JP5747567B2 - Refrigerant circuit device - Google Patents
Refrigerant circuit device Download PDFInfo
- Publication number
- JP5747567B2 JP5747567B2 JP2011048191A JP2011048191A JP5747567B2 JP 5747567 B2 JP5747567 B2 JP 5747567B2 JP 2011048191 A JP2011048191 A JP 2011048191A JP 2011048191 A JP2011048191 A JP 2011048191A JP 5747567 B2 JP5747567 B2 JP 5747567B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchanger
- internal
- low
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003507 refrigerant Substances 0.000 title claims description 293
- 239000003570 air Substances 0.000 claims description 57
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000012080 ambient air Substances 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- 239000011358 absorbing material Substances 0.000 claims description 4
- 238000003860 storage Methods 0.000 description 42
- 238000001704 evaporation Methods 0.000 description 16
- 230000005855 radiation Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 6
- 235000013361 beverage Nutrition 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000005494 condensation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Removal Of Water From Condensation And Defrosting (AREA)
Description
本発明は、冷媒回路装置に関し、より詳細には、例えば自動販売機等に適用される冷媒回路装置に関するものである。 The present invention relates to a refrigerant circuit device, and more particularly to a refrigerant circuit device applied to, for example, a vending machine.
従来、自動販売機等に適用される冷媒回路装置として次のようなものが知られている。すなわち、主経路と、高圧冷媒導入経路と、放熱経路と、戻経路とを有する冷媒回路を備えたものである。 Conventionally, the following is known as a refrigerant circuit device applied to a vending machine or the like. That is, a refrigerant circuit having a main path, a high-pressure refrigerant introduction path, a heat radiation path, and a return path is provided.
主経路は、庫内熱交換器、圧縮機、庫外熱交換器及び膨張機構が冷媒配管で順次接続されて環状に構成されている。庫内熱交換器は、自動販売機本体における各商品収容庫の内部にそれぞれ配設されている。圧縮機は、自動販売機本体の内部であるが、商品収容庫の外部となる機械室に配設されており、庫内熱交換器を通過した冷媒を吸引し、吸引した冷媒を圧縮して高温高圧の状態にして吐出するものである。庫外熱交換器は、圧縮機と同様に機械室に配設されており、圧縮機で圧縮した冷媒を導入して凝縮させるものである。膨張機構は、圧縮機及び庫外熱交換器と同様に機械室に配設されており、庫外熱交換器で凝縮した冷媒を減圧して断熱膨張させるものである。 The main path is configured in an annular shape by sequentially connecting the internal heat exchanger, the compressor, the external heat exchanger, and the expansion mechanism through the refrigerant pipe. The in-compartment heat exchanger is disposed inside each commodity storage in the vending machine main body. The compressor is inside the main body of the vending machine, but is disposed in the machine room outside the commodity storage. The compressor sucks the refrigerant that has passed through the internal heat exchanger and compresses the sucked refrigerant. It is discharged in a high temperature and high pressure state. The external heat exchanger is disposed in the machine room like the compressor, and introduces and condenses the refrigerant compressed by the compressor. The expansion mechanism is disposed in the machine room in the same manner as the compressor and the external heat exchanger, and decompresses the refrigerant condensed in the external heat exchanger to adiabatically expand.
このような主経路においては、圧縮機で圧縮された冷媒が庫外熱交換器で凝縮し、凝縮した冷媒が膨張機構で断熱膨張され、庫内熱交換器で蒸発する。この庫内熱交換器で蒸発した冷媒は、圧縮機により吸引されて再び圧縮されて循環することになる。これにより庫内熱交換器が配設された商品収容庫の内部空気は冷却されることになる。 In such a main path, the refrigerant compressed by the compressor is condensed by the external heat exchanger, and the condensed refrigerant is adiabatically expanded by the expansion mechanism and evaporated by the internal heat exchanger. The refrigerant evaporated in the internal heat exchanger is sucked by the compressor, compressed again, and circulated. As a result, the internal air of the commodity storage in which the internal heat exchanger is disposed is cooled.
高圧冷媒導入経路は、圧縮機で圧縮した冷媒を導入し、主経路を構成する庫内熱交換器のうち加熱対象となる商品収容庫に配設されたものに供給することにより該庫内熱交換器で冷媒を凝縮させるものである。これにより該庫内熱交換器が配設された商品収容庫の内部空気は加熱されることになる。 The high-pressure refrigerant introduction path introduces the refrigerant compressed by the compressor and supplies it to the internal heat exchanger that constitutes the main path, which is provided in the product storage that is to be heated. The refrigerant is condensed in the exchanger. As a result, the internal air of the commodity storage in which the internal heat exchanger is disposed is heated.
放熱経路は、加熱対象となる商品収容庫の庫内熱交換器で凝縮した冷媒を導入して、上記庫外熱交換器に隣接する態様で配設された加熱側熱交換器に供給するものである。これにより加熱側熱交換器では、通過する冷媒が周囲空気と熱交換を行って放熱することになる。 The heat dissipation path introduces the refrigerant condensed in the internal heat exchanger of the product storage to be heated and supplies it to the heating side heat exchanger arranged in a mode adjacent to the external heat exchanger. It is. As a result, in the heating side heat exchanger, the refrigerant passing therethrough exchanges heat with the surrounding air to radiate heat.
戻経路は、加熱側熱交換器で放熱した冷媒を導入して、主経路における膨張機構の上流側に戻すものである。これにより戻経路を通過した冷媒は、主経路に至り、その後に膨張機構を通過して所定の庫内熱交換器に送出されることになる。 The return path introduces the refrigerant radiated by the heating side heat exchanger and returns it to the upstream side of the expansion mechanism in the main path. As a result, the refrigerant that has passed through the return path reaches the main path, and then passes through the expansion mechanism and is sent to a predetermined internal heat exchanger.
このような構成を有する冷媒回路装置においては、冷媒回路における膨張機構から圧縮機に至る経路では、低温の低圧冷媒が通過することとなり、該経路を構成する冷媒配管の表面には結露が生ずることが知られている。そのため、機械室において該経路に相当する低圧部位の下方に結露水を貯留する受け皿を備え、該受け皿に貯留した結露水を蒸発皿に導いて蒸発させるようにした冷媒回路装置が知られている(例えば、特許文献1参照)。 In the refrigerant circuit device having such a configuration, low-temperature, low-pressure refrigerant passes through the path from the expansion mechanism to the compressor in the refrigerant circuit, and condensation forms on the surface of the refrigerant piping that constitutes the path. It has been known. Therefore, there is known a refrigerant circuit device that includes a tray that stores condensed water below a low-pressure portion corresponding to the path in the machine room, and that condensate water stored in the tray is guided to the evaporation tray to evaporate. (For example, refer to Patent Document 1).
ところで、上述した特許文献1に提案されている冷媒回路装置では、庫外熱交換器の周囲を通過した空気が蒸発皿の近傍を通過するようにして蒸発皿に導かれた結露水を蒸発させるようにしていたが、該空気が上記低圧部位の近傍を通過することが可能であった。ここで庫外熱交換器の周囲を通過した空気は、庫外熱交換器を通過する冷媒が凝縮、あるいは加熱側熱交換器を通過する冷媒が放熱することで外気よりも高温となっている。そのため、かかる空気が低圧部位の近傍を通過すると、該低圧部位を流れる冷媒、特に膨張機構から庫内熱交換器に向けて流れる冷媒が加熱されてしまい、結果的に庫内熱交換器での冷却能力の低減化を招来する問題があった。 By the way, in the refrigerant circuit apparatus proposed in Patent Document 1 described above, the condensed water guided to the evaporating dish is evaporated so that the air that has passed around the outside heat exchanger passes through the vicinity of the evaporating dish. However, it was possible for the air to pass through the vicinity of the low-pressure portion. Here, the air that has passed around the outside heat exchanger has a higher temperature than the outside air because the refrigerant that passes through the outside heat exchanger condenses or the refrigerant that passes through the heating side heat exchanger dissipates heat. . Therefore, when such air passes in the vicinity of the low-pressure part, the refrigerant flowing through the low-pressure part, particularly the refrigerant flowing from the expansion mechanism toward the internal heat exchanger, is heated, and as a result, in the internal heat exchanger There was a problem that caused a reduction in cooling capacity.
本発明は、上記実情に鑑みて、良好に結露水を蒸発させるとともに、庫内熱交換器の冷却能力の低減化を抑制する冷媒回路装置を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a refrigerant circuit device that favorably evaporates condensed water and suppresses a reduction in the cooling capacity of the internal heat exchanger.
