JP5754306B2 - 画像識別情報付与プログラム及び画像識別情報付与装置 - Google Patents

画像識別情報付与プログラム及び画像識別情報付与装置 Download PDF

Info

Publication number
JP5754306B2
JP5754306B2 JP2011190967A JP2011190967A JP5754306B2 JP 5754306 B2 JP5754306 B2 JP 5754306B2 JP 2011190967 A JP2011190967 A JP 2011190967A JP 2011190967 A JP2011190967 A JP 2011190967A JP 5754306 B2 JP5754306 B2 JP 5754306B2
Authority
JP
Japan
Prior art keywords
image
identification information
label
unit
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011190967A
Other languages
English (en)
Other versions
JP2013054458A (ja
Inventor
文渊 戚
文渊 戚
加藤 典司
典司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2011190967A priority Critical patent/JP5754306B2/ja
Publication of JP2013054458A publication Critical patent/JP2013054458A/ja
Application granted granted Critical
Publication of JP5754306B2 publication Critical patent/JP5754306B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Image Analysis (AREA)

Description

本発明は、画像識別情報付与プログラム及び画像識別情報付与装置に関する。
近年、画像アノテーション技術は、画像データベース管理における画像検索システム、画像認識システムなどのための一つの重要な技術となっている。この画像アノテーション技術により、ユーザは、例えば、必要とする画像と意味的に近い画像を検索できる。
画像アノテーション技術として、例えば特許文献1〜4に開示されているものがある。これらは、未知画像に対する意味的なラベルを付与するが、手段としては画像の特徴量を抽出してから最近傍アルゴリズム(NN:Nearest Neighbor)を用いて、類似画像を検索し、検索された類似画像に付与されたラベルを用いてターゲット画像にレベルを付与する。しかしながら、最近傍アルゴリズムで抽出された画像のみからラベルを付与するという方法では、アノテーションの精度が高くないという問題があった。
上記の問題を改善するため、特許文献5、6で提案されているものがある。これらは、画像特徴に対するラベルの出現頻度に基づいて、学習された識別器を用いて各ラベルの確率を推定する。
また、既存の分類方法を改良するために、ラベルと特徴量の相関情報を正準相関分析(CCA:Canonical Correlation Analysis)でモデリングして、画像特徴量と意味的なラベルのギャップを埋めるモデルが提案されている(例えば非特許文献1参照。)。
特開2005−352782号公報 特開2007−109067号公報 特開2009−188951号公報 特開2010−271769号公報 特開2000−353173号公報 特開2009−48334号公報
しかし、特許文献5、6に開示された方法では、識別器がオブジェクトのクラス毎に構築され、独立に各ラベルの事後確率を計算しているので、クラス間の相関を利用できないという問題がある。また、非特許文献1に開示された方法では、CCAにより構築したグラフモデルからランダムウォークでターゲット画像の特徴量からラベルを推定するものであり、局所的な最小値に陥る可能性があり、また計算時間もかかるという問題がある。
本発明の課題は、画像に関する相関情報を用いて画像に対して複数の識別情報を付与する画像識別情報付与プログラム及び画像識別情報付与装置を提供することである。
[1]コンピュータを、複数の画像からそれぞれ特徴量を抽出する抽出手段と、前記抽出手段によって抽出された前記特徴量から学習モデルを用いて前記画像に付与すべき複数の識別情報に対してそれぞれ第1の評価値を計算する計算手段と、前記識別情報の数に対応した数の確率場モデルを有し、前記複数の画像について前記計算手段によって計算された前記識別情報毎の前記第1の評価値を前記複数の確率場モデルに入力し、前記画像毎に前記複数の識別情報に対する第2の評価値を出力する出力手段として機能されるための画像識別情報付与プログラム。
[2]前記出力手段の前記確率場モデルを前記複数の画像間の相関情報に基づいて最適化する最適化手段を、さらに備えた前記[1]に記載の画像識別情報付与プログラム。
