JP5749582B2 - PET equipment - Google Patents

PET equipment Download PDF

Info

Publication number
JP5749582B2
JP5749582B2 JP2011140586A JP2011140586A JP5749582B2 JP 5749582 B2 JP5749582 B2 JP 5749582B2 JP 2011140586 A JP2011140586 A JP 2011140586A JP 2011140586 A JP2011140586 A JP 2011140586A JP 5749582 B2 JP5749582 B2 JP 5749582B2
Authority
JP
Japan
Prior art keywords
circumference
phosphor layer
radiation
phosphor
radiation detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011140586A
Other languages
Japanese (ja)
Other versions
JP2013007655A (en
Inventor
啓司 清水
啓司 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2011140586A priority Critical patent/JP5749582B2/en
Publication of JP2013007655A publication Critical patent/JP2013007655A/en
Application granted granted Critical
Publication of JP5749582B2 publication Critical patent/JP5749582B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Description

本発明は、PET装置に関する。   The present invention relates to a PET apparatus.

従来、DOI(Depth Of Interaction)技術に基づく放射線検出器が適用されたPET装置が知られている(例えば、特許文献1参照)。このようなPET装置では、リング状に配列された放射線検出器間に隙間が生じる場合があり、その場合には、放射線検出器間に生じた隙間が放射線に対する不感領域となって、放射線の検出感度の低下を招くおそれがある。特に、小動物等を対象とするためにリング径が小さくされたPET装置ほど、不感領域の割合が高くなる傾向がある。   Conventionally, a PET apparatus to which a radiation detector based on DOI (Depth Of Interaction) technology is applied is known (see, for example, Patent Document 1). In such a PET apparatus, a gap may be generated between the radiation detectors arranged in a ring shape. In this case, the gap generated between the radiation detectors becomes a radiation insensitive region, and detection of radiation is performed. There is a risk of lowering sensitivity. In particular, a PET device having a reduced ring diameter for targeting small animals or the like tends to have a higher ratio of insensitive areas.

このような不感領域の割合を低くするために、放射線の入射により光を発する蛍光体層がテーパ形状とされた放射線検出器をPET装置に適用することが提案されている(例えば、非特許文献1参照)。このようなPET装置では、蛍光体層が外側に向かって末広がりとなるように放射線検出器がリング状に配列されることで、不感領域の割合が低くされている。   In order to reduce the ratio of such insensitive areas, it has been proposed to apply a radiation detector having a tapered phosphor layer that emits light upon incidence of radiation to a PET apparatus (for example, non-patent literature). 1). In such a PET apparatus, the ratio of the insensitive area is lowered by arranging the radiation detectors in a ring shape so that the phosphor layer spreads outward.

国際公開第2009/125480号International Publication No. 2009/125480

Y.Yang et al,“Tapered LSO arrays for small animal PET”,Phys.Med.Biol.,56(2011)139-153.Y. Yang et al, “Tapered LSO arrays for small animal PET”, Phys. Med. Biol., 56 (2011) 139-153.

しかしながら、蛍光体層がテーパ形状とされた放射線検出器が適用されたPET装置にあっては、蛍光体層を構成する検出セグメントの幅が外側ほど大きくなるため、PET装置としての解像度(空間分解能)が劣化するおそれがある。   However, in a PET apparatus to which a radiation detector having a phosphor layer with a tapered shape is applied, the width of the detection segment constituting the phosphor layer increases toward the outside, so that the resolution (spatial resolution) of the PET apparatus is increased. ) May deteriorate.

そこで、本発明は、放射線の検出感度及び解像度が高いPET装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a PET apparatus having high radiation detection sensitivity and high resolution.

本発明のPET装置は、被検体から放出された放射線の入射により光を発する蛍光体層、及び、蛍光体層で発せられた光を検出する受光素子層を有し、所定線を中心線とし、かつ、互いに径の異なる複数の円周のそれぞれの上に、蛍光体層が受光素子層に対して内側となるように複数配置された放射線検出器を備え、任意の円周上において隣り合う放射線検出器の蛍光体層間の領域は、当該円周の中心点を始点とし当該領域を通る半直線上において、少なくとも一つの他の円周上に配置された放射線検出器の蛍光体層と対向している。   The PET apparatus of the present invention has a phosphor layer that emits light by the incidence of radiation emitted from a subject, and a light receiving element layer that detects light emitted from the phosphor layer, with a predetermined line as a center line. And a plurality of radiation detectors arranged on each of a plurality of circumferences having different diameters so that the phosphor layer is on the inner side with respect to the light receiving element layer, and adjacent to each other on any circumference The region between the phosphor layers of the radiation detector is opposed to the phosphor layer of the radiation detector disposed on at least one other circumference on a half line passing through the region starting from the center point of the circumference. doing.

