JP5747733B2 - 対象検出装置、対象検出方法、分類器作成装置及び分類器作成方法 - Google Patents

対象検出装置、対象検出方法、分類器作成装置及び分類器作成方法 Download PDF

Info

Publication number
JP5747733B2
JP5747733B2 JP2011178585A JP2011178585A JP5747733B2 JP 5747733 B2 JP5747733 B2 JP 5747733B2 JP 2011178585 A JP2011178585 A JP 2011178585A JP 2011178585 A JP2011178585 A JP 2011178585A JP 5747733 B2 JP5747733 B2 JP 5747733B2
Authority
JP
Japan
Prior art keywords
mesh
gradient direction
foreground image
histogram
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011178585A
Other languages
English (en)
Other versions
JP2012043436A (ja
Inventor
リュウ ルジェ
リュウ ルジェ
月紅 王
月紅 王
浩 于
浩 于
上原 祐介
祐介 上原
増本 大器
大器 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JP2012043436A publication Critical patent/JP2012043436A/ja
Application granted granted Critical
Publication of JP5747733B2 publication Critical patent/JP5747733B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

開示技術は画像処理分野、特に、対象検出装置、対象検出方法、分類器作成装置及び分類器作成方法に関する。
画像の検出や識別などに関する多くの技術、例えば、画像から対象を検出したり、分類器を作成したりする技術において、画像における対象の形状が検出及び識別に非常に有用な根拠となる。したがって、どのように対象の形状を有効的かつ効率的に記述するかは注目されている。
画像形状の記述方法としては、例えば、メッシュによる方法や、フーリエ記述子を使用する方法、Zernikeモーメント特徴を使用する方法、曲率尺度空間(CSS、curvature scale space)方法など、様々な方法が提案されている。
メッシュによる方法では、画像を固定的な大きさを有するメッシュにマッピングする。そして、メッシュを走査し、メッシュのそれぞれにおける前景画素の数が所定の閾値より大きいか否かに基づいて各メッシュに「1」や「0」を割り当てる。そして、割り当てた「1」や「0」を連結して最終的な形状特徴を作成する。
フーリエ記述子を使用する方法では、周波数領域において画像における対象の輪郭表現を取得し、フーリエ級数展開の係数を対象の形状特徴とする。ここで、形状特徴は曲率、半径あるいは境界の座標に基づくものであっても良い。
Zernikeモーメント特徴を使用する方法は、直交多項式分解によるモーメントに基づき画像コンテンツを再構築することができる方法として提案されている。具体的に、この方法は画像信号を直交基底の級数として展開し、変換係数を採用して特徴要素とする。
曲率尺度空間方法では、一般的に、異なる尺度を用いて画像輪郭を平滑化し、曲率が0となる位置を検出することにより、曲率尺度空間における画像を作成し、最後に曲率尺度空間における画像の極大値を用いて画像における対象の輪郭の形状を表す。
特開平5−46583号公報
ところで、上記の従来技術では、より正確に対象を検出することが求められている。例えば、従来技術では、画像における対象の空間情報のみを記述する。ある方法では、例えばメッシュによる方法は部分的な構成を特徴記述子とする一方、他の方法では、例えばフーリエ記述子及び特徴によるモーメントは全体の統計から特徴を抽出する。空間構成と統計的特徴とが有機的に結合されることができる特徴はほぼ存在しない。
従来の特徴は、一般的に特定の目標画像に限定される。例えば、CSSの特徴は閉合輪郭のみを処理できる。
また、既存方法に存在の別の問題はアフィン不変性である。
本発明は、画像における対象の空間構成と統計的特徴を有機的に結合し、対象検出における特徴記述子の回転不変性を実現する、画像における対象を検出する装置及び方法並びに分類器を作成する装置及び方法を提供することを目的とする。
本願の開示する対象検出装置は、一つの態様において、メッシュ区分部と、勾配方向ヒストグラム取得部と、特徴抽出部と、対象検出部とを備える。メッシュ区分部は、前景画像における特定点を極点とする極座標系において、当該極点から射出する複数の極線と、当該極点を円心とする複数の円とを用いて、隣り合う極線と、隣り合う円とで囲まれた領域、または、隣り合う極線と、前記円のうちの最小円とで囲まれた領域を示すメッシュに区分する。勾配方向ヒストグラム取得部は、前記前景画像における輪郭画素の前記メッシュの参考方向に対する勾配方向を算出し、算出した勾配方向に基づいて前記メッシュの勾配方向のヒストグラムを前記メッシュごとに取得する。特徴抽出部は、全てのメッシュの勾配方向のヒストグラムを連結して総ヒストグラムベクトルとし、前記総ヒストグラムベクトルに対してフーリエ変換を行って前記前景画像の特徴ベクトルを取得する。対象検出部は、取得された特徴ベクトルに基づいて前記前景画像における対象に対して検出を行う。
本発明によれば、メッシュ区分と各メッシュ毎の情報の抽出により、対象コンテンツの空間分布を、メッシュ区分により得られた特徴に変換し、局所統計的情報を画像特徴として整合する。更に、対象検出における特徴記述子の回転不変性が実現される。
図1は、一実施例における対象検出装置の構成を示す機能ブロック図である。 図2は、前景画像のメッシュ区分について説明するための図である。 図3は、輪郭画素のメッシュ区分について説明するための図である。 図4は、非輪郭要素の勾配方向を取得する処理について説明する図である。 図5は、勾配方向における総ヒストグラムの連結順を説明するための図である。 図6は、一実施例における対象検出方法を示すフローチャートである。 図7は、一実施例における分類器作成装置の構成を示す機能ブロック図である。 図8は、一実施例における分類器作成方法を示すフローチャートである。 図9は、一実施例における前景画像の輪郭による画像の特徴ベクトルの取得プロセスを示すフローチャートである。 図10は、一実施例における前景画像の全てのコンテンツによる画像の特徴ベクトルの取得プロセスを示すフローチャートである。 図11は、実施例の実施に使用可能なコンピュータの模式的なブロック図である。
以下に、図面を参照して開示技術の実施例を説明する。ここで、明瞭のために、図面及び説明において、開示技術と関係ない当業者にとって既知の部品と処理の表示及び記述を省略する。なお、この実施例によりこの発明が限定されるものではない。
図1は、一実施例における対象検出装置の構成を示す機能ブロック図である。図1に示すように、対象検出装置100は、メッシュ区分部101と、勾配方向ヒストグラム取得部102と、特徴抽出部103と、対象検出部104とを備える。当該対象検出装置による検出に採用される分類器及び当該分類器の訓練過程については後述する。なお、メッシュ区分部101、勾配方向ヒストグラム取得部102、特徴抽出部103、対象検出部104にて行われる各処理機能は、以下のように実現される。すなわち、これらの各処理機能は、その全部または任意の一部が、CPU(Central Processing Unit)および当該CPUにて解析実行されるプログラムにて実現される。
例えば、メッシュ区分部101は、対象検出装置100が画像を受信すると、受信した画像に対してメッシュによる区分を行う。この画像は、対象が検出されていない未検出の画像である。メッシュ区分部101は、画像特徴の抽出における回転不変性を確保するために、極座標系において当該区分を行う。メッシュ区分部101は、未検出の画像における特定点を当該極座標系の極点として選択する。当該特定点は任意の点であってもよい。例えば、メッシュ区分部101は、幾らかの実施例において、限定的ではなく例示的に、未検出の画像における前景画像の重心G又は幾何学的中心Cを当該座標系の極点として採用することができる。なお、未検出の画像は、検出待ちの画像とも称する。
ここで、前景画像の幾何学的中心と重心の概念を説明する。任意の前景画像と特定の直角座標系について、当該前景画像の幾何学的中心Cは、下記の式(1)で表される。ここで、xminは、当該特定の直角座標系における前景画像の最小横座標である。また、yminは、当該特定の直角座標系における前景画像の最小縦座標である。また、xmaxは、当該特定の直角座標系における前景画像の最大横座標である。また、ymaxは、当該特定の直角座標系における前景画像の最大縦座標である。
Figure 0005747733
前景画像の重心Gは、下記の式(2)で表される。ここで、Qは、前景画像における画素の数である。また、(x,y)は、前景画像におけるi個目の画素Pの座標である。
Figure 0005747733
例えば、メッシュ区分部101が適切な極点を選択することにより、画像検出において平行移動不変性が得られる。図2は、前景画像のメッシュ区分について説明するための図である。図2の(a)に示した黒い部分は、未検出の画像の前景画像である。図2の(b)および(c)では、前景画像の幾何学的中心Cを極座標系の極点として選択した場合を説明する。
例えば、メッシュ区分部101は、極点を選択した後に、極点から射出する複数の射線と、極点を円心とする複数の円とを用いてメッシュ区分を行う。この射線は、極線とも称する。メッシュとは、隣り合う二本の極線と、隣り合う二つの円とで囲まれた領域、または、隣り合う二本の極線と、複数の同心円のうちの最小円とで囲まれた領域である。特定の分類器については、異なるサンプル画像に対して、メッシュの区分に使用される極線の本数と円の個数はそれぞれ定数である。極線の本数と円の個数の特定は、特定の分類器の具体的な要求により決定され、一般的に画像検出の正確度及びノイズに対するロバスト性を考慮して決定される。一般的に、メッシュの区分が細かいほど、すなわち極線の本数と円の個数が多いほど、画像検出の正確度が高くなるが、一定の閾値に、到達又は超えると、検出正確度へのノイズ干渉による影響が認められなくなる。
幾らかの実施例において、採用される角度方向における区分(例えば12個)は径方向における区分(例えば4〜8個)より多い。つまり、区分に使用される極線の数は、極点を中心とする円の数より多い。
極点を円心とする円のうちの最大円の半径は、前景画像の画素と極点との最大距離により決定される。図2および図3においては、最大円の半径が前景画像の画素と極点との最大距離に等しい場合を示したが、当業者にとって、最大円の半径の選択は、特定された前景画像を全面解析することができること、すなわちメッシュが前景画像の全ての画素をカバーしていれば良い。したがって、当該最大円の半径は、未検出の画像における前景画像の画素と極点との最大距離より大きくても良い。
例えば、メッシュ区分部101は、前景画像の特定については、当分野において公知されている各種方法を採用することができる。また、例えば、メッシュ区分部101は、幾らかの実施例において、主体を強調するために、前景画像が特定された後に、かつメッシュの区分を行う前に、既知方法により特定された前景画像における幾らかの異常に突起した部分をノイズとしてメッシュ区分しようとする前景画像から排除して、複数の円のうちの最大円の半径を特定しても良い。このような実施例に対して、「メッシュ区分しようとする前景画像」は前記の排除が行われた前景画像となる。
以下に、メッシュ区分部101が、このような排除を具体的に実現する例を説明する。例えば、メッシュ区分部101は、画像の重心を極点として、極座標系において同心円による区分を確立する。一般的に、同心円の距離は同じであり、すなわち同心円の半径が等差数列を構成する。その後に、メッシュ区分部101は、隣り合う同心円の間のリング状の領域における画像の画素数を統計する。最後に、メッシュ区分部101は、最大の同心円のリングからはじめ、連続する複数のリングにおける画素数が比較的少なければ、これら複数のリングに対応する画像が「異常な突起又はノイズ」に該当することを考え、この部分の画像を前景画像から排除する。
以下に、図2および図3を参照してメッシュ区分部101によるメッシュ区分の具体的な例示を更に説明する。例えば、メッシュ区分部101は、実施例によって異なるメッシュ区分方式を採用することができ、均等区分と非均等区分に大きく分けられる。均等区分とは、メッシュ区分に使用される円のうち隣り合う円の間の径方向距離が最小円の半径に等しく、かつ隣り合う極線の間の夾角が等しいことを意味する。非均等区分とは、隣り合う円の間で囲まれた領域、及び最小円により囲まれた領域における画素又は輪郭画素の数が等しく、かつ隣り合う極線の間で囲まれた領域における画素又は輪郭画素の数が等しくなるようにする区分方式である。これにより、非均等区分方式は、前景画像における全部の画素による区分と、前景画像における輪郭画素による区分に分けることができる。以下に、これら各種の方式についてそれぞれ説明する。
図2は、前景画像のメッシュ区分について説明するための図である。図3は、輪郭画素のメッシュ区分について説明するための図である。
図2の(a)および図3の(a)は、それぞれ未検出の画像から特定された前景画像を示している。図2の(b)および(c)は、前景画像の全部のコンテンツを示している。図3の(b)および(c)は、前景画像の輪郭部分を示している。
図2の(b)および図3の(b)は、それぞれ均等区分の方式でメッシュ区分する場合を示す。これら二つの場合において、メッシュ区分部101は、いずれも4本の極線と、極点を円心とする4個の円とを用いて前景画像を区分する。図2の(b)および図3の(b)に示すように、4本の極線のうち2本ずつの間の夾角が等しく(90°)、隣り合う円の間の径方向距離が4個の円のうちの最小円の半径に等しい。このように、メッシュ区分部101が均等区分の方式を採用することにより、対象に対する検出プロセスがより容易になり、演算量が低減される。
図3の(c)には、前景画像における輪郭画素の数に基づいて非均等区分を行う場合を示す。この非均等とは、図3の(c)に示したように、幾何学空間において出現可能な不均等を指す。この場合、メッシュ区分部101は、隣り合う円の間で囲まれたそれぞれの領域および最小円により囲まれた領域における輪郭画素の数が等しくなり、隣り合う極線の間で囲まれた輪郭画素の数が等しくなるように円と極線を決定する。