[3]前記出力手段の前記確率場モデルを前記複数の識別情報間の相関情報に基づいて最適化する最適化手段を、さらに備えた前記[1]に記載の画像識別情報付与プログラム。
[4]複数の画像からそれぞれ特徴量を抽出する抽出手段と、前記抽出手段によって抽出された前記特徴量から学習モデルを用いて前記画像に付与すべき複数の識別情報に対してそれぞれ第1の評価値を計算する計算手段と、前記識別情報の数に対応した数のMRFモデルを有し、前記複数の画像について前記計算手段によって計算された前記識別情報毎の前記第1の評価値を前記複数の確率場モデルに入力し、前記画像毎に前記複数の識別情報に対する第2の評価値を出力する出力手段とを備えた画像識別情報付与装置。
請求項1又は4に記載された発明によれば、画像に関する相関情報を用いて画像に対して複数の識別情報を付与することができる。
請求項2に記載された発明によれば、複数の画像間の相関情報に基づいて画像に対して最適化された複数の識別情報を付与することができる。
請求項3に記載された発明によれば、複数の識別情報間の相関情報に基づいて画像に対して最適化された複数の識別情報を付与することができる。
図1は、本発明の第1の実施の形態に係る画像識別情報付与装置の構成例を示すブロック図である。 図2は、ラベル推定部の概略の構成例を示し、(a)は平面図、(b)は側面図である。 図3は、第1の実施の形態の動作例を示すフローチャートである。 図4は、本発明の第2の実施の形態に係る画像識別情報付与装置の構成例を示すブロック図である。
以下、本発明の実施の形態について図面を参照して説明する。なお、各図中、実質的に同一の機能を有する構成要素については、同一の符号を付してその重複した説明を省略する。
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る画像識別情報付与装置の構成例を示すブロック図である。この画像識別情報付与装置1は、画像受付部2、特徴抽出部3、ラベル事後確率計算部4、量子化部5、ノード接合部6、ラベル推定部7、ラベル付与部8、アノテーション情報出力部9及び記憶部10を有して概略構成されている。
従来のアノテーション手段は、学習コーパス(学習用画像と学習用画像に付与されたラベルとが対になったもの)中の学習用画像から周知の特徴抽出手法により特徴量を抽出し、特徴量とラベルとの関連を識別モデルとして学習する。学習された識別モデル、すなわち学習モデル130は、データベースに保存する。そして、クエリ画像(入力画像、未知画像ともいう。)120にラベルを付与するため、学習モデル130を用いてクエリ画像120に対して、ラベルの事後確率を計算し、最も高い値を持つラベルを推定結果とする。
本明細書において、「アノテーション」とは、画像全体に対してラベルを付与することをいう。「ラベル」は、識別情報の一例であり、画像の全体又は部分領域の内容を表す識別情報、例えば単語である。
本実施の形態は、ラベル事後確率計算部4によりラベルの事後確率を計算してから、画クエリ像120間の相関情報に基づいてMRFモデルもしくはCRFモデルでラベルの順位を調整してクエリ画像120にラベルを付与する。ここで、「MRFモデル」とは、マルコフ確率場(MRF:Markov Random Field)モデルのことであり、「CRFモデル」とは、条件付き確率場(CRF:Conditional Random Field)モデルのことである。これらのマルコフ確率場モデル及び条件付き確立場モデルは、確率場モデルの一例である。
以下、本実施の形態の特徴的な部分、すなわち量子化部5、ノード接合部6及びラベル推定部7を中心に説明する。
画像受付部2は、ラベルを付与する対象画像のクエリ画像120を受け付ける。
特徴抽出部3は、抽出手段の一例であり、クエリ画像から特徴量を抽出する。特徴量は、例えばR,G,B等の色やテクスチャなどの画像特徴を並べたものである。
ラベル事後確率計算部4は、特徴量fから各ラベルcの事後確率(P(c|f))を算出し、ラベル毎にアノテーションスコア(アナログ値)として出力する。
記憶部10には、画像識別情報付与プログラム110等の各種のプログラム、クエリ画像120、学習モデル130、ラベル辞書140、リンク情報150等の各種のデータが格納されている。記憶部10は、例えばROM、RAM、HDD等により構成されている。
アンテーション出力部9は、ラベル付与部8によって付与されたアノテーション情報(ラベルとスコア)を外部に出力するものであり、例えば液晶ディスプレイ等の表示部や、プリンタ等の印刷部を用いることができる。
(量子化部)
従来のMRFやCRFを用いた画像アノテーション技術では、例えば非特許文献“Word co-occurrence and Markov Random Field for Improving Automatic Image Annotation ”H.J.Escalante, M.Montes and L.E.Sucar, BMVC,2007に開示されているように、ラベルの共起を用いてMRFモデルを構築し、ラベルの確率を観測値として入力し、入力画像に対してラベルを推定する。この従来技術では、画像のラベルを推定する隠れノードは複数のラベルから一つのラベルを選択するノードであり、したがって、1つの画像全体又は画像領域に対して1つのラベルしか付与できず、画像全体に複数のラベルを付与するアノテーションには適用できない。