このようなPET装置では、任意の円周上において隣り合う放射線検出器の蛍光体層間の領域が、上記半直線上において、少なくとも一つの他の円周上に配置された放射線検出器の蛍光体層と対向している。これにより、被検体から放出された放射線が上記領域を通過しても、他の蛍光体層を通過することになるため、放射線の検出感度が高くなる。更に、径方向に複数の放射線検出器が配置されている。これにより、径方向の検出セグメントが小さくなり、かつ、円周の接線方向における検出セグメントの幅を広くする必要がないため、解像度が高くなる。   In such a PET apparatus, the region between the phosphor layers of adjacent radiation detectors on an arbitrary circumference is arranged on at least one other circumference on the above half line. Opposite the layer. Thereby, even if the radiation emitted from the subject passes through the region, it passes through the other phosphor layers, so that the radiation detection sensitivity is increased. Further, a plurality of radiation detectors are arranged in the radial direction. As a result, the detection segment in the radial direction becomes small, and it is not necessary to increase the width of the detection segment in the tangential direction of the circumference, so that the resolution becomes high.

ここで、任意の円周上において隣り合う放射線検出器の蛍光体層間の領域は、当該円周の中心点を始点とし当該領域を通る半直線上において、全ての他の円周上に配置された放射線検出器の蛍光体層と対向していることが好ましい。これによれば、隣り合う放射線検出器の蛍光体層間の領域が上記半直線上において2つ以上存在することがなくなるため、PET装置全体としての放射線の検出感度が一層高くなる。   Here, the region between the phosphor layers of adjacent radiation detectors on an arbitrary circumference is arranged on all other circumferences on a half line passing through the area starting from the center point of the circumference. It is preferable to face the phosphor layer of the radiation detector. According to this, since two or more regions between the phosphor layers of adjacent radiation detectors do not exist on the half line, the radiation detection sensitivity of the entire PET apparatus is further increased.

また、円周の接線方向において、蛍光体層の幅は、外側の円周上に配置された放射線検出器ほど大きくなっていることが好ましい。円周の半径に応じて蛍光体層の幅を設定することができると、円周方向において蛍光体層間の距離を狭くすることができ、かつ、径方向において蛍光体層間の距離を狭くすることができる。これにより、放射線の検出感度が一層向上し、PET装置全体の小型化を達成することができる。   In addition, in the tangential direction of the circumference, the width of the phosphor layer is preferably larger as the radiation detector is disposed on the outer circumference. If the width of the phosphor layer can be set according to the radius of the circumference, the distance between the phosphor layers in the circumferential direction can be reduced, and the distance between the phosphor layers in the radial direction can be reduced. Can do. Thereby, the detection sensitivity of radiation is further improved, and the miniaturization of the entire PET apparatus can be achieved.

本発明によれば、放射線の検出感度及び解像度が高いPET装置を提供することができる。   According to the present invention, it is possible to provide a PET apparatus with high radiation detection sensitivity and resolution.

本発明の一実施形態のPET装置の概略図である。It is the schematic of the PET apparatus of one Embodiment of this invention. 図1のPET装置のガントリの断面図である。It is sectional drawing of the gantry of the PET apparatus of FIG. 図2の複数の放射線検出器の斜視図である。FIG. 3 is a perspective view of a plurality of radiation detectors in FIG. 2. 図3の放射線検出器の分解斜視図である。It is a disassembled perspective view of the radiation detector of FIG. 図2及び図3の複数の放射線検出器を外側に向かって末広がりとなるように整列させた場合の仮想斜視図である。FIG. 4 is a virtual perspective view when the plurality of radiation detectors of FIGS. 2 and 3 are aligned so as to expand toward the outside.

以下、本発明の好適な実施形態について、図面を参照しながら詳細に説明する。なお、各図において同一部分又は相当部分には同一符号を付し、重複する説明は省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same part or an equivalent part, and the overlapping description is abbreviate | omitted.

図1は、本発明の一実施形態のPET装置の概略図である。図1に示されるように、PET装置1は、マウスのような小動物等である被検体Tが載置されるベッド(図示せず)と、断面円形状の開口を有するガントリ2と、ガントリ2で検出されたデータが転送される画像処理部3と、を備えている。このPET装置1は、複数のスライス位置において被検体Tの断層像を取得するために、陽電子放出核種(陽電子を放出する放射性同位元素)で標識された薬剤が投与された被検体Tから放出されるγ線等の放射線を検出する装置である。   FIG. 1 is a schematic view of a PET apparatus according to an embodiment of the present invention. As shown in FIG. 1, a PET apparatus 1 includes a bed (not shown) on which a subject T such as a small animal such as a mouse is placed, a gantry 2 having a circular opening, and a gantry 2. And an image processing unit 3 to which the data detected in (1) is transferred. The PET apparatus 1 is emitted from a subject T to which a drug labeled with a positron emitting nuclide (a radioactive isotope that emits positrons) is administered in order to acquire tomographic images of the subject T at a plurality of slice positions. This is a device for detecting radiation such as gamma rays.