例えば、図3の(c)において、最小円により囲まれた領域内の輪郭画素の数と、最小円と二番目に小さい円とで囲まれたリング状領域内の輪郭画素の数と、二番目に小さい円と三番目に小さい円とで囲まれたリング状領域内の輪郭画素の数と、二番目に大きい円と最大円とで囲まれたリング状領域内の輪郭画素の数とは等しい。また、図3の(c)に示した4本の極線のうち隣り合う2本の極線により囲まれた領域における前景画像の輪郭画素の数が等しい。
図2の(c)には、前景画像における全部の画素の数に基づいて非均等区分を行う場合を示す。この場合、メッシュ区分部101は、隣り合う円の間で囲まれたそれぞれの領域における画素の数および最小円により囲まれた領域における画素の数がそれぞれ等しくなるように、円を決定する。また、メッシュ区分部101は、隣り合う極線の間で囲まれた領域における画素の数が等しくなるように、極線を決定する。
例えば、図2の(c)において、最小円により囲まれた領域内の前景画像の画素の数と、最小円と二番目に小さい円とで囲まれたリング状領域内の前景画像の画素の数と、二番目に小さい円と三番目に小さい円とで囲まれたリング状領域内の前景画像の画素の数と、二番目に大きい円と最大円とで囲まれたリング状領域内の前景画像の画素の数とは等しい。また、図2の(c)に示した4本の極線のうち隣り合う2本の極線により囲まれた領域における前景画像の画素の数が等しい。
勾配方向ヒストグラム取得部102は、未検出の画像に対してメッシュの区分を行った後に、メッシュ区分部101により区分されたメッシュのそれぞれに対して計算を行ってメッシュごとの勾配方向のヒストグラムを取得する。メッシュごとの勾配方向のヒストグラムを取得するために、勾配方向ヒストグラム取得部102は、前景画像における輪郭画素あるいは前景画像における全ての画素の、メッシュの参考方向に対する勾配方向を算出する。画素の、メッシュの参考方向に対する勾配方向は、例えば当該画素の勾配方向と当該メッシュの参考方向との夾角により取得されることが可能である。その後に、勾配方向ヒストグラム取得部102は算出された勾配方向に基づいて、メッシュごとの勾配方向のヒストグラムを取得する。
まず、メッシュの参考方向の概念について説明する。説明を容易にするために、1個のメッシュcijを与える。ここで、iは、角度方向のメッシュの数を示し、i=1,2,3・・・Mである。また、jは、径方向のメッシュの数を示し、j=1,2,3、・・・Nである。仮に、メッシュcijを囲む二つの極線の極角がそれぞれθとθi+1であるとすると、一実施例において、図3を参照すれば、メッシュcijの参考方向を表すx方向の逆方向延長線が極点を通り、かつ、x方向と極軸から形成された極角がθ=(θ+θi+1)/2となる。言い換えれば、メッシュの参考方向は、極点を通り、メッシュを囲む2本の隣り合う極線の夾角を均等に分割する。しかしながら、選択可能なメッシュの参考方向は、これに限定されず、参考方向xは当該メッシュを囲む2本の隣り合う極線の夾角を均等に分割しても良く、隣り合う極線の夾角を非均等に分割しても良く、例えば、1対2又は2対3の任意の比率で夾角を分割しても良い。例えば、勾配方向ヒストグラム取得部102は、区分されたメッシュのそれぞれに対して同様の基準に従って参考方向を特定することができる。また、例えば、勾配方向ヒストグラム取得部102は、メッシュの参考方向の特定の基準を予め指定することができる。
例えば、勾配方向ヒストグラム取得部102は、実施例によって、前景画像における輪郭画素の、メッシュの参考方向に対する勾配方向のみを算出しても良く、前景画像における全ての画素の、メッシュの参考方向に対する勾配方向を算出しても良い。例えば、勾配方向ヒストグラム取得部102は、前景画像における全ての画素のメッシュの参考方向に対する勾配方向を算出する方が演算量は増えるが、より正確な検出効果を取得することができる。
例えば、勾配方向ヒストグラム取得部102は、前景画像における輪郭画素のみのメッシュの参考方向に対する勾配方向を算出する一実施例において、メッシュにおける輪郭画素の勾配方向を算出し、メッシュの参考方向に対して変換を行って輪郭画素の参考方向に対する勾配方向を取得する。輪郭画素の勾配方向の算出方法は、当分野で既知の各種の方法を採用することができる。当該メッシュにおける輪郭画素の参考方向に対する勾配方向が取得された後に、当該メッシュにおける輪郭画素を方向によってk個の区間(bin)に区分し、すなわちk−binの方向ヒストグラムを作成する。
例えば、勾配方向ヒストグラム取得部102は、前景画像における全ての画素のメッシュの参考方向に対する勾配方向を算出する場合に、輪郭画素の勾配方向が取得された後に、輪郭画素までの距離変換により非輪郭画素の勾配方向を取得する。例えば、勾配方向ヒストグラム取得部102は、まず輪郭画素を境界画素として連通領域全体の距離変換を算出する。距離変換が行われた後に、連通領域内の画素(即ち非輪郭画素)毎に距離の最も近い輪郭画素を探し出す。言い換えれば、連通領域内の画素のそれぞれに対して、少なくとも1個の対応する輪郭画素が存在する。非輪郭画素との距離の最も近い輪郭画素の勾配方向を当該非輪郭画素の勾配方向とする。また、例えば、勾配方向ヒストグラム取得部102は、メッシュにおける全ての前景画像中の画素の、参考方向に対する勾配方向が取得された後に、当該メッシュにおける前景画像中の画素を方向によってk個の区間(bin)に区分し、すなわちk−binの方向ヒストグラムを作成する。
距離変換の具体的な方法については、例えばHeinz Breu, Joseph Gil, David Kirkpatrick,及びMichael Werman等の“Linear Time Euclidean Distance Transform Algorithms”を参照する。
図4は、非輪郭要素の勾配方向を取得する処理について説明する図である。
図4に示したように、閉合連通領域1001は未検出の画像の前景画像である。なお、画素a,b,cは、前景画像中の非輪郭画素であり、画素A,B,C,C´は、非輪郭画素a,b,cが距離変換によりそれぞれマッピングされた輪郭画素である。例えば、輪郭画素AとBの勾配方向を、それぞれ非輪郭画素aとbの勾配方向とする。非輪郭画素cは、二つの対応する輪郭画素C,C´を有するため、輪郭画素C,C´の勾配方向の何れかが非輪郭画素cの勾配方向として選択される。この選択は、ランダムに行われて良い。
また、例えば、勾配方向ヒストグラム取得部102は、輪郭画素の参考方向に対する勾配方向を算出してから距離変換を行って非輪郭画素の参考方向に対する勾配方向を取得しても良く、輪郭画素の勾配方向を算出した直後に距離変換を行って非輪郭画素の勾配方向を取得し、その後に輪郭画素と非輪郭画素の参考方向に対する勾配方向を集中して算出しても良い。
特徴抽出部103は、勾配方向ヒストグラム取得部102により各メッシュ毎の勾配方向ヒストグラムが取得された後に、取得された全てのメッシュの勾配方向ヒストグラムを連結してM×N×k(Mは角度方向の区分数、Nは径方向の区分数、kはメッシュごとの勾配方向ヒストグラムの区間(bin)数である)の総ヒストグラムベクトルとする。ここで、対となる隣り合う極線ごとにより囲まれたメッシュの勾配方向ヒストグラムの連結順は同様である。
図5を参考して総ヒストグラムの連結順を説明する。図5は、勾配方向における総ヒストグラムの連結順を説明するための図である。
例えば、1個のメッシュcijを与える。ここで、iは、角度方向のメッシュの数を示し、i=1,2,3・・・Mである。また、jは、径方向のメッシュの数を示し、j=1,2,3、・・・Nである。図5に示した例では、M=4およびN=4である。
例えば、特徴抽出部103は、まずは径方向に沿い、それから角度方向に沿い、かつ反時計回りに総ヒストグラムの連結を行うことができる。具体的に、連結順は、c11,c12,c13,c14,c21,c22,c23,c24・・・c41,c42,c43,c44であっても良い。また、連結順は、c14,c13,c12,c11,c24,c23,c22,c21・・・c44,c43,c42,c41であっても良い。あるいは、連結順は、c12,c11,c13,c14,c22,c21,c23,c24・・・c42,c41,c43,c44であっても構わない。
また、例えば、特徴抽出部103は、まずは径方向に沿い、それから角度方向に沿い、かつ時計回りに総ヒストグラムの連結を行うことができる。例えば、連結順は、c11,c14,c12,c13,c41,c44,c42,c43・・・c21,c24,c22,c23であって良い。その他の場合は上記と同様であるため、ここでは重複説明しない。以上からわかるように、対となる隣り合う極線ごとにより限定されたメッシュ(すなわち径方向)の勾配方向のヒストグラムの連結順が同様であることを確保すれば、どのような前後の連結順にも関わらず、要求を満足することができる。上記の二つの実施例には、角度方向に沿って時計回り、反時計回りに連結する場合を例示した。また、角度方向において行を飛ばして連結する場合であっても、要求を満足することもできる。例えば、c11,c12,c13,c14,c31,c32,c33,c34・・・c21,c22,c23,c24であって良い。
例えば、特徴抽出部103は、全てのメッシュの勾配方向のヒストグラムを連結して総ヒストグラムベクトルとした後に、総ヒストグラムベクトルに対してフーリエ変換を行い、変換された振幅の値を未検出の画像の特徴ベクトルとする。極座標空間とフーリエ変換が採用されることにより、取得された特徴ベクトルは回転不変性を有することになる。
対象検出部104は、取得された特徴ベクトルに基づいて、図7を参照して後述する分類器を採用して未検出の画像における対象に対して検出を行う。
図6は、一実施例における対象検出方法を示すフローチャートである。以下に説明する対象検出方法は、図7を参照して後述する分類器を採用して行われる。
図6に示したように、ステップS101において、例えば、対象検出装置100は、未検出の画像における前景画像に対してメッシュの区分を行う。この区分は、未検出の画像における特定点を極点とする極座標系において行われる。特定の分類器については、異なるサンプル画像に対して、メッシュの区分に用いられ極点を中心とする円と極線の個数はそれぞれ定数である。また、これら円のうちの最大円の半径は、未検出の画像における前景画像の画素と極点との最大距離より大きい又は等しい。
極点は、前景画像の重心又は幾何学的中心を選択して使用することができる。メッシュの区分は、幾何学空間による均等区分方法、あるいは隣り合う円と隣り合う極線との間で限定された輪郭画素数又は前景画素数による非均等区分方法を採用することができる。その具体的な実現は検出装置に関する説明と同様であるため、ここでは説明しない。
ステップS102において、例えば、対象検出装置100は、メッシュ毎における前景画像中の画素又は輪郭画素の、当該メッシュの参考方向に対する勾配方向を算出し、勾配方向のヒストグラムを取得する。画素のメッシュの参考方向に対する勾配方向は、例えば当該画素の勾配方向と当該メッシュの参考方向との夾角により取得することができる。
メッシュの参考方向は、予め定められたものであっても良い。当該方向に所在する直線は、極点を通って、均等に或は任意の割合で当該メッシュを囲む2本の極線の夾角を分割することができる。
例えば、対象検出装置100は、メッシュ毎における輪郭画素或は全ての前景画素の勾配方向の、参考方向に対する勾配方向に基づいて、メッシュ毎のk−bin勾配方向のヒストグラムを取得することができる。例えば、対象検出装置100は、全ての前景画素の勾配方向に基づいて勾配方向のヒストグラムを取得する場合には、距離変換により非輪郭画素を最も近い輪郭画素にマッピングし、当該最も近い輪郭画素の勾配方向を当該非輪郭画素の勾配方向とすることができる。
ステップS103において、例えば、対象検出装置100は、メッシュ毎の勾配方向のヒストグラムに基づいて総ヒストグラムを取得してフーリエ変換を行い、変換された振幅の値を未検出の画像の特徴ベクトルとする。例えば、対象検出装置100は、全てのメッシュの勾配方向のヒストグラムを連結して総ヒストグラムとするプロセスにおいて、対となる隣り合う極線毎により囲まれたメッシュの勾配方向のヒストグラムの連結順は同様である。
ステップS104において、例えば、対象検出装置100は、構築された特徴ベクトルに基づいて、図7を参照して後述する分類器を採用して画像における対象を検出する。
開示技術は、さらに、分類器作成装置を提供する。図7は、一実施例における分類器作成装置の構成を示す機能ブロック図である。
図7に示したように、分類器作成装置200は、メッシュ区分部201と、勾配方向ヒストグラム取得部202と、特徴抽出部203と、分類器作成部204とを備える。なお、メッシュ区分部201、勾配方向ヒストグラム取得部202、及び特徴抽出部203の機能及び構成は、それぞれ図1に示したメッシュ区分部101、勾配方向ヒストグラム取得部102、及び特徴抽出部103と類似する。その相違点は、メッシュ区分部201、勾配方向ヒストグラム取得部202、及び特徴抽出部203は一グループのサンプル画像に対して特徴抽出を行う一方、対象検出装置100におけるメッシュ区分部101、勾配方向ヒストグラム取得部102、及び特徴抽出部103は、未検出の画像の前景画像のみに対して特徴抽出を行うものである。したがって、ここでは重複な説明を省略する。なお、メッシュ区分部201、勾配方向ヒストグラム取得部202、特徴抽出部203、分類器作成部204にて行われる各処理機能は、以下のように実現される。すなわち、これらの各処理機能は、その全部または任意の一部が、CPU(Central Processing Unit)および当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
分類器作成部204は、特徴抽出部203から取得された複数のサンプル画像の特徴ベクトルに基づいて分類器を作成する。
また、開示技術は、さらに分類器作成方法を提供する。図8は、一実施例における分類器作成方法を示すフローチャートである。
図8に示した、画像の特徴ベクトルを取得するために行われるステップS201〜S203は、図6に示したステップS101〜S103に行われた処理と類似する。その相違点は、ステップS201〜S203に行われる処理は一グループのサンプル画像に対して行われるものである。したがって、ここでは重複な説明を省略する。
図8のステップS204において、ステップS203において得られたサンプル画像の特徴ベクトルに基づいて画像の分類器を作成する。
以下に、具体的な実例を結合して、入力画像から画像の特徴ベクトルを抽出する処理を説明する。
図9は、一実施例における前景画像の輪郭による画像の特徴ベクトルの取得プロセスを示すフローチャートである。
まず、ステップS301において、例えば、対象検出装置100は、入力された画像に対して二値化処理及び連通領域の分析を行って前景画像を特定する。
ステップS302において、例えば、対象検出装置100は、前景画像が特定された後に、前景画像の輪郭画素の勾配方向を算出する。その後に、例えば、対象検出装置100は、ステップS303へ進む。
ステップS303において、例えば、対象検出装置100は、予め定めたメッシュ区分基準に従って、メッシュ区分する同心円と極線の数、及び均等区分と非均等区分のいずれを使用するかを決定する。そして、例えば、対象検出装置100は、前景画像に基づいて、メッシュの所在する極座標系の極点を選択し、同心円のうちの最大円の半径を特定する。例えば、対象検出装置100は、メッシュの区分を行った後に、一定の規則に従ってメッシュの参考方向を算出する。
ステップS304において、例えば、対象検出装置100は、メッシュ及びその参考方向が特定された後に、輪郭画素の、各メッシュの参考方向に対する勾配方向を算出し、各メッシュ毎の勾配方向のヒストグラムを取得する。その後に、例えば、対象検出装置100は、ステップS305へ進む。
ステップS305において、例えば、対象検出装置100は、メッシュ毎の方向ヒストグラムを連結して前景画像全体の総ヒストグラムベクトルとし、当該総ヒストグラムベクトルに対してフーリエ変換を行って未検出の画像の特徴ベクトルを取得する。例えば、特徴ベクトルは、フーリエ変換を行った振幅の値となる。
図10は、一実施例における前景画像の全てのコンテンツによる画像の特徴ベクトルの取得プロセスを示すフローチャートである。
図10に示したフローチャートと図9に示したフローチャートとの相違点は、前景画像の輪郭画素に加えて、前景画像の非輪郭画素に基づいて画像の特徴ベクトルを取得することにある。
図10におけるステップS401,S402,S404,S405,S406は、図9におけるステップS301,S302,S303,S304,S305と実質的に同様である。その相違点は、S405において前景画像中の輪郭画素と非輪郭画素の、参考方向に対する勾配方向に基づいて各メッシュ毎の勾配方向のヒストグラムを取得することにある。したがって、ここではこれらステップの詳細説明を省略する。
図10のステップS403において、例えば、対象検出装置100は、前景画像の非輪郭画素の勾配方向を算出する。この勾配方向は、距離変換により取得されることが可能である。例えば、対象検出装置100は、輪郭画素を境界画素とし、距離変換により非輪郭画素をそれと最も近い輪郭画素にマッピングし、当該輪郭画素の勾配方向を当該非輪郭画素の勾配方向とする。
開示技術の各実施例において、例えば、対象検出装置100は、対象コンテンツの空間分布を、メッシュ区分により得られた特徴に変換し、局所統計的情報を特徴として整合する。より具体的に、例えば、対象検出装置100は、メッシュのそれぞれに境界方向のヒストグラムを算出し、これら全てのヒストグラムに基づいて最終的な特徴ベクトルを作成する。また、例えば、対象検出装置100は、極座標系とフーリエ変換により対象検出における回転不変性を実現するという特徴のアフィン不変性が実現される方案を提案する。幾らかの実施例において、例えば、対象検出装置100は、画像の特定点、例えば中心又は重心を使用して特徴を抽出することにより、対象検出における平行移動不変性を実現する。また、幾らかの実施例において、例えば、対象検出装置100は、正規化のヒストグラム(すなわちヒストグラムの和が1である)を用いて対象検出における尺度不変性を実現することができる。
以下に、図11を参照して開示技術のデータ処理装置を実現するコンピュータの例示的な構成を説明する。図11は、実施例の実施に使用可能なコンピュータの模式的なブロック図である。
図11においては、中央処理装置(CPU)301が、読取専用メモリ(ROM)302に記憶されたプログラム又は記憶部308からランダムアクセスメモリ(RAM)303にアップロードされたプログラムにしたがって、各種の処理を実行する。RAM303は、CPU301が必要に応じて各種の処理等を実行するとき等に必要なデータを記憶する。
CPU301、ROM302とRAM303同士はバス304を介して互いに接続されている。入力/出力インターフェース305もバス304に接続されている。
入力部306と、出力部307と、記憶部308と、通信部309とは、入力/出力インターフェース305に接続される。ここで、入力部306は、キーボード、マウス等を含む。出力部307は、ディスプレイ、例えばブラウン管(CRT)、液晶ディスプレイ(LCD)等とスピーカ等を含む。記憶部308は、ハードディスク等を含む。通信部309は、ネットワークインターフェースカード、例えば、LANカード、モデム等を含む。通信部309がネットワーク、例えばインターネットを経由して通信処理を実行する。
必要に応じて、入力/出力インターフェース305にはドライブ310も接続されている。例えば、磁気ディスク、光ディスク、光磁気ディスク、半導体メモリ等のような着脱可能な媒体311は、必要に応じてドライブ310に取り付けられており、その中から読み出されたコンピュータプログラムが必要に応じて記憶部308にインストールされる。
ソフトウェアで前記の一連の処理を実現する場合、ネットワーク例えばインターネット、又は記憶媒体、例えば着脱可能な媒体311からソフトウェアを構成するプログラムをインストールする。
このような記憶媒体は、図11に示したような、その中にプログラムが記憶されているものであって、デバイスから離れて配送されることでユーザにプログラムを提供する着脱可能な媒体311には限定されない。着脱可能な媒体311は、例えば、フロッピー(登録商標)などの磁気ディスク、コンパクトディスクリードオンリーメモリ(CD−ROM)やディジタルヴァーサタイルディスク(DVD)などの光ディスク、ミニディスク(登録商標)などの光磁気ディスク及び半導体メモリである。また、記憶媒体は、ROM302、記憶部308に含まれるハードディスクなどでも良い。その中にプログラムが記憶されており、これらを含むデバイスと一緒にユーザに提供される。
以上に特定の実施例を参照して開示技術を説明したが、当業者にとって、特許請求の範囲により限定された開示技術の範囲を脱出しない前提で各種の修正又は変更しても良い。
以上の各実施例を含む実施形態に関し、さらに以下の付記を開示する。
(付記1)前景画像における特定点を極点とする極座標系において、当該極点から射出する複数の極線と、当該極点を円心とする複数の円とを用いて、隣り合う極線と、隣り合う円とで囲まれた領域、または、隣り合う極線と、前記円のうちの最小円とで囲まれた領域を示すメッシュに区分するメッシュ区分部と、
前記前景画像における輪郭画素の前記メッシュの参考方向に対する勾配方向を算出し、算出した勾配方向に基づいて前記メッシュの勾配方向のヒストグラムを前記メッシュごとに取得する勾配方向ヒストグラム取得部と、
全てのメッシュの勾配方向のヒストグラムを連結して総ヒストグラムベクトルとし、前記総ヒストグラムベクトルに対してフーリエ変換を行って前記前景画像の特徴ベクトルを取得する特徴抽出部と、
取得された特徴ベクトルに基づいて前記前景画像における対象に対して検出を行う対象検出部と
を備えることを特徴とする対象検出装置。
(付記2)前記勾配方向ヒストグラム取得部は、前記前景画像における非輪郭画素の勾配方向を算出することを特徴とする付記1に記載の対象検出装置。
(付記3)前記勾配方向ヒストグラム取得部は、前記前景画像の非輪郭画素が距離変換によりマッピングされた輪郭画素の勾配方向を前記非輪郭画素の勾配方向とすることを特徴とする付記2に記載の対象検出装置。
(付記4)前記隣り合う円の間の径方向距離は前記円のうちの最小円の半径に等しく、前記隣り合う極線の間の夾角は等しいことを特徴とする付記1〜3のいずれか一つに記載の対象検出装置。
(付記5)前記メッシュ区分部は、隣り合う円の間で囲まれた領域および前記最小円により囲まれた領域における画素又は輪郭画素の数が等しくなり、前記隣り合う極線の間で囲まれた領域における画素又は輪郭画素の数が等しくなるように、前記円と前記極線を決定することを特徴とする付記1〜3のいずれか一つに記載の対象検出装置。
(付記6)前記特定点は、前記前景画像の幾何学的中心又は重心であることを特徴とする付記1〜3のいずれか一つに記載の対象検出装置。
(付記7)前記メッシュの前記参考方向は、前記特定点を通り、前記メッシュを囲む2本の極線の夾角を均等に区分することを特徴とする付記1〜3のいずれか一つに記載の対象検出装置。
(付記8)コンピュータが実行する対象検出方法であって、
前景画像における特定点を極点とする極座標系において、当該極点から射出する複数の極線と、当該極点を円心とする複数の円とを用いて、隣り合う極線と、隣り合う円とで囲まれた領域、または、隣り合う極線と、前記円のうちの最小円とで囲まれた領域を示すメッシュに区分し、
前記前景画像における輪郭画素の前記メッシュの参考方向に対する勾配方向を算出し、算出した勾配方向に基づいて前記メッシュの勾配方向のヒストグラムを前記メッシュごとに取得し、
全てのメッシュの勾配方向のヒストグラムを連結して総ヒストグラムベクトルとし、前記総ヒストグラムベクトルに対してフーリエ変換を行って前記前景画像の特徴ベクトルを取得し、
取得された特徴ベクトルに基づいて前記前景画像における対象に対して検出を行う
ことを特徴とする対象検出方法。
(付記9)前記勾配方向のヒストグラムを取得する処理は、前記前景画像における非輪郭画素の勾配方向を算出することを特徴とする付記8に記載の対象検出方法。
(付記10)前記勾配方向のヒストグラムを取得する処理は、前記前景画像の非輪郭画素が距離変換によりマッピングされた輪郭画素の勾配方向を前記非輪郭画素の勾配方向とすること特徴とする付記9に記載の対象検出方法。
(付記11)前記隣り合う円の間の径方向距離は前記円のうちの最小円の半径に等しく、前記隣り合う極線の間の夾角は等しいことを特徴とする付記8〜10のいずれか一つに記載の対象検出方法。
(付記12)前記メッシュに区分する処理は、隣り合う円の間で囲まれた領域および前記最小円により囲まれた領域における画素又は輪郭画素の数が等しくなり、前記隣り合う極線の間で囲まれた領域における画素又は輪郭画素の数が等しくなるように、前記円と前記極線を決定することを特徴とする付記8〜10のいずれか一つに記載の対象検出方法。
(付記13)前記特定点は、前記前景画像の幾何学的中心又は重心であることを特徴とする付記8〜10のいずれか一つに記載の対象検出方法。
(付記14)前記メッシュの前記参考方向は、前記特定点を通り、前記メッシュを囲む2本の極線の夾角を均等に区分することを特徴とする付記8〜10のいずれか一つに記載の対象検出方法。
(付記15)前景画像における特定点を極点とする極座標系において、当該極点から射出する複数の極線と、当該極点を円心とする複数の円とを用いて、隣り合う極線と、隣り合う円とで囲まれた領域、または、隣り合う極線と、前記円のうちの最小円とで囲まれた領域を示すメッシュに区分するメッシュ区分部と、
前記前景画像における輪郭画素の前記メッシュの参考方向に対する勾配方向を算出し、算出した勾配方向に基づいて前記メッシュの勾配方向のヒストグラムを前記メッシュごとに取得する勾配方向ヒストグラム取得部と、
全てのメッシュの勾配方向のヒストグラムを連結して総ヒストグラムベクトルとし、前記総ヒストグラムベクトルに対してフーリエ変換を行って前記前景画像の特徴ベクトルを取得する特徴抽出部と、
取得された特徴ベクトルに基づいて分類器を作成する分類器作成部と
を備えることを特徴とする分類器作成装置。
(付記16)前記勾配方向ヒストグラム取得部は、前記前景画像における非輪郭画素の勾配方向を算出することを特徴とする付記15に記載の分類器作成装置。
(付記17)前記勾配方向ヒストグラム取得部は、前記前景画像の非輪郭画素が距離変換によりマッピングされた輪郭画素の勾配方向を前記非輪郭画素の勾配方向とすることを特徴とする付記16に記載の分類器作成装置。
(付記18)前記隣り合う円の間の径方向距離は前記円のうちの最小円の半径に等しく、前記隣り合う極線の間の夾角は等しいことを特徴とする付記15〜17のいずれか一つに記載の分類器作成装置。
(付記19)前記メッシュ区分部は、隣り合う円の間で囲まれた領域および前記最小円により囲まれた領域における画素又は輪郭画素の数が等しくなり、前記隣り合う極線の間で囲まれた領域における画素又は輪郭画素の数が等しくなるように、前記円と前記極線を決定することを特徴とする付記15〜17のいずれか一つに記載の分類器作成装置。
(付記20)前記特定点は、前記前景画像の幾何学的中心又は重心であることを特徴とする付記15〜17のいずれか一つに記載の分類器作成装置。
(付記21)前記メッシュの前記参考方向は、前記特定点を通り、前記メッシュを囲む2本の極線の夾角を均等に区分することを特徴とする付記15〜17のいずれか一つに記載の分類器作成装置。
(付記22)コンピュータが実行する対象検出方法であって、
前景画像における特定点を極点とする極座標系において、当該極点から射出する複数の極線と、当該極点を円心とする複数の円とを用いて、隣り合う極線と、隣り合う円とで囲まれた領域、または、隣り合う極線と、前記円のうちの最小円とで囲まれた領域を示すメッシュに区分し、
前記前景画像における輪郭画素の前記メッシュの参考方向に対する勾配方向を算出し、算出した勾配方向に基づいて前記メッシュの勾配方向のヒストグラムを前記メッシュごとに取得し、
全てのメッシュの勾配方向のヒストグラムを連結して総ヒストグラムベクトルとし、前記総ヒストグラムベクトルに対してフーリエ変換を行って前記前景画像の特徴ベクトルを取得し、
取得された特徴ベクトルに基づいて分類器を作成する
ことを特徴とする分類器作成方法。
(付記23)前記勾配方向のヒストグラムを取得する処理は、前記前景画像における非輪郭画素の勾配方向を算出することを特徴とする付記22に記載の分類器作成方法。
(付記24)前記勾配方向のヒストグラムを取得する処理は、前記前景画像の非輪郭画素が距離変換によりマッピングされた輪郭画素の勾配方向を前記非輪郭画素の勾配方向とすること特徴とする付記23に記載の分類器作成方法。
(付記25)前記隣り合う円の間の径方向距離は前記円のうちの最小円の半径に等しく、前記隣り合う極線の間の夾角は等しいことを特徴とする付記22〜24のいずれか一つに記載の分類器作成方法。
(付記26)前記メッシュに区分する処理は、隣り合う円の間で囲まれた領域および前記最小円により囲まれた領域における画素又は輪郭画素の数が等しくなり、前記隣り合う極線の間で囲まれた領域における画素又は輪郭画素の数が等しくなるように、前記円と前記極線を決定することを特徴とする付記22〜24のいずれか一つに記載の分類器作成方法。
(付記27)前記特定点は、前記前景画像の幾何学的中心又は重心であることを特徴とする付記22〜24のいずれか一つに記載の分類器作成方法。
(付記28)前記メッシュの前記参考方向は、前記特定点を通り、前記メッシュを囲む2本の極線の夾角を均等に区分することを特徴とする付記22〜24のいずれか一つに記載の分類器作成方法。
100 対象検出装置
101 メッシュ区分部
102 勾配方向ヒストグラム取得部
103 特徴抽出部
104 対象検出部
200 分類器作成装置
201 メッシュ区分部
202 勾配方向ヒストグラム取得部
203 特徴抽出部
204 分類器作成部

Claims (10)

  1. 前景画像における特定点を極点とする極座標系において、当該極点から射出する複数の極線と、当該極点を円心とする複数の円とを用いて、隣り合う極線と、隣り合う円とで囲まれた領域、または、隣り合う極線と、前記円のうちの最小円とで囲まれた領域を示すメッシュに区分するメッシュ区分部と、
    前記前景画像における輪郭画素の前記メッシュの参考方向に対する勾配方向を算出し、算出した勾配方向に基づいて前記メッシュの勾配方向のヒストグラムを前記メッシュごとに取得する勾配方向ヒストグラム取得部と、
    全てのメッシュの勾配方向のヒストグラムを連結して総ヒストグラムベクトルとし、前記総ヒストグラムベクトルに対してフーリエ変換を行って前記前景画像の特徴ベクトルを取得する特徴抽出部と、
    取得された特徴ベクトルに基づいて前記前景画像における対象に対して検出を行う対象検出部と
    を備えることを特徴とする対象検出装置。
  2. 前記勾配方向ヒストグラム取得部は、前記前景画像における非輪郭画素の勾配方向を算出することを特徴とする請求項1に記載の対象検出装置。
  3. 前記勾配方向ヒストグラム取得部は、前記前景画像の非輪郭画素が距離変換によりマッピングされた輪郭画素の勾配方向を前記非輪郭画素の勾配方向とすることを特徴とする請求項2に記載の対象検出装置。
  4. 前記隣り合う円の間の径方向距離は前記円のうちの最小円の半径に等しく、前記隣り合う極線の間の夾角は等しいことを特徴とする請求項1〜3のいずれか一つに記載の対象検出装置。
  5. 前記メッシュ区分部は、隣り合う円の間で囲まれた領域および前記最小円により囲まれた領域における画素又は輪郭画素の数が等しくなり、前記隣り合う極線の間で囲まれた領域における画素又は輪郭画素の数が等しくなるように、前記円と前記極線を決定することを特徴とする請求項1〜3のいずれか一つに記載の対象検出装置。
  6. 前記特定点は、前記前景画像の幾何学的中心又は重心であることを特徴とする請求項1〜3のいずれか一つに記載の対象検出装置。
  7. 前記メッシュの前記参考方向は、前記特定点を通り、前記メッシュを囲む2本の極線の夾角を均等に区分することを特徴とする請求項1〜3のいずれか一つに記載の対象検出装置。
  8. コンピュータが実行する対象検出方法であって、
    前景画像における特定点を極点とする極座標系において、当該極点から射出する複数の極線と、当該極点を円心とする複数の円とを用いて、隣り合う極線と、隣り合う円とで囲まれた領域、または、隣り合う極線と、前記円のうちの最小円とで囲まれた領域を示すメッシュに区分し、
    前記前景画像における輪郭画素の前記メッシュの参考方向に対する勾配方向を算出し、算出した勾配方向に基づいて前記メッシュの勾配方向のヒストグラムを前記メッシュごとに取得し、
    全てのメッシュの勾配方向のヒストグラムを連結して総ヒストグラムベクトルとし、前記総ヒストグラムベクトルに対してフーリエ変換を行って前記前景画像の特徴ベクトルを取得し、
    取得された特徴ベクトルに基づいて前記前景画像における対象に対して検出を行う
    ことを特徴とする対象検出方法。
  9. 前景画像における特定点を極点とする極座標系において、当該極点から射出する複数の極線と、当該極点を円心とする複数の円とを用いて、隣り合う極線と、隣り合う円とで囲まれた領域、または、隣り合う極線と、前記円のうちの最小円とで囲まれた領域を示すメッシュに区分するメッシュ区分部と、
    前記前景画像における輪郭画素の前記メッシュの参考方向に対する勾配方向を算出し、算出した勾配方向に基づいて前記メッシュの勾配方向のヒストグラムを前記メッシュごとに取得する勾配方向ヒストグラム取得部と、
    全てのメッシュの勾配方向のヒストグラムを連結して総ヒストグラムベクトルとし、前記総ヒストグラムベクトルに対してフーリエ変換を行って前記前景画像の特徴ベクトルを取得する特徴抽出部と、
    取得された特徴ベクトルに基づいて分類器を作成する分類器作成部と
    を備えることを特徴とする分類器作成装置。
  10. コンピュータが実行する分類器作成方法であって、
    前景画像における特定点を極点とする極座標系において、当該極点から射出する複数の極線と、当該極点を円心とする複数の円とを用いて、隣り合う極線と、隣り合う円とで囲まれた領域、または、隣り合う極線と、前記円のうちの最小円とで囲まれた領域を示すメッシュに区分し、
    前記前景画像における輪郭画素の前記メッシュの参考方向に対する勾配方向を算出し、算出した勾配方向に基づいて前記メッシュの勾配方向のヒストグラムを前記メッシュごとに取得し、
    全てのメッシュの勾配方向のヒストグラムを連結して総ヒストグラムベクトルとし、前記総ヒストグラムベクトルに対してフーリエ変換を行って前記前景画像の特徴ベクトルを取得し、
    取得された特徴ベクトルに基づいて分類器を作成する
    ことを特徴とする分類器作成方法。
JP2011178585A 2010-08-17 2011-08-17 対象検出装置、対象検出方法、分類器作成装置及び分類器作成方法 Active JP5747733B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010257560.7A CN102376087B (zh) 2010-08-17 2010-08-17 检测图像中的对象的装置和方法、分类器生成装置和方法
CN201010257560.7 2010-08-17

Publications (2)

Publication Number Publication Date
JP2012043436A JP2012043436A (ja) 2012-03-01
JP5747733B2 true JP5747733B2 (ja) 2015-07-15

Family

ID=45794640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011178585A Active JP5747733B2 (ja) 2010-08-17 2011-08-17 対象検出装置、対象検出方法、分類器作成装置及び分類器作成方法

Country Status (2)

Country Link
JP (1) JP5747733B2 (ja)
CN (1) CN102376087B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103310213B (zh) * 2012-03-07 2016-05-25 株式会社理光 车辆检测方法和装置
CN102722721A (zh) * 2012-05-25 2012-10-10 山东大学 一种基于机器视觉的人体跌倒检测方法
CN102842133B (zh) * 2012-07-13 2019-05-14 电子科技大学 一种局部特征描述方法
US10152788B2 (en) * 2014-05-14 2018-12-11 Sync-Rx Ltd. Object identification
KR101836125B1 (ko) 2016-12-22 2018-04-19 아주대학교산학협력단 모델의 형상 특징 정보 생성 방법 및 형상 유사도 분석 방법
CN111161343B (zh) * 2019-12-30 2023-01-31 芜湖哈特机器人产业技术研究院有限公司 一种水泵口环视觉识别方法
CN112669307A (zh) 2021-01-06 2021-04-16 大冶特殊钢有限公司 基于机器视觉的低倍酸蚀缺陷自动识别与评级的方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161204A (en) * 1990-06-04 1992-11-03 Neuristics, Inc. Apparatus for generating a feature matrix based on normalized out-class and in-class variation matrices
JP4161790B2 (ja) * 2003-05-08 2008-10-08 松下電器産業株式会社 模様識別装置
KR20050025927A (ko) * 2003-09-08 2005-03-14 유웅덕 홍채인식을 위한 동공 검출 방법 및 형상기술자 추출방법과 그를 이용한 홍채 특징 추출 장치 및 그 방법과홍채인식 시스템 및 그 방법
JP4477468B2 (ja) * 2004-10-15 2010-06-09 富士通株式会社 組み立て図面の装置部品イメージ検索装置
US7529395B2 (en) * 2004-12-07 2009-05-05 Siemens Medical Solutions Usa, Inc. Shape index weighted voting for detection of objects
US8625861B2 (en) * 2008-05-15 2014-01-07 International Business Machines Corporation Fingerprint representation using gradient histograms

Also Published As

Publication number Publication date
CN102376087B (zh) 2014-12-03
JP2012043436A (ja) 2012-03-01
CN102376087A (zh) 2012-03-14

Similar Documents

Publication Publication Date Title
JP5747733B2 (ja) 対象検出装置、対象検出方法、分類器作成装置及び分類器作成方法
JP6235921B2 (ja) 内視鏡画像診断支援システム
JP4660546B2 (ja) デジタル化画像中の対象の特徴描写方法およびコンピュータ読取り可能なプログラム記憶装置
JP5861539B2 (ja) 複数の画像の記述的情報を取得する方法及び装置、並びに画像マッチング方法
JP2017521779A (ja) 画像解析を用いた核のエッジの検出
JP5431362B2 (ja) 画像識別のための特徴ベースの識別特性(signature)
JP2015001982A (ja) 画像類似度確定装置及び方法並びに画像特徴取得装置及び方法
CN108961180B (zh) 红外图像增强方法及系统
KR101618996B1 (ko) 호모그래피를 추정하기 위한 샘플링 방법 및 영상 처리 장치
JP4772819B2 (ja) 画像検索装置および画像検索方法
US10699156B2 (en) Method and a device for image matching
EP2536123A1 (en) Image processing method and image processing apparatus
Major et al. Interpreting medical image classifiers by optimization based counterfactual impact analysis
CN110827301A (zh) 用于处理图像的方法和装置
Yammine et al. Novel similarity-invariant line descriptor and matching algorithm for global motion estimation
EP4128022A1 (en) Method for finding image regions that significantly influence classification in a tool for pathology classification in a medical image
JP2011002965A (ja) 画像検索方法および装置
JP2018206260A (ja) 画像処理システム、評価モデル構築方法、画像処理方法及びプログラム
US10210621B2 (en) Normalized probability of change algorithm for image processing
US10115195B2 (en) Method and apparatus for processing block to be processed of urine sediment image
JP4477439B2 (ja) 画像分割処理システム
CN112750124B (zh) 模型生成、图像分割方法、装置、电子设备及存储介质
Sun et al. Contextual models for automatic building extraction in high resolution remote sensing image using object-based boosting method
CN108154107B (zh) 一种确定遥感图像归属的场景类别的方法
Mandal et al. Detection of concave points in closed object boundaries aiming at separation of overlapped objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5747733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150