これを解決するために、本実施の形態は、各ラベルに対して1つのMRFもしくはCRFモデルを持ち、各モデルの隠れノードは量子化されたラベルの確率を持つ。そしてMRFもしくはCRFモデルで推定した量子化値によって、ラベルの順位を決め、1つの画像に対してスコアの高い複数のラベルを付与するものである。
本実施の形態の量子化部5は、ラベル事後確率計算部4がラベル毎に算出したアナログ値であるアノテーションスコアを量子化する。量子化した値(量子化値)は、離散化した値(離散化値)である。アノテーションスコアのレベルを均等に量子化するため、ヒストグラム平坦化(Histogram Equalization)方法で決定する。量子化値は、後述するMRFモデル70〜70の各事後確率計算ノード72の隠れ変数の初期状態とされる。アノテーションスコア(アナログ値)とこれに対応する量子化値の一例を表1に示す。表1中、Mは画像の数であり、Nはラベルの数である。ここで、ラベル事後確率計算部4及び量子化部5は、計算手段の一例であり、ラベル事後確率計算部4が算出するアナログ値であるアノテーションスコア、及び量子化部5が出力する量子化値は、第1の評価値の一例である。
Figure 0005754306
(ノード接合部)
本実施の形態のノード接合部6は、画像間の相関情報に基づいて事後確率計算ノード72及び推定事後確率計算ノード73間を接合する接合リンク76の位置情報(リンク情報)150を生成し、生成したリンク情報150を記憶部10に格納する。入力側リンク75及び出力側リンク77は、予め付けられている。画像間の相関情報として、例えば画像の撮影時間、画像特徴量の類似度等を用いることができる。相関情報としてアノテーション(ラベル)間の相関を用いる例は、後述する。
ノード接合部6は、一連の複数のクエリ画像(クエリ画像集合)120を入力して、画像間の相関情報を計算してから、MRFモデル0〜70の事後確率計算ノード72及び推定事後確率計算ノード73間の接合方法を決める。接合方法の一例として、画像間の特徴量の類似度がある閾値以上の場合、当該画像に対応する事後確率計算ノード72及び推定事後確率計算ノード73間に接合リンク76を付与し、画像間の類似度が閾値より小さい場合、対応するノード72、73間に接合リンク76を付与しない。また、撮影時刻がお互いに近い画像に対して接合リンク76を付与してもよい。リンク情報150の一例を表2に示す。画像の数は、事後確率計算ノード72の数、及び推定事後確率計算ノード73の数と同じである。表2において、「1」はノード72、73間に接合リンク76がある場合を示し、「0」はノード72、73間に接合リンク76がない場合を示す。
Figure 0005754306
また、リンク情報150は事前に画像の相関情報から生成することができるが、動的にリンク情報150を生成してもよい。すなわち、事後確立計算ノード72の隠れ変数の状態により、隠れ変数間の距離又は量子化値の差がある閾値以下の場合、ノード72、73間の接合リンク76を自動的に追加し、隠れ変数間の距離又は量子化値の差がある閾値より大きい場合、ノード72、73間の接合リンク76を自動的に除外してもよい。
(ラベル推定部)
図2は、ラベル推定部7の概略の構成例を示す図である。ラベル推定部7は、ラベル毎に設けられたMRFモデル70〜70を有し、対応するMRFモデル70〜70のノード隠れ変数の初期状態の設定及びノードを繋げるリンク情報150を入力して、グラフカットメッセージ・パッシング方法(Yuri Boykov, O.Veksler, R.Zabih, “Fast Approximate Energy Minimization via Graph Cuts”,PAMI2001)により、ラベルの量子化状態を最適化する。
各MRFモデル70〜70は、同一の構造を有しているので、代表としてMRFモデル70について説明する。MRFモデル70は、図2(a)に示すように、量子化値Qが入力される入力ノード71〜71と、アノテーションスコア量子化部5から出力された事後確率を保持する事後確率計算ノード72〜72と、推定の事後確率を計算する推定事後確率計算ノード73〜73と、ラベルのスコアを出力する出力ノード74〜74と、入力ノード71〜71と事後確率計算ノード72〜72を接合する入力側リンク75〜75と、事後確率計算ノード72〜72と推定事後確率計算ノード73〜73を接合する接合リンク76と、推定事後確率計算ノード73〜73と出力ノード74〜74を接合する出力側リンク77〜77とを有して概略構成されている。また、画像と入力ノード71〜71及び出力ノード74〜74は一対一に対応しているので、各MRFモデル70〜70の入力ノード71〜71及び出力ノード74〜74の数は、画像の数Mと同じである。
例えば、最初の画像(Image1)の量子化値Q11〜Q1Nは、MRFモデル70〜70の各入力ノード71に入力し、次の画像(Image2)の量子化値Q21〜Q2Nは、MRFモデル70〜70の各入力ノード71に入力し、同様にM番目の画像(ImageM)の量子化値QM1〜QMNは、MRFモデル70〜70の各入力ノード71Mに入力し、その後MRFモデル70〜70の各出力ノード74〜74Mから画像1〜Mに対する各ラベルL〜Lのスコアが出力される。
入力側リンク75〜75及び出力側リンク77〜77は、予め与えられている。接合リンク76は、リンク情報150に基づいてノード接合部6により与えられる。接合リンク76は、1つのMRFモデル70の事後確率計算ノード72〜72と推定事後確率計算ノード73〜73を接合するだけでなく、MRFモデル70〜70間でも接合する。
以上の構成により、すべてMRFモデル70の各対応するノードの状態を比較して、画像に対するすべてラベルを付与する。すなわち、画像Mに対してはMRFモデル70〜70の出力ノード74Mの値を比較し、上位のラベルをその画像に対して付与する。ここで、ラベル推定部7は、出力手段の一例であり、出力ノード74から出力するラベルL〜Lのスコアは、第2の評価値の一例である。
(第1の実施の形態の動作)
図3は、第1の実施の形態の動作例を示すフローチャートである。本実施の形態は、画像の相関情報に基づき、MRFモデル70〜70に接合リンク76を付けるのが特徴である。
画像受付部2がクエリ画像120を受け付けると、特徴抽出部3は、クエリ画像120から特徴量を抽出する。
ラベル事後確率計算部4は、周知の識別器により保存された学習モデル130を用いて、クエリ画像120に対する各ラベルの事後確率を計算し(S1)、その事後確率をアノテーションスコアとして出力する。
量子化部5は、ラベル事後確率計算部4が出力したアノテーションスコアをあらかじめ定められた閾値に応じて量子化する(S4)。量子化された値は、隠れノードの初期値に設定され、その後グラフカットメッセージ・パッシング方法により、推定事後確率計算ノード73に隠れ変数の最終状態の推定結果が保持される。
次に、すべての推定事後確率計算ノード73が処理した後に、ノード72、73間を繋げるリンク情報150を取得する。ノード接合部6は、画像の相関情報に基づいて接合リンク76を付ける(S5)。画像の相関情報が時間の場合、画像ペアの撮影時間の差が予め定められた時間(例えば5時間)以下の場合、該当するペアのノード72、73間に接合リンク76を付ける。また、異なる画像の撮影時間の差が予め定められた時間(例えば5時間)よりも大きい場合、該当するペアのノード72、73間に接合リンク76を付けない。
画像の相関情報が画像の類似度である場合、画像から様々な特徴量を抽出する。例えば、RGB、normalized−RG、HSV(色空間)、LAB、robustHue特徴量(van de Weijer, C. Schmid, “Coloring Local Feature Extraction”, ECCV 2006を参照)、Gabor特徴量、DCT(Direction Curve Tangent)特徴量、SIFT(Scale Invariant Feature Transform)特徴量及びGIST(Generalized Search Tree)特徴量であり、いかなる特徴を用いてもよい。画像同士の類似度は、特徴量の距離とする。正規化した距離が0.5以下場合には画像ペアに対応するノード72、73のペアの間に接合リンク76を付ける。0.5より大きい場合には画像ペアに対応するノード72、73のペアの間に接合リンク76を付けない。
以上のようにして1つのラベルに対応するMRFモデル70を構築する。次のステップでは、MRFモデル70を最適化する(S6)。すなわちラベルに対応するMRFモデル70〜70の事後確率計算ノード72に上記ステップS4で計算された隠れ変数状態を入力し、ノード72、73間を接合するリンク情報150を入力して、ノード72,73間に接合リンク76を付ける。上記ステップS4、S5、S6は、すべてのラベル及びノードについて行われる(S2、S3)。
最後に、各ラベルに対応するMRFモデル70〜70を全部最適化し、1つの画像に対応するすべてのMRFモデル70〜70の推定事後確率計算ノード73〜73の隠れ変数の最終状態を統合し、その結果、画像に対するすべてアノテーションスコア調整できた。そして調整したアノテーションスコアの順位を付けて、高い順にクエリ画像にラベルを付与する(S7)。例えば、1つの画像(Image1)の量子化値Q11〜Q1Nを、MRFモデル70〜70の各入力ノード71に入力すると、すべてのMRFモデル70〜70の各推定事後確率計算ノード73の隠れ変数が出力ノード74から各ラベルL〜Lのスコアとして出力される。
(第1の実施の形態の効果)
第1の実施の形態によれば、複数の画像間の相関情報に基づいてMRFモデルを最適化しているので、本構成を採用しない場合と比べて画像に対して高い精度で複数のラベルを付与することができる。
[第2の実施の形態]
図4は、本発明の第2の実施の形態に係る画像識別情報付与装置の構成例を示すブロック図である。本実施の形態の画像識別情報付与装置1は、第1の実施の形態と同様に、画像受付部2、特徴抽出部3、ラベル事後確率計算部4、量子化部5、ノード接合部6、ラベル推定部7、ラベル付与部8、アノテーション情報出力部9及び記憶部10を有して概略構成されている。本実施の形態は、第1の実施の形態とは、ノード接合部6が異なり、他は第1の実施の形態と同様に構成され、同様の作用を奏するので、その説明を省略する。
本実施の形態のノード接合部6は、ラベルの相関情報に基づいてMRFモデル70の事後確率計算ノード72及び推定事後確率計算ノード73間に接合リンク76を生成し、生成した接合リンク76の位置情報であるリンク情報を記憶部10に保存する。ラベルの相関情報として、例えば、ある画像ペアに対して、量子化されたアノテーションスコアにより上位5つを列挙し、順位を問わず、画像ペアの同じラベルの数を数える。同じラベルの数は1つ以上の場合、対応するノード72、73間に接合リンク76を付与し、同じラベルの数がゼロの場合、対応するノード72、73間に接合リンク76を付与しない。
(第2の実施の形態の効果)
第2の実施の形態によれば、複数のラベル間の相関情報に基づいてMRFモデルを最適化しているので、本構成を採用しない場合と比べて画像に対して高い精度で複数のラベルを付与することができる。
次に、本発明の実施例について、画像の数Mを100、量子化値の範囲を1から2000とした場合を例に挙げて説明する。ラベル事後確率計算部4が算出したアナログ値のアノテーションスコアは、量子化部5によって離散化値に変換される。表3は、アノテーションスコア(アナログ値)と量子化値(離散化値)の具体的な一例を示す。
Figure 0005754306
表3中、画像IDの下の括弧は、画像に付与すべき正解ラベルを示す。表3から、量子化部5が出力したアノテーションスコア(ラベル事後確率)のみで第1位のラベルを付けると、Image1、ImageMについて不正解となっていることから、精度が高くないことが分かる。
ノード接合部6が作成したノード情報(ノード接合マトリクス)150の一例を表4に示す。表4中、「1」は画像間に時間的な相関があるため、ノード72、73間に接合リンク76がある場合を示し、「0」は画像間に時間的な相関が無いため、ノード72,73間に接合リンク76がない場合を示す。
Figure 0005754306
表5は、調整する前(MRFモデルの入力値)の量子化されたアノテーションスコア(量子化値)と、調整した後(MRFモデルの出力値)のアノテーションスコア(量子化値)である。
Figure 0005754306
ここでは、画像の数を100とし、量子化値の範囲を1から2000とする。表5中の量子化値は、アナログ値の量子化値がヒストグラム平坦化方法により離散化値に変換されたものである。表5中の画像IDの下の括弧は、画像に付けるべき正解ラベルを示す。表5の2列目と3列目はMRFモデル70を最適化する前のものである。最適化前のラベルは量子化値が高い順に並んでいる。最適化前の量子化値は表3と同じである。また、表5の4列目と5列目はMRFモデル70を最適化した後のものである。最適化後のラベルは、量子化値(調整アノテーションスコア)が高い順に並んでいる。以上の結果より、画像IDImage1については、最適化前はラベル「hug」が第1位であったが、最適化後はラベル「hand」が第1位となり、正解が得られている。また、画像IDImage100については、最適化前と最適化後で第1位のラベル「hand」は変わらない。しかし、第2位は最適化前のラベル「face」から最適化後はラベル「foot」に変わり、さらに量子化値も「117」から「148」に高くなり、正解に近くなるので、精度が高くなることが分かる。
本実施例によれば、クエリ画像集合に対する、周知の情報検索の評価値であるF値(F-measure)は、0.536から0.549に向上した。本実施例は、画像の相関を用いたが、ラベルの相関を用いた場合も、本実施例と同様の効果が期待できる。
[他の実施の形態]
なお、本発明は、上記実施の形態に限定されず、本発明の要旨を変更しない範囲で種々に変形が可能である。例えば、画像受付部2、特徴抽出部3、ラベル事後確率計算部4、量子化部5、ノード接合部6、ラベル推定部7、ラベル付与部8及びアノテーション情報出力部9の各機能は、コンピュータ読み取り可能な画像識別情報付与プログラム110に従ってCPUが動作することにより実現してもよい。また、上記実施の形態の画像受付部2、特徴抽出部3、ラベル事後確率計算部4、量子化部5、ノード接合部6、ラベル推定部7、ラベル付与部8及びアノテーション情報出力部9の全て又は一部をASIC等のハードウエアによって実現してもよい。
また、上記実施の形態で用いたプログラムをCD−ROM等の記録媒体に記憶して提供することもできる。また、上記実施の形態で説明した上記ステップの入替え、削除、追加等は、本発明の要旨を変更しない範囲内で可能である。
1…画像識別情報付与装置、2…画像受付部、3…特徴抽出部、4…ラベル事後確率計算部、5…量子化部、6…ノード接合部、7…ラベル推定部、8…ラベル付与部、9…アノテーション情報出力部、10…記憶部、70〜70…MRFモデル、71〜71…入力ノード、72〜72…事後確率計算ノード、73〜73…推定事後確率計算ノード、74〜74…出力ノード、75〜75…入力側リンク、76…接合リンク、77〜77…出力側リンク、110…画像識別情報付与プログラム、120…クエリ画像、130…学習モデル、140…ラベル辞書、150…リンク情報

Claims (4)

  1. コンピュータを、
    複数の画像からそれぞれ特徴量を抽出する抽出手段と、
    前記抽出手段によって抽出された前記特徴量から学習モデルを用いて前記画像に付与すべき複数の識別情報に対してそれぞれ第1の評価値を計算する計算手段と、
    前記識別情報の数に対応した数の確率場モデルを有し、前記複数の画像について前記計算手段によって計算された前記識別情報毎の前記第1の評価値を前記複数の確率場モデルに入力し、前記画像毎に前記複数の識別情報に対する第2の評価値を出力する出力手段として機能されるための画像識別情報付与プログラム。
  2. 前記出力手段の前記確率場モデルを前記複数の画像間の相関情報に基づいて最適化する最適化手段を、さらに備えた請求項1に記載の画像識別情報付与プログラム。
  3. 前記出力手段の前記確率場モデルを前記複数の識別情報間の相関情報に基づいて最適化する最適化手段を、さらに備えた請求項1に記載の画像識別情報付与プログラム。
  4. 複数の画像からそれぞれ特徴量を抽出する抽出手段と、
    前記抽出手段によって抽出された前記特徴量から学習モデルを用いて前記画像に付与すべき複数の識別情報に対してそれぞれ第1の評価値を計算する計算手段と、
    前記識別情報の数に対応した数の確率場モデルを有し、前記複数の画像について前記計算手段によって計算された前記識別情報毎の前記第1の評価値を前記複数の確率場モデルに入力し、前記画像毎に前記複数の識別情報に対する第2の評価値を出力する出力手段とを備えた画像識別情報付与装置。

JP2011190967A 2011-09-01 2011-09-01 画像識別情報付与プログラム及び画像識別情報付与装置 Active JP5754306B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190967A JP5754306B2 (ja) 2011-09-01 2011-09-01 画像識別情報付与プログラム及び画像識別情報付与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190967A JP5754306B2 (ja) 2011-09-01 2011-09-01 画像識別情報付与プログラム及び画像識別情報付与装置

Publications (2)

Publication Number Publication Date
JP2013054458A JP2013054458A (ja) 2013-03-21
JP5754306B2 true JP5754306B2 (ja) 2015-07-29

Family

ID=48131413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190967A Active JP5754306B2 (ja) 2011-09-01 2011-09-01 画像識別情報付与プログラム及び画像識別情報付与装置

Country Status (1)

Country Link
JP (1) JP5754306B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104680209A (zh) * 2015-01-22 2015-06-03 广东工业大学 一种符合epc c1g2标准的基于时隙状态的射频识别标签数量估计方法
JP6911798B2 (ja) * 2018-03-15 2021-07-28 オムロン株式会社 ロボットの動作制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155340A (ja) * 2004-11-30 2006-06-15 Konica Minolta Holdings Inc 画像管理装置、画像管理方法、および画像管理プログラム
JP2008217706A (ja) * 2007-03-07 2008-09-18 Tokyo Institute Of Technology ラベリング装置、ラベリング方法及びプログラム
JP5152918B2 (ja) * 2008-11-27 2013-02-27 日本電信電話株式会社 固有表現抽出装置、その方法およびプログラム
US8645287B2 (en) * 2010-02-04 2014-02-04 Microsoft Corporation Image tagging based upon cross domain context

Also Published As

Publication number Publication date
JP2013054458A (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
US12079269B2 (en) Visually guided machine-learning language model
US11604822B2 (en) Multi-modal differential search with real-time focus adaptation
US11748619B2 (en) Image feature learning device, image feature learning method, image feature extraction device, image feature extraction method, and program
JP7360497B2 (ja) クロスモーダルな特徴の抽出方法、抽出装置、ならびに、プログラム
US8126274B2 (en) Visual language modeling for image classification
US10783402B2 (en) Information processing apparatus, information processing method, and storage medium for generating teacher information
US8150170B2 (en) Statistical approach to large-scale image annotation
US9792492B2 (en) Extracting gradient features from neural networks
US9400918B2 (en) Compact face representation
US8254699B1 (en) Automatic large scale video object recognition
JP5281156B2 (ja) 画像の注釈付け
JP5506722B2 (ja) マルチクラス分類器をトレーニングするための方法
US20170132493A1 (en) Image processing apparatus, image processing method, and storage medium
US20150356199A1 (en) Click-through-based cross-view learning for internet searches
JP2003256441A (ja) 文書分類方法及び装置
CN106557728B (zh) 查询图像处理和图像检索方法和装置以及监视系统
Son et al. Spectral clustering with brainstorming process for multi-view data
Li et al. Fusing semantic aspects for image annotation and retrieval
US20230055263A1 (en) Stratification in non-classified heterogeneous object labels
JP5754306B2 (ja) 画像識別情報付与プログラム及び画像識別情報付与装置
JP2010282276A (ja) 映像認識理解装置、映像認識理解方法、及びプログラム
CN111984812B (zh) 一种特征提取模型生成方法、图像检索方法、装置及设备
JP6427480B2 (ja) 画像検索装置、方法、及びプログラム
KR20150124825A (ko) 화상분류 기반의 나이브 베이즈 분류기
CN110851633B (zh) 一种实现同时定位和哈希的细粒度图像检索方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150511

R150 Certificate of patent or registration of utility model

Ref document number: 5754306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350