図2は、図1のPET装置のガントリの断面図であり、図3は、図2の複数の放射線検出器の斜視図である。図2及び図3に示されるように、放射線検出器10は、被検体Tから放出された放射線の入射により光を発する蛍光体層11と、蛍光体層11で発せられた光を検出する受光素子層12と、蛍光体層11及び受光素子層12を支持する支持基板14と、を備えている。更に、支持基板14には、処理回路13が搭載されている。処理回路13は、受光素子層12から出力された電気信号を処理し、画像処理部3に転送する。放射線検出器10は、所定線L0を中心線とする円周C1上に、蛍光体層11が受光素子層12に対して内側となるように複数配置されている。   2 is a cross-sectional view of the gantry of the PET apparatus of FIG. 1, and FIG. 3 is a perspective view of the plurality of radiation detectors of FIG. As shown in FIGS. 2 and 3, the radiation detector 10 includes a phosphor layer 11 that emits light by the incidence of radiation emitted from the subject T, and a light receiving unit that detects light emitted from the phosphor layer 11. An element layer 12 and a support substrate 14 that supports the phosphor layer 11 and the light receiving element layer 12 are provided. Further, a processing circuit 13 is mounted on the support substrate 14. The processing circuit 13 processes the electrical signal output from the light receiving element layer 12 and transfers it to the image processing unit 3. A plurality of the radiation detectors 10 are arranged on the circumference C <b> 1 having the predetermined line L <b> 0 as the center line so that the phosphor layer 11 is inside the light receiving element layer 12.

放射線検出器20は、被検体Tから放出された放射線の入射により光を発する蛍光体層21と、蛍光体層21で発せられた光を検出する受光素子層22と、蛍光体層21及び受光素子層22を支持する支持基板24と、を備えている。更に、支持基板24には、処理回路23が搭載されている。処理回路23は、受光素子層22から出力された電気信号を処理し、画像処理部3に転送する。放射線検出器20は、所定線L0を中心線とし、円周C1よりも外側において、円周C1とは径の異なる円周C2上に、蛍光体層21が受光素子層22に対して内側となるように複数配置されている。   The radiation detector 20 includes a phosphor layer 21 that emits light by the incidence of radiation emitted from the subject T, a light receiving element layer 22 that detects light emitted from the phosphor layer 21, a phosphor layer 21, and a light receiving element. And a support substrate 24 that supports the element layer 22. Further, a processing circuit 23 is mounted on the support substrate 24. The processing circuit 23 processes the electrical signal output from the light receiving element layer 22 and transfers it to the image processing unit 3. The radiation detector 20 has a predetermined line L0 as a center line, and the phosphor layer 21 is located on the outer side of the circumference C1 and on the circumference C2 having a diameter different from that of the circumference C1, with respect to the light receiving element layer 22. A plurality are arranged so as to be.

放射線検出器30は、被検体Tから放出された放射線の入射により光を発する蛍光体層31と、蛍光体層31で発せられた光を検出する受光素子層32と、蛍光体層31及び受光素子層32を支持する支持基板34と、を備えている。更に、支持基板34には、処理回路33が搭載されている。処理回路33は、受光素子層32から出力された電気信号を処理し、画像処理部3に転送する。放射線検出器30は、所定線L0を中心線とし、円周C2よりも外側において、円周C2とは径の異なる円周C3上に、蛍光体層31が受光素子層32に対して内側となるように複数配置されている。   The radiation detector 30 includes a phosphor layer 31 that emits light by the incidence of radiation emitted from the subject T, a light receiving element layer 32 that detects light emitted from the phosphor layer 31, the phosphor layer 31, and the light reception. And a support substrate 34 that supports the element layer 32. Further, a processing circuit 33 is mounted on the support substrate 34. The processing circuit 33 processes the electrical signal output from the light receiving element layer 32 and transfers it to the image processing unit 3. The radiation detector 30 has a predetermined line L0 as the center line, and the phosphor layer 31 is located on the inner side with respect to the light receiving element layer 32 on the circumference C3 having a diameter different from the circumference C2 outside the circumference C2. A plurality are arranged so as to be.