上記目的を達成するために、本発明の請求項1に係る冷媒回路装置は、自身の流路を通過する冷媒と自身が配設された対象室の内部空気との間で熱交換させる庫内熱交換器と、前記対象室の外部となる機械室に配設され、かつ庫内熱交換器を通過した冷媒を吸引して圧縮する圧縮機と、前記機械室に配設され、かつすべての対象室の内部空気を冷却する場合に前記圧縮機で圧縮された冷媒と周囲空気との間で熱交換させる庫外熱交換器と、前記機械室に配設され、かつ前記庫外熱交換器を通過した冷媒を断熱膨張させて所定の庫内熱交換器に送出する膨張機構とを冷媒配管で接続して成る冷媒回路を備えた冷媒回路装置において、前記機械室において前記冷媒回路の前記膨張機構から前記圧縮機に至る経路に相当する低圧部位の下方域に配設され、かつ該低圧部位で生じた結露水を貯留する受皿部材と、前記受皿部材に貯留した結露水を毛管現象により吸水可能な吸水性材料から成り、かつ前記庫外熱交換器の周囲を通過した空気のうち自身を通過したものが前記低圧部位に至るよう前記受皿部材に立設した蒸発シート体とを備えたことを特徴とする。 In order to achieve the above object, the refrigerant circuit device according to claim 1 of the present invention is configured to exchange heat between the refrigerant passing through its own flow path and the internal air of the target chamber in which the refrigerant is disposed. A heat exchanger, a compressor disposed in the machine room outside the target chamber and sucking and compressing the refrigerant that has passed through the internal heat exchanger, the compressor disposed in the machine room, and all An external heat exchanger for exchanging heat between the refrigerant compressed by the compressor and ambient air when cooling the internal air of the target chamber; and the external heat exchanger disposed in the machine room A refrigerant circuit device comprising a refrigerant circuit in which a refrigerant pipe is connected to an expansion mechanism that adiabatically expands the refrigerant that has passed through the refrigerant and sends the refrigerant to a predetermined internal heat exchanger, and the expansion of the refrigerant circuit in the machine chamber Arranged in the lower area of the low-pressure part corresponding to the path from the mechanism to the compressor And a condensate member that stores the condensed water generated in the low-pressure portion, and a water-absorbing material that can absorb the condensed water stored in the saucer member by capillary action, and passes around the outside heat exchanger. The evaporating sheet body standing on the tray member is provided so that the air that has passed through itself reaches the low-pressure portion.
また、本発明の請求項2に係る冷媒回路装置は、上述した請求項1において、前記蒸発シート体は、前記庫外熱交換器の周囲に外気を通過させる送出手段と、前記低圧部位との間に立設したことを特徴とする。 The refrigerant circuit device according to claim 2 of the present invention is the refrigerant circuit device according to claim 1, wherein the evaporative sheet body includes a sending means for allowing outside air to pass around the outside heat exchanger and the low pressure portion. It is characterized by standing between them.
また、本発明の請求項3に係る冷媒回路装置は、上述した請求項1又は請求項2において、前記庫外熱交換器は、一部の対象室の内部空気を冷却する場合には前記庫内熱交換器のうち加熱対象となる対象室に配設されたものから供給された冷媒と周囲空気との間で熱交換させることを特徴とする。 The refrigerant circuit device according to claim 3 of the present invention is the refrigerant circuit device according to claim 1 or 2, wherein the external heat exchanger cools the internal air of a part of the target chambers. Heat exchange is performed between the refrigerant supplied from the inner heat exchanger disposed in the target chamber to be heated and the ambient air.
本発明の冷媒回路装置によれば、受皿部材が、機械室において冷媒回路の膨張機構から圧縮機に至る経路に相当する低圧部位の下方域に配設され、かつ該低圧部位で生じた結露水を貯留し、蒸発シート体が、受皿部材に貯留した結露水を毛管現象により吸水可能な吸水性材料から成り、かつ庫外熱交換器の周囲を通過した空気が自身を通過して低圧部位に至るよう受皿部材に立設してあるので、低圧部位に生じた結露水を良好に集めることができ、しかも集めた結露水を蒸発シート体で蒸発させることができる。しかも、庫外熱交換器の周囲を通過した空気は、蒸発シート体を通過してから低圧部位に至るので、該空気が低圧部位の周囲を通過する際には十分に低温となっており、低圧部位を通過する冷媒を必要以上に加熱してしまうこともない。従って、良好に結露水を蒸発させるとともに、庫内熱交換器の冷却能力の低減化を抑制することができるという効果を奏する。 According to the refrigerant circuit device of the present invention, the tray member is disposed in the lower region of the low pressure portion corresponding to the path from the expansion mechanism of the refrigerant circuit to the compressor in the machine room, and the condensed water generated in the low pressure portion The evaporative sheet body is made of a water-absorbing material that can absorb condensed water stored in the tray member by capillary action, and the air that has passed around the external heat exchanger passes through itself to the low-pressure part. Since it is erected on the tray member so as to reach, the condensed water generated in the low pressure region can be collected well, and the collected condensed water can be evaporated by the evaporating sheet body. Moreover, since the air that has passed around the outside heat exchanger reaches the low pressure part after passing through the evaporating sheet body, it is sufficiently low in temperature when the air passes around the low pressure part, The refrigerant passing through the low pressure part is not heated more than necessary. Therefore, it is possible to effectively evaporate the condensed water and to suppress the reduction of the cooling capacity of the internal heat exchanger.
以下に添付図面を参照して、本発明に係る冷媒回路装置の好適な実施の形態について詳細に説明する。 Exemplary embodiments of a refrigerant circuit device according to the present invention will be explained below in detail with reference to the accompanying drawings.
図1は、本発明の実施の形態である冷媒回路装置が適用された自動販売機の内部構造を正面から見た場合を示す断面図である。ここで例示する自動販売機は、本体キャビネット1を備えている。 FIG. 1 is a sectional view showing a case where an internal structure of a vending machine to which a refrigerant circuit device according to an embodiment of the present invention is applied is viewed from the front. The vending machine illustrated here includes a main body cabinet 1.
本体キャビネット1は、前面が開口した直方状の形態を成すものである。この本体キャビネット1には、その内部に例えば2つの断熱仕切板2によって仕切られた3つの独立した商品収容庫(対象室)3が左右に並んだ態様で設けてある。この商品収容庫3は、缶入り飲料やペットボトル入り飲料等の商品を所望の温度に維持した状態で収容するためのもので、断熱構造を有している。 The main body cabinet 1 has a rectangular shape with an open front surface. The main body cabinet 1 is provided with three independent commodity storages (target chambers) 3 that are partitioned by, for example, two heat insulating partition plates 2 in a side-by-side manner. This product storage 3 is for storing products such as canned beverages and beverages containing plastic bottles while maintaining a desired temperature, and has a heat insulating structure.
図2は、図1に示した自動販売機の内部構造を示すものであり、右側の商品収容庫3の断面側面図である。尚、ここでは右側の商品収容庫3(以下、適宜右庫3aとも称する)の内部構造について示すが、中央の商品収容庫3(以下、適宜中庫3bとも称する)及び左側の商品収容庫3(以下、適宜左庫3cとも称する)の内部構造も右庫3aと略同じような構成である。尚、本明細書における右側とは、自動販売機を正面から見た場合の右方を示し、左側とは、自動販売機を正面から見た場合の左方を示す。 FIG. 2 shows the internal structure of the vending machine shown in FIG. 1 and is a cross-sectional side view of the right product storage case 3. Here, the internal structure of the right product storage 3 (hereinafter also referred to as the right storage 3a) is shown, but the central product storage 3 (hereinafter also referred to as the intermediate storage 3b) and the left product storage 3 are shown. The internal structure (hereinafter also referred to as the left warehouse 3c as appropriate) has substantially the same configuration as the right warehouse 3a. In the present specification, the right side indicates the right side when the vending machine is viewed from the front, and the left side indicates the left side when the vending machine is viewed from the front.
かかる図2に示すように、本体キャビネット1の前面には、外扉4及び内扉5が設けてある。外扉4は、本体キャビネット1の前面開口を開閉するためのものであり、内扉5は、商品収容庫3の前面を開閉するためのものである。この内扉5は、上下に分割してあり、上側の扉5aは商品を補充する際に開閉するものである。 As shown in FIG. 2, an outer door 4 and an inner door 5 are provided on the front surface of the main body cabinet 1. The outer door 4 is for opening and closing the front opening of the main body cabinet 1, and the inner door 5 is for opening and closing the front surface of the commodity storage 3. The inner door 5 is divided into upper and lower parts, and the upper door 5a opens and closes when a product is replenished.
