JP5753680B2 - Oil mist removal device - Google Patents

Oil mist removal device Download PDF

Info

Publication number
JP5753680B2
JP5753680B2 JP2010271623A JP2010271623A JP5753680B2 JP 5753680 B2 JP5753680 B2 JP 5753680B2 JP 2010271623 A JP2010271623 A JP 2010271623A JP 2010271623 A JP2010271623 A JP 2010271623A JP 5753680 B2 JP5753680 B2 JP 5753680B2
Authority
JP
Japan
Prior art keywords
blade
plate
blades
oil mist
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010271623A
Other languages
Japanese (ja)
Other versions
JP2012120947A (en
Inventor
四朗 大河内
四朗 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukusuke Kogyo Co Ltd
Original Assignee
Fukusuke Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukusuke Kogyo Co Ltd filed Critical Fukusuke Kogyo Co Ltd
Priority to JP2010271623A priority Critical patent/JP5753680B2/en
Publication of JP2012120947A publication Critical patent/JP2012120947A/en
Application granted granted Critical
Publication of JP5753680B2 publication Critical patent/JP5753680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separating Particles In Gases By Inertia (AREA)
  • Ventilation (AREA)

Description

本発明は、オイルミスト除去装置に関するものであり、特に、排煙ダクトに取り付けて使用し、排煙中に含まれるオイルミストやオイルミストを捕捉して排出量を低減するためのオイルミスト除去装置に関する。   The present invention relates to an oil mist removing device, and in particular, an oil mist removing device that is used by being attached to a smoke exhaust duct to capture the oil mist and oil mist contained in the smoke exhaust and reduce the discharge amount. About.

上記のようなオイルミスト除去装置として、煙入口と煙出口とを有したケーシングの内部に遠心型風車として構成された動翼と静翼とを交互に配置し、動翼をモータにより強制回転駆動してオイルミストを除去しつつ排出するようにしたオイルミスト除去装置が開示されている(特許文献1)。動翼は円板状の基体の主面法線方向に旋回羽根が立設され、モータ駆動による回転に伴いケーシング内に吸い込んだ気流は該旋回羽根に沿って遠心流に転換される。該遠心流はケーシング内面に衝突し、気流に含まれているオイルミストが油滴化する。一方、衝突後の遠心流は動翼の下流側に配置されている静翼にて、同様に立設された案内羽根により中心軸側に方向転換され、回転軸近傍の貫通孔を介して次段の動翼に向け流出する(文献中に詳細な説明がないので、そのように推定する)。気流はここで再び遠心流に転換され、ケーシング内面との衝突(オイルミストの油滴化)→静翼案内羽根による中心軸側への方向転換→次段動翼への流出の過程を繰り返し、オイルミストが段階的に除去されてゆく構造となっている。   As an oil mist removing device as described above, moving blades and stationary blades configured as a centrifugal wind turbine are alternately arranged inside a casing having a smoke inlet and a smoke outlet, and the rotor blades are forcibly rotated by a motor. An oil mist removing device is disclosed in which oil mist is discharged while being removed (Patent Document 1). The rotor blades are provided with swirl blades in the direction of the normal to the main surface of the disk-shaped substrate, and the airflow sucked into the casing as the motor rotates is converted into centrifugal flow along the swirl blades. The centrifugal flow collides with the inner surface of the casing, and oil mist contained in the air flow becomes oil droplets. On the other hand, the centrifugal flow after the collision is redirected to the central axis side by a guide vane arranged in the same manner at a stationary blade arranged downstream of the moving blade, and then passed through a through hole near the rotating shaft. It flows out toward the stage blades (there is no detailed explanation in the literature, so it is estimated). The air flow is again converted to centrifugal flow, and it collides with the inner surface of the casing (oil mist formation) → changes direction to the central axis by the stationary vane guide vanes → repeats the process of outflow to the next stage rotor blade, The oil mist is removed in stages.

特開2002−239323号公報JP 2002-239323 A

しかし、上記従来の装置では、動翼が遠心型風車として構成されており、気流は、半径方向外方(動翼旋回羽根による遠心流)→ケーシング内面への衝突→半径方向内方(静翼による中心軸側への流れ案内)、という形でつづら折れ的に方向を変化させるため流れ抵抗が非常に大きい。そのため、モータなどの外部動力を用いて動翼を相当強力に回転駆動しなければ十分なオイルミスト除去効果が達成できず、駆動部の大型化やエネルギー消費量の増大を招く欠点がある。   However, in the above-described conventional apparatus, the moving blade is configured as a centrifugal wind turbine, and the airflow is radially outward (centrifugal flow by the moving blade swirl blade) → impact on the inner surface of the casing → radially inward (stationary blade) The flow resistance is very large because the direction is changed in a broken manner. Therefore, unless the rotor blades are driven to rotate with a strong force using external power such as a motor, a sufficient oil mist removing effect cannot be achieved, leading to a disadvantage that the drive section is enlarged and the energy consumption is increased.

本発明の課題は、外部からの動力供給が不要であり、排気流を受けた風車の受動回転のみにより、排気流に含まれるオイルミストやオイルミストなどを効率的に除去することができ、ひいては小型軽量で省エネ型のオイルミスト除去装置を提供することにある。   The problem of the present invention is that no external power supply is required, and oil mist or oil mist contained in the exhaust flow can be efficiently removed only by passive rotation of the wind turbine that has received the exhaust flow. The object is to provide a small, lightweight and energy-saving oil mist removing device.

課題を解決する手段及び発明の効果Means for solving the problems and effects of the invention

上記の課題を解決するために、本発明のオイルミスト除去装置は、
内部が排気流通路をなす中空体として構成され、該排気流の流通方向における一端に排気流入口が、他端に排気流出口が形成された筺体と、
回転軸線が排気流方向を向くよう筺体の内部に流れ方向に複数同軸的かつ各々遊転可能に配置され、また、該回転軸線方向における上流側に受風面が形成され下流側に送風面が形成され、受風面にて排気流を受けて遊転することにより、該排気流を送風面側にて回転軸線方向に生ずる軸流成分と回転半径方向外向きに生ずる遠心流成分とに分解しつつ送出する複数の軸流型風車と、
軸流型風車の外周縁との間に隙間が形成されるように、該軸流型風車の外側を周方向に取り囲む形で筺体内部に形成され、該軸流型風車の遠心流を衝突させることにより、排気流に含まれるオイルミストを捕捉するオイルミスト捕捉部と、を備えたことを特徴とする。
In order to solve the above problems, the oil mist removing apparatus of the present invention is
A housing that is configured as a hollow body having an exhaust flow passage inside, and that has an exhaust inlet at one end in the flow direction of the exhaust flow and an exhaust outlet at the other end;
A plurality of coaxially and freely swingable arrangements are arranged in the flow direction so that the rotation axis faces the exhaust flow direction, and a wind receiving surface is formed on the upstream side in the rotation axis direction, and a blower surface is provided on the downstream side. The exhaust flow is formed and loosened by receiving the exhaust flow at the wind receiving surface, and the exhaust flow is decomposed into the axial flow component generated in the rotation axis direction and the centrifugal flow component generated outward in the rotation radial direction on the air blowing surface side. A plurality of axial wind turbines that send out while
It is formed inside the housing so as to surround the outside of the axial flow type windmill in the circumferential direction so that a gap is formed between the outer peripheral edge of the axial flow type windmill and collides with the centrifugal flow of the axial flow type windmill. Thus, an oil mist capturing unit that captures oil mist contained in the exhaust flow is provided.

上記本発明の構成によると、軸流型風車を筺体内に配置し、筺体内に排気流を導入して該軸流型風車を遊転させるように構成するとともに、該軸流型風車の遠心流を衝突させることにより、該排気流に含まれるオイルミストをオイルミスト捕捉部に捕捉させる。軸流型風車においては、受けた排気流の一部が遠心流成分となってオイルミスト捕捉部に向かい、そこでオイルミストが捕捉される一方、一部が軸流成分の形で下流側に逃がされる。この軸流成分は、下流側の次段の軸流型風車に供給され、同様に遠心流成分と軸流成分とに分解される。その結果、供給される排気流に含まれるオイルミストは、複数段の軸流側風車を通過するに伴い、その都度、遠心流成分に乗って段階的に除去されるとともに、軸流成分の形で一部が下流側に逃がされる分だけ流通抵抗が減少する。その結果、外部からの動力供給が不要な遊転機構により風車を回転させるだけでオイルミストを十分に除去することができる。   According to the above-described configuration of the present invention, the axial flow type windmill is arranged in the casing, and the exhaust flow is introduced into the casing to cause the axial flow type windmill to rotate freely. By colliding the flow, the oil mist contained in the exhaust flow is captured by the oil mist capturing unit. In an axial flow type wind turbine, a part of the received exhaust flow becomes a centrifugal flow component and goes to the oil mist capturing section where the oil mist is captured, while a part of the exhaust flow escapes downstream in the form of an axial flow component. It is. This axial flow component is supplied to the downstream axial wind turbine at the downstream side, and similarly decomposed into a centrifugal flow component and an axial flow component. As a result, as the oil mist contained in the supplied exhaust flow passes through the plurality of stages of the axial flow side wind turbine, it is removed step by step on the centrifugal flow component each time, and the shape of the axial flow component Thus, the flow resistance is reduced by the amount that a part is released downstream. As a result, the oil mist can be sufficiently removed only by rotating the windmill by the idler mechanism that does not require external power supply.

オイルミスト捕捉部は、軸流型風車が発生する遠心流成分を衝突させることができるよう、風車の外側に配置してあればよいが、この場合、筺体の内壁面をオイルミスト捕捉部に兼用する構成とすれば、部品点数の削減を図ることができる。ただし、筺体内壁面の内側を別途、オイルミスト捕捉部となる板やシートなどで覆うことももちろん可能である。   The oil mist capturing unit may be arranged outside the wind turbine so that the centrifugal flow component generated by the axial flow type wind turbine can collide. In this case, the inner wall surface of the housing is also used as the oil mist capturing unit. With this configuration, the number of parts can be reduced. However, it is of course possible to separately cover the inside of the wall surface of the housing with a plate or sheet that becomes an oil mist capturing part.

次に、筺体内部においては、該軸流型風車による排気流の受風方向を、該軸流型風車による排気流の風力の回転トルク変換効率が向上する向きに整流する整流部を、軸流型風車の上流側に隣接配置する形で設けることができる。このような整流部を設けることで、排気流の風力をより効率的に軸流型風車の回転力に変換でき、オイルミスト除去能力を高めることができる。   Next, inside the housing, a rectifying unit that rectifies the wind receiving direction of the exhaust flow by the axial flow wind turbine in a direction that improves the rotational torque conversion efficiency of the wind force of the exhaust flow by the axial flow wind turbine, It can be provided so as to be adjacent to the upstream side of the wind turbine. By providing such a rectifying unit, it is possible to more efficiently convert the wind force of the exhaust flow into the rotational force of the axial flow type wind turbine, and it is possible to enhance the oil mist removing ability.

軸流型風車は、回転軸線と直交する平面から傾斜形態で立ち上がる風車羽根が、回転軸線周りに複数放射状に配置された動翼として構成することができ、整流部は、回転軸線と直交する仮想平面から傾斜形態で立ち上がる風車羽根が、該平面に対する傾斜方向が動翼とは逆向きとなるように回転軸線周りに複数放射状に配置され、かつ筺体内に非回転となるように取り付けられた静翼として構成することができる。このような静翼を整流部として配置することにより、その風車羽根を通過する気流は動翼の風車羽根の受風面に対し、その法線方向に近づくように方向転換された形で供給されるようになり、動翼の回転効率を高めることができる。   An axial-flow type windmill can be configured as a moving blade in which a plurality of windmill blades rising in an inclined form from a plane orthogonal to the rotation axis are arranged radially around the rotation axis, and the rectifying unit is a virtual one orthogonal to the rotation axis Wind turbine blades rising in an inclined form from a plane are arranged in a plurality of radial directions around the rotation axis so that the direction of inclination with respect to the plane is opposite to that of the moving blades, and are installed in a non-rotating manner in the enclosure. Can be configured as a wing. By arranging such a stationary blade as a rectifying unit, the airflow passing through the wind turbine blade is supplied in a form that is redirected to the wind receiving surface of the wind turbine blade of the moving blade so as to approach the normal direction thereof. As a result, the rotational efficiency of the rotor blade can be increased.

上記の動翼及び静翼はそれぞれ、前記仮想平面と平行に配置される板状基材を備え、該板状基材には各々風車羽根に対応する内縁形状となる貫通窓が回転軸線周りに放射状となるように複数形成され、該動翼又は静翼の回転方向における風車羽根の一方の縁が、貫通窓の対応する内周縁にて板状基材に傾斜形態にて結合されてなる構造を有するものとして構成できる。板状基材に貫通窓を形成し、その内周縁に風車羽根を傾斜形態で結合することにより、風車羽根の傾斜角度に応じた軸流成分と遠心流成分との分解比率を容易に調整できる。   Each of the moving blades and the stationary blades includes a plate-like base material arranged in parallel with the virtual plane, and each of the plate-like base materials has an inner edge shape corresponding to the windmill blade around the rotation axis. A structure in which a plurality of radial blades and one edge of a wind turbine blade in the rotating direction of the moving blade or stationary blade are coupled in an inclined form to a plate-like substrate at the corresponding inner peripheral edge of the through window It can comprise as what has. By forming a through window in the plate-like base material and connecting the wind turbine blade in an inclined form to the inner peripheral edge thereof, it is possible to easily adjust the decomposition ratio of the axial flow component and the centrifugal flow component according to the inclination angle of the wind turbine blade. .

静翼の板状基材は、外周縁部が筺体の内面に結合されるとともに、回転軸線周りにおける風車羽根の放射状の配列の外周縁よりも外側における通気断面積を、動翼の外周縁と筺体の内面との間に形成される隙間の通気断面積よりも小さく設定することができる。これにより、静翼の風車羽根の外側をバイパスして動翼側に回り込む気流の発生が抑制され、排気流を効率よく静翼に導くことができる。   The plate-like substrate of the stationary blade has an outer peripheral edge portion coupled to the inner surface of the housing, and a ventilation cross-sectional area outside the outer peripheral edge of the radial arrangement of the windmill blades around the rotation axis is defined as the outer peripheral edge of the moving blade. It can be set smaller than the ventilation cross-sectional area of the gap formed between the inner surface of the housing. As a result, the generation of an air current that bypasses the outside of the wind turbine blades of the stationary blade and circulates toward the moving blade is suppressed, and the exhaust flow can be efficiently guided to the stationary blade.

複数の動翼の板状基材は、複数の静翼の板状基材を貫通して配置される共通の回転軸に対し相対回転不能に取り付け、該回転軸を、静翼の板状基材の貫通位置に設けられたベアリングにより回転可能に支持することができる。動翼を共通の回転軸に取り付けて一体回転可能に構成することで、各動翼の回転位相を一致させることができ、排気流の動翼回転力への変換効率を一層高めることができる。   The plurality of rotor blade plate base materials are attached so as not to rotate relative to a common rotating shaft disposed through the plurality of stationary blade plate base materials, and the rotating shafts are attached to the stationary blade plate base members. It can be rotatably supported by a bearing provided at the penetrating position of the material. By attaching the rotor blades to a common rotating shaft so as to be integrally rotatable, the rotational phases of the rotor blades can be matched, and the conversion efficiency of the exhaust flow into the rotor blade rotational force can be further enhanced.

動翼及び静翼は、風車羽根の外周縁に対応する周回形状に沿って、当該風車羽根の貫通窓への結合縁となるべき区間を除く形で板材に切れ目を形成し、該板材の切れ目の内側に位置する部分を、板状基材をなす残余の部分に対し結合縁となるべき区間を折り目として傾斜形態に曲げ起す形で風車羽根を形成することができる。特に、金属板材を板状基材として用いる場合は、風車羽根の結合縁を残す形で貫通窓を打ち抜き形成し、そのまま打ち抜いた窓内部の部分を、打ち抜きパンチによりノックアウトする形で曲げ起して風車羽根にする、という極めて単純な金属加工によって安価にかつ能率的に形成できる利点がある。他方、プラスチック板材を使用する場合は、実際に打ち抜き加工を行うのではなく、当該風車形状を金型成型により形成することも可能である。   The moving blade and the stationary blade form a cut in the plate material along a circular shape corresponding to the outer peripheral edge of the wind turbine blade, excluding a section to be a connection edge to the through window of the wind turbine blade. The wind turbine blades can be formed in such a manner that a portion located inside is bent into a slanted shape with a section to be a coupling edge with respect to the remaining portion forming the plate-like base material. In particular, when a metal plate is used as a plate-like substrate, the through window is formed by punching in a form that leaves the connecting edge of the windmill blade, and the portion inside the window that has been punched is bent and knocked out by a punch. There is an advantage that it can be formed inexpensively and efficiently by an extremely simple metal processing of making a windmill blade. On the other hand, when a plastic plate material is used, it is possible to form the windmill shape by die molding, instead of actually performing punching.

貫通窓は、回転軸線に関する半径方向に沿って形成される1対の長辺区間と、回転軸線に関する周方向に沿って形成される1対の短辺区間とに囲まれた台形または扇型に形成され、風車羽根は1対の長辺区間の一方を結合縁とする形で該貫通窓の内周縁に結合することができる。これにより、風車回転掃引領域に対し貫通窓あるいは風車羽根をより密に配置することができ、風車の回転効率を高めることができる。   The through window has a trapezoidal shape or a fan shape surrounded by a pair of long side sections formed along the radial direction with respect to the rotation axis and a pair of short side sections formed along the circumferential direction with respect to the rotation axis. The wind turbine blade is formed and can be coupled to the inner peripheral edge of the through window in such a manner that one of the pair of long side sections is a coupling edge. Thereby, a penetration window or a windmill blade can be arrange | positioned more densely with respect to a windmill rotation sweep area | region, and the rotation efficiency of a windmill can be improved.

動翼と、該動翼に対し風上方向に隣接する静翼との対は、筺体内部にて回転軸線方向に複数配置することができる。これにより、排気流中のオイルミストの除去能力を一層高めることができる。なお、動翼の回転軸線と直交する平面による筺体の断面形状を、静翼を形成する板状基材の平面形状に一致させ、該板状基材の外周縁を筺体の内面に結合することにより、静翼側の板状基材を、当該動翼の配置空間を軸線方向両側にて区画する仕切り板として機能させることができる。動翼が個別に配置される空間(以下、動翼空間という)を静翼の板状基材にて区画することで、静翼を通過した排気流を極めて効率的に対応する動翼に供給できる。このとき、オイルミスト捕捉部をなす筺体壁部の底には、動翼空間ごとにドレン孔を形成しておくと、捕集されたオイルミストを抜き取る上での便宜を図ることができる。   A plurality of pairs of moving blades and stationary blades adjacent to the moving blades in the windward direction can be arranged in the rotation axis direction inside the housing. As a result, the ability to remove oil mist in the exhaust flow can be further enhanced. The cross-sectional shape of the casing formed by a plane orthogonal to the rotational axis of the rotor blade is matched with the planar shape of the plate-like substrate forming the stationary blade, and the outer peripheral edge of the plate-like substrate is coupled to the inner surface of the casing. Thus, the stationary blade side plate-like base material can be made to function as a partition plate that partitions the arrangement space of the moving blade on both sides in the axial direction. By dividing the space where the rotor blades are individually arranged (hereinafter referred to as the rotor blade space) with the plate base material of the stationary blades, the exhaust flow that has passed through the stationary blades is supplied to the corresponding blades very efficiently. it can. At this time, if a drain hole is formed for each moving blade space at the bottom of the casing wall portion forming the oil mist capturing portion, it is possible to facilitate the removal of the collected oil mist.

動翼及び静翼を上記のように交互に配置する構成においては、動翼及び静翼をそれぞれ、仮想平面と平行に配置される板状基材を備え、該板状基材には各々風車羽根に対応する内縁形状となる貫通窓が回転軸線周りに放射状となるように複数形成され、該動翼又は静翼の回転方向における風車羽根の一方の縁が、貫通窓の対応する内周縁にて板状基材に傾斜形態にて結合されてなる構造を有するものとして構成できる。このとき、複数の動翼と静翼とは、風車羽根の仮想平面からの立ち上がり方向が、静翼が風上方向及び動翼が風下方向となり、かつ、風車羽根が非突出となる側の板状基材の主表面同士の対向間隔が、これと反対側の主表面同士の対向間隔よりも小さくなるよう交互に配置することができる。これにより、隣接する静翼と動翼との配置間隔を縮小することができ、ひいては静翼により整流された排気流を減衰させることなく動翼に導くことができるので、排気流の風車回転力への変換効率をより高めることができる。   In the configuration in which the moving blades and the stationary blades are alternately arranged as described above, each of the moving blades and the stationary blades includes a plate-like base material arranged in parallel with the virtual plane, and each of the plate-like base materials has a windmill. A plurality of through windows having an inner edge shape corresponding to the blades are formed radially around the rotation axis, and one edge of the wind turbine blade in the rotation direction of the moving blade or stationary blade is formed on the corresponding inner peripheral edge of the through window. Thus, it can be configured to have a structure in which it is bonded to the plate-like substrate in an inclined form. At this time, the plurality of moving blades and stationary blades are plates on the side where the rising direction from the virtual plane of the windmill blades is the windward direction, the moving blades are the leeward direction, and the windmill blades are not protruding. It can arrange | position alternately so that the opposing space | interval of the main surfaces of a glass-like base material may become smaller than the opposing space | interval of the main surfaces on the opposite side. As a result, the spacing between adjacent stationary blades and moving blades can be reduced, and the exhaust flow rectified by the stationary blades can be guided to the moving blades without being attenuated. The conversion efficiency to can be further increased.

なお、上記のような動翼と静翼との組のさらに下流側において筺体の内部には、動翼よりも遠心流成分が大きくなるように構成された補助風車を遊転可能に配置することができる。動翼よりも遠心流発生が優位となる補助風車を下流側に配置することで、動翼群を通過した時点で排気流に残留していたオイルミストを効果的に除去することができる。   In addition, an auxiliary wind turbine configured so that the centrifugal flow component is larger than that of the moving blade is disposed in the casing on the further downstream side of the pair of moving blade and stationary blade as described above so as to be free-wheeling. Can do. By disposing the auxiliary wind turbine in which the centrifugal flow generation is superior to the moving blades on the downstream side, the oil mist remaining in the exhaust flow when passing through the moving blade group can be effectively removed.

本発明のオイルミスト除去装置の一使用形態を模式的に示す説明図。Explanatory drawing which shows typically the usage form of the oil mist removal apparatus of this invention. 本発明のオイルミスト除去装置の第一実施形態を示す四面図。The four-plane figure which shows 1st embodiment of the oil mist removal apparatus of this invention. 図2の側面図を拡大して示す図。The figure which expands and shows the side view of FIG. 動翼の側面図及び正面図。The side view and front view of a moving blade. 静翼の側面図及び正面図。The side view and front view of a stationary blade. 風車羽根の形成形態を示す拡大図。The enlarged view which shows the formation form of a windmill blade. 図6の風車羽根をその変形態様とともに示す断面図。Sectional drawing which shows the windmill blade of FIG. 6 with the deformation | transformation aspect. 動翼の作用を示す斜視図。The perspective view which shows the effect | action of a moving blade. 静翼の作用を示す斜視図。The perspective view which shows the effect | action of a stationary blade. 動翼の作用を、次段の静翼への気流形成形態とともに示す側面模式図。The side surface schematic diagram which shows the effect | action of a moving blade with the airflow formation form to the stationary blade of the next stage. 動翼と静翼とを交互に配置する場合の作用を説明する側面模式図。The side surface schematic diagram explaining the effect | action in the case of arrange | positioning a moving blade and a stationary blade alternately. 本発明のオイルミスト除去装置の第二実施形態を示す二面図。The double view which shows 2nd embodiment of the oil mist removal apparatus of this invention. 本発明のオイルミスト除去装置の第三実施形態を示す二面図。The double view which shows 3rd embodiment of the oil mist removal apparatus of this invention. 本発明のオイルミスト除去装置の第四実施形態を示す正面図。The front view which shows 4th embodiment of the oil mist removal apparatus of this invention. 本発明のオイルミスト除去装置の第五実施形態を示す側面図。The side view which shows 5th embodiment of the oil mist removal apparatus of this invention. 本発明のオイルミスト除去装置の第六実施形態を示す三面図。The three-plane figure which shows 6th embodiment of the oil mist removal apparatus of this invention. 本発明のオイルミスト除去装置の第七実施形態を示す四面図。The four-plane figure which shows 7th embodiment of the oil mist removal apparatus of this invention. 図17のオイルミスト除去装置に使用する静翼、動翼及び補助風車を示す説明図。Explanatory drawing which shows the stationary blade, moving blade, and auxiliary windmill which are used for the oil mist removal apparatus of FIG.

以下、本発明を実施するための形態を添付の図面を用いて説明する。
図1は、本発明のオイルミスト除去装置の適用形態の一例を示す模式図である。具体的には、本発明の装置を焼き肉店や網焼き店などの店舗の排煙装置に適用した例であり、店舗200内には食品を焼いて調理するためのコンロ102が置かれ、その上方には該コンロ102で発生する煙SMを集めるための集煙フード105が配置されている。集煙フード105には、金属ないし樹脂で構成された入口側排煙ダクト104Aの一端が接続されている。該入口側排煙ダクト104Aは天井板103を貫いて天井裏空間に入り込み、側方に屈曲して壁部110に向け伸びている。一方、天井板103の上面には本発明の一実施形態であるオイルミスト除去装置1が脚部81を介して固定されており、その一方の側面に開口する排気流入口2Jに入口側排煙ダクト104Aの他端が接続されている。また、オイルミスト除去装置1の他方の側面には排気流出口2Dが開口し、ここに出口側排煙ダクト104Bの一端が接続されている。そして、店舗200の壁部屋外側にはモーター駆動される排気ファン102が取り付けられ、出口側排煙ダクト104Bの他端がこれに接続されている。なお、オイルミスト除去装置1は吊り固定具82により天井板103’の下面に吊下げ形態で固定してもよい。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic view showing an example of an application form of the oil mist removing apparatus of the present invention. Specifically, this is an example in which the apparatus of the present invention is applied to a smoke exhaust device of a store such as a grilled meat store or a grilled store, and a stove 102 for baking and cooking food is placed in the store 200, above it. A smoke collecting hood 105 for collecting the smoke SM generated in the stove 102 is arranged. One end of an inlet-side smoke exhaust duct 104A made of metal or resin is connected to the smoke collection hood 105. The inlet-side smoke exhaust duct 104 </ b> A penetrates the ceiling plate 103 and enters the ceiling back space, bends sideways, and extends toward the wall 110. On the other hand, an oil mist removing apparatus 1 according to an embodiment of the present invention is fixed to the upper surface of the ceiling plate 103 via a leg portion 81, and the inlet side exhaust smoke is connected to the exhaust inlet 2J that opens on one side surface thereof. The other end of the duct 104A is connected. Further, an exhaust outlet 2D is opened on the other side surface of the oil mist removing apparatus 1, and one end of the outlet side smoke exhaust duct 104B is connected thereto. An exhaust fan 102 driven by a motor is attached to the outside of the wall room of the store 200, and the other end of the outlet side smoke exhaust duct 104B is connected thereto. Note that the oil mist removing apparatus 1 may be fixed in a suspended form on the lower surface of the ceiling plate 103 ′ by the suspension fixture 82.

図2は、オイルミスト除去装置1の一構成例を示す四面図である。オイルミスト除去装置1の要部は、筺体2と、その内部に収容された風車ユニット6により構成される。筺体2内部が排気流通路MFDをなす中空体として構成され、該排気流MFの流通方向における一端に排気流入口2Jが、他端に排気流出口2Dが形成される。そして、排気流MFの流通方向における一方の端部に排気流入口2Jが、他方の端部に出口側ダクト接続部26Dがそれぞれ形成されている。   FIG. 2 is a four-sided view showing a configuration example of the oil mist removing apparatus 1. The main part of the oil mist removing apparatus 1 includes a housing 2 and a wind turbine unit 6 accommodated therein. The inside of the housing 2 is configured as a hollow body that forms an exhaust flow passage MFD, and an exhaust inlet 2J is formed at one end in the flow direction of the exhaust flow MF, and an exhaust outlet 2D is formed at the other end. An exhaust inflow port 2J is formed at one end in the flow direction of the exhaust flow MF, and an outlet side duct connection portion 26D is formed at the other end.

筺体2は、ステンレス鋼板等の金属板材からなる短辺側側壁22,22、長辺側側壁23,23、天板24及び底板21により、排気流MFの流通方向に長い直方体形状に構成される。短辺側側壁22,22の一方には入口側排煙ダクト104Aを着脱可能に接続するための入口側ダクト接続部26Jが、また、他方には出口側排煙ダクト104Bを着脱可能に接続するための出口側ダクト接続部26Dがそれぞれ形成されている。各接続部26J,26Dはそれぞれ筺体2の内部に連通する筒状の金属部材であり、外側の開口がそれぞれ排気流入口2J及び排気流出口2Dとされている。また、脚部81(ないし吊り固定具82)は、短辺側側壁22,22又は長辺側側壁23,23に固定されている。また、図3に示すように、入口側ダクト接続部26J及び出口側ダクト接続部26Dは筒状に形成され、蛇腹状の入口側排煙ダクト104A及び出口側排煙ダクト104Bが、それぞれ各ダクト接続部26J,26Dに外側から差し込み装着されるようになっている。   The casing 2 is configured in a rectangular parallelepiped shape that is long in the flow direction of the exhaust flow MF by the short side walls 22 and 22, the long side walls 23 and 23, the top plate 24, and the bottom plate 21 made of a metal plate such as a stainless steel plate. . An inlet side duct connection portion 26J for detachably connecting the inlet side smoke exhaust duct 104A is detachably connected to one of the short side walls 22 and 22, and the outlet side smoke exhaust duct 104B is detachably connected to the other side wall. Outlet-side duct connection portions 26D are formed respectively. Each of the connection portions 26J and 26D is a cylindrical metal member that communicates with the inside of the housing 2, and the outer openings are an exhaust inlet 2J and an exhaust outlet 2D, respectively. Further, the leg portion 81 (or the suspension fixture 82) is fixed to the short side walls 22 and 22 or the long side walls 23 and 23. Further, as shown in FIG. 3, the inlet side duct connecting portion 26J and the outlet side duct connecting portion 26D are formed in a cylindrical shape, and the bellows-like inlet side smoke exhaust duct 104A and the outlet side smoke exhaust duct 104B are respectively connected to the respective ducts. The connecting portions 26J and 26D are inserted and attached from the outside.

次に、風車ユニット6は、軸流型風車として構成された複数の動翼3と、整流部をなす複数の静翼4とが排気流流れ方向に複数配置されたものである。動翼3は、回転軸線Oが排気流MFの方向を向くよう筺体2の内部に流れ方向に同軸的かつ各々遊転可能に配置されている。図4は、動翼3の1枚を拡大して示すものであり、該回転軸線O方向における上流側に受風面3Rが形成され下流側に送風面3Fが形成され、受風面3Rにて排気流MFを受けて遊転することにより、図8に示すように、該排気流MFを送風面3F側にて回転軸線O方向に生ずる軸流成分AFと回転半径方向外向きに生ずる遠心流成分CRFとに分解しつつ送出する。   Next, the wind turbine unit 6 includes a plurality of moving blades 3 configured as an axial flow type wind turbine and a plurality of stationary blades 4 forming a rectification unit arranged in the exhaust flow direction. The rotor blades 3 are coaxially arranged in the flow direction inside the casing 2 so as to be freely rotatable so that the rotation axis O faces the direction of the exhaust flow MF. FIG. 4 is an enlarged view of one of the rotor blades 3. A wind receiving surface 3 </ b> R is formed on the upstream side in the direction of the rotation axis O, and an air blowing surface 3 </ b> F is formed on the downstream side. As shown in FIG. 8, the exhaust flow MF is idled and rotated in the direction of the rotational axis O and the centrifugal flow generated outwardly in the rotational radius direction. The flow component CRF is sent while being decomposed.

図3に示すように、筺体2の内壁面2Wは動翼3の外側を周方向に取り囲むとともに、動翼3の外周縁との間には隙間が形成されている。該内壁面2Wは、動翼3の遠心流を衝突させることにより、排気流MFに含まれるオイルミストを捕捉するオイルミスト捕捉部として機能している。また、静翼4は、筺体2の内部にて動翼3の上流側に隣接配置され、該動翼3による排気流MFの受風方向を、排気流MFの風力の回転トルク変換効率が向上する向きに整流する役割を果たす。   As shown in FIG. 3, the inner wall surface 2 </ b> W of the housing 2 surrounds the outer side of the moving blade 3 in the circumferential direction, and a gap is formed between the outer peripheral edge of the moving blade 3. The inner wall surface 2W functions as an oil mist capturing section that captures oil mist contained in the exhaust flow MF by colliding the centrifugal flow of the moving blade 3. Further, the stationary blade 4 is disposed adjacent to the upstream side of the moving blade 3 inside the housing 2, and the wind receiving direction of the exhaust flow MF by the moving blade 3 is improved in the rotational torque conversion efficiency of the wind force of the exhaust flow MF. It plays the role of rectifying the direction.

図4に示すように、動翼3は、回転軸線Oと直交する仮想平面VPから傾斜形態で立ち上がる風車羽根31が、回転軸線Oの周りに複数放射状に配置されたものとして構成されている。具体的には、仮想平面VPと平行に配置される円板状の板状基材34を備え、該板状基材34には各々風車羽根31に対応する内縁形状となる貫通窓32が回転軸線O周りに放射状となるように複数形成されている。そして、図6及び図7に示すように、動翼3の回転方向における風車羽根31の一方の縁が、貫通窓32の対応する内周縁33にて板状基材34に傾斜形態にて結合されている。   As shown in FIG. 4, the moving blade 3 is configured such that a plurality of windmill blades 31 rising in an inclined form from a virtual plane VP orthogonal to the rotation axis O are arranged radially around the rotation axis O. Specifically, a disk-like plate-like base material 34 arranged in parallel with the virtual plane VP is provided, and through-holes 32 each having an inner edge shape corresponding to the windmill blade 31 rotate on the plate-like base material 34. A plurality of radial lines are formed around the axis O. 6 and 7, one edge of the wind turbine blade 31 in the rotating direction of the rotor blade 3 is coupled to the plate-like base material 34 in an inclined form at the corresponding inner peripheral edge 33 of the through window 32. Has been.

一方、図5に示すように、静翼4は、回転軸線Oと直交する仮想平面VPから傾斜形態で立ち上がる風車羽根41が、該平面VPに対する傾斜方向が動翼3とは逆向きとなるように回転軸線Oの周りに複数放射状に配置され、筺体2内に非回転となるように取り付けられる。具体的には、静翼4は、仮想平面VPと平行に配置される板状基材44を備え、該板状基材44には各々風車羽根41に対応する内縁形状となる貫通窓42が回転軸線Oの周りに放射状となるように複数形成されている。風車羽根41は、動翼3の回転方向における2つの縁のうち、動翼3側と反対側の縁が、貫通窓42の対応する内周縁にて板状基材44に傾斜形態にて結合されている。   On the other hand, as shown in FIG. 5, the stationary blade 4 is configured such that the wind turbine blade 41 rising in an inclined form from the virtual plane VP orthogonal to the rotation axis O is inclined in the direction opposite to the moving blade 3 with respect to the plane VP. Are arranged radially around the rotation axis O and are mounted in the housing 2 so as not to rotate. Specifically, the stationary blade 4 includes a plate-like base material 44 disposed in parallel with the virtual plane VP, and the plate-like base material 44 has through windows 42 each having an inner edge shape corresponding to the wind turbine blade 41. A plurality of radial lines are formed around the rotation axis O. Of the two edges in the rotation direction of the rotor blade 3, the windmill blade 41 is coupled to the plate-like substrate 44 in an inclined form at the inner edge corresponding to the through window 42 at the edge opposite to the rotor blade 3 side. Has been.

また、図2及び図11に示すように、動翼3と静翼4との対は、筺体2内部にて回転軸線O方向に複数配置されている。動翼3の回転軸線Oと直交する平面による筺体2の断面形状は、静翼4を形成する板状基材44の平面形状に一致している。そして、該板状基材44の外周縁を筺体2の内面に結合することにより、静翼4側の板状基材44は、当該動翼3の配置空間を軸線O方向の両側にて区画する仕切り板として機能している。従って、動翼3が個別に配置される空間(以下、動翼空間という)は、静翼4の板状基材44にて区画された構造となっている。また、オイルミスト捕捉部2Wをなす筺体2の壁部の底には、動翼空間ごとにドレン孔21dが形成され、捕集されたオイルミストを抜き取る上での便宜が図られている。   As shown in FIGS. 2 and 11, a plurality of pairs of the moving blades 3 and the stationary blades 4 are arranged in the direction of the rotation axis O inside the housing 2. The cross-sectional shape of the housing 2 by a plane orthogonal to the rotational axis O of the moving blade 3 is identical to the planar shape of the plate-like substrate 44 that forms the stationary blade 4. Then, by connecting the outer peripheral edge of the plate-like base material 44 to the inner surface of the housing 2, the plate-like base material 44 on the stationary blade 4 side partitions the arrangement space of the moving blade 3 on both sides in the axis O direction. Functions as a partition plate. Therefore, the space in which the moving blades 3 are individually arranged (hereinafter referred to as the moving blade space) has a structure partitioned by the plate-like base material 44 of the stationary blade 4. In addition, a drain hole 21d is formed for each moving blade space at the bottom of the wall portion of the casing 2 forming the oil mist capturing portion 2W, so as to facilitate the removal of the collected oil mist.

また、図2及び図11に示すように、複数の動翼3と静翼4とは、風車羽根31,41の仮想平面からの立ち上がり方向が、静翼4が風上方向及び動翼3が風下方向となるように設定されている。また、風車羽根31,41が非突出となる側の板状基材34,44の主表面同士の対向間隔は、これと反対側の主表面同士の対向間隔よりも小さくなるよう交互に配置されている。これにより、隣接する静翼4と動翼3との配置間隔が縮小されていることがわかる。   Further, as shown in FIGS. 2 and 11, the plurality of moving blades 3 and the stationary blades 4 have the rising direction from the virtual plane of the wind turbine blades 31 and 41, the stationary blade 4 the upwind direction, and the moving blade 3. It is set to be in the leeward direction. Further, the opposing intervals between the main surfaces of the plate-like base materials 34 and 44 on the side where the windmill blades 31 and 41 are not projected are alternately arranged so as to be smaller than the opposing interval between the main surfaces on the opposite side. ing. Thereby, it turns out that the arrangement | positioning space | interval of the adjacent stationary blade 4 and the moving blade 3 is shrunk | reduced.

図5及び図9に示すように、静翼4の板状基材44は正方形状に形成され、図3に示すように、外周縁部にて筺体2の内面に結合される。具体的には、図9に示すように、外周縁にそって直角に曲げ返す形で結合代部48が形成され、これに貫通形成されるねじ穴48hにて図示しないボルト等により筺体2の壁部に締結結合される。   As shown in FIGS. 5 and 9, the plate-like base material 44 of the stationary blade 4 is formed in a square shape, and is coupled to the inner surface of the housing 2 at the outer peripheral edge as shown in FIG. 3. Specifically, as shown in FIG. 9, a connecting margin 48 is formed so as to be bent at a right angle along the outer peripheral edge, and a screw hole 48h formed through the connecting margin 48 is formed by a bolt or the like (not shown). Fastened to the wall.

図5に示すように、静翼4の板状基材は、風車羽根41の円状の配列と、正方形状の基材外周縁との間の領域が中実の気流遮断領域(ただし、貫通形態で形成された風圧調整孔44aを除く)となっている。他方、図4に示すように、動翼3は円板状に形成され、筺体2の正方形状の断面内縁との間の領域は、全体にわたって気流の通過を許容する隙間空間となっている。すなわち、図4と図5とを対比すれば明らかな通り、回転軸線Oの周りにおいて、静翼4の風車羽根41の放射状の配列の外周縁よりも外側における通気断面積は、動翼3の外周縁と筺体2の内面との間に形成される隙間の通気断面積よりも小さく設定されている。   As shown in FIG. 5, the plate-like base material of the stationary blade 4 is a solid air current blocking region (however, the area between the circular arrangement of the windmill blades 41 and the square outer peripheral edge of the base material) Except for the wind pressure adjusting hole 44a formed in the form). On the other hand, as shown in FIG. 4, the moving blade 3 is formed in a disk shape, and the region between the inner edge of the square-shaped cross section of the housing 2 is a gap space that allows the passage of airflow throughout. That is, as is clear from a comparison between FIG. 4 and FIG. 5, the ventilation cross-sectional area outside the outer peripheral edge of the radial arrangement of the wind turbine blades 41 of the stationary blade 4 around the rotation axis O is It is set smaller than the ventilation cross-sectional area of the gap formed between the outer peripheral edge and the inner surface of the housing 2.

次に、図4、図5に示すように、複数の動翼3の板状基材34(図4)は、複数の静翼4の板状基材44(図5)を貫通して配置される共通の回転軸5に対し相対回転不能に取り付けられる。該回転軸5は、静翼4の板状基材44の貫通位置に設けられたベアリング53により回転可能に支持されている。具体的には、動翼3の板状基材34の中央には軸固定スリーブ52がボルト37を介して取り付けられ、該回転軸5は該軸固定スリーブ52に対しセットボルト(図示せず)等を介して回転不能に取り付けられる。また、ベアリング53は、外輪が静翼4の板状基材44に、内輪が回転軸5にそれぞれ回転不能に取り付けられる。   Next, as shown in FIGS. 4 and 5, the plate-like base materials 34 (FIG. 4) of the plurality of rotor blades 3 are disposed through the plate-like base materials 44 (FIG. 5) of the plurality of stationary blades 4. It is attached so that it cannot rotate relative to the common rotating shaft 5. The rotating shaft 5 is rotatably supported by a bearing 53 provided at a penetrating position of the plate-like base material 44 of the stationary blade 4. Specifically, a shaft fixing sleeve 52 is attached to the center of the plate-like base material 34 of the rotor blade 3 via a bolt 37, and the rotating shaft 5 is set to the shaft fixing sleeve 52 by a set bolt (not shown). It is attached non-rotatably through the like. The bearing 53 is attached to the plate-like base material 44 of the stationary blade 4 on the outer ring and the inner ring on the rotary shaft 5 so as not to rotate.

図6及び図7に示すように、動翼3及び静翼4(以下、動翼3側の符号で代表させる)は、風車羽根31の外周縁に対応する周回形状に沿って、当該風車羽根41の貫通窓32への結合縁33となるべき区間を除く形で板材に切れ目を形成し、該板材の切れ目の内側に位置する部分を、板状基材34をなす残余の部分に対し結合縁33となるべき区間を折り目33として傾斜形態に曲げ起す形で風車羽根31が形成されている。特に、ステンレス鋼板やアルミ板材などの金属板材を板状基材34として用いる場合は、風車羽根31の結合縁33を残す形で貫通窓32を打ち抜き形成し、そのまま打ち抜いた窓内部の部分を、打ち抜きパンチによりノックアウトする形で曲げ起して風車羽根31にする、という極めて単純な金属加工によって安価にかつ能率的に形成できる(ただし、プラスチック板材を使用することもでき、この場合は、実際に打ち抜き加工を行うのではなく、当該風車形状を金型成型により形成することも可能である)。   As shown in FIGS. 6 and 7, the moving blade 3 and the stationary blade 4 (hereinafter represented by the reference numerals on the moving blade 3 side) are arranged along the circular shape corresponding to the outer peripheral edge of the wind turbine blade 31. A cut is formed in the plate material excluding a section to be the connecting edge 33 to the through window 32 of 41, and a portion located inside the cut of the plate material is bonded to the remaining portion forming the plate-like base material 34 The wind turbine blade 31 is formed in a shape that bends and rises in an inclined form with a section to be the edge 33 as a fold line 33. In particular, when a metal plate material such as a stainless steel plate or an aluminum plate material is used as the plate-like base material 34, the through window 32 is formed by punching in the form of leaving the coupling edge 33 of the windmill blade 31, and the portion inside the window punched as it is, It can be formed inexpensively and efficiently by a very simple metal processing of bending and forming into a windmill blade 31 by knocking out by a punching punch (however, a plastic plate material can also be used. It is also possible to form the windmill by die molding instead of punching).

貫通窓32は、回転軸線Oに関する半径方向に沿って形成される1対の長辺区間32r,33と、回転軸線Oに関する周方向に沿って形成される1対の短辺区間32p,32kとに囲まれた台形または扇型に形成されている。そして、風車羽根31は1対の長辺区間の一方を結合縁33とする形で該貫通窓32の内周縁33に結合されている。この実施形態では、貫通窓32(及び風車羽根31)は、回転軸線の中心に関する半径方向に所定の角度間隔で形成される半径方向内縁32r及び折り目(結合縁)33と、両者を該半径方向内外にてそれぞれ連結する円弧状(直線状でもよい)の周方向内縁32p,32kに囲まれた扇型(ないし台形)状に形成されている。   The through window 32 includes a pair of long side sections 32r and 33 formed along the radial direction with respect to the rotation axis O, and a pair of short side sections 32p and 32k formed along the circumferential direction with respect to the rotation axis O. It is formed in a trapezoid or fan shape surrounded by. The wind turbine blade 31 is coupled to the inner peripheral edge 33 of the through window 32 in such a manner that one of the pair of long side sections is a coupling edge 33. In this embodiment, the through window 32 (and the wind turbine blade 31) includes a radial inner edge 32r and a fold line (joining edge) 33 formed at predetermined angular intervals in the radial direction with respect to the center of the rotation axis, It is formed in a sector shape (or trapezoidal shape) surrounded by arcuate (or linear) circumferential inner edges 32p and 32k that are connected inside and outside.

なお、図7の左に示すように、半径方向を法線とする平面による風車羽根31の断面形状は直線状となっているが、打ち抜きパンチの先端面形状の変更により、同図右に示すように、円弧状に湾曲した断面形態とすることも可能である。   In addition, as shown on the left of FIG. 7, the cross-sectional shape of the windmill blade 31 by the plane which makes a radial direction a normal line is linear, but it shows on the right of the same figure by changing the front end surface shape of the punching punch. As described above, a cross-sectional shape curved in an arc shape is also possible.

以下、オイルミスト除去装置1の作用について説明する。図1において、コンロ102で発生する煙SMは集煙フード105に集められる。排気ファン102を作動させると、コンロ102で発生する煙SMは集煙フード105に集められつつ排気流MFとなって入口側排煙ダクト104Aに吸い込まれ、オイルミスト除去装置1を通過してオイルミストや煙粒子が取り除かれ、浄化済み排気流VFとなって出口側排煙ダクト104Bに流れ込み、排気ファン102を経て屋外へ排出される。   Hereinafter, the operation of the oil mist removing apparatus 1 will be described. In FIG. 1, smoke SM generated in the stove 102 is collected in a smoke collection hood 105. When the exhaust fan 102 is operated, the smoke SM generated in the stove 102 is collected in the smoke collection hood 105 and becomes an exhaust flow MF, and is sucked into the inlet-side smoke exhaust duct 104A and passes through the oil mist removing device 1 to become oil. Mist and smoke particles are removed, the exhaust gas flows into the outlet side smoke exhaust duct 104B as a purified exhaust stream VF, and is discharged to the outside through the exhaust fan 102.

オイルミスト除去装置1内では、遊転可能な軸流型風車として構成された動翼3は、受風面3Rにて排気流MFを受けて回転し、図3に示すように、送風面3F側にて、排気流MFを回転軸線O方向に生ずる軸流成分AFと回転半径方向外向きに生ずる遠心流成分CRFとに分解しつつ送出する。図10に示すように、遠心流成分CRFは動翼34の外周面から放出されるとともに、筺体2の内壁面2Wに衝突し、排気流MFに含まれるオイルミスト(や、煙粒子などの汚染物)が、該内壁面2Wをオイルミスト捕捉部としてこれに捕捉される。   In the oil mist removing device 1, the rotor blade 3 configured as an axial flow type windmill that can rotate freely receives the exhaust flow MF at the wind receiving surface 3R and rotates, and as shown in FIG. On the side, the exhaust flow MF is sent out while being decomposed into an axial flow component AF generated in the rotation axis O direction and a centrifugal flow component CRF generated outward in the rotation radial direction. As shown in FIG. 10, the centrifugal flow component CRF is released from the outer peripheral surface of the moving blade 34 and collides with the inner wall surface 2W of the housing 2 to cause contamination of oil mist (or smoke particles or the like) contained in the exhaust flow MF. Is captured by the inner wall surface 2W as an oil mist capturing section.

すなわち、動翼3においては、受けた排気流MFの一部が遠心流成分CRFとなって内壁面2Wに向かい、そこでオイルミストが捕捉される一方、一部が軸流成分AFの形で下流側に逃がされる。この軸流成分AFは、下流側の次段の軸流型風車3に供給され、同様に遠心流成分CRFと軸流成分AFとに分解される。その結果、供給される排気流MFに含まれるオイルミストは、複数段の動翼3(軸流側風車)を通過するに伴い、その都度、遠心流成分CRFに乗って段階的に除去されるとともに、軸流成分AFの形で一部が下流側に逃がされる分だけ流通抵抗が減少する。その結果、外部からの動力供給が不要な遊転機構により風車を回転させるだけでオイルミストを十分に除去することができる。   That is, in the moving blade 3, a part of the received exhaust flow MF becomes a centrifugal flow component CRF and moves toward the inner wall surface 2W, where oil mist is captured, while a part thereof is downstream in the form of an axial flow component AF. Escaped to the side. This axial flow component AF is supplied to the downstream axial flow type wind turbine 3 on the downstream side, and is similarly decomposed into a centrifugal flow component CRF and an axial flow component AF. As a result, the oil mist contained in the supplied exhaust flow MF is removed stepwise on the centrifugal flow component CRF each time it passes through the plurality of stages of moving blades 3 (axial flow side windmills). At the same time, the flow resistance decreases as much as a part of the axial flow component AF is released to the downstream side. As a result, the oil mist can be sufficiently removed only by rotating the windmill by the idler mechanism that does not require external power supply.

また、図10に示すように、各動翼3の上流側には静翼4が配置されているが、該静翼4は、動翼3から放出される排気流MFの受風方向を、該動翼3による排気流MFの風力の回転トルク変換効率が向上する向きIFに整流する整流部の役割を果たす。図4及び図5に示すように、静翼4は、具体的には、回転軸線Oと直交する仮想平面VPから傾斜形態で立ち上がる風車羽根41が、該平面VPに対する傾斜方向が動翼3とは逆向きとなるように回転軸線Oの周りに複数放射状に配置されている。動翼3から放出される排気流MFの向きは回転軸線Oの向きに平行であるが、静翼4の風車羽根41を通過する際に該排気流MFは、次段の動翼3の風車羽根31の受風面3Rに対し、該風車羽根31の法線方向に近づくように(すなわち、回転トルク変換効率が向上する向きIFに)方向転換された形で供給され、次段の動翼3の回転効率が高められる。そして、このような動翼3と静翼4との対が複数段設けられ、かつ、複数の動翼3が動相かつ同軸に設けられて一体回転する構造となっていることで、排気流MFの風力を動翼3の回転力に無駄なく変換することができ、排気流MF中のオイルミストの除去能力が一層高められている。   Further, as shown in FIG. 10, the stationary blades 4 are arranged on the upstream side of the moving blades 3, and the stationary blades 4 change the wind receiving direction of the exhaust flow MF emitted from the moving blades 3. It plays the role of a rectification unit that rectifies in the direction IF in which the rotational torque conversion efficiency of the wind force of the exhaust flow MF by the rotor blades 3 is improved. As shown in FIGS. 4 and 5, specifically, the stationary blade 4 includes a windmill blade 41 that rises in an inclined form from a virtual plane VP orthogonal to the rotation axis O, and the inclined direction with respect to the plane VP is the same as that of the moving blade 3. Are arranged radially around the rotation axis O so as to be opposite to each other. The direction of the exhaust flow MF discharged from the moving blade 3 is parallel to the direction of the rotation axis O, but when passing through the wind turbine blade 41 of the stationary blade 4, the exhaust flow MF becomes the wind turbine of the next moving blade 3. It is supplied to the wind receiving surface 3 </ b> R of the blade 31 so as to change its direction so as to approach the normal direction of the wind turbine blade 31 (that is, in the direction IF that improves the rotational torque conversion efficiency), and the moving blade of the next stage The rotational efficiency of 3 is increased. Further, such a pair of moving blades 3 and stationary blades 4 is provided in a plurality of stages, and the plurality of moving blades 3 are provided in a moving phase and coaxially so as to rotate integrally, thereby providing an exhaust flow. The wind force of MF can be converted into the rotational force of the moving blade 3 without waste, and the ability to remove oil mist in the exhaust flow MF is further enhanced.

また、静翼4側の板状基材44が、当該動翼3の配置空間を軸線O方向の両側にて区画する仕切り板として機能し、動翼3が個別に配置される動翼空間が、静翼4の板状基材44にて区画された構造となっているので、静翼4の風車羽根41の外側をバイパスして動翼3側に回り込む気流の発生が抑制され、動翼3から次段の静翼4に対し排気流MFを効率よく導くことができる。また、図3に示すように、動翼空間ごとにドレン孔21dが形成されているが、該ドレン孔21dは、常時はボルトやキャップ等でふさいでおき、内部に捕捉されたオイルミストがたまってくれば、随時該ドレン孔21dを開いてオイルを抜き取ればよい。   In addition, the plate-like base material 44 on the stationary blade 4 side functions as a partition plate that partitions the arrangement space of the moving blade 3 on both sides in the direction of the axis O, and the moving blade space in which the moving blades 3 are individually arranged is provided. Since the structure is defined by the plate-like base material 44 of the stationary blade 4, the generation of an air current that bypasses the outside of the wind turbine blade 41 of the stationary blade 4 and goes around to the moving blade 3 side is suppressed. The exhaust flow MF can be efficiently guided from 3 to the next stationary blade 4. Further, as shown in FIG. 3, a drain hole 21d is formed for each rotor blade space. The drain hole 21d is normally blocked with a bolt, a cap or the like, and oil mist trapped inside is accumulated. If necessary, the drain hole 21d may be opened at any time to remove the oil.

以下、オイルミスト除去装置1の種々の変形例について説明する。
図12の構成では、底板21の下側に、漏斗状のドレン捕集部28を取り付けた例を示す。ドレン捕集部28の底部にはドレン回収部29が着脱可能に取り付けられている。底板21の、各動翼空間に対応する位置に開けられたドレン孔21dはキャップ等でふさがれず、解放状態とされており、筺体2の壁面を流下する回収済みのオイルはドレン孔21dからドレン捕集部28上に落下し、ドレン回収部29に集められる。ドレン回収部29は随時取り外し、溜まったオイル等を廃棄すればよい。図13は、底板21の下側に、図12のドレン捕集部の代わりにラック21を取り付け、該ラック21に引き出し状のオイル回収パン30を設けた例である。
Hereinafter, various modifications of the oil mist removing apparatus 1 will be described.
In the configuration of FIG. 12, an example in which a funnel-shaped drain collecting portion 28 is attached to the lower side of the bottom plate 21 is shown. A drain collecting unit 29 is detachably attached to the bottom of the drain collecting unit 28. The drain hole 21d opened at a position corresponding to each moving blade space in the bottom plate 21 is not blocked by a cap or the like and is in a released state, and the recovered oil flowing down the wall surface of the housing 2 is drained from the drain hole 21d. It falls on the collection unit 28 and is collected in the drain collection unit 29. The drain collecting unit 29 may be removed at any time and the accumulated oil or the like may be discarded. FIG. 13 is an example in which a rack 21 is attached to the lower side of the bottom plate 21 instead of the drain collecting portion of FIG. 12, and a drawer-like oil recovery pan 30 is provided on the rack 21.

図14の構成は、筺体2及び静翼4の外形を円状とした構成例を示す。これにより、筺体2内に風が淀みやすい角部が生じなくなり、気流抵抗が減少するので、動翼3の回転効率、ひいてはオイルミストの捕捉能力をより高めることができる。なお、筺体2の底部には、図12と同様のドレン回収部29が設けられている。   The configuration of FIG. 14 shows a configuration example in which the outer shapes of the housing 2 and the stationary blade 4 are circular. Thereby, the corner | angular part in which a wind tends to stagnate in the housing 2 does not arise, and since airflow resistance reduces, the rotational efficiency of the moving blade 3 and by extension, the capture capability of oil mist can be improved more. In addition, the drain collection part 29 similar to FIG. 12 is provided in the bottom part of the housing 2.

図15の構成では、筺体2の両端に各ダクト接続部がフランジ221fとして形成され、ダクト204A,204B側のフランジ204fを重ね合わせてボルトナット221B等のフランジ締結具により締結結合するようにしてある。   In the configuration of FIG. 15, the duct connecting portions are formed as flanges 221f at both ends of the housing 2, and the flanges 204f on the ducts 204A and 204B side are overlapped and fastened by a flange fastener such as a bolt nut 221B. .

図16のオイルミスト除去装置100の構成では、竪型に構成された外部筺体120が設けられ、その頂部120Tの側面に形成された排気流入口126から排気流を吸い込むようになっている。風車ユニット6を区画する筺体2は、外部筺体120の下部120Bの内部において、その天板120Uに対し吊下げ形態で固定されている。動翼3の回転軸5は、垂直方向に配置される形となり、排気流VFは外部筺体120の底面に当たった後、その側壁部に形成された排気流出口26から排出されるようになっている。   In the configuration of the oil mist removing apparatus 100 of FIG. 16, an external casing 120 configured in a bowl shape is provided, and an exhaust flow is sucked from an exhaust inlet 126 formed on the side surface of the top 120T. The housing 2 that partitions the wind turbine unit 6 is fixed in a suspended manner to the top plate 120U inside the lower portion 120B of the external housing 120. The rotating shaft 5 of the rotor blade 3 is arranged in a vertical direction, and the exhaust flow VF is discharged from an exhaust outlet 26 formed on the side wall portion thereof after hitting the bottom surface of the outer casing 120. ing.

図17の構成では、筺体2が、底部が円弧状に湾曲した断面形態を有している。また、動翼3と静翼4との組のさらに下流側において筺体2の内部に、動翼3よりも遠心流成分CRFが大きくなるように構成された補助風車6が遊転可能に配置されている。動翼3よりも遠心流発生が優位となる補助風車6を下流側に配置することで、動翼3群を通過した時点で排気流MFに残留していたオイルミストを効果的に除去することができる。   In the configuration of FIG. 17, the housing 2 has a cross-sectional shape in which the bottom portion is curved in an arc shape. In addition, an auxiliary wind turbine 6 configured so that the centrifugal flow component CRF is larger than that of the moving blade 3 is disposed in a rotatable manner in the housing 2 further downstream of the pair of the moving blade 3 and the stationary blade 4. ing. By disposing the auxiliary wind turbine 6 in which the centrifugal flow generation is superior to the moving blade 3 on the downstream side, oil mist remaining in the exhaust flow MF at the time of passing through the moving blade 3 group can be effectively removed. Can do.

図18は、その静翼4、動翼3及び補助風車6の構成例を示すものである。動翼3は図4と同様の構成である。他方、静翼4は、板状基材44の矩形をなす上半分にのみ結合代部48が形成されている。補助風車6は動翼3と同様の構成であるが、軸流成分よりも遠心流成分が優位となるように、板状基材に対する風車羽根の傾斜角度が動翼3よりも大きく設定されている。図17に示すように、該補助風車6は、風車羽根が非突出となる面を互いに重ね合わせた2枚を1対とする形で設けられている(図17では、該対を複数設けているが、1組のみを設ける形でもよい)。   FIG. 18 shows a configuration example of the stationary blade 4, the moving blade 3, and the auxiliary wind turbine 6. The moving blade 3 has the same configuration as in FIG. On the other hand, in the stationary blade 4, the coupling margin portion 48 is formed only in the upper half of the plate-like base material 44 that forms a rectangle. The auxiliary wind turbine 6 has the same configuration as that of the moving blade 3, but the inclination angle of the wind turbine blade with respect to the plate-like base material is set larger than that of the moving blade 3 so that the centrifugal flow component is superior to the axial flow component. Yes. As shown in FIG. 17, the auxiliary wind turbine 6 is provided in the form of a pair of two sheets in which the surfaces on which the wind turbine blades do not protrude are overlapped (in FIG. 17, a plurality of pairs are provided. However, only one set may be provided).

1 オイルミスト除去装置
2 筺体
2J 排気流入口
2D 排気流出口
2W オイルミスト捕捉部
3 軸流型風車
31 風車羽根
32 貫通窓
34 板状基材
4 静翼(整流部)
41 風車羽根
42 貫通窓
44 板状基材
5 回転軸
6 補助風車
DESCRIPTION OF SYMBOLS 1 Oil mist removal apparatus 2 Housing 2J Exhaust inflow port 2D Exhaust outflow port 2W Oil mist capture | acquisition part 3 Axial flow type windmill 31 Windmill blade 32 Through-window 34 Plate-like base material 4 Stator blade (rectifying part)
41 windmill blade 42 through window 44 plate-like base material 5 rotating shaft 6 auxiliary windmill

Claims (6)

内部が排気流通路をなす中空体として構成され、該排気流の流通方向における一端に排気流入口が、他端に排気流出口が形成された筺体と、
回転軸線が排気流方向を向くよう前記筺体の内部に流れ方向に同軸的かつ各々遊転可能に配置され、また、該回転軸線方向における上流側に受風面が形成され下流側に送風面が形成され、前記受風面にて前記排気流を受けて遊転することにより、該排気流を前記送風面側にて前記回転軸線方向に生ずる軸流成分と回転半径方向外向きに生ずる遠心流成分とに分解しつつ送出する動翼と、
前記筺体内部にて前記動翼の上流側に隣接配置され、前記回転軸線と直交する仮想平面から傾斜形態で立ち上がる風車羽根が、該平面に対する傾斜方向が前記動翼とは逆向きとなるように前記回転軸線周りに放射状に配置され、かつ前記筺体内に非回転となるように取り付けられた静翼と、
前記動翼の外周縁と前記筐体の内壁面との間に隙間が形成され、該動翼から放出される遠心流を前記内壁面に衝突させることにより、前記排気流に含まれるオイルミストを捕捉するオイルミスト除去装置であって、
前記動翼及び前記静翼はそれぞれ、前記仮想平面と平行に配置される板状基材を備え、該板状基材には各々前記風車羽根に対応する内縁形状となる貫通窓が前記回転軸線周りに放射状となるように複数形成され、該動翼又は静翼の回転方向における前記風車羽根の一方の縁が、前記貫通窓の対応する内周縁にて前記板状基材に傾斜形態にて結合され、
前記動翼は、前記風車羽根の外周縁に対応する周回形状に沿って、当該風車羽根の前記貫通窓への結合縁となるべき区間を除く形で板材に切れ目を形成し、該板材の前記切れ目の内側に位置する部分を、前記板状基材をなす残余の部分に対し前記結合縁となるべき区間を折り目として傾斜形態に曲げ起す形で前記風車羽根が形成され、
前記静翼は、前記風車羽根の外周縁に対応する周回形状に沿って、当該風車羽根の前記貫通窓への結合縁となるべき区間を除く形で板材に切れ目を形成し、該板材の前記切れ目の内側に位置する部分を、前記板状基材をなす残余の部分に対し前記結合縁となるべき区間を折り目として傾斜形態に曲げ起す形で前記風車羽根が形成され、前記板状基材の外周縁部が折り返されて前記筺体の内壁面に結合される、オイルミスト除去装置。
A housing that is configured as a hollow body having an exhaust flow passage inside, and that has an exhaust inlet at one end in the flow direction of the exhaust flow and an exhaust outlet at the other end;
The rotating shaft is oriented coaxially in the flow direction and freely swingable inside the housing so that the rotation axis is directed to the exhaust flow direction, and a wind receiving surface is formed on the upstream side in the rotation axis direction, and a blower surface is provided on the downstream side. The exhaust flow is formed and swung by receiving the exhaust flow at the wind receiving surface, and the exhaust flow is caused to flow axially in the direction of the rotation axis on the air blowing surface side and centrifugal flow generated outward in the rotation radial direction. A moving blade that is disassembled into components and sent out;
A windmill blade, which is arranged adjacent to the upstream side of the moving blade inside the housing and rises in an inclined form from a virtual plane orthogonal to the rotation axis, so that the inclined direction with respect to the plane is opposite to the moving blade. A stationary blade radially disposed around the rotation axis and attached so as not to rotate in the housing;
A gap is formed between the outer peripheral edge of the moving blade and the inner wall surface of the casing, and the oil mist contained in the exhaust flow is made to collide with the inner wall surface by a centrifugal flow discharged from the moving blade. An oil mist removing device for capturing,
Each of the moving blades and the stationary blades includes a plate-like base material arranged in parallel with the virtual plane, and each of the plate-like base materials has an inner edge shape corresponding to the windmill blade, and the rotation axis line A plurality of wind turbine blades in the rotational direction of the moving blades or stationary blades are formed in an inclined form on the plate-like substrate at the corresponding inner peripheral edge of the through window. Combined,
The moving blade forms a cut in the plate material along a circular shape corresponding to the outer peripheral edge of the windmill blade, excluding a section to be a connecting edge of the windmill blade to the through window, The wind turbine blade is formed in a form that bends and forms an inclined shape with a section to be the coupling edge with respect to the remaining portion forming the plate-like base material, which is located inside the cut,
The stationary blade forms a cut in a plate material along a circular shape corresponding to the outer peripheral edge of the windmill blade, excluding a section to be a connection edge of the windmill blade to the through window, and the plate member The windmill blade is formed in such a manner that a portion located inside the cut is bent into an inclined form with a section to be the coupling edge as a fold with respect to the remaining portion forming the plate-like substrate, and the plate-like substrate is formed An oil mist removing device in which the outer peripheral edge portion of the housing is folded and coupled to the inner wall surface of the casing.
前記動翼の前記板状基材は、前記静翼の前記板状基材を貫通して配置される共通の回転軸に対し相対回転不能に取り付けられるとともに、該回転軸は、前記静翼の前記板状基材の貫通位置に設けられたベアリングにより回転可能に支持されてなる請求項1に記載のオイルミスト除去装置。 The plate-like base material of the moving blade is attached so as not to be relatively rotatable with respect to a common rotating shaft disposed through the plate-like base material of the stationary blade, and the rotating shaft is attached to the stationary blade. The oil mist removing apparatus according to claim 1, wherein the oil mist removing apparatus is rotatably supported by a bearing provided at a penetrating position of the plate-like base material. 前記貫通窓は、前記回転軸線に関する半径方向に沿って形成される1対の長辺区間と、前記回転軸線に関する周方向に沿って形成される1対の短辺区間とに囲まれた台形または扇型に形成され、前記風車羽根は1対の前記長辺区間の一方を前記結合縁とする形で該貫通窓の内周縁に結合されてなる請求項2に記載のオイルミスト除去装置。 The through window is a trapezoid surrounded by a pair of long side sections formed along a radial direction with respect to the rotation axis and a pair of short side sections formed along a circumferential direction with respect to the rotation axis. 3. The oil mist removing device according to claim 2 , wherein the wind turbine blade is coupled to an inner peripheral edge of the through-window so that one of a pair of the long side sections is the coupling edge. 前記動翼と、該動翼に対し風上方向に隣接する前記静翼との対が、前記筺体内部にて前記回転軸線方向に複数配置されている請求項1ないし請求項3のいずれか1項に記載のオイルミスト除去装置。 Said rotor blades, a pair of said stationary blade adjacent upwind direction to said animal wings, one of a plurality disposed in that claims 1 to 3 in the rotational axis direction at the inside of the housing 1 The oil mist removing apparatus according to the item . 前記動翼及び前記静翼はそれぞれ、前記仮想平面と平行に配置される板状基材を備え、該板状基材には各々前記風車羽根に対応する内縁形状となる貫通窓が前記回転軸線周りに放射状となるように複数形成され、該動翼又は静翼の回転方向における前記風車羽根の一方の縁が、前記貫通窓の対応する内周縁にて前記板状基材に傾斜形態にて結合されてなる構造を有するとともに、
複数の前記動翼と前記静翼とは、前記風車羽根の前記仮想平面からの立ち上がり方向は、前記静翼が風上方向及び前記動翼が風下方向となり、かつ、前記風車羽根が非突出となる側の前記板状基材の主表面同士の対向間隔が、これと反対側の主表面同士の対向間隔よりも小さくなるよう交互に配置されてなる請求項4に記載のオイルミスト除去装置。
Each of the moving blades and the stationary blades includes a plate-like base material arranged in parallel with the virtual plane, and each of the plate-like base materials has an inner edge shape corresponding to the windmill blade, and the rotation axis line A plurality of wind turbine blades in the rotational direction of the moving blades or stationary blades are formed in an inclined form on the plate-like substrate at the corresponding inner peripheral edge of the through window. Having a combined structure,
The plurality of moving blades and the stationary blades are configured so that the rising direction of the wind turbine blades from the virtual plane is such that the stationary blades are in the windward direction and the moving blades are in the leeward direction, and the windmill blades are not protruding. The oil mist removing apparatus according to claim 4, wherein the opposing surfaces of the main surfaces of the plate-like base material on the side to be formed are alternately arranged so as to be smaller than the opposing intervals of the main surfaces on the opposite side.
前記動翼と前記静翼との組のさらに下流側において前記筺体の内部に遊転可能に配置され、前記動翼よりも遠心流成分が大きくなるように構成された補助風車が配置されてなる請求項1ないし請求項5のいずれか1項に記載のオイルミスト除去装置。
An auxiliary wind turbine is disposed on the downstream side of the pair of the moving blade and the stationary blade so as to be free to rotate inside the housing and configured to have a centrifugal flow component larger than that of the moving blade. The oil mist removing apparatus according to any one of claims 1 to 5 .
JP2010271623A 2010-12-06 2010-12-06 Oil mist removal device Active JP5753680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010271623A JP5753680B2 (en) 2010-12-06 2010-12-06 Oil mist removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010271623A JP5753680B2 (en) 2010-12-06 2010-12-06 Oil mist removal device

Publications (2)

Publication Number Publication Date
JP2012120947A JP2012120947A (en) 2012-06-28
JP5753680B2 true JP5753680B2 (en) 2015-07-22

Family

ID=46503000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010271623A Active JP5753680B2 (en) 2010-12-06 2010-12-06 Oil mist removal device

Country Status (1)

Country Link
JP (1) JP5753680B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102490691B1 (en) * 2021-09-16 2023-01-25 독일에프에이유에를랑겐유체역학연구소 부산지사 Method for removing unwished object by centrifugation based on rotating system and unwished object removal machine by hidden centrifugal forces

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6027179B1 (en) * 2015-04-10 2016-11-16 岩崎エアーテック株式会社 Air cleaner
JP6628186B2 (en) * 2016-03-24 2020-01-08 パナソニックIpマネジメント株式会社 Separation device
KR20180007265A (en) * 2016-07-12 2018-01-22 노창식 Mist removing device
JP6502995B2 (en) * 2017-04-10 2019-04-17 シンポ株式会社 Fat recovery filter
CL2019001569A1 (en) * 2019-06-07 2019-08-16 Marchant Jose Victor Vera Polluted air purifying device
JP7357361B2 (en) * 2020-06-15 2023-10-06 サンタ株式会社 oil removal filter
CN115054995B (en) * 2022-07-22 2024-02-23 中国人民解放军92228部队 Oil-gas separation device and atomization test bed exhaust system with same
CN117101313B (en) * 2023-08-24 2024-05-07 中国航发燃气轮机有限公司 Oil mist separator and gas turbine thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255525Y2 (en) * 1977-02-09 1977-12-15
JPS6317801U (en) * 1986-07-18 1988-02-05
JP2513736B2 (en) * 1987-11-12 1996-07-03 富士通株式会社 Structure of oil mist trap
JPH0761399A (en) * 1993-08-24 1995-03-07 Ishikawajima Harima Heavy Ind Co Ltd Liquid drop collecting device for microgravity environment
JPH1133323A (en) * 1997-07-22 1999-02-09 Toshiba Eng Co Ltd Oil mist trap
JP2002239323A (en) * 2001-02-16 2002-08-27 Ogura Clutch Co Ltd Oil mist removing device
JP2005087852A (en) * 2003-09-17 2005-04-07 Hitachi Plant Eng & Constr Co Ltd Mist recovery device
JP2005113799A (en) * 2003-10-08 2005-04-28 Toyota Motor Corp Oil separator and pcv system
JP2005220797A (en) * 2004-02-05 2005-08-18 Mitsubishi Heavy Ind Ltd Turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102490691B1 (en) * 2021-09-16 2023-01-25 독일에프에이유에를랑겐유체역학연구소 부산지사 Method for removing unwished object by centrifugation based on rotating system and unwished object removal machine by hidden centrifugal forces

Also Published As

Publication number Publication date
JP2012120947A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5753680B2 (en) Oil mist removal device
EP3133294B1 (en) Fan, diffuser, and vacuum cleaner having the same
JP6060190B2 (en) Exhaust module with swirler fan
JP6141412B2 (en) Fan
CN212408779U (en) Range hood with turbofan
KR101335662B1 (en) Exhaust system with built-in rotation body
WO2015191657A1 (en) Air conditioner with selectable supplemental compressor cooling
CN107339259B (en) Multi-wing centrifugal fan
KR101463455B1 (en) Exhaust ventilation of re-spread prevention and Increasing the displacement
JP2010131158A (en) Dust collection device
JP5522306B1 (en) Centrifugal fan
KR101170160B1 (en) Local ventilator with swirler
JP2017042733A (en) Fine particle separation device
CN107339241B (en) Multi-wing centrifugal fan
JP2007205268A (en) Centrifugal fan
JP5274278B2 (en) Turbo fan and air conditioner equipped with turbo fan
JP3554180B2 (en) Intake and blower
CN110552899A (en) multi-wing centrifugal fan for ventilator with built-in guide vanes
WO2013155678A1 (en) Vortex air flow type range hood
JP2007154685A (en) Turbo fan and air conditioner using the same
JP4648032B2 (en) Blower and air conditioner using the same
CN107339260B (en) Boosting flow centrifugal fan
CN107339261B (en) Strong-suction multi-wing centrifugal fan
JP2004060622A (en) Centrifugal blower using sirocco centrifugal fan rotor and air conditioner
CN108474385B (en) Cyclone air interchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R150 Certificate of patent or registration of utility model

Ref document number: 5753680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250