放射線検出器40は、被検体Tから放出された放射線の入射により光を発する蛍光体層41と、蛍光体層41で発せられた光を検出する受光素子層42と、蛍光体層41及び受光素子層42を支持する支持基板44と、を備えている。更に、支持基板44には、処理回路43が搭載されている。処理回路43は、受光素子層42から出力された電気信号を処理し、画像処理部3に転送する。放射線検出器40は、所定線L0を中心線とし、円周C3よりも外側において、円周C3とは径の異なる円周C4上に、蛍光体層41が受光素子層42に対して内側となるように複数配置されている。   The radiation detector 40 includes a phosphor layer 41 that emits light by the incidence of radiation emitted from the subject T, a light receiving element layer 42 that detects light emitted from the phosphor layer 41, the phosphor layer 41, and the light receiving unit. And a support substrate 44 that supports the element layer 42. Further, a processing circuit 43 is mounted on the support substrate 44. The processing circuit 43 processes the electrical signal output from the light receiving element layer 42 and transfers it to the image processing unit 3. The radiation detector 40 has a predetermined line L0 as a center line, and the phosphor layer 41 is disposed on the inner side with respect to the light receiving element layer 42 on a circumference C4 having a diameter different from the circumference C3 outside the circumference C3. A plurality are arranged so as to be.

ここで、放射線検出器10,20,30,40の構成について、放射線検出器10を例にしてより具体的に説明する。図4は、図3の放射線検出器の分解斜視図である。図4に示されるように、受光素子層12は、MPPC(Multi-Pixel Photon Counter)又はAPD(avalanche photodiode)等であり、二次元状に配列された画素16を有している。受光素子層12は、支持基板14上において処理回路13と電気的に接続されている。蛍光体層11は、検出セグメントを構成する柱状のシンチレータ用単結晶15が受光素子層12の画素16と対応するように二次元状に配列されたものである。受光素子層12と蛍光体層11とは、直接、又は、屈折率整合材等を介して光学結合されることにより、互いに接続されている。   Here, the configuration of the radiation detectors 10, 20, 30, and 40 will be described more specifically by taking the radiation detector 10 as an example. FIG. 4 is an exploded perspective view of the radiation detector of FIG. As shown in FIG. 4, the light receiving element layer 12 is an MPPC (Multi-Pixel Photon Counter), an APD (avalanche photodiode), or the like, and includes pixels 16 arranged two-dimensionally. The light receiving element layer 12 is electrically connected to the processing circuit 13 on the support substrate 14. The phosphor layer 11 is a two-dimensional array in which the columnar scintillator single crystals 15 constituting the detection segment correspond to the pixels 16 of the light receiving element layer 12. The light receiving element layer 12 and the phosphor layer 11 are connected to each other either directly or by optical coupling via a refractive index matching material or the like.

放射線検出器20,30,40も放射線検出器10と同様に構成されている。ただし、図2及び図3に示されるように、円周C1,C2,C3,C4の接線方向(以下、単に「接線方向」という)において、放射線検出器20の蛍光体層21の幅は、放射線検出器10の蛍光体層11の幅よりも大きくなっている。同様に、接線方向において、放射線検出器30の蛍光体層31の幅は、放射線検出器20の蛍光体層21の幅よりも大きくなっており、放射線検出器40の蛍光体層41の幅は、放射線検出器30の蛍光体層31の幅よりも大きくなっている。   The radiation detectors 20, 30 and 40 are configured in the same manner as the radiation detector 10. However, as shown in FIGS. 2 and 3, in the tangential direction of the circumferences C1, C2, C3, and C4 (hereinafter simply referred to as “tangential direction”), the width of the phosphor layer 21 of the radiation detector 20 is The width of the phosphor layer 11 of the radiation detector 10 is larger. Similarly, in the tangential direction, the width of the phosphor layer 31 of the radiation detector 30 is larger than the width of the phosphor layer 21 of the radiation detector 20, and the width of the phosphor layer 41 of the radiation detector 40 is The width of the phosphor layer 31 of the radiation detector 30 is larger.

以上のように構成された放射線検出器10,20,30,40は、それぞれの円周C1,C2,C3,C4に略沿う形でリング形状を形成するように同数(ここでは12枚)ずつ配置されている。ここで、これら放射線検出器10,20,30,40はそれぞれ、図3に示されるように、蛍光体層11及び受光素子層12、蛍光体層21及び受光素子層22、蛍光体層31及び受光素子層32、並びに、蛍光体層41及び受光素子層42のそれぞれが、遮光ケース51,52,53,54に収容されている。遮光ケース50によって、外乱光が放射線検出器10,20,30,40に入射することが防止される。   The radiation detectors 10, 20, 30, and 40 configured as described above have the same number (here, 12) so as to form a ring shape substantially along the circumferences C1, C2, C3, and C4. Has been placed. Here, as shown in FIG. 3, these radiation detectors 10, 20, 30, and 40 are respectively phosphor layer 11 and light receiving element layer 12, phosphor layer 21 and light receiving element layer 22, phosphor layer 31 and The light receiving element layer 32, and the phosphor layer 41 and the light receiving element layer 42 are accommodated in the light shielding cases 51, 52, 53, and 54, respectively. The light shielding case 50 prevents ambient light from entering the radiation detectors 10, 20, 30, and 40.