上記商品収容庫3には、商品収納ラック6、搬出機構7及び搬出シュータ8が設けてある。商品収納ラック6は、商品を上下方向に沿って並ぶ態様で収納するためのものである。搬出機構7は、商品収納ラック6の下部に設けてあり、この商品収納ラック6に収納された商品群の最下位にある商品を1つずつ搬出するためのものである。搬出シュータ8は、搬出機構7から搬出された商品を外扉4に設けられた商品取出口4aに導くためのものである。 The product storage 3 is provided with a product storage rack 6, a carry-out mechanism 7 and a carry-out shooter 8. The commodity storage rack 6 is for storing commodities in a manner arranged in the vertical direction. The carry-out mechanism 7 is provided at the lower part of the product storage rack 6 and is used to carry out the products at the bottom of the product group stored in the product storage rack 6 one by one. The carry-out shooter 8 is for guiding the product carried out from the carry-out mechanism 7 to the product take-out port 4 a provided in the outer door 4.
図3は、図1及び図2に示した自動販売機に適用された冷媒回路装置を概念的に示す概念図である。ここで例示する冷媒回路装置は、主経路20、高圧冷媒導入配管31及び放熱配管32から成る冷媒回路10を備えて構成してある。冷媒回路10の内部には所定量の冷媒が封入してある。 FIG. 3 is a conceptual diagram conceptually showing the refrigerant circuit device applied to the vending machine shown in FIGS. 1 and 2. The refrigerant circuit device illustrated here includes a refrigerant circuit 10 including a main path 20, a high-pressure refrigerant introduction pipe 31, and a heat radiation pipe 32. A predetermined amount of refrigerant is sealed inside the refrigerant circuit 10.
主経路20は、圧縮機21、庫外熱交換器22、膨張機構23及び庫内熱交換器24を冷媒配管25にて順次接続して構成してある。 The main path 20 is configured by sequentially connecting a compressor 21, an external heat exchanger 22, an expansion mechanism 23, and an internal heat exchanger 24 through a refrigerant pipe 25.
圧縮機21は、図2にも示すように機械室9に配設してある。機械室9は、本体キャビネット1の内部であって商品収容庫3と区画され、かつ商品収容庫3の下方側の室である。この圧縮機21は、吸引口を通じて冷媒を吸引し、吸引した冷媒を圧縮して高温高圧の状態(高温高圧冷媒)にして吐出口より吐出するものである。 The compressor 21 is disposed in the machine room 9 as shown in FIG. The machine room 9 is a room inside the main body cabinet 1, partitioned from the product storage 3 and below the product storage 3. The compressor 21 sucks the refrigerant through the suction port, compresses the sucked refrigerant to be in a high-temperature and high-pressure state (high-temperature and high-pressure refrigerant), and discharges it from the discharge port.
庫外熱交換器22は、図2にも示すように圧縮機21と同様に機械室9に配設してある。この庫外熱交換器22は、圧縮機21で圧縮された冷媒が自身の流路を通過する場合には該冷媒を周囲空気と熱交換させて凝縮させるものである。かかる庫外熱交換器22の構成については後述する。この庫外熱交換器22と圧縮機21とを接続する冷媒配管25には、三方弁26が設けてある。かかる三方弁26については後述する。 As shown in FIG. 2, the external heat exchanger 22 is disposed in the machine room 9 similarly to the compressor 21. When the refrigerant compressed by the compressor 21 passes through its own flow path, the external heat exchanger 22 performs heat exchange with ambient air to condense the refrigerant. The configuration of the external heat exchanger 22 will be described later. A three-way valve 26 is provided in the refrigerant pipe 25 that connects the external heat exchanger 22 and the compressor 21. The three-way valve 26 will be described later.
膨張機構23は、例えばキャピラリーチューブのようなものであり、図2にも示すように圧縮機21及び庫外熱交換器22と同様に機械室9に配設してある。この膨張機構23は、庫外熱交換器22を通過した冷媒を減圧して断熱膨張させるものである。 The expansion mechanism 23 is, for example, a capillary tube, and is disposed in the machine room 9 similarly to the compressor 21 and the external heat exchanger 22 as shown in FIG. The expansion mechanism 23 decompresses the refrigerant that has passed through the external heat exchanger 22 and adiabatically expands the refrigerant.
庫内熱交換器24は、複数(図示の例では3つ)設けてあり、各商品収容庫3の内部低域であって、背面ダクトD(図2参照)の前面側に配設してある。これら庫内熱交換器24と庫外熱交換器22とを接続する冷媒配管25は、その途中に配設された分配器27により3つに分岐され、右庫3aに配設された庫内熱交換器24(以下、右庫内熱交換器24aとも称する)、中庫3bに配設された庫内熱交換器24(以下、中庫内熱交換器24bとも称する)、並びに左庫3cの内部に配設された庫内熱交換器24(以下、左庫内熱交換器24cとも称する)に対し、各低圧冷媒入口241に連通する態様で接続してある。 A plurality of (three in the illustrated example) heat exchangers 24 in the cabinet are provided, which are disposed in the lower interior of each commodity storage 3 and on the front side of the rear duct D (see FIG. 2). is there. The refrigerant piping 25 connecting the internal heat exchanger 24 and the external heat exchanger 22 is branched into three by a distributor 27 disposed in the middle thereof, and the internal space disposed in the right warehouse 3a. Heat exchanger 24 (hereinafter also referred to as right internal heat exchanger 24a), internal heat exchanger 24 (hereinafter also referred to as internal heat exchanger 24b) disposed in the central warehouse 3b, and left warehouse 3c Are connected to the internal heat exchanger 24 (hereinafter also referred to as the left internal heat exchanger 24c) in a manner communicating with each low-pressure refrigerant inlet 241.
また、この冷媒配管25においては、分配器27から右庫内熱交換器24a、中庫内熱交換器24b及び左庫内熱交換器24cのそれぞれに至る途中に低圧側電磁弁281,282,283が設けてある。低圧側電磁弁281,282,283は、開閉可能な弁体であり、図示せぬ制御手段から開指令が与えられた場合には開成して冷媒の通過を許容する一方、閉指令が与えられた場合には閉成して冷媒の通過を規制するものである。 Further, in the refrigerant pipe 25, the low pressure side solenoid valves 281 and 282, on the way from the distributor 27 to the right internal heat exchanger 24a, the central internal heat exchanger 24b, and the left internal heat exchanger 24c, respectively. 283 is provided. The low pressure side solenoid valves 281, 282, and 283 are valve bodies that can be opened and closed. When an open command is given from a control means (not shown), the low pressure side solenoid valves 281, 282, and 283 are opened and allowed to pass through the refrigerant while being closed. If it is closed, the passage of the refrigerant is restricted.
上記庫内熱交換器24においては、低圧冷媒流路245(図4参照)がそれぞれ設けてある。低圧冷媒流路245は、蛇行状に形成された冷媒の流路であり、低圧冷媒入口241を通じて流入し、かつ自身を通過した冷媒(低圧冷媒)を低圧冷媒出口242より流出させるものである。これら庫内熱交換器24においては、低圧冷媒流路245を通過する冷媒と、自身が配設された商品収容庫3の内部空気との間で熱交換を行うものであり、該低圧冷媒流路245を通過する冷媒が蒸発することにより該商品収容庫3の内部空気を冷却するものである。これら庫内熱交換器24の出口側には、各低圧冷媒出口242に連通する態様で冷媒配管25が接続されており、かかる冷媒配管25は途中の合流点P1で合流して圧縮機21に接続している。 The internal heat exchanger 24 is provided with a low-pressure refrigerant channel 245 (see FIG. 4). The low-pressure refrigerant flow path 245 is a meander-shaped refrigerant flow path, and flows in through the low-pressure refrigerant inlet 241 and flows out from the low-pressure refrigerant outlet 242 through the refrigerant (low-pressure refrigerant). In these internal heat exchangers 24, heat exchange is performed between the refrigerant passing through the low-pressure refrigerant flow path 245 and the internal air of the product storage 3 in which the refrigerant is disposed, and the low-pressure refrigerant flow The refrigerant passing through the passage 245 evaporates to cool the internal air of the commodity storage 3. Refrigerant pipes 25 are connected to the outlet sides of these internal heat exchangers 24 in a manner communicating with the respective low-pressure refrigerant outlets 242, and the refrigerant pipes 25 join at the midway junction P <b> 1 to the compressor 21. Connected.
このような主経路20において、図3中の符号29は、内部熱交換器である。内部熱交換器29は、高圧冷媒と低圧冷媒との間で熱交換させるものである。 In such a main path 20, reference numeral 29 in FIG. 3 is an internal heat exchanger. The internal heat exchanger 29 exchanges heat between the high-pressure refrigerant and the low-pressure refrigerant.
高圧冷媒導入配管31は、三方弁26に連結してあり、かつ左庫内熱交換器24cに対しその高圧冷媒入口243に連通する態様で接続してある。この高圧冷媒導入配管31は、圧縮機21で圧縮された冷媒(高圧冷媒)を導入するものである。 The high-pressure refrigerant introduction pipe 31 is connected to the three-way valve 26 and is connected to the left-side internal heat exchanger 24c in a manner communicating with the high-pressure refrigerant inlet 243. The high-pressure refrigerant introduction pipe 31 introduces refrigerant (high-pressure refrigerant) compressed by the compressor 21.
ここで三方弁26は、圧縮機21で圧縮した冷媒を庫外熱交換器22へ送出する第1送出状態と、圧縮機21で圧縮した冷媒を高圧冷媒導入配管31へ送出する第2送出状態との間で択一的に切り換え可能なバルブ手段である。かかる三方弁26の切換動作は、制御手段から与えられる指令に応じて行われる。 Here, the three-way valve 26 has a first sending state in which the refrigerant compressed by the compressor 21 is sent to the external heat exchanger 22 and a second sending state in which the refrigerant compressed by the compressor 21 is sent to the high-pressure refrigerant introduction pipe 31. Valve means that can be switched alternatively between. The switching operation of the three-way valve 26 is performed according to a command given from the control means.
また、左庫内熱交換器24cは、上記低圧冷媒流路245の他に、高圧冷媒流路246(図4参照)が設けてある。高圧冷媒流路246は、蛇行状に形成した冷媒の流路であり、高圧冷媒入口243を通じて流入し、かつ自身を通過した冷媒(高圧冷媒)を高圧冷媒出口244より流出させるものである。この左庫内熱交換器24cは、高圧冷媒流路246を通過する冷媒と、左庫3cの内部空気との間で熱交換を行うものであり、該高圧冷媒流路246を通過する冷媒が凝縮することにより該左庫3cの内部空気を加熱するものである。 In addition, the left-inside heat exchanger 24c is provided with a high-pressure refrigerant channel 246 (see FIG. 4) in addition to the low-pressure refrigerant channel 245. The high-pressure refrigerant flow path 246 is a meander-shaped refrigerant flow path, and flows in through the high-pressure refrigerant inlet 243 and flows out from the high-pressure refrigerant outlet 244 through the refrigerant (high-pressure refrigerant). The left internal heat exchanger 24c performs heat exchange between the refrigerant passing through the high pressure refrigerant flow path 246 and the internal air of the left storage 3c, and the refrigerant passing through the high pressure refrigerant flow path 246 is exchanged. By condensing, the internal air of the left warehouse 3c is heated.
放熱配管32は、一端が左庫内熱交換器24cの出口側に高圧冷媒出口244に連通する態様で接続しており、他端が庫外熱交換器22に接続してある。この放熱配管32は、左庫内熱交換器24cで凝縮した冷媒を庫外熱交換器22に供給するためのものである。 One end of the heat radiation pipe 32 is connected to the outlet side of the left-side internal heat exchanger 24 c in a manner communicating with the high-pressure refrigerant outlet 244, and the other end is connected to the external heat exchanger 22. The heat radiation pipe 32 is for supplying the refrigerant condensed in the left-side heat exchanger 24c to the external heat exchanger 22.
尚、図中の符号H、F1及びF2は、それぞれヒータ、庫内送風ファン及び庫外送風ファンである。ヒータHは、中庫3b及び左庫3cに配設してあり、駆動して通電状態となることにより自身が配設された商品収容庫3の内部空気を加熱する加熱手段である。庫内送風ファンF1は、各商品収容庫3に配設してあり、駆動することにより庫内熱交換器24の周囲を通過した空気を商品収容庫3の内部で循環させるものである。庫外送風ファンF2は、庫外熱交換器22の後方側に配設してあり、駆動することにより、庫外送風ファンF2の周囲に外気を通過させ、通過した外気を後方に向けて送出する送出手段である。 In addition, the code | symbol H, F1, and F2 in a figure are a heater, an internal fan, and an external fan, respectively. The heater H is a heating unit that is disposed in the middle store 3b and the left store 3c and that heats the internal air of the product storage 3 in which the heater H is disposed by being driven and energized. The internal blower fan F <b> 1 is disposed in each commodity storage 3, and circulates the air that has passed around the internal heat exchanger 24 by driving inside the commodity storage 3. The outside blower fan F2 is disposed on the rear side of the outside heat exchanger 22 and is driven to allow outside air to pass around the outside blower fan F2 and to send the passed outside air backward. It is a sending means.
図4は、図3に示した冷媒回路10の主要な構成の連結状態を右側上方より見た場合を示す斜視図である。この図4に示すように、右庫内熱交換器24a及び中庫内熱交換器24bは、左側部に低圧冷媒入口241及び低圧冷媒出口242が設けてあり、左庫内熱交換器24cは、低圧冷媒入口241、低圧冷媒出口242、高圧冷媒入口243及び高圧冷媒出口244が右側部に設けてある。 FIG. 4 is a perspective view showing a connection state of main components of the refrigerant circuit 10 shown in FIG. 3 as viewed from the upper right side. As shown in FIG. 4, the right internal heat exchanger 24a and the internal internal heat exchanger 24b are provided with a low-pressure refrigerant inlet 241 and a low-pressure refrigerant outlet 242 on the left side, and the left internal heat exchanger 24c The low-pressure refrigerant inlet 241, the low-pressure refrigerant outlet 242, the high-pressure refrigerant inlet 243, and the high-pressure refrigerant outlet 244 are provided on the right side.
つまり、本実施の形態である冷媒回路装置においては、両側端の商品収容庫3(右庫3a及び左庫3c)に配設された庫内熱交換器24(右庫内熱交換器24a及び左庫内熱交換器24c)は、左右両側部のうち内方側に冷媒入口241(243)及び冷媒出口242(244)が設けてある。より詳細に説明すると、右庫3aに配設した右庫内熱交換器24aは、左右両側部のうち内方側となる左側部に低圧冷媒入口241及び低圧冷媒出口242が設けてあり、左庫3cに配設した左庫内熱交換器24cは、左右両側部のうち内方側となる右側部に低圧冷媒入口241、低圧冷媒出口242、高圧冷媒入口243及び高圧冷媒出口244が設けてある。 In other words, in the refrigerant circuit device according to the present embodiment, the internal heat exchanger 24 (the right internal heat exchanger 24a and the right internal heat exchanger 24a and The left internal heat exchanger 24c) is provided with a refrigerant inlet 241 (243) and a refrigerant outlet 242 (244) on the inner side of the left and right sides. More specifically, the right internal heat exchanger 24a disposed in the right warehouse 3a is provided with a low-pressure refrigerant inlet 241 and a low-pressure refrigerant outlet 242 on the left side which is the inner side of the left and right sides. The left internal heat exchanger 24c disposed in the storage 3c has a low-pressure refrigerant inlet 241, a low-pressure refrigerant outlet 242, a high-pressure refrigerant inlet 243, and a high-pressure refrigerant outlet 244 provided on the right side which is the inner side of the left and right sides. is there.
尚、図4中の符号RPはリードパイプである。リードパイプRPは、冷媒配管25や高圧冷媒導入配管31、放熱配管32を所定の組み合わせで束ねるものである。 Note that reference numeral RP in FIG. 4 is a lead pipe. The lead pipe RP bundles the refrigerant pipe 25, the high-pressure refrigerant introduction pipe 31, and the heat radiation pipe 32 in a predetermined combination.
図5は、図3に示した冷媒回路10の主要な構成の連結状態を左側上方より見た場合を示す斜視図であり、図6は、図5に示した連結状態を左方より見た場合を示す側面図である。これら図5及び図6に示すように、機械室9には、受皿部材41及び蒸発シート42が配設してある。受皿部材41は、図7にも示すように、例えば樹脂材から形成された皿状のものである。この受皿部材41は、機械室9における冷媒回路10の低圧配管33の下方域、すなわち膨張機構23から圧縮機21までに至る経路に相当する低圧部位の下方域に配設してある。かかる受皿部材41は、低圧配管33の表面に生じて滴下した結露水を貯留するものである。 FIG. 5 is a perspective view showing a connection state of main components of the refrigerant circuit 10 shown in FIG. 3 as viewed from the upper left side, and FIG. 6 is a view of the connection state shown in FIG. 5 from the left side. It is a side view which shows a case. As shown in FIGS. 5 and 6, a tray member 41 and an evaporation sheet 42 are disposed in the machine room 9. As shown in FIG. 7, the tray member 41 is a dish-shaped member formed of, for example, a resin material. The tray member 41 is disposed in a lower region of the low pressure pipe 33 of the refrigerant circuit 10 in the machine room 9, that is, a lower region of a low pressure portion corresponding to a path from the expansion mechanism 23 to the compressor 21. The tray member 41 stores the dew condensation water that is generated and dropped on the surface of the low-pressure pipe 33.
蒸発シート42は、水分を毛管現象により吸水可能な吸水性材料から成るシート体である。この蒸発シート42は、図7に示すように、適宜屈曲された形状を成しており、受皿部材41の底面上に配置された基部421と、該基部421の端部から上方に向けて延在する上延部422とを有して受皿部材41に立設してある。蒸発シート42の上延部422は、機械室9において庫外送風ファンF2の後方側であって、低圧配管33よりも前方側に位置している。この上延部422は、庫外送風ファンF2の駆動により庫外熱交換器22の周囲を通過した空気(外気)がすべて該上延部422を通過するのに十分な大きさを有している。つまり、蒸発シート42は、庫外熱交換器22の周囲を通過した空気が自身を通過して低圧配管33に至るよう受皿部材41に立設している。 The evaporating sheet 42 is a sheet body made of a water-absorbing material capable of absorbing moisture by capillary action. As shown in FIG. 7, the evaporation sheet 42 has an appropriately bent shape, and has a base portion 421 disposed on the bottom surface of the tray member 41, and extends upward from an end portion of the base portion 421. It has the upper extension part 422 which exists, and is standingly arranged in the saucer member 41. FIG. The upper extension 422 of the evaporation sheet 42 is located behind the outside blower fan F <b> 2 in the machine room 9 and ahead of the low-pressure pipe 33. The upper extension 422 has a size sufficient for all of the air (outside air) that has passed around the outside heat exchanger 22 by the drive of the external fan B2 to pass through the upper extension 422. Yes. That is, the evaporating sheet 42 is erected on the tray member 41 so that the air that has passed around the outside heat exchanger 22 passes through itself and reaches the low-pressure pipe 33.
図8及び図9は、それぞれ図3に示した庫外熱交換器22を示すものであり、図8は庫外熱交換器22を左側上方より見た場合を示す斜視図であり、図9は庫外熱交換器22を左方から見た場合を示す側面図である。これら図8及び図9に示すように、庫外熱交換器22は、第1冷媒流路22a及び第2冷媒流路22bを備えて構成してある。 8 and 9 respectively show the external heat exchanger 22 shown in FIG. 3, and FIG. 8 is a perspective view showing the external heat exchanger 22 as viewed from the upper left side. These are side views which show the case where the external heat exchanger 22 is seen from the left. As shown in FIGS. 8 and 9, the external heat exchanger 22 includes a first refrigerant channel 22 a and a second refrigerant channel 22 b.
第1冷媒流路22aは、蛇行状に形成してあり、第1冷媒入口22a1を通じて冷媒を流入し、かつ冷媒出口22a2を通じて自身を通過した冷媒を流出させるものである。ここで、第1冷媒入口22a1を有する部位221には、三方弁26に連結された冷媒配管25が接続してあり、冷媒出口22a2を有する部位222には、膨張機構23(内部熱交換器29)に連結された冷媒配管25が接続してある。つまり、第1冷媒流路22aは、第1冷媒入口22a1を通じて圧縮機21で圧縮した冷媒を流入し、かつ冷媒出口22a2を通じて自身を通過した冷媒を膨張機構23に向けて流出させるものである。 The first refrigerant flow path 22a is formed in a meandering shape, and the refrigerant flows in through the first refrigerant inlet 22a1 and flows out through the refrigerant outlet 22a2. Here, a refrigerant pipe 25 connected to the three-way valve 26 is connected to the part 221 having the first refrigerant inlet 22a1, and the expansion mechanism 23 (internal heat exchanger 29) is connected to the part 222 having the refrigerant outlet 22a2. ) Is connected to the refrigerant piping 25. That is, the first refrigerant flow path 22a flows in the refrigerant compressed by the compressor 21 through the first refrigerant inlet 22a1 and flows out the refrigerant that has passed through the refrigerant outlet 22a2 toward the expansion mechanism 23.
第2冷媒流路22bは、第1冷媒流路22aの途中に合流する態様で設けてある。この第2冷媒流路22bは、第2冷媒入口22b1を通じて冷媒を流入し、かつ合流個所P2を通じて自身を通過した冷媒を該第1冷媒流路22aに進入させるものである。ここで、第2冷媒入口22b1を有する部位223には、放熱配管32が接続してある。つまり、第2冷媒流路22bは、第2冷媒入口22b1を通じて左庫内熱交換器24cから供給された冷媒を流入し、かつ合流個所P2を通じて自身を通過した冷媒を該第1冷媒流路22aに進入させて冷媒出口22a2より流出させるものである。 The 2nd refrigerant flow path 22b is provided in the aspect which merges in the middle of the 1st refrigerant flow path 22a. The second refrigerant flow path 22b allows the refrigerant to flow into the first refrigerant flow path 22a through the second refrigerant inlet 22b1 and to pass through the refrigerant through the junction P2. Here, the heat radiation pipe 32 is connected to the part 223 having the second refrigerant inlet 22b1. That is, the second refrigerant flow path 22b flows the refrigerant supplied from the left-side heat exchanger 24c through the second refrigerant inlet 22b1 and passes the refrigerant that has passed through the junction P2 to the first refrigerant flow path 22a. To flow out of the refrigerant outlet 22a2.
このような第1冷媒流路22a及び第2冷媒流路22bを備えた庫外熱交換器22は、第1冷媒流路22aに冷媒が通過する場合は、該冷媒と周囲空気とを熱交換させ、該冷媒を凝縮させるものである一方、第2冷媒流路22bに冷媒が通過する場合は、該冷媒と周囲空気とを熱交換させ、該冷媒を放熱させるものである。 When the refrigerant passes through the first refrigerant flow path 22a, the external heat exchanger 22 including the first refrigerant flow path 22a and the second refrigerant flow path 22b exchanges heat between the refrigerant and the ambient air. On the other hand, when the refrigerant passes through the second refrigerant flow path 22b, heat is exchanged between the refrigerant and ambient air, and the refrigerant is dissipated.
以上のような構成を有する冷媒回路装置は、次のようにして商品収容庫3に収容された商品を冷却、あるいは加熱する。 The refrigerant circuit device having the above-described configuration cools or heats the product stored in the product storage 3 as follows.
まず、CCC運転(すべての商品収容庫3の内部空気を冷却する運転)を行う場合について説明する。この場合、制御手段は、三方弁26を第1送出状態にさせ、低圧側電磁弁281,282,283に対して開指令を与える。これにより圧縮機21で圧縮された冷媒は、図10に示すように循環する。 First, the case where CCC operation (operation which cools the internal air of all the goods storage 3) is performed is explained. In this case, the control means places the three-way valve 26 in the first delivery state and gives an open command to the low pressure side solenoid valves 281, 282, 283. As a result, the refrigerant compressed by the compressor 21 circulates as shown in FIG.
すなわち、圧縮機21で圧縮された冷媒は、第1送出状態にある三方弁26を経由して庫外熱交換器22の第1冷媒入口22a1に至る。第1冷媒入口22a1に至った冷媒は、図11に示すように、第1冷媒流路22aを通過する(図11中矢印参照)。かかる第1冷媒流路22aを通過中に、周囲空気(外気)と熱交換を行って凝縮する。第1冷媒流路22aを通過中に凝縮した冷媒は、冷媒出口22a2を通じて流出され、内部熱交換器29を通過した後、膨張機構23で断熱膨張する。膨張機構23で断熱膨張した冷媒は、分配器27で3つに分岐され、右庫内熱交換器24a、中庫内熱交換器24b及び左庫内熱交換器24cの各低圧冷媒入口241に至る。各低圧冷媒入口241に至った冷媒は、各庫内熱交換器24の低圧冷媒流路245を通過中に蒸発して商品収容庫3の内部空気から熱を奪い、該内部空気を冷却する。冷却された内部空気は、各庫内送風ファンF1の駆動により内部を循環し、これにより各商品収容庫3に収容された商品は、循環する内部空気に冷却される。各庫内熱交換器24の低圧冷媒流路245を通過中に蒸発した冷媒は、各低圧冷媒出口242より流出して冷媒配管25を通過し、合流点P1で合流した後、内部熱交換器29を介して圧縮機21に吸引され、圧縮機21に圧縮されて上述した循環を繰り返す。 That is, the refrigerant compressed by the compressor 21 reaches the first refrigerant inlet 22a1 of the external heat exchanger 22 via the three-way valve 26 in the first delivery state. The refrigerant that has reached the first refrigerant inlet 22a1 passes through the first refrigerant flow path 22a as shown in FIG. 11 (see the arrow in FIG. 11). While passing through the first refrigerant flow path 22a, heat exchange with ambient air (outside air) is performed to condense. The refrigerant condensed while passing through the first refrigerant flow path 22a flows out through the refrigerant outlet 22a2, passes through the internal heat exchanger 29, and then adiabatically expands by the expansion mechanism 23. The refrigerant adiabatically expanded by the expansion mechanism 23 is branched into three by the distributor 27, and is supplied to the low-pressure refrigerant inlets 241 of the right internal heat exchanger 24a, the central internal heat exchanger 24b, and the left internal heat exchanger 24c. It reaches. The refrigerant that has reached each low-pressure refrigerant inlet 241 evaporates while passing through the low-pressure refrigerant flow path 245 of each internal heat exchanger 24, takes heat from the internal air of the product storage 3, and cools the internal air. The cooled internal air circulates in the interior by driving each internal blower fan F1, whereby the products stored in each product storage 3 are cooled to the circulating internal air. The refrigerant evaporated while passing through the low-pressure refrigerant flow path 245 of each internal heat exchanger 24 flows out from each low-pressure refrigerant outlet 242, passes through the refrigerant pipe 25, joins at the junction P <b> 1, and then the internal heat exchanger. The air is sucked into the compressor 21 through 29 and compressed by the compressor 21 to repeat the above-described circulation.
次に、HCC運転(左庫3cの内部空気を加熱し、かつ右庫3a及び中庫3bの内部空気を冷却する運転)を行う場合について説明する。この場合、制御手段は、三方弁26を第2送出状態にさせ、低圧側電磁弁283に対して閉指令を与え、低圧側電磁弁281,282に対して開指令を与える。これにより圧縮機21で圧縮された冷媒は、図12に示すように循環する。 Next, the case where the HCC operation (operation for heating the internal air of the left warehouse 3c and cooling the internal air of the right warehouse 3a and the middle warehouse 3b) is described. In this case, the control means places the three-way valve 26 in the second delivery state, gives a close command to the low pressure side solenoid valve 283, and gives an open command to the low pressure side solenoid valves 281 and 282. As a result, the refrigerant compressed by the compressor 21 circulates as shown in FIG.
すなわち、圧縮機21で圧縮された冷媒は、第2送出状態にある三方弁26を経由して高圧冷媒導入配管31を通過し、左庫内熱交換器24cの高圧冷媒入口243に至る。高圧冷媒入口243に至った冷媒は、左庫内熱交換器24cの高圧冷媒流路246を通過中に、左庫3cの内部空気と熱交換し、該内部空気に放熱して凝縮する。これにより、左庫3cの内部空気を加熱する。加熱された内部空気は、庫内送風ファンF1の駆動により、左庫3cの内部を循環し、これにより左庫3cに収容された商品は、循環する内部空気に加熱される。 That is, the refrigerant compressed by the compressor 21 passes through the high-pressure refrigerant introduction pipe 31 via the three-way valve 26 in the second delivery state, and reaches the high-pressure refrigerant inlet 243 of the left internal heat exchanger 24c. The refrigerant reaching the high-pressure refrigerant inlet 243 exchanges heat with the internal air of the left chamber 3c while passing through the high-pressure refrigerant flow path 246 of the left chamber heat exchanger 24c, and dissipates heat to the internal air and condenses. Thereby, the internal air of the left warehouse 3c is heated. The heated internal air circulates inside the left warehouse 3c by driving the internal blower fan F1, whereby the product stored in the left warehouse 3c is heated to the circulating internal air.
左庫内熱交換器24cの高圧冷媒流路246を通過中に凝縮した冷媒は、高圧冷媒出口244より流出して放熱配管32を通過し、庫外熱交換器22の第2冷媒入口22b1に至る。第2冷媒入口22b1に至った冷媒は、図13に示すように、第2冷媒流路22bを通過した後、合流個所P2より第1冷媒流路22aに進入して通過する(図13中矢印参照)。かかる第1冷媒流路22aを通過中に、周囲空気(外気)と熱交換を行って放熱する。第1冷媒流路22aを通過中に放熱した冷媒は、冷媒出口22a2を通じて流出され、内部熱交換器29を通過した後、膨張機構23で断熱膨張する。膨張機構23で断熱膨張した冷媒は、分配器27で2つに分岐され、右庫内熱交換器24a及び中庫内熱交換器24bの各低圧冷媒入口241に至る。各低圧冷媒入口241に至った冷媒は、右庫内熱交換器24a及び中庫内熱交換器24bの低圧冷媒流路245を通過中に蒸発して右庫3a及び中庫3bの内部空気から熱を奪い、該内部空気を冷却する。冷却された内部空気は、各庫内送風ファンF1の駆動により内部を循環し、これにより右庫3a及び中庫3bに収容された商品は、循環する内部空気に冷却される。右庫内熱交換器24a及び中庫内熱交換器24bの低圧冷媒流路245を通過中に蒸発した冷媒は、各低圧冷媒出口242より流出して冷媒配管25を通過し、合流点P1で合流した後、内部熱交換器29を介して圧縮機21に吸引され、圧縮機21に圧縮されて上述した循環を繰り返す。 The refrigerant condensed while passing through the high-pressure refrigerant flow path 246 of the left internal heat exchanger 24c flows out from the high-pressure refrigerant outlet 244, passes through the heat radiation pipe 32, and enters the second refrigerant inlet 22b1 of the external heat exchanger 22. It reaches. As shown in FIG. 13, the refrigerant that has reached the second refrigerant inlet 22b1 passes through the second refrigerant flow path 22b, and then enters the first refrigerant flow path 22a from the junction P2 and passes therethrough (arrow in FIG. 13). reference). While passing through the first refrigerant flow path 22a, heat is exchanged with ambient air (outside air) to dissipate heat. The refrigerant that has dissipated heat while passing through the first refrigerant flow path 22 a flows out through the refrigerant outlet 22 a 2, passes through the internal heat exchanger 29, and then adiabatically expands by the expansion mechanism 23. The refrigerant adiabatically expanded by the expansion mechanism 23 is branched into two by the distributor 27 and reaches the low-pressure refrigerant inlets 241 of the right internal heat exchanger 24a and the internal internal heat exchanger 24b. The refrigerant that reaches each low-pressure refrigerant inlet 241 evaporates while passing through the low-pressure refrigerant flow path 245 of the right-side internal heat exchanger 24a and the internal-internal heat exchanger 24b, and from the internal air of the right-side 3a and the internal 3b. Heat is taken away and the internal air is cooled. The cooled internal air circulates in the interior by driving each internal blower fan F1, whereby the products accommodated in the right warehouse 3a and the central warehouse 3b are cooled to the circulating internal air. The refrigerant evaporated while passing through the low pressure refrigerant flow path 245 of the right internal heat exchanger 24a and the internal internal heat exchanger 24b flows out from the respective low pressure refrigerant outlets 242 and passes through the refrigerant pipe 25, at the junction P1. After joining, the air is sucked into the compressor 21 through the internal heat exchanger 29 and compressed by the compressor 21 to repeat the above-described circulation.
以上説明したような本実施の形態である冷媒回路装置において、両側端の商品収容庫3(右庫3a及び左庫3c)に配設された庫内熱交換器24(右庫内熱交換器24a及び左庫内熱交換器24c)には、左右両側部のうち内方側に冷媒入口241(243)及び冷媒出口242(244)が設けてあるので、従来のように商品収容庫の底面に冷媒配管を左右に向けて這わせる必要がなく、該冷媒配管25を保護するための保護材を必要としない。 In the refrigerant circuit device according to the present embodiment as described above, the in-compartment heat exchanger 24 (the right in-house heat exchanger) disposed in the commodity storage 3 (right warehouse 3a and left warehouse 3c) at both ends. 24a and the left-side heat exchanger 24c) are provided with a refrigerant inlet 241 (243) and a refrigerant outlet 242 (244) on the inner side of the left and right sides, so that the bottom surface of the product storage box as in the prior art It is not necessary to fold the refrigerant pipes to the left and right, and a protective material for protecting the refrigerant pipes 25 is not required.
従って、本実施の形態である冷媒回路装置によれば、保護材を必要としないので、部品点数の削減によりコストの低減化を図ることができる。 Therefore, according to the refrigerant circuit device according to the present embodiment, no protective material is required, so that the cost can be reduced by reducing the number of parts.
また、両側端の商品収容庫3(右庫3a及び左庫3c)に配設された庫内熱交換器24(右庫内熱交換器24a及び左庫内熱交換器24c)の左右両側部のうち内方側に冷媒入口241(243)及び冷媒出口242(244)が設けたことにより、図14に示すように受金50の下方域にスペースSを形成することができる。ここで受金50は、両側端の商品収容庫3(右庫3a及び左庫3c)の搬出シュータ8に設けられるものである。この受金50は、商品取出口4aが外扉4の中央域下部に設けられていることから、商品を中央側に寄せるためのものである。このように受金50の下方域にスペースSを形成することができるので、庫内送風ファンF1の駆動により送出される内部空気が該スペースSを通過して前方に流れることができ、内部空気の循環を良好に行うことができる。内部空気の循環を良好に行うことで、商品を所望の温度状態にする時間の短縮化を図ることができ、各商品収容庫3での商品温度のバラツキの発生を抑制することができる。更に、冷媒配管25(高圧冷媒導入配管31、放熱配管32)が両側端の商品収容庫3(右庫3a及び左庫3c)の外壁面(右庫3aであれば右壁面、左庫3cであれば左壁面)に配置する必要がないので、熱リークを抑制することができる。また更に、配管構成を中央寄りに集約させることができるので、メンテナンス作業等において、装置の取り外し等を容易に行うことができる。 In addition, the left and right side portions of the internal heat exchanger 24 (the right internal heat exchanger 24a and the left internal heat exchanger 24c) disposed in the commodity storage 3 (right storage 3a and left storage 3c) at both ends. Of these, the refrigerant inlet 241 (243) and the refrigerant outlet 242 (244) are provided on the inner side, whereby a space S can be formed in the lower region of the metal receiver 50 as shown in FIG. Here, the money receiver 50 is provided in the carry-out shooter 8 of the commodity storage 3 (right warehouse 3a and left warehouse 3c) at both ends. This money receiver 50 is for bringing the product toward the center side because the product outlet 4 a is provided at the lower part of the central region of the outer door 4. Since the space S can be formed in the lower region of the metal receiver 50 in this way, the internal air sent out by driving the internal blower fan F1 can flow forward through the space S, and the internal air Can be circulated satisfactorily. By properly circulating the internal air, it is possible to shorten the time for which the product is brought to a desired temperature state, and to suppress the occurrence of product temperature variations in each product storage 3. Furthermore, the refrigerant pipe 25 (the high pressure refrigerant introduction pipe 31, the heat radiating pipe 32) is the outer wall surface of the product storage 3 (right warehouse 3a and left warehouse 3c) on both ends. If there is, it is not necessary to arrange on the left wall surface, so that heat leakage can be suppressed. Furthermore, since the piping configuration can be gathered closer to the center, the apparatus can be easily removed in maintenance work or the like.
上記冷媒回路装置においては、受皿部材41が、機械室9における冷媒回路10の低圧配管33の下方域に配設して該低圧配管33で生じた結露水を貯留し、蒸発シート42が、受皿部材41に貯留した結露水を毛管現象により吸水するとともに、庫外熱交換器22の周囲を通過した空気が自身の上延部422を通過して低圧配管33に至るよう受皿部材41に立設してある。これにより、低圧配管33に生じた結露水を良好に集めることができ、しかも集めた結露水を蒸発シート42で蒸発させることができる。しかも、庫外熱交換器22の周囲を通過した空気は、蒸発シート42の上延部422を通過してから低圧配管33に至るので、該空気が低圧配管33の周囲を通過する際には十分に低温となっており、低圧配管33を通過する冷媒を必要以上に加熱してしまうこともない。 In the refrigerant circuit device, the tray member 41 is disposed in a lower region of the low-pressure pipe 33 of the refrigerant circuit 10 in the machine room 9 to store the condensed water generated in the low-pressure pipe 33, and the evaporating sheet 42 is a tray. Condensed water stored in the member 41 is absorbed by capillarity, and the air that has passed around the external heat exchanger 22 passes through its upper extension 422 and reaches the low-pressure pipe 33 so as to stand upright on the tray member 41. It is. Thereby, the condensed water generated in the low-pressure pipe 33 can be collected well, and the collected condensed water can be evaporated by the evaporating sheet 42. Moreover, since the air that has passed around the outside heat exchanger 22 passes through the upper extension 422 of the evaporation sheet 42 and reaches the low-pressure pipe 33, when the air passes around the low-pressure pipe 33, The temperature is sufficiently low, and the refrigerant passing through the low-pressure pipe 33 is not heated more than necessary.
従って、本実施の形態である冷媒回路装置によれば、良好に結露水を蒸発させるとともに、庫内熱交換器24の冷却能力の低減化を抑制することができる。 Therefore, according to the refrigerant circuit device according to the present embodiment, it is possible to favorably evaporate the condensed water and to suppress the reduction of the cooling capacity of the internal heat exchanger 24.
また、低圧配管33を通過する冷媒を必要以上に加熱してしまうこともないので、低圧配管33に断熱材を巻回する必要はなく、これにより部品点数の削減によりコストの低減化を図ることができるとともに、装置の組立を容易なものとすることができる。 Further, since the refrigerant passing through the low-pressure pipe 33 is not heated more than necessary, it is not necessary to wind a heat insulating material around the low-pressure pipe 33, thereby reducing costs by reducing the number of parts. And the assembly of the apparatus can be facilitated.
また、上記冷媒回路装置においては、庫外熱交換器22が、第1冷媒入口22a1を通じて圧縮機21で圧縮した冷媒を流入し、かつ冷媒出口22a2を通じて自身を通過した冷媒を膨張機構23に向けて流出させる第1冷媒流路22aと、第1冷媒流路22aの途中に合流する態様で設けてあり、第2冷媒入口22b1を通じて左庫内熱交換器24cから供給された冷媒を流入し、かつ合流個所P2を通じて自身を通過した冷媒を該第1冷媒流路22aに進入させて冷媒出口22a2より流出させる第2冷媒流路22bとを備えている。これによりCCC運転やHCC運転を行う場合に、庫外熱交換器22の冷媒流路の共通化を図ることができ、従来のように冷媒流路が完全に独立していたものと比較して小さくすることが可能である。 In the refrigerant circuit device, the external heat exchanger 22 flows the refrigerant compressed by the compressor 21 through the first refrigerant inlet 22a1 and directs the refrigerant that has passed through the refrigerant outlet 22a2 to the expansion mechanism 23. The first refrigerant flow path 22a to be discharged and the first refrigerant flow path 22a are joined in the middle of the first refrigerant flow path 22a, and the refrigerant supplied from the left-side heat exchanger 24c flows in through the second refrigerant inlet 22b1, In addition, a second refrigerant flow path 22b is provided that allows the refrigerant that has passed through itself through the junction P2 to enter the first refrigerant flow path 22a and flow out from the refrigerant outlet 22a2. As a result, when the CCC operation and the HCC operation are performed, the refrigerant flow path of the external heat exchanger 22 can be shared, and compared with the conventional refrigerant flow path that is completely independent. It can be made smaller.
従って、本実施の形態である冷媒回路装置によれば、庫外熱交換器22の小型化を図ることができる。 Therefore, according to the refrigerant circuit device which is this Embodiment, size reduction of the external heat exchanger 22 can be achieved.
また、庫外熱交換器22の小型化を図ることができることで、CCC運転やHCC運転等を行う場合において、冷媒回路10に封入された冷媒における未使用量、いわゆる寝込み量を低減させることができる。しかも、冷媒回路10に十分な量の冷媒を封入させておくことにより、電磁弁等を必要以上に設置しなくても十分な冷却能力及び加熱能力を発揮することができ、コストの低減化を図ることもできる。 In addition, by reducing the size of the external heat exchanger 22, it is possible to reduce an unused amount, that is, a so-called stagnation amount in the refrigerant sealed in the refrigerant circuit 10 when performing CCC operation, HCC operation, or the like. it can. Moreover, by enclosing a sufficient amount of refrigerant in the refrigerant circuit 10, sufficient cooling capacity and heating capacity can be exhibited without installing an electromagnetic valve or the like more than necessary, thereby reducing costs. You can also plan.
以上、本発明の好適な実施の形態について説明したが、本発明これに限定されるものではなく、種々の変更を行うことができる。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to this, and various modifications can be made.
上述した実施の形態では、CCC運転とHCC運転とを行う場合について説明したが、本発明においては、ヒータを駆動させることでHHC運転を行うようにしてもよい。 In the embodiment described above, the case where the CCC operation and the HCC operation are performed has been described. However, in the present invention, the HHC operation may be performed by driving the heater.
また、上述した実施の形態では、左庫内熱交換器24cだけにしか高圧冷媒流路246を設けていなかったが、中庫内熱交換器にも高圧冷媒流路を設けるようにしてもよい。この場合には、高圧冷媒導入配管及び放熱配管が途中で分岐して中庫内熱交換器に接続されることになる。 In the above-described embodiment, the high-pressure refrigerant flow path 246 is provided only in the left-inside heat exchanger 24c. However, the high-pressure refrigerant flow path may also be provided in the internal heat exchanger. . In this case, the high-pressure refrigerant introduction pipe and the heat radiating pipe branch in the middle and are connected to the internal heat exchanger.
以上のように、本発明に係る冷媒回路装置は、例えば缶入り飲料やペットボトル入り飲料等の商品を販売する自動販売機に有用である。 As described above, the refrigerant circuit device according to the present invention is useful for vending machines that sell products such as canned beverages and plastic bottled beverages.
1 本体キャビネット
10 冷媒回路
20 主経路
21 圧縮機
22 庫外熱交換器
22a 第1冷媒流路
22a1 第1冷媒入口
22a2 冷媒出口
22b 第2冷媒流路
22b1 第2冷媒入口
23 膨張機構
24 庫内熱交換器
24a 右庫内熱交換器
24b 中庫内熱交換器
24c 左庫内熱交換器
241 低圧冷媒入口
242 低圧冷媒出口
243 高圧冷媒入口
244 高圧冷媒出口
245 低圧冷媒流路
246 高圧冷媒流路
25 冷媒配管
26 三方弁
27 分配器
281 低圧側電磁弁
282 低圧側電磁弁
283 低圧側電磁弁
31 高圧冷媒導入配管
32 放熱配管
33 低圧配管
41 受皿部材
42 蒸発シート
421 基部
422 上延部
50 受金
F1 庫内送風ファン
F2 庫外送風ファン
H ヒータ
P1 合流点
P2 合流個所
RP リードパイプ
S スペース
DESCRIPTION OF SYMBOLS 1 Main body cabinet 10 Refrigerant circuit 20 Main path | route 21 Compressor 22 External heat exchanger 22a 1st refrigerant | coolant flow path 22a1 1st refrigerant | coolant inlet 22a2 Refrigerant outlet 22b 2nd refrigerant | coolant flow path 22b1 2nd refrigerant | coolant inlet 23 Expansion mechanism 24 Internal heat Exchanger 24a Heat exchanger in the right compartment 24b Heat exchanger in the middle compartment 24c Heat exchanger in the left compartment 241 Low pressure refrigerant inlet 242 Low pressure refrigerant outlet 243 High pressure refrigerant inlet 244 High pressure refrigerant outlet 245 Low pressure refrigerant flow path 246 High pressure refrigerant flow path 25 Refrigerant piping 26 Three-way valve 27 Distributor 281 Low-pressure side solenoid valve 282 Low-pressure side solenoid valve 283 Low-pressure side solenoid valve 31 High-pressure refrigerant introduction piping 32 Heat radiation piping 33 Low-pressure piping 41 Receptacle member 42 Evaporating sheet 421 Base 422 Upper extension 50 Metal receiving F1 Internal fan F2 External fan H Heater P1 Merge point P2 Merge point RP Dopaipu S space
Claims (3)
前記対象室の外部となる機械室に配設され、かつ庫内熱交換器を通過した冷媒を吸引して圧縮する圧縮機と、
前記機械室に配設され、かつすべての対象室の内部空気を冷却する場合に前記圧縮機で圧縮された冷媒と周囲空気との間で熱交換させる庫外熱交換器と、
前記機械室に配設され、かつ前記庫外熱交換器を通過した冷媒を断熱膨張させて所定の庫内熱交換器に送出する膨張機構と
を冷媒配管で接続して成る冷媒回路を備えた冷媒回路装置において、
前記機械室において前記冷媒回路の前記膨張機構から前記圧縮機に至る経路に相当する低圧部位の下方域に配設され、かつ該低圧部位で生じた結露水を貯留する受皿部材と、
前記受皿部材に貯留した結露水を毛管現象により吸水可能な吸水性材料から成り、かつ前記庫外熱交換器の周囲を通過した空気のうち自身を通過したものが前記低圧部位に至るよう前記受皿部材に立設した蒸発シート体と
を備えたことを特徴とする冷媒回路装置。 An in-compartment heat exchanger for exchanging heat between the refrigerant passing through its own flow path and the internal air of the target chamber in which it is disposed;
A compressor that is disposed in a machine room outside the target chamber and sucks and compresses the refrigerant that has passed through the internal heat exchanger;
An external heat exchanger disposed in the machine room and configured to exchange heat between the refrigerant compressed by the compressor and the ambient air when cooling the internal air of all target rooms;
An expansion mechanism that is disposed in the machine room and adiabatically expands the refrigerant that has passed through the external heat exchanger and sends the refrigerant to a predetermined internal heat exchanger; In the refrigerant circuit device,
A tray member disposed in a lower region of a low pressure portion corresponding to a path from the expansion mechanism of the refrigerant circuit to the compressor in the machine room, and storing condensed water generated in the low pressure portion;
The saucer is formed of a water-absorbing material capable of absorbing condensed water stored in the saucer member by capillary action, and air passing through the outside of the external heat exchanger passes through itself to reach the low-pressure part. An evaporative sheet body standing on the member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011048191A JP5747567B2 (en) | 2011-03-04 | 2011-03-04 | Refrigerant circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011048191A JP5747567B2 (en) | 2011-03-04 | 2011-03-04 | Refrigerant circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012184881A JP2012184881A (en) | 2012-09-27 |
JP5747567B2 true JP5747567B2 (en) | 2015-07-15 |
Family
ID=47015122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011048191A Active JP5747567B2 (en) | 2011-03-04 | 2011-03-04 | Refrigerant circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5747567B2 (en) |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4330310Y1 (en) * | 1965-09-21 | 1968-12-11 | ||
JPS6216628Y2 (en) * | 1981-04-27 | 1987-04-27 | ||
JPS604776A (en) * | 1983-06-23 | 1985-01-11 | 三洋電機株式会社 | Unit chamber of low temperature box |
JP2865432B2 (en) * | 1991-02-08 | 1999-03-08 | 三洋電機株式会社 | Drain water evaporator |
JPH1073366A (en) * | 1996-08-30 | 1998-03-17 | Sanyo Electric Co Ltd | Cooling storage cabinet |
US6070423A (en) * | 1998-10-08 | 2000-06-06 | Hebert; Thomas H. | Building exhaust and air conditioner condenstate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor |
JP2002081846A (en) * | 2000-08-31 | 2002-03-22 | Matsushita Refrig Co Ltd | Cooling unit |
JP2003106747A (en) * | 2001-09-26 | 2003-04-09 | Sanyo Electric Co Ltd | Condensing unit |
JP2003343967A (en) * | 2002-05-28 | 2003-12-03 | Sanyo Electric Co Ltd | Cooling storage unit |
JP2004251608A (en) * | 2003-02-20 | 2004-09-09 | Hitachi Reftechno Inc | Structure of agricultural product cold reserving warehouse |
JP4513349B2 (en) * | 2004-02-10 | 2010-07-28 | パナソニック株式会社 | vending machine |
JP2007205633A (en) * | 2006-02-01 | 2007-08-16 | Sanden Corp | Freezing/refrigerating case |
JP5239467B2 (en) * | 2007-05-10 | 2013-07-17 | パナソニック株式会社 | vending machine |
-
2011
- 2011-03-04 JP JP2011048191A patent/JP5747567B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012184881A (en) | 2012-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6390374B2 (en) | Refrigerant circuit device | |
JP5685994B2 (en) | vending machine | |
JP6007760B2 (en) | Refrigerant circuit device | |
JP5369971B2 (en) | Refrigerant circuit device | |
JP5747567B2 (en) | Refrigerant circuit device | |
JP6592932B2 (en) | Refrigerant circuit device | |
JP4935474B2 (en) | vending machine | |
JP2010169362A (en) | Coolant circuit device | |
JP5417961B2 (en) | Refrigerant circuit device | |
JP5482501B2 (en) | Refrigerant circuit device | |
JP6405977B2 (en) | Refrigerant circuit device | |
JP2012184882A (en) | Refrigerant circuit device | |
JP2012002427A (en) | Refrigerant circuit device | |
JP6520300B2 (en) | vending machine | |
JP2010032097A (en) | Refrigerant circuit device | |
JP5983341B2 (en) | vending machine | |
JP5326579B2 (en) | Refrigerant circuit device | |
JP5482487B2 (en) | Refrigerant circuit device | |
JP2012230631A (en) | Heat exchanger and automatic vending machine | |
JP2012251696A (en) | Heat exchanger | |
JP2012241941A (en) | Heat exchanger | |
JP5402360B2 (en) | Cooling system | |
JP2010249455A (en) | Refrigerant circuit device | |
JP2008262410A (en) | Vending machine | |
JP2010169315A (en) | Refrigerant circuit device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20121025 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141029 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150414 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150427 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5747567 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |