JP5750775B2 - Method for coating phosphor using SiOx - Google Patents
Method for coating phosphor using SiOx Download PDFInfo
- Publication number
- JP5750775B2 JP5750775B2 JP2010249683A JP2010249683A JP5750775B2 JP 5750775 B2 JP5750775 B2 JP 5750775B2 JP 2010249683 A JP2010249683 A JP 2010249683A JP 2010249683 A JP2010249683 A JP 2010249683A JP 5750775 B2 JP5750775 B2 JP 5750775B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- sio
- coating
- gas
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Luminescent Compositions (AREA)
Description
本発明は、SiOxを用いて蛍光体表面にSiO2のコーティングを行う蛍光体の被覆方法に関するものである。 The present invention relates to a phosphor coating method for coating SiO 2 on a phosphor surface using SiO x .
我々の身の周りには、白熱電球や蛍光灯など様々な照明光源が使われている。近年では、白熱電球や蛍光灯の代替照明として、低消費電力、長寿命、安全性などの特性を兼ね備えた白色LEDが注目を浴びている。そして、白色LEDに使用される蛍光体へも発光効率や耐久性などに関して更なる高性能化が要求されている(非特許文献1〜3を参照)。 Various lighting sources such as incandescent bulbs and fluorescent lamps are used around us. In recent years, white LEDs that have characteristics such as low power consumption, long life, and safety have attracted attention as alternative lighting for incandescent bulbs and fluorescent lamps. Further, the phosphor used in the white LED is also required to have higher performance in terms of light emission efficiency and durability (see Non-Patent Documents 1 to 3).
ところで、蛍光体は劣化しやすいという性質を併せ持っている。例えば、Zn2SiO4:Mn2+は、プラズマディスプレイパネル(PDP)の用途に適用可能な緑色蛍光体として知られている。しかしながら、Xeプラズマ下でイオン衝突により母体結晶の表面が劣化し輝度が劣化してしまうという問題があった。 By the way, phosphors have the property of being easily deteriorated. For example, Zn 2 SiO 4 : Mn 2+ is known as a green phosphor applicable to the use of a plasma display panel (PDP). However, there is a problem that the surface of the base crystal deteriorates due to ion collisions under Xe plasma and the luminance deteriorates.
この劣化抑制を目的として、従来より、蛍光体表面をシリカ(SiO2)でコーティングを施すことが試みられてきた。その代表的なものとして、ゾルゲル法により蛍光体表面の被覆が可能であるが、この手法に用いる溶液中の試薬(有機金属化合物)は大変高価であるとともに、この手法が還元雰囲気ガス中で取り扱えないものであることから、費用及び製造工程の面で満足するものではなく、実用的な劣化抑制効果を得るまでに至っていない。 In order to suppress this deterioration, it has been attempted to coat the surface of the phosphor with silica (SiO 2 ). As a typical example, the phosphor surface can be coated by the sol-gel method. However, the reagent (organometallic compound) in the solution used in this method is very expensive, and this method can be handled in a reducing atmosphere gas. Therefore, it is not satisfactory in terms of cost and manufacturing process, and has not yet reached a practical effect of suppressing deterioration.
一方、本発明者らは、既に、出発原料の一部であるSiOxを気相状態にして供給しながらケイ酸塩系蛍光体を合成できること、及び、この気相法を利用して得られた蛍光体が従来の固相法で得られる蛍光体よりも良好な発光特性を示すことを見出し、非特許文献4に開示している。 On the other hand, the present inventors have already been able to synthesize silicate phosphors while supplying SiO x , which is a part of the starting material, in a gas phase state, and obtained using this gas phase method. It has been found that non-patent document 4 discloses that the phosphor exhibits better light emission characteristics than the phosphor obtained by the conventional solid phase method.
しかしながら、非特許文献4の技術は、固相法に気相法を取り入れつつ原料から蛍光体を製造する方法について開示するものであり、市販の蛍光体や予め製造されている蛍光体に対して劣化防止のためにその表面を被覆する技術を開示するものではない。 However, the technique of Non-Patent Document 4 discloses a method of manufacturing a phosphor from a raw material while incorporating a gas phase method into a solid phase method. For a commercially available phosphor or a previously manufactured phosphor, It does not disclose a technique for coating the surface to prevent deterioration.