PET装置1では、このように遮光ケース51,52,53,54に収容されたそれぞれの放射線検出器10,20,30,40が、接線方向における中心位置を相互に円周C1,C2,C3,C4の周方向にずらして配置されている。すなわち、任意の円周C1,C2,C3,C4上において隣り合う放射線検出器の蛍光体層間の領域が、当該円周C1,C2,C3,C4の中心点Oを始点とし当該領域を通る半直線上において、他の円周上に配置された放射線検出器の蛍光体層とそれぞれ対向するように放射線検出器10,20,30,40が配置されている。   In the PET apparatus 1, the radiation detectors 10, 20, 30, and 40 accommodated in the light shielding cases 51, 52, 53, and 54 in this way have their center positions in the tangential direction set to the circumferences C1, C2, and C3. , C4 are shifted in the circumferential direction. That is, a region between phosphor layers of adjacent radiation detectors on an arbitrary circumference C1, C2, C3, C4 is a half passing through the region starting from the center point O of the circumference C1, C2, C3, C4. On the straight line, the radiation detectors 10, 20, 30, and 40 are arranged so as to face the phosphor layers of the radiation detectors arranged on other circumferences, respectively.

具体的には、図2に示されるように、円周C1上において隣り合う放射線検出器10,10の蛍光体層11,11間の領域R1は、当該円周C1の中心点Oを始点とし当該領域を通る半直線L1上において、他の円周C2,C3,C4上に配置された放射線検出器20,30,40の蛍光体層21,31,41とそれぞれ対向している。   Specifically, as shown in FIG. 2, the region R1 between the phosphor layers 11 and 11 of the adjacent radiation detectors 10 and 10 on the circumference C1 starts from the center point O of the circumference C1. On the half line L1 passing through the region, the phosphor layers 21, 31, 41 of the radiation detectors 20, 30, 40 arranged on the other circumferences C2, C3, C4 are respectively opposed.

同様に、円周C2上において隣り合う放射線検出器20,20の蛍光体層21,21間の領域R2は、当該円周C2の中心点Oを始点とし当該領域を通る半直線L2上において、他の円周C1,C3,C4上に配置された放射線検出器10,30,40の蛍光体層11,31,41とそれぞれ対向している。   Similarly, the region R2 between the phosphor layers 21 and 21 of the radiation detectors 20 and 20 adjacent to each other on the circumference C2 starts on the center line O of the circumference C2 and is on a half line L2 passing through the region. Opposite to the phosphor layers 11, 31, 41 of the radiation detectors 10, 30, 40 arranged on the other circumferences C1, C3, C4, respectively.

また同様に、円周C3上において隣り合う放射線検出器30,30の蛍光体層31,31間の領域R3は、当該円周C3の中心点Oを始点とし当該領域を通る半直線L3上において、他の円周C1,C2,C4上に配置された放射線検出器10,20,40の蛍光体層11,21,41とそれぞれ対向している。   Similarly, a region R3 between the phosphor layers 31 and 31 of the radiation detectors 30 and 30 adjacent to each other on the circumference C3 starts on the half line L3 passing through the region starting from the center point O of the circumference C3. The phosphor layers 11, 21, 41 of the radiation detectors 10, 20, 40 disposed on the other circumferences C 1, C 2, C 4 are opposed to each other.

また同様に、円周C4上において隣り合う放射線検出器40,40の蛍光体層41,41間の領域R4は、当該円周C4の中心点Oを始点とし当該領域を通る半直線L4上において、他の円周C1,C2,C3上に配置された放射線検出器10,20,30の蛍光体層11,21,31とそれぞれ対向している。   Similarly, a region R4 between the phosphor layers 41 and 41 of the radiation detectors 40 and 40 adjacent to each other on the circumference C4 starts on the center line O of the circumference C4 and on a half line L4 passing through the region. The phosphor layers 11, 21, 31 of the radiation detectors 10, 20, 30 disposed on the other circumferences C 1, C 2, C 3 are opposed to each other.

図5は、放射線検出器を、その相互の位置関係の説明のために、円周C1,C2,C3,C4の径方向(以下、単に「径方向」という)に外側に向かって末広がりとなるように整列させた場合の仮想斜視図である。本実施形態において12枚ずつ存在する放射線検出器10,20,30,40のうちの1枚ずつをこのようにPET装置1における径方向に外側に向かって末広がりとなるように、かつ、径方向に延在する線(例えば上記半直線L1〜L4)に関して略線対称となるように整列させた場合、当該末広がり形状の側面の延長線、すなわち径方向に延びる延長線は、円周C1,C2,C3,C4の中心点Oで交わることとなり、そのなす角度は30度である。なお、上記径方向に延びる延長線がなす角度は一般に、360度/(周方向の放射線検出器の枚数)となる。   FIG. 5 shows that the radiation detector spreads outward in the radial direction of the circumferences C1, C2, C3, and C4 (hereinafter simply referred to as “radial direction”) for explaining the mutual positional relationship. It is a virtual perspective view at the time of aligning like this. In this embodiment, each of the 12 radiation detectors 10, 20, 30, and 40 existing in such a way as to spread outward in the radial direction in the PET apparatus 1 and in the radial direction. Are aligned so as to be substantially line symmetric with respect to a line extending in the direction of the straight line (for example, the above-described half straight lines L1 to L4), the extension line of the side surface of the divergent shape, that is, the extension line extending in the radial direction, , C3, C4 at the center point O, and the angle formed is 30 degrees. The angle formed by the extension line extending in the radial direction is generally 360 degrees / (the number of radiation detectors in the circumferential direction).

