JP5747448B2 - Punching hole punching and punching hole machining method with improved fatigue characteristics and hydrogen cracking resistance - Google Patents

Punching hole punching and punching hole machining method with improved fatigue characteristics and hydrogen cracking resistance Download PDF

Info

Publication number
JP5747448B2
JP5747448B2 JP2010127989A JP2010127989A JP5747448B2 JP 5747448 B2 JP5747448 B2 JP 5747448B2 JP 2010127989 A JP2010127989 A JP 2010127989A JP 2010127989 A JP2010127989 A JP 2010127989A JP 5747448 B2 JP5747448 B2 JP 5747448B2
Authority
JP
Japan
Prior art keywords
punch
punching
hole
cross
sectional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010127989A
Other languages
Japanese (ja)
Other versions
JP2011183453A (en
Inventor
環輝 鈴木
環輝 鈴木
楠見 和久
和久 楠見
正春 岡
正春 岡
崇 松野
崇 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010127989A priority Critical patent/JP5747448B2/en
Publication of JP2011183453A publication Critical patent/JP2011183453A/en
Application granted granted Critical
Publication of JP5747448B2 publication Critical patent/JP5747448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Punching Or Piercing (AREA)

Description

本発明は、自動車、家電製品、建築構造物、船舶、橋梁、建設機械、各種プラント、ペンストック等で用いられる鉄、アルミニウム、チタン、マグネシウムおよびこれら合金等の被加工材の打ち抜き穴加工方法及び打ち抜き用パンチに関するものであり、特に打ち抜き穴加工によって生じる打ち抜き加工端面の疲労特性向上及び耐水素割れ特性向上に関するものである。   The present invention relates to a method for punching a workpiece such as iron, aluminum, titanium, magnesium and alloys thereof used in automobiles, home appliances, building structures, ships, bridges, construction machines, various plants, penstocks, and the like, and The present invention relates to a punch for punching, and particularly relates to an improvement in fatigue characteristics and an improvement in hydrogen cracking resistance of a punched end face caused by punching holes.

自動車、家電製品、建築構造物等の被加工材には、図1のようにパンチ2とダイ3による打ち抜き加工が施されることが多い。図2に示すように打ち抜き加工面は、被加工材1がパンチ2により全体的に押し込まれて形成されるだれ4、パンチ2とダイ3のクリアランス内(以下特に記載がなく“クリアランス”と表記した場合は、パンチとダイのクリアランスを指すこととする)に被加工材1が引き込まれ局所的に引き伸ばされて形成されるせん断面5、パンチ2とダイ3のクリアランス内に引き込まれた被加工材1が破断して形成される破断面6、および被加工材1裏面に生じるばり7によって構成される。   Work materials such as automobiles, home appliances, and building structures are often punched with a punch 2 and a die 3 as shown in FIG. As shown in FIG. 2, the punched surface is formed by the workpiece 1 being entirely pushed by the punch 2 within the clearance between the punch 2 and the die 3 (hereinafter referred to as “clearance” unless otherwise specified). In this case, the workpiece 1 is drawn into the punch and die clearance) and the workpiece 1 drawn into the clearance between the punched surface 2 and the die 3 is formed. It consists of a fracture surface 6 formed by breaking the material 1 and a flash 7 generated on the back surface of the workpiece 1.

打ち抜き加工は低コストである利点があるが、レーザー加工や機械加工の場合と比べて切断端面の疲労強度と耐水素割れ特性が劣るという短所がある。   Punching has the advantage of low cost, but has the disadvantage that the fatigue strength and hydrogen cracking resistance of the cut end face are inferior compared to laser processing and machining.

以下に、打ち抜き端面の疲労強度向上と耐水素割れ特性向上を狙った従来技術について述べる。   The following describes conventional technologies aimed at improving the fatigue strength of the punched end face and improving the resistance to hydrogen cracking.

特許文献1には、打ち抜き加工や切断加工を行った加工端部の割れ、具体的には、水素の進入による割れ起因の遅れ破壊を防止するため、切断時の残留応力を低減させることを目的として、刃先端部から刃元に欠けて末広がり状(テーパー状)の切断刃を用いて、全断面に対して穴を押し広げる又は端面前面に押し付け加工を行う発明が記載されている。   Patent Document 1 aims to reduce the residual stress at the time of cutting in order to prevent cracks at the end of the punched and cut ends, specifically, delayed fracture due to cracks due to the entry of hydrogen. As described above, there is described an invention in which a cutting blade having a divergent shape (tapered shape) is formed from a blade tip portion to the edge of a blade, and a hole is expanded or pressed on the entire front surface of the entire cross section.

また、打ち抜き端面の耐水素割れ特性向上を狙った技術ではないが、打ち抜き端面の疲労特性向上を狙った技術としては、打ち抜き面の残留応力を圧縮応力にするために、切り刃(パンチ)の形状に関する発明として、打ち抜き穴の内径よりも小さい直径の先端部と、打ち抜き穴の内径とほぼ同じ直径を有する穴拡部を有するピアスパンチ、および所定広さの開口部を有する穴よりも小さい穴を被加工物に開け、その後、該小さい穴を拡大して前記所定広さの開口部を有する穴を形成する穴開け方法が特許文献2に、同じように拡径部を有するパンチでその刃先に丸みをつけて亀裂発生を遅らせる改良が施された打ち抜き方法が特許文献3に、先端部に打ち抜き方向と平行な側面を有する切り刃と切り刃の上部に形成された上方に向けて拡径するテーパー部を有するパンチおよびこのパンチを用いた打ち抜き方法が特許文献4にそれぞれ開示されている。   Also, it is not a technique aimed at improving the hydrogen cracking resistance characteristics of the punched end face, but as a technique aimed at improving the fatigue characteristics of the punched end face, the cutting blade (punch) As an invention relating to the shape, a piercing punch having a tip portion having a diameter smaller than the inner diameter of the punched hole, a hole expanding portion having a diameter substantially the same as the inner diameter of the punched hole, and a hole smaller than a hole having an opening having a predetermined width A drilling method for forming a hole having an opening of the predetermined width by expanding the small hole in a workpiece and then forming a hole having the opening of the predetermined width is disclosed in Patent Document 2 with a punch having an enlarged diameter portion. A punching method with an improvement that delays crack generation by rounding the surface is disclosed in Patent Document 3 as a cutting blade having a side surface parallel to the punching direction at the tip and an upward diameter formed on the upper portion of the cutting blade. Punch and punching method using the punch having a tapered portion is disclosed respectively in Patent Document 4 that.

以上の特許文献1〜4の開示技術は、疲労強度向上と耐水素割れ特性向上の効果や、量産を考えた場合にいくつかの問題が存在する。特許文献1〜4に開示された発明は、いずれもいわゆるバニシ加工と呼ばれる打ち抜き端面のごく表層を打ち抜きパンチのテーパー部で擦ることにより平滑化する方法であるが、打ち抜き端面とパンチの穴拡径部が大きく擦られるためにパンチの磨耗量が通常のパンチより大きく、また、拡径時にパンチ付近の材料をダイ側へ押し流す力がダイ肩付近の素材も流動させ、下穴(最初にあけた穴)加工で発生したばりがさらに大きくなって疲労強度と耐水素割れ特性に悪影響を及ぼす場合がある。さらに、打ち抜きと穴拡径を一体パンチで行う場合、特に特許文献4記載の方法では、穴加工に必要なパンチストローク量が大きくなってしまい、通常、プレス装置にはパンチストローク量に制限が存在するので、その能力によっては該方法の使用はできない。   The technologies disclosed in Patent Documents 1 to 4 have several problems when considering the effects of improving fatigue strength and hydrogen cracking resistance and mass production. The inventions disclosed in Patent Literatures 1 to 4 are all methods of smoothing by rubbing the very surface layer of the punched end surface called so-called burnishing by the taper portion of the punched punch. Because the part is rubbed greatly, the wear amount of the punch is larger than the normal punch, and when the diameter is expanded, the force that pushes the material near the punch to the die side also causes the material near the die shoulder to flow, and the pilot hole (the first drilled Holes) The flash generated during processing becomes even larger, which may adversely affect fatigue strength and hydrogen cracking resistance. Furthermore, when punching and hole expansion are performed with an integral punch, the punch stroke amount required for drilling is particularly large in the method described in Patent Document 4, and there is usually a limitation on the punch stroke amount in a press device. Therefore, the method cannot be used depending on its ability.

特開2006−289491号公報JP 2006-289491 A 特開平10−263720号公報JP-A-10-263720 特開平11−254055号公報Japanese Patent Laid-Open No. 11-254055 特開平11−333530号公報JP-A-11-333530

本発明は、上述した問題点に鑑みて発明されたものであり、材料、対象部材の種類によらず、打ち抜き端面の疲労強度と耐水素割れ特性を安定して向上させ、かつ、量産現場に容易に適用が可能である、疲労強度と耐水素割れ特性に優れた打ち抜き穴加工方法及び打ち抜き穴加工用パンチを提供することを目的とする。   The present invention has been invented in view of the above-described problems, and can stably improve the fatigue strength and hydrogen cracking resistance of the punched end face regardless of the type of material and target member, and can be used in mass production sites. An object of the present invention is to provide a punching hole processing method and a punch for punching hole processing that can be easily applied and that have excellent fatigue strength and hydrogen cracking resistance.

上記課題を解決するために、本発明の要旨とするところは、以下のとおりである。   In order to solve the above problems, the gist of the present invention is as follows.

本発明の打ち抜き穴加工用パンチは、パンチとダイによる打ち抜き加工が施される被加工材に打ち抜き穴加工を行う打ち抜き穴加工用パンチにおいて、目的穴用パンチ部とテーパー部と下穴用パンチ部とが連続して一体となった打ち抜き穴加工用パンチであって、前記目的穴用パンチ部は、柱体からなり、nを2以上の正の整数として、前記下穴用パンチ部は、n個の柱体からなり、該n個の柱体は中心軸が前記目的穴用パンチ部柱体の中心軸上となるように同軸に配列され、該柱体の側面と垂直な断面形状が前記目的穴用パンチ部柱体の側面と垂直な断面形状を中心軸に向かって縮小した相似図形であり、該目的穴用パンチ部柱体の側面と垂直な断面形状に対する該n個の柱体の側面と垂直な断面形状の相似比は1より小さく且つ互いに異なり、該n個の柱体は前記目的穴用パンチ部側から前記相似比が大きい順に配列し、前記テーパー部は、錐体の一部からなり、前記目的穴用パンチ部柱体と前記下穴用パンチ部の前記相似比が最大の柱体とに挟まれ、中心軸に垂直な断面形状が、前記目的穴用パンチ部柱体の側面と垂直な断面形状から前記下穴用パンチ部の前記相似比が最大の柱体の側面と垂直な断面形状に徐々に変化しており、隣接する前記下穴用パンチ部柱体の側面と垂直な断面形状の直径の差、および、前記下穴用パンチ部柱体のうち相似比が最大の柱体の側面と垂直な断面形状の直径と前記目的穴用パンチ部柱体の側面と垂直な断面形状の直径との差が、いずれも0.5mm以上1mm以下であることを特徴とする。 The punch for punching holes according to the present invention is a punch for punching holes for punching holes to be processed on a workpiece to be punched by a punch and a die. , And the target hole punch portion is formed of a pillar body, and n is a positive integer of 2 or more, and the pilot hole punch portion is n The n number of columns are arranged coaxially so that the center axis is on the center axis of the target hole punch column, and the cross-sectional shape perpendicular to the side surface of the column is It is a similar figure which reduced the cross-sectional shape perpendicular | vertical to the side surface of the punch part column body for target holes toward the central axis, and the n column bodies with respect to the cross-sectional shape perpendicular to the side surface of the punch part column body for target holes The similarity ratio of the cross-sectional shape perpendicular to the side is smaller than 1 and different from each other The n pillars are arranged in descending order of the similarity ratio from the target hole punch part side, and the tapered part is formed of a part of a cone, and the target hole punch part pillar and the bottom hole part are arranged. The cross-sectional shape perpendicular to the central axis is sandwiched between the pillar body having the largest similarity ratio of the hole punch portion, and the cross-sectional shape perpendicular to the side surface of the target hole punch portion pillar body is The similarity ratio gradually changes to a cross-sectional shape perpendicular to the side surface of the columnar body, the difference in diameter of the cross-sectional shape perpendicular to the side surface of the adjacent punch hole columnar body, and the pilot hole The difference between the diameter of the cross-sectional shape perpendicular to the side surface of the columnar body having the maximum similarity in the punch portion columnar body