本発明は、このような事情に鑑みてなされたものであり、還元雰囲気下において蛍光体表面にSiO2を被覆する蛍光体の被覆方法を安価に提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a phosphor coating method for coating the phosphor surface with SiO 2 in a reducing atmosphere at a low cost.
本発明者らは、鋭意検討の末、既に合成されている蛍光体を核とし、その周辺にSiOxガスやSiOx粉末を接触させながら反応(熱処理)させると、蛍光体表面にシリカ(SiO2)を高密度に被覆できることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors made a phosphor already synthesized as a nucleus and reacted (heat treatment) while bringing SiO x gas or SiO x powder into contact with the periphery of the phosphor. The present inventors have found that 2 ) can be coated with high density and have completed the present invention.
すなわち本発明は、以下の構成・特徴を備えるものである。
[1] 予め合成された蛍光体粉末を還元雰囲気ガス中に載置し、前記蛍光体粉末に向けて気相状態のSiOx(0.8≦x≦1.2)を供給して、前記蛍光体粉末の外周表面にSiO2を被覆することを特徴とする蛍光体の被覆方法。
[2] 前記還元雰囲気ガスの流入側に固体粉末状のSiOxを載置し、前記還元雰囲気ガスを1200〜1700℃に加熱して前記固体粉末状のSiOxを揮発させて、前記気相状態のSiOxを供給することを特徴とする[1]に記載の蛍光体の被覆方法。
[3] 予め合成された蛍光体粉末と、固体粉末状のSiOx(0.8≦x≦1.2)と、を混合し、気体を流通させながら混合物を加熱して、前記蛍光体粉末の外周表面にSiO2を被覆することを特徴とする蛍光体の被覆方法。
[4] 前記混合物の加熱温度は、800〜1300℃の範囲内にあることを特徴とする[3]に記載の蛍光体の被覆方法。
That is, the present invention has the following configuration / features.
[1] A phosphor powder synthesized in advance is placed in a reducing atmosphere gas, and SiO x (0.8 ≦ x ≦ 1.2) in a gas phase is supplied toward the phosphor powder, A phosphor coating method comprising coating the outer peripheral surface of a phosphor powder with SiO 2 .
[2] Solid powdery SiO x is placed on the inflow side of the reducing atmosphere gas, the reducing atmosphere gas is heated to 1200 to 1700 ° C. to volatilize the solid powdery SiO x, and the gas phase The method for coating a phosphor according to [1], wherein SiO x in a state is supplied.
[3] A phosphor powder synthesized in advance and a solid powdery SiO x (0.8 ≦ x ≦ 1.2) are mixed, and the mixture is heated while flowing a gas, thereby the phosphor powder. A method of coating a phosphor, characterized in that SiO 2 is coated on the outer peripheral surface of the phosphor.
[4] The heating temperature of the mixture, the phosphor coating methods having the constitution [3] to be within the scope of 800 to 1300 ° C..
本発明の蛍光体の被覆方法によれば、安価でかつ還元雰囲気下で取扱い可能であるSiOxを利用するために商業的に実用可能なシリカ(SiO2)のコーティングを蛍光体表面に施すことが可能である。 According to the phosphor coating method of the present invention, a commercially practical silica (SiO 2 ) coating is applied to the phosphor surface in order to utilize SiO x which is inexpensive and can be handled in a reducing atmosphere. Is possible.
また、本発明の方法によれば、ある程度の大きさの蛍光体粉末を核として、この核を囲繞するようにその外周面に高密度なSiO2のコーティングがなされる。言い換えれば、本発明により、コアシェル構造の蛍光体粉末を作製することができる。高密度なSiO2のコーティングは、蛍光体の発光強度のさらなる向上にも寄与する。 Further, according to the method of the present invention, the phosphor powder having a certain size is used as a core, and the outer peripheral surface is coated with high-density SiO 2 so as to surround the core. In other words, according to the present invention, a phosphor powder having a core-shell structure can be produced. The high-density SiO 2 coating contributes to further improvement of the emission intensity of the phosphor.
また、SiOx粉末は安定な材料であるため、蛍光体合成等に用いられる通常の装置を利用して本発明の蛍光体の被覆方法を実行することが可能である。 Further, since the SiO x powder is a stable material, the phosphor coating method of the present invention can be carried out using a normal apparatus used for phosphor synthesis or the like.
また、本発明の被覆方法により被覆の対象となる蛍光体は特に限定されず、どの種類の蛍光体にも適用可能である。例えば、LED用蛍光体として有望なBa2SiO4:Eu2+やSrAl2O4:Eu2+は水に弱いという弱点を有しており、これらの蛍光体表面を被覆してこれらを保護することも可能である。 In addition, the phosphor to be coated by the coating method of the present invention is not particularly limited, and can be applied to any kind of phosphor. For example, Ba 2 SiO 4 : Eu 2+ and SrAl 2 O 4 : Eu 2+, which are promising as LED phosphors, have a weak point that they are vulnerable to water, and these phosphor surfaces are coated to protect them. Is also possible.
以下、添付の図面を参照しながら下記の具体的な実施形態に基づき本発明を説明するが、本発明はこれらの実施形態に何等限定されるものではない。 Hereinafter, the present invention will be described based on the following specific embodiments with reference to the accompanying drawings, but the present invention is not limited to these embodiments.
本発明に係る蛍光体の被覆方法は、予め合成された蛍光体粉末を還元雰囲気ガス中に載置し、前記蛍光体粉末に向けて気相状態のSiOx(0.8≦x≦1.2)を供給して、前記蛍光体粉末の外周表面にSiO2を被覆することを特徴とする。より好ましくは、前記還元雰囲気ガスの流入側に固体粉末状のSiOxを載置し、前記還元雰囲気ガスを1200〜1700℃に加熱して前記固体粉末状のSiOxを揮発させて、前記気相状態のSiOxを供給する。 In the phosphor coating method according to the present invention, a phosphor powder synthesized in advance is placed in a reducing atmosphere gas, and SiO x (0.8 ≦ x ≦ 1. 2), and the outer peripheral surface of the phosphor powder is coated with SiO 2 . More preferably, solid powdery SiO x is placed on the inflow side of the reducing atmosphere gas, and the reducing atmosphere gas is heated to 1200 to 1700 ° C. to volatilize the solid powdery SiO x, thereby Phase-phase SiO x is supplied.
本発明者らによる現在までの検証によれば、SiOxはSiOに近い状態がより好適に作用するため、SiOxのxの範囲は0.8≦x≦1.2であることが好ましく、更に好ましくは0.95≦x≦1.1である。このような好適な高純度SiOは、例えば、株式会社大阪チタニウムテクノロジーズや三洋貿易株式会社から市販されている。 According to the verification to date by the present inventors, since the SiO x the state close to SiO acts more favorably, it is preferable that the range of x in SiO x is 0.8 ≦ x ≦ 1.2, More preferably, 0.95 ≦ x ≦ 1.1. Such suitable high purity SiO is commercially available from, for example, Osaka Titanium Technologies Co., Ltd. or Sanyo Trading Co., Ltd.
固体状のSiOxは、還元ガス雰囲気中で1200〜1700℃、好ましくは1400〜1700℃に加熱することで昇華し、気相状態にすることができる。この高温かつ気相状態のSiOxを前記蛍光体粉末に供給して反応させ、蛍光体粉末の外周面にSiO2を堆積・被覆させる。 Solid SiO x can be sublimated and heated to a gas phase by heating to 1200 to 1700 ° C., preferably 1400 to 1700 ° C. in a reducing gas atmosphere. This high-temperature and vapor-phase SiO x is supplied to the phosphor powder for reaction, and SiO 2 is deposited and coated on the outer peripheral surface of the phosphor powder.
前記還元ガス雰囲気としては、窒素、アルゴン等の不活性ガス雰囲気や空気、酸素、酸素含有窒素、酸素含有アルゴン等の酸化性雰囲気、水素を0.1〜10体積%含有する水素含有窒素、水素を0.1〜10体積%含有する水素含有アルゴン等の還元性雰囲気等が挙げられる。なお、本発明の気相−固相反応を高収率で進めるために、SiOxを供給させるキャリアガス及び焼成時の雰囲気としては、水素を0.1〜10体積%含有する水素含有窒素、水素を0.1〜10体積%含有する水素含有アルゴン等の還元性雰囲気等が特に好ましい。 Examples of the reducing gas atmosphere include an inert gas atmosphere such as nitrogen and argon, an oxidizing atmosphere such as air, oxygen, oxygen-containing nitrogen, and oxygen-containing argon, and hydrogen-containing nitrogen and hydrogen containing 0.1 to 10% by volume of hydrogen. For example, a reducing atmosphere such as hydrogen-containing argon containing 0.1 to 10% by volume. In order to advance the gas phase-solid phase reaction of the present invention in a high yield, the carrier gas for supplying SiO x and the atmosphere during firing include hydrogen containing nitrogen containing 0.1 to 10% by volume of hydrogen, A reducing atmosphere such as hydrogen-containing argon containing 0.1 to 10% by volume of hydrogen is particularly preferable.
なお、被覆処理の対象として用意する蛍光体粉末は、既に予め合成されているものであり、例えば、入手可能な市販の蛍光体粉末を利用してもよい。ここで、被覆対象候補となる蛍光体には、本発明によりシリカ(SiO2)を被覆できるものであれば特に限定されず、種々のものが挙げられるが、劣化しやすいものや水等の液体に弱い蛍光体材料であるBa2SiO4:Eu2+、SrAl2O4:Eu2+、Zn2SiO4:Mn2+に本発明の高密度なシリカコーティングを施すことは非常に有用である。 In addition, the phosphor powder prepared as a target for the coating treatment is already synthesized in advance, and for example, an available commercially available phosphor powder may be used. Here, the phosphor that is a candidate for coating is not particularly limited as long as it can be coated with silica (SiO 2 ) according to the present invention, and various phosphors may be mentioned. It is very useful to apply the high-density silica coating of the present invention to Ba 2 SiO 4 : Eu 2+ , SrAl 2 O 4 : Eu 2+ , and Zn 2 SiO 4 : Mn 2+ , which are weak phosphor materials.
また、本発明に係る蛍光体の被覆方法は、以下に説明する方法でも達成できる。すなわち、予め合成された蛍光体粉末と、固体粉末状のSiOx(0.8≦x≦1.2)と、を直接混合し、気体を流通させながら混合物を加熱して、前記蛍光体粉末の外周表面にSiO2の被覆を行う。この際、前記混合物の加熱温度は、前記外周面にSiO2を効率よく固相合成させるため、800〜1300℃の範囲内にあることが好ましい。また、流通させる気体には、取扱の容易さから空気が挙げられるが、必ずしもこれに限定されない。 The phosphor coating method according to the present invention can also be achieved by the method described below. That is, the phosphor powder synthesized in advance and solid powder SiO x (0.8 ≦ x ≦ 1.2) are directly mixed, and the mixture is heated while flowing the gas. The outer peripheral surface of this is coated with SiO 2 . At this time, the heating temperature of the mixture is preferably in the range of 800 to 1300 ° C. in order to efficiently solid-phase synthesize SiO 2 on the outer peripheral surface. The gas to be circulated includes air for ease of handling, but is not necessarily limited thereto.
本発明の実施例に係るSiO2被覆された蛍光体は、以下の手法により製造した。蛍光体原料として、ZnO((株)高純度化学研究所 4N)、MnCO3((株)高純度化学研究所 3N)、及びSiO2(和光純薬工業(株) 3N)を混合し、空気中(空気で満たした炉内)で、1200℃、6時間、焼成することで、蛍光体Zn2SiO4:Mn2+粉末を予め合成した。この予め合成しておいたZn2SiO4:Mn2+と、SiO粉末と、を化学量論比に従って秤量し、メノウ乳鉢でアセトン湿式混合を施した。混合後、この混合物をアルミナ製ボートに載置し、今度はガスボンベを用いて空気が絶えず炉内を流通するような状態にして、混合物を1200℃の温度で6時間、加熱(焼成)した。 The phosphor coated with SiO 2 according to the example of the present invention was manufactured by the following method. ZnO (High-Purity Chemical Laboratory 4N), MnCO 3 (High-Purity Chemical Laboratory 3N), and SiO 2 (Wako Pure Chemical Industries, Ltd. 3N) were mixed as the phosphor material, and air The phosphor Zn 2 SiO 4 : Mn 2+ powder was synthesized in advance by firing in an inside (furnace filled with air) at 1200 ° C. for 6 hours. This pre-synthesized Zn 2 SiO 4 : Mn 2+ and SiO powder were weighed according to the stoichiometric ratio and wet-mixed with acetone in an agate mortar. After mixing, this mixture was placed on an alumina boat, and this time the mixture was heated (fired) at a temperature of 1200 ° C. for 6 hours in such a state that air was constantly flowing through the furnace using a gas cylinder.
(試料の同定)
実施例における実証試験では、試料の同定には粉末X線回折装置((株)マックサイエンス製,MX−Labo)を使用した。図1は、上述の焼成前後の試料のX線回折(XRD)測定結果を示す。なお、最上段の結果は、社団法人化学情報協会(JAICI)が提供している無機結晶構造データベース(ICSD)から取得されたZn2SiO4の参照用XRDパターンを示す。
(Sample identification)
In the demonstration test in the examples, a powder X-ray diffractometer (manufactured by Mac Science Co., Ltd., MX-Labo) was used for sample identification. FIG. 1 shows the result of X-ray diffraction (XRD) measurement of the sample before and after the above-described firing. In addition, the top result shows the XRD pattern for reference of Zn 2 SiO 4 obtained from the inorganic crystal structure database (ICSD) provided by the Japan Society for Chemical Information (JACI).
この図1を観察すると、上記実施例により焼成された試料のXRDパターンについてのピーク位置は、焼成前の試料のXRDパターンのピーク位置と、Zn2SiO4の参照用XRDパターンのピーク位置と、のどちらとも良く一致している。従って、今回の加熱処理を行っても、目的物であるZn2SiO4:Mn2+が、破壊されずに、主相で得られていると言える。 When observing FIG. 1, the peak position of the XRD pattern of the sample fired according to the above example is the peak position of the XRD pattern of the sample before firing, the peak position of the reference XRD pattern of Zn 2 SiO 4 , and Both agree well. Therefore, it can be said that the target product, Zn 2 SiO 4 : Mn 2+, is obtained in the main phase without being destroyed even if this heat treatment is performed.
(蛍光特性の評価)
図2は、実施例により製造したZn2SiO4:Mn2+の励起発光スペクトルを示した図である。なお、励起・発光スペクトルの測定には、分光蛍光光度計(日本分光(株),FP−6500)を使用した。図2中、左側に描画された曲線群は各試験条件での励起スペクトルを示し、右側に描画された曲線群は最適励起波長で励起した場合の発光スペクトルを示す。
(Evaluation of fluorescence characteristics)
FIG. 2 is a diagram showing an excitation emission spectrum of Zn 2 SiO 4 : Mn 2+ manufactured according to the example. In addition, the spectrofluorimeter (JASCO Corporation, FP-6500) was used for the measurement of excitation and the emission spectrum. In FIG. 2, the curve group drawn on the left side shows the excitation spectrum under each test condition, and the curve group drawn on the right side shows the emission spectrum when excited at the optimum excitation wavelength.
ここで、破線で示した各曲線は、焼成前の試料についての励起スペクトルと発光スペクトルを示す。また、実線は、焼成後の試料についての励起スペクトルと発光スペクトルを示す。 Here, each curve shown with a broken line shows the excitation spectrum and emission spectrum about the sample before baking. The solid line indicates the excitation spectrum and emission spectrum of the sample after firing.
図2から明らかなように、本発明の実施例によって焼成された試料は、焼成前の試料よりも高い発光強度を示した。この発光強度の向上は、SiO2が蛍光体粉末の外周面に高密度に被覆された結果、Mn2+の量が増加したとともに光の取り出し効率が改善されたためであると考えられる。 As is clear from FIG. 2, the sample fired according to the example of the present invention showed higher emission intensity than the sample before firing. This increase in emission intensity is thought to be due to the fact that SiO 2 is coated on the outer peripheral surface of the phosphor powder with high density, so that the amount of Mn 2+ increases and the light extraction efficiency is improved.
以上説明した実施例により、本発明の蛍光体の被覆方法を使用すれば、蛍光体粉末を核として、その外周面に高密度なSiO2の被覆を行うことができ、これにより、蛍光体の発光強度をさらに高めることができるとともに、蛍光体の劣化防止や耐水保護を行うことができる。 The embodiment described above, by using the coating method of the phosphor of the present invention, the phosphor powder as nuclei, it is possible to carry out the coating of dense SiO 2 on the outer peripheral surface thereof Thus, the phosphor The emission intensity can be further increased, and the phosphor can be prevented from being deteriorated and protected against water.
本発明の被覆方法においては、被覆の対象となる蛍光体は特に限定されず、どの種類の蛍光体にも適用可能である。また、本発明により被覆された蛍光体は、白色LEDに限らず、CRT、PDP、FED等のディスプレイパネル表示装置、蛍光ランプ等の照明装置等の幅広い用途にも適用できる。従って、本発明は、産業上の利用可能性が非常に高い。 In the coating method of the present invention, the phosphor to be coated is not particularly limited, and can be applied to any kind of phosphor. Further, the phosphor coated according to the present invention is applicable not only to white LEDs but also to a wide range of uses such as display panel display devices such as CRT, PDP and FED, and illumination devices such as fluorescent lamps. Therefore, the present invention has very high industrial applicability.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010249683A JP5750775B2 (en) | 2010-11-08 | 2010-11-08 | Method for coating phosphor using SiOx |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010249683A JP5750775B2 (en) | 2010-11-08 | 2010-11-08 | Method for coating phosphor using SiOx |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012102184A JP2012102184A (en) | 2012-05-31 |
JP5750775B2 true JP5750775B2 (en) | 2015-07-22 |
Family
ID=46392959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010249683A Expired - Fee Related JP5750775B2 (en) | 2010-11-08 | 2010-11-08 | Method for coating phosphor using SiOx |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5750775B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3980779B2 (en) * | 1999-01-18 | 2007-09-26 | 株式会社東芝 | EL phosphor with moisture barrier coating and EL light emitting device using the same |
JP2001226670A (en) * | 2000-02-14 | 2001-08-21 | Toshiba Corp | Fluorescent material for display apparatus and luminescent element produced by using the material |
JP2003082342A (en) * | 2001-09-12 | 2003-03-19 | Matsushita Electric Ind Co Ltd | Plasma display device |
US6740429B2 (en) * | 2001-11-08 | 2004-05-25 | Xerox Corporation | Organic light emitting devices |
-
2010
- 2010-11-08 JP JP2010249683A patent/JP5750775B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012102184A (en) | 2012-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI375710B (en) | ||
Zhuang et al. | The improvement of moisture resistance and thermal stability of Ca3SiO4Cl2: Eu2+ phosphor coated with SiO2 | |
TWI818968B (en) | Phosphors and light-emitting devices using the same | |
JP5770192B2 (en) | Blue light emitting phosphor and light emitting device using the blue light emitting phosphor | |
Pawade et al. | Novel blue‐emitting SrMg 2Al16O27: Eu2+ phosphor for solid‐state lighting | |
JP2017504949A (en) | Nitridoalmosilicate phosphors for solid-state lighting | |
CN104087293B (en) | Red-emitting phosphors and carbothermal reduction-nitridation preparation method thereof and application | |
Kim et al. | Red-emitting (Sr, Ca) AlSiN3: Eu2+ phosphors synthesized by spark plasma sintering | |
JP2009503183A (en) | Yellow phosphor and white light emitting device including the same | |
Pradal et al. | Spectroscopic study and enhanced thermostability of combustion-derived BaMgAl10O17: Eu2+ blue phosphors for solid-state lighting | |
CN113677775A (en) | Surface-coated phosphor particle, method for producing surface-coated phosphor particle, and light-emitting device | |
US8734680B2 (en) | Silicate-based phosphor and manufacturing method of silicate-based phosphor | |
JP5750775B2 (en) | Method for coating phosphor using SiOx | |
Wu et al. | A novel Li2CaSi2N4: Eu2+ orange‐red phosphor for field‐emission displays | |
JP4473259B2 (en) | Novel blue phosphor and method for producing the same | |
Zhao et al. | Enhancing thermal degradation stability of BaSi2O2N2: Eu2+ for white light-emitting diodes by ultra-thin Al2O3 layer via atomic layer deposition | |
JP2006351357A (en) | Red el element | |
TW200540259A (en) | Fluorescent substance | |
CN107163934A (en) | Tetravalence manganese ion doping fluorine alumina lithium red fluorescence powder and preparation method thereof | |
CN109337677B (en) | Stable core-shell structure red fluorescent powder and preparation method thereof | |
JP5750774B2 (en) | Method for producing silicon-containing phosphor | |
Ahn et al. | White organic light-emitting devices utilizing a mixed color-conversion phosphor layer consisting of CaAl12O19: Mn and Zn2SiO4: Mn | |
Li et al. | Crystal structure and photoluminescence properties of CaSr2Al2O6: Eu3+ phosphors | |
Lee et al. | Microwave‐assisted sintering synthesis of greenish‐yellow emitting Sr2SiO4: Eu2+ phosphors | |
JP5066104B2 (en) | Blue phosphor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141001 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150429 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5750775 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |