始のとき0.83、引き上げ終わりのとき9.13(g)となる。   As shown in FIG. 4, the box upper guide bar 4 was arranged in the vertical direction on the upper part of the storage container using three flat guide bars (surface roughness: Ra 3.2a) having a diameter of 20 mm. As for the attachment interval and the attachment height of the box upper guide bar 4, the range of the tension f to be applied is 0.3 ≦ f ≦ 10.9 from the above equation (1). As a result of setting the applied tension f = 9.0 (g) and calculating the dynamic friction coefficient μ = 0.28 by the above formulas (2) and (3), the attachment interval is 70 mm, and the lowermost bar is attached. The height was 1100 mm from the lowermost part of the storage container 1. With the configuration of the box upper guide bar 4, the tension range applied when pulling up the tow 3 for one storage container is 0.83 at the start of lifting and 9.13 (g) at the end of lifting. .

この工程を通して540m/hの速度でトウ3を炭素繊維焼成工程へ供給した。その結果、75時間にわたって捩れ(撚り)に起因する問題がおこらず安定に炭素繊維を製造することができた。   Through this process, tow 3 was supplied to the carbon fiber firing process at a speed of 540 m / h. As a result, carbon fiber could be stably produced without causing problems due to twisting (twisting) for 75 hours.

<実施例2>
総繊度60000dtexのアクリル繊維トウ3を、高さ1000mmの収納容器1と収納容器1’に、トウのトラバース幅Xを720mmとして振り込んで収納し、収納容器1のトウ3の末端と収納容器1’のトウ3の先端をそれぞれ耐炎化処理し、高速流体を吹き付けて交絡処理して接続した。収納容器1と収納容器1’は間隔を200mm開けて配置した。
<Example 2>
Acrylic fiber tow 3 having a total fineness of 60000 dtex is placed in storage container 1 and storage container 1 ′ having a height of 1000 mm by swinging the tow traverse width X to 720 mm, and storing the end of tow 3 of storage container 1 and storage container 1 ′. Each tip of the tow 3 was flameproofed and sprayed with a high-speed fluid to be entangled and connected. The storage container 1 and the storage container 1 ′ were arranged with an interval of 200 mm.

箱上部ガイドバー4として、図8に示すように、収納容器1と収納容器1’の中心にくるように配置した。引き上げ高さY(mm)、整トウガイド2の構成は実施例1と同様にした。   As shown in FIG. 8, the box upper guide bar 4 is arranged so as to be at the center of the storage container 1 and the storage container 1 '. The lifting height Y (mm) and the configuration of the adjusting tow guide 2 were the same as those in Example 1.

付与する張力は、収納容器1の最下部においてf=9.0(g)と設定し、箱上部ガイドバー4の取り付け間隔を160mm、最下部となるバーの取り付け高さを収納容器1、1’の最下部より1100mmとした。この箱上部ガイドバー4の構成にて、収納容器2箱分のトウ3をそれぞれ引き上げる際の付与する張力範囲は、引き上げ開始のとき1.51、引き上げ終わりのとき9.0(g)となる。   The tension to be applied is set to f = 9.0 (g) at the lowermost part of the storage container 1, the mounting interval between the box upper guide bars 4 is 160 mm, and the mounting height of the lowermost bar is set to the storage containers 1,1. It was 1100 mm from the bottom of '. With the configuration of the box upper guide bar 4, the tension range to be applied when the tow 3 for the two storage containers is pulled up is 1.51 at the start of lifting and 9.0 (g) at the end of lifting. .

この工程を通して実施例1と同様にトウ3を炭素繊維焼成工程へ供給した。その結果、150時間にわたって捩れ(撚り)に起因する問題がおこらず安定に炭素繊維を製造することができた。   Through this step, tow 3 was supplied to the carbon fiber firing step in the same manner as in Example 1. As a result, the problem caused by twisting (twisting) did not occur over 150 hours, and the carbon fiber could be produced stably.

<実施例3>
繊度60000dtexの小トウ3本に分割することのできる、総繊度180000dtexのアクリル繊維トウ3を、実施例1と同様の容器、トラバース幅にて振り込んで収納容器1に収納した。引き上げ高さY(mm)、整トウガイド2の構成及び箱上部ガイドバー4の形状は実施例1と同様にした。箱上部ガイドバー4の取り付け間隔と取り付け高さは、付与する張力fの範囲は上記(1)式に従うと0.9≦f≦32.7となるため、収納容器1の最下部においてトウ3に付与する張力f=27.0(g)と設定し、取り付け間隔を70mm、最下部となるバーの取り付け高さを収納容器1の最下部より1100mmとした。この箱上部ガイドバー4の構成にて、収納容器1箱分のトウ3を引き上げる際の付与する張力範囲は、引き上げ開始のとき2.49、引き上げ終わりのとき27.39(g)となる。
<Example 3>
An acrylic fiber tow 3 having a total fineness of 180,000 dtex, which can be divided into three small tows having a fineness of 60000 dtex, was transferred into the storage container 1 by being transferred in the same container and traverse width as in Example 1. The lifting height Y (mm), the configuration of the toning guide 2 and the shape of the box upper guide bar 4 were the same as in Example 1. As for the attachment interval and the attachment height of the box upper guide bar 4, the range of the applied tension f is 0.9 ≦ f ≦ 32.7 according to the above equation (1). Was set to 27.0 (g), the mounting interval was set to 70 mm, and the mounting height of the lowermost bar was set to 1100 mm from the lowermost portion of the storage container 1. With the configuration of the box upper guide bar 4, the tension range applied when lifting the tow 3 for one storage container is 2.49 at the start of lifting and 27.39 (g) at the end of lifting.

この工程を通して実施例1と同様にトウ3を炭素繊維焼成工程へ供給した。その結果、25時間にわたって捩れ(撚り)に起因する問題がおこらず安定に炭素繊維を製造することができた。   Through this step, tow 3 was supplied to the carbon fiber firing step in the same manner as in Example 1. As a result, the problem caused by twisting (twisting) did not occur over 25 hours, and the carbon fiber could be produced stably.

<比較例1>
収納容器1の上部に箱上部ガイドバー4を設置せず、更なる張力を付与しない(f=0)以外は、実施例1と同様にして炭素繊維の製造を実施した。その結果、トウの供給を開始してから1時間後に捩れ(撚り)による耐炎化工程での糸切れが発生したため製造工程を停止した。
<Comparative Example 1>
Carbon fiber was produced in the same manner as in Example 1 except that the box upper guide bar 4 was not installed on the upper part of the storage container 1 and no further tension was applied (f = 0). As a result, one hour after the start of tow supply, the production process was stopped because yarn breakage occurred in the flameproofing process due to twisting (twisting).

<比較例2>
収納容器1の最上部においてトウ3に付与する張力f=13.0(g)となるように、箱上部ガイドバー4の取り付け間隔を35mm、取り付け高さを収納容器1の最下部より2100mmとした以外は、実施例1と同様にした。この箱上部ガイドバー4の構成にて、収納容器1箱分のトウ3を引き上げる際の付与する張力範囲は、引き上げ開始のとき13.04、引き上げ終わりのとき24.90(g)となる。その他は実施例1と同様にして炭素繊維の製造を実施した。その結果、トウの供給を開始してから4時間後に、捩れ(撚り)による耐炎化工程での糸切れが発生したため製造工程を停止した。
<Comparative Example 2>
The attachment interval of the box upper guide bar 4 is set to 35 mm and the attachment height is set to 2100 mm from the lowermost part of the storage container 1 so that the tension f applied to the tow 3 at the uppermost part of the storage container 1 is 13.0 (g). The procedure was the same as in Example 1 except that. With the configuration of the box upper guide bar 4, the tension range to be applied when lifting the tow 3 for one storage container is 13.04 at the start of lifting and 24.90 (g) at the end of lifting. Otherwise, the production of carbon fiber was carried out in the same manner as in Example 1. As a result, four hours after starting tow supply, the production process was stopped because yarn breakage occurred in the flameproofing process due to twisting (twisting).

<比較例3>
引き上げ高さY(mm)=1000とした以外は、実施例1と同様にした。このときの付与する張力fの範囲は上記式(1)に従うと0.3≦f≦1.8となる。この箱上部ガイドバー4の構成にて、収納容器1箱分のトウ3を引き上げる際に付与される張力範囲は、引き上げ開始のとき0.83、引き上げ終わりのとき9.13(g)となる。
なお、引き上げ高さY(mm)=1000のときの付与する張力の上限値fmax=1.8(g)となるトウ最上層面から箱上部ガイドバー4までの距離h0は220mmである。
<Comparative Example 3>
The same operation as in Example 1 was performed except that the lifting height Y (mm) was set to 1000. The range of the tension f applied at this time is 0.3 ≦ f ≦ 1.8 according to the above formula (1). With the configuration of the box upper guide bar 4, the tension range applied when pulling up the tow 3 for one storage container is 0.83 at the start of lifting and 9.13 (g) at the end of lifting. .
The distance h0 from the top toe layer surface to the box upper guide bar 4 where the upper limit value fmax of the applied tension fmax = 1.8 (g) when the lifting height Y (mm) = 1000 is 220 mm.

この工程を通して実施例1と同様にトウ3を炭素繊維焼成工程へ供給した。その結果、約9時間後、トウ最上層面から箱上部ガイドバー4までの距離h0=220mmとなり、その15分後には捩れ(撚り)による耐炎化工程での糸切れが発生したため製造工程を停止した。   Through this step, tow 3 was supplied to the carbon fiber firing step in the same manner as in Example 1. As a result, after about 9 hours, the distance from the top layer of the tow to the box upper guide bar 4 was h0 = 220 mm, and after 15 minutes, the production process was stopped because yarn breakage occurred in the flameproofing process due to twisting (twisting). .

以上の実施例1〜3、比較例1〜3の概要を表1に示す。
A summary of Examples 1 to 3 and Comparative Examples 1 to 3 is shown in Table 1.

本発明の炭素繊維の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the carbon fiber of this invention. 本発明の炭素繊維の製造方法に使用する、収納容器の一例を示す模式図である。It is a schematic diagram which shows an example of the storage container used for the manufacturing method of the carbon fiber of this invention. 本発明の炭素繊維の製造方法に使用する、整トウガイドの一例を示す模式図である。It is a schematic diagram which shows an example of a toning guide used for the manufacturing method of the carbon fiber of this invention. 本発明の炭素繊維の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the carbon fiber of this invention. 本発明に使用する張力付与装置(箱上部ガイドバー)と収納容器の配置の一例を示す模式図である。It is a schematic diagram which shows an example of arrangement | positioning of the tension | tensile_strength provision apparatus (box upper guide bar) used for this invention, and a storage container. 本発明に使用する張力付与装置(箱上部ガイドバー)と収納容器の配置の一例を示す模式図である。It is a schematic diagram which shows an example of arrangement | positioning of the tension | tensile_strength provision apparatus (box upper guide bar) used for this invention, and a storage container. 本発明に使用する張力付与装置(箱上部ガイドバー)の配置の一例を示す模式図である。It is a schematic diagram which shows an example of arrangement | positioning of the tension | tensile_strength provision apparatus (box upper guide bar) used for this invention. 本発明の炭素繊維の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the carbon fiber of this invention. 張力付与装置(箱上部ガイドバー)による張力付与の態様の一例を示す模式図である。It is a schematic diagram which shows an example of the aspect of tension | tensile_strength provision by a tension | tensile_strength provision apparatus (box upper part guide bar).

1:収納容器
2:整トウガイド
3:トウ
4:箱上部ガイドバー
1: Storage container 2: Adjusting tow guide 3: Tow 4: Box upper guide bar

Claims (1)

収納容器にシート状でトラバースされ収納されたアクリル繊維トウを鉛直方向に引き上げて、整トウガイドを介して焼成工程に送って炭素繊維を製造する方法であって、
前記収納容器と前記整トウガイドの間に、アクリル繊維トウに対し、自重に加えて更に張力を付与する張力付与手段を配し、前記張力付与手段が、少なくとも3本の固定バーからなる箱上部ガイドバーであり、アクリル繊維トウに更に付与する張力f(g)を、下式(2)及び(3)を満たしながら、かつ下式(4)の範囲として、折れ曲がりや捩れを生じさせることなく整トウガイドに供給する、炭素繊維の製造方法。
F×1.0×10−5≦f≦{F×(Y−700)/99}×8.5×10−6・・・(4)
f=f ×EXP(μθ) ・・・(2)
=F×h ×10 −7 ・・・(3)
ここで、Y(mm)は前記張力付与手段から前記整トウガイドまでの鉛直方向の引き上げ高さであって、Yの最大値が2500であり、Fはアクリル繊維トウの総繊度(dte
x)であり、 は前記箱上部ガイドバーまでのアクリル繊維トウの自重による張力(g)、μは動摩擦係数、θは前記箱上部ガイドバーへの抱き角(rad)、h は前記収納容器内のアクリル繊維トウの最上層面から前記箱上部ガイドバーの、アクリル繊維トウが最初に接触する部位までの距離(mm)を示す。但し、h に関しては、アクリル繊維トウを鉛直方向に引き上げるにつれて変動するため、アクリル繊維トウの最上層面が前記収納容器の最上部にあるときと最下部にあるときの2パターンにおいて、前記箱上部ガイドバーまでの自重による張力f を算出し、前記箱上部ガイドバーの抱き角θ、取り付け間隔、設置位置を設定する。
収納容器内におけるトウのトラバース幅X(mm)が400≦X≦2,000、収納容器の高さH(mm)が50≦H≦2,000の範囲である。
A method for producing a carbon fiber by pulling up an acrylic fiber tow traversed and stored in a sheet form in a storage container in a vertical direction, and sending it to a firing process via a toning guide,
A tension applying means for applying tension to the acrylic fiber tow in addition to its own weight is disposed between the storage container and the adjusting tow guide, and the tension applying means includes at least three fixed bars. It is a guide bar, and the tension f (g) that is further applied to the acrylic fiber tow satisfies the following formulas (2) and (3) and falls within the range of the following formula (4) without causing bending or twisting. A method for producing carbon fiber to be supplied to a toning guide.
F × 1.0 × 10 −5 ≦ f ≦ {F × (Y−700) / 99} × 8.5 × 10 −6 (4)
f = f 0 × EXP (μθ) (2)
f 0 = F × h 0 × 10 −7 (3)
Here, Y (mm) is the vertical lifting height from the tension applying means to the adjusting tow guide, the maximum value of Y is 2500, and F is the total fineness (dte of acrylic fiber tow)
x) f 0 is the tension (g) due to the weight of the acrylic fiber tow to the box upper guide bar, μ is the coefficient of dynamic friction, θ is the holding angle (rad) to the box upper guide bar, and h 0 is the above The distance (mm) from the uppermost layer surface of the acrylic fiber tow in a storage container to the site | part which the acrylic fiber tow first contacts of the said box upper guide bar is shown. However, with respect to h 0, in 2 pattern when to vary as pulling the acrylic fiber tow in the vertical direction, at the bottom and when the uppermost surface of the acrylic fiber tow at the top of the container, the box upper The tension f 0 due to the dead weight to the guide bar is calculated, and the holding angle θ, the mounting interval, and the installation position of the box upper guide bar are set.
The tow traverse width X (mm) in the storage container is in the range of 400 ≦ X ≦ 2,000, and the height H (mm) of the storage container is in the range of 50 ≦ H ≦ 2,000.
JP2011133953A 2011-06-16 2011-06-16 Carbon fiber manufacturing method Active JP5756684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011133953A JP5756684B2 (en) 2011-06-16 2011-06-16 Carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011133953A JP5756684B2 (en) 2011-06-16 2011-06-16 Carbon fiber manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005366735A Division JP2007169809A (en) 2005-12-20 2005-12-20 Method for producing carbon fiber

Publications (2)

Publication Number Publication Date
JP2011202341A JP2011202341A (en) 2011-10-13
JP5756684B2 true JP5756684B2 (en) 2015-07-29

Family

ID=44879258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011133953A Active JP5756684B2 (en) 2011-06-16 2011-06-16 Carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP5756684B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881000B2 (en) 2011-09-15 2016-03-09 株式会社リコー Droplet discharge head and droplet discharge apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229241A (en) * 1998-02-13 1999-08-24 Toray Ind Inc Manufacture of carbon fiber
JP2004250842A (en) * 2003-02-21 2004-09-09 Mitsubishi Rayon Co Ltd Method for producing carbon fiber

Also Published As

Publication number Publication date
JP2011202341A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
TWI317390B (en) Method for manufacturing precursor fiber bundle of carbon fiber and frecursor fiber bundle of carbon fiber made by using the method
JP4192041B2 (en) Method and apparatus for producing carbon fiber precursor fiber bundle
JP2007169809A (en) Method for producing carbon fiber
JP5756684B2 (en) Carbon fiber manufacturing method
JP2004250842A (en) Method for producing carbon fiber
JPH11229241A (en) Manufacture of carbon fiber
TWI673398B (en) Method for producing combined yarn bundle and method for producing carbon fiber using the obtained yarn bundle
JP4412656B2 (en) Carbon fiber manufacturing method
JP2009249086A (en) Guide device, and manufacturing method of carbon fiber using the same
JP5600887B2 (en) Carbon fiber manufacturing method and manufacturing apparatus
JP4801621B2 (en) Method for producing carbon fiber precursor tow
JP2010071410A (en) Grooved roller, and manufacturing device and manufacturing method of carbon fiber using the same
JP5831563B2 (en) Carbon fiber
JP3733688B2 (en) Carbon fiber manufacturing method
WO2020066275A1 (en) Partially split fiber bundle and production method therefor
JP4021972B2 (en) Carbon fiber manufacturing method
US20240018695A1 (en) Carbon fiber bundle
JP2007154371A (en) Method for producing oxidized fiber and carbon fiber
JP2018031091A (en) Production method of carbon fiber bundle
JP7354192B2 (en) winding device
JP2012188768A (en) Method for manufacturing carbon fiber precursor fiber bundle, and carbon fiber precursor fiber bundle obtained by the same
JP7087740B2 (en) Manufacturing method of carbon fiber bundle
JPS6246462B2 (en)
JPS6246467B2 (en)
JP2012188783A (en) Apparatus for producing carbon fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R151 Written notification of patent or utility model registration

Ref document number: 5756684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250