PET装置1では、これら一群の放射線検出器10,20,30,40が12組存在する。ここで、本実施形態における放射線検出器10,20,30,40は、図5に示された状態から、それぞれの接線方向における中心位置を上記中心点Oに関して相互に7.5度の角度でずらして配置される。12組のそれぞれについて放射線検出器10,20,30,40が同様にずらして配置されることにより、放射線検出器10,20,30,40の配置が図2及び図3に示された配置となる。なお、放射線検出器の上記中心位置を中心点Oに関して相互にずらす角度は、(径方向に延びる延長線がなす角度)/(径方向における放射線検出器の段数)の計算で求めた。   In the PET apparatus 1, there are 12 sets of these groups of radiation detectors 10, 20, 30, and 40. Here, the radiation detectors 10, 20, 30, and 40 in the present embodiment have their respective center positions in the tangential direction at an angle of 7.5 degrees with respect to the center point O from the state shown in FIG. 5. Arranged in a staggered manner. The radiation detectors 10, 20, 30, and 40 are similarly shifted and arranged for each of the 12 sets, so that the arrangement of the radiation detectors 10, 20, 30, and 40 is the same as that shown in FIGS. Become. In addition, the angle which mutually shifts the said center position of a radiation detector with respect to the center point O was calculated | required by calculation of (the angle which the extended line extended in radial direction makes) / (the number of steps of the radiation detector in radial direction).

以上説明したように、PET装置1では、領域R1,R2,R3,R4はそれぞれ、半直線L1,L2,L3,L4上において、少なくとも一つの他の円周上に配置された放射線検出器の蛍光体層と対向している。これにより、被検体から放出された放射線が上記領域を通過しても、他の蛍光体層を通過することになるため、放射線の検出感度が高くなる。すなわち、従来のPET装置に比べ、定量性が向上したデータを得ることができる。更に、径方向に複数の放射線検出器10,20,30,40が配置されている。これにより、径方向の検出セグメントが小さくなり、かつ、円周の接線方向における検出セグメントの幅を広くする必要がないため、解像度が高くなる。これらの構成を備えるPET装置1によれば、被検体Tが比較的大きなものである場合に、視野周辺の解像度が低下しにくいDOI技術の利点が発揮される。   As described above, in the PET apparatus 1, the regions R1, R2, R3, and R4 are the radiation detectors disposed on at least one other circumference on the half lines L1, L2, L3, and L4, respectively. Opposite the phosphor layer. Thereby, even if the radiation emitted from the subject passes through the region, it passes through the other phosphor layers, so that the radiation detection sensitivity is increased. That is, data with improved quantitativeness can be obtained as compared with the conventional PET apparatus. Furthermore, a plurality of radiation detectors 10, 20, 30, 40 are arranged in the radial direction. As a result, the detection segment in the radial direction becomes small, and it is not necessary to increase the width of the detection segment in the tangential direction of the circumference, so that the resolution becomes high. According to the PET apparatus 1 having these configurations, when the subject T is relatively large, the advantage of the DOI technique in which the resolution around the visual field is difficult to be reduced is exhibited.

PET装置1では、接線方向において、蛍光体層の幅が、外側の円周上に配置された放射線検出器ほど大きくなっている。このように、円周の半径に応じて蛍光体層の幅を設定することができるため、円周方向において蛍光体層間の距離を狭くすることができ、かつ、径方向において蛍光体層間の距離を狭くすることができる。これにより、放射線の検出感度が一層向上し、PET装置全体の小型化を達成することができる。   In the PET apparatus 1, in the tangential direction, the width of the phosphor layer is larger as the radiation detector is arranged on the outer circumference. Thus, since the width of the phosphor layer can be set according to the radius of the circumference, the distance between the phosphor layers in the circumferential direction can be reduced, and the distance between the phosphor layers in the radial direction Can be narrowed. Thereby, the detection sensitivity of radiation is further improved, and the miniaturization of the entire PET apparatus can be achieved.

PET装置1において、受光素子層12,22,32,42は、原子番号が小さい元素からなるためγ線の吸収がなく、本実施形態のように放射線検出器を多段に組んだ場合であっても放射線の検出感度の劣化が防止される。   In the PET apparatus 1, the light receiving element layers 12, 22, 32, and 42 are composed of elements having a small atomic number, and therefore do not absorb γ rays, and the radiation detectors are assembled in multiple stages as in this embodiment. Also, deterioration of the radiation detection sensitivity is prevented.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。例えば、上記実施形態では放射線検出器を径方向に4段重ねた態様を示したが、放射線検出器を重ねる段数は特に制限されず、4段より少なくしても多くしてもよい。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, although the embodiment in which the radiation detectors are stacked in four stages in the radial direction has been described in the above embodiment, the number of stages in which the radiation detectors are stacked is not particularly limited, and may be smaller or larger than four.

また、図2に示された例では放射線検出器10,20,30,40は、それぞれの接線方向の蛍光体層の幅が異なる態様とされているが、全ての円周上で接線方向の幅が同じ蛍光体層を有する放射線検出器を用いてもよく、外側の円周上の蛍光体層の幅が内側の円周上の蛍光体層の幅よりも小さい放射線検出器を用いてもよい。   Further, in the example shown in FIG. 2, the radiation detectors 10, 20, 30, and 40 are configured such that the widths of the phosphor layers in the tangential directions are different from each other, but the tangential directions are all on the circumference. A radiation detector having the same phosphor layer may be used, or a radiation detector having a smaller phosphor layer width on the outer circumference than the phosphor layer width on the inner circumference may be used. Good.

また、上記実施形態では、放射線検出器10,20,30,40を周方向における中心位置を中心点Oに関して相互に7.5度の角度でずらして配置されているが、ずらす角度は他の角度であってもよい。また、上記実施形態では、各円周上にそれぞれ同数(12枚)の放射線検出器が配置されているが、各円周上における放射線検出器の数が互いに異なる態様としてもよい。   In the above embodiment, the radiation detectors 10, 20, 30, and 40 are arranged with their center positions in the circumferential direction shifted from each other by an angle of 7.5 degrees with respect to the center point O. It may be an angle. In the above embodiment, the same number (12) of radiation detectors is arranged on each circumference, but the number of radiation detectors on each circumference may be different from each other.

1…PET装置、10,20,30,40…放射線検出器、11,21,31,41…蛍光体層、12,22,32,42…受光素子層、C1,C2,C3,C4…円周、L0…所定線、L1,L2,L3,L4…半直線、O…中心点、R1,R2,R3,R4…領域、T…被検体。   DESCRIPTION OF SYMBOLS 1 ... PET apparatus 10, 20, 30, 40 ... Radiation detector 11, 21, 31, 41 ... Phosphor layer, 12, 22, 32, 42 ... Light receiving element layer, C1, C2, C3, C4 ... Circle Circumference, L0 ... predetermined line, L1, L2, L3, L4 ... half line, O ... center, R1, R2, R3, R4 ... region, T ... subject.

Claims (4)

被検体から放出された放射線の入射により光を発する蛍光体層、及び、前記蛍光体層で発せられた光を検出する受光素子層を有し、所定線を中心線とし、かつ、互いに径の異なる複数の円周のそれぞれの上に、前記蛍光体層が前記受光素子層に対して内側となるように複数配置された放射線検出器を備え、
任意の前記円周上において隣り合う前記放射線検出器の前記蛍光体層間の領域は、当該円周の中心点を始点とし当該領域を通る半直線上において、少なくとも一つの他の前記円周上に配置された前記放射線検出器の前記蛍光体層と対向している、PET装置。
A phosphor layer that emits light upon incidence of radiation emitted from a subject; and a light-receiving element layer that detects light emitted from the phosphor layer, the predetermined line being a center line, and diameters of each other On each of a plurality of different circumferences, a plurality of radiation detectors are arranged so that the phosphor layer is inside with respect to the light receiving element layer,
The region between the phosphor layers of the radiation detectors adjacent to each other on the circumference is at least one other circumference on a half line passing through the area starting from the center point of the circumference. A PET apparatus facing the phosphor layer of the arranged radiation detector.
任意の前記円周上において隣り合う前記放射線検出器の前記蛍光体層間の領域は、当該円周の中心点を始点とし当該領域を通る半直線上において、全ての他の前記円周上に配置された前記放射線検出器の前記蛍光体層と対向している、請求項1に記載のPET装置。   The regions between the phosphor layers of the radiation detectors adjacent to each other on any of the circumferences are arranged on all other circumferences on a semi-line that starts from the center point of the circumference and passes through the area. The PET device according to claim 1, wherein the PET device faces the phosphor layer of the radiation detector. 被検体から放出された放射線の入射により光を発する蛍光体層、及び、前記蛍光体層で発せられた光を検出する受光素子層を有し、所定線を中心線とし、かつ、互いに径の異なる複数の円周のそれぞれの上に、前記蛍光体層が前記受光素子層に対して内側となるように複数配置された放射線検出器を備え、
任意の前記円周上において隣り合う前記放射線検出器の前記蛍光体層間の領域は、当該円周の中心点を始点とし当該領域を通る半直線上において、少なくとも一つの他の前記円周上に配置された前記放射線検出器の前記蛍光体層と対向しており、
前記円周の接線方向において、前記蛍光体層の幅は、外側の前記円周上に配置された前記放射線検出器ほど大きくなっている、PET装置。
A phosphor layer that emits light upon incidence of radiation emitted from a subject; and a light-receiving element layer that detects light emitted from the phosphor layer, the predetermined line being a center line, and diameters of each other On each of a plurality of different circumferences, a plurality of radiation detectors are arranged so that the phosphor layer is inside with respect to the light receiving element layer,
The region between the phosphor layers of the radiation detectors adjacent to each other on the circumference is at least one other circumference on a half line passing through the area starting from the center point of the circumference. Facing the phosphor layer of the arranged radiation detector,
In the tangential direction of the circumference, the width of the phosphor layer is greater as the radiation detector located outside of said circumferentially, P ET device.
任意の前記円周上において隣り合う前記放射線検出器の前記蛍光体層間の領域は、当該円周の中心点を始点とし当該領域を通る半直線上において、全ての他の前記円周上に配置された前記放射線検出器の前記蛍光体層と対向している、請求項3に記載のPET装置。The regions between the phosphor layers of the radiation detectors adjacent to each other on any of the circumferences are arranged on all other circumferences on a semi-line that starts from the center point of the circumference and passes through the area. The PET device according to claim 3, wherein the PET device faces the phosphor layer of the radiation detector.
JP2011140586A 2011-06-24 2011-06-24 PET equipment Expired - Fee Related JP5749582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011140586A JP5749582B2 (en) 2011-06-24 2011-06-24 PET equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011140586A JP5749582B2 (en) 2011-06-24 2011-06-24 PET equipment

Publications (2)

Publication Number Publication Date
JP2013007655A JP2013007655A (en) 2013-01-10
JP5749582B2 true JP5749582B2 (en) 2015-07-15

Family

ID=47675123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011140586A Expired - Fee Related JP5749582B2 (en) 2011-06-24 2011-06-24 PET equipment

Country Status (1)

Country Link
JP (1) JP5749582B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677299A (en) * 1985-05-13 1987-06-30 Clayton Foundation For Research Multiple layer positron emission tomography camera
DE102004049677B3 (en) * 2004-10-12 2006-06-14 Siemens Ag Detector assembly for use in a combined transmission / emission tomography device

Also Published As

Publication number Publication date
JP2013007655A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP6556821B2 (en) Gamma ray detector module and nuclear medicine diagnostic apparatus
Tashima et al. Proposed helmet PET geometries with add-on detectors for high sensitivity brain imaging
US8143583B2 (en) Positron emission tomography detector elements using different sizes of photomultiplier tubes
JP6057207B2 (en) Radiation position detector
US10466371B2 (en) Apparatus and methods for depth-of-interaction positron tomography detector using dichotomous sensing
US20110198504A1 (en) Detector arrangement for a tomographic imaging apparatus, particularly for a positron emission tomograph
JP6670307B2 (en) Hybrid scintillation module
US8063377B2 (en) Crystal identification for high resolution nuclear imaging
US6710349B2 (en) Edge resolved dual scintillator gamma ray detection system and method
KR101088057B1 (en) Detector modules for positron emission tomography and the positron emission tomography using the same
EP2461183B1 (en) Positron emission tomography detector module, radiation detector, positron emission tomography scanner system, method of processing signals, and method of manufacturing radiation detector module
JP2013246156A (en) Three-dimensional radiation position detector
US20180011205A1 (en) Combined scintillation crystal, combined scintillation detector and radiation detection device
JP6508343B2 (en) Radiation detector and detector module
US10228472B2 (en) Radiation position detection method, radiation position detector, and pet apparatus
CN109490937B (en) Radiation position detection method, radiation position detector, and PET apparatus
JP5632221B2 (en) Gamma ray detection module and gamma ray scanner system with variable light guide thickness
JP5749582B2 (en) PET equipment
KR101587339B1 (en) Detector modules for position emission tomography and the position emission tomography using the detector module
JP5851733B2 (en) PET apparatus and radiation detector unit
JP7384454B2 (en) radiation position detector
CN109891268B (en) Gamma radiation detector with parallax compensation
KR102316574B1 (en) A Compton Imager and a Single Photon Emission and Positron Emission Tomography System including the same
Gu et al. Lightguides for improving edge crystal identification and energy resolution in pixelated scintillator detectors
JPH03115989A (en) Positron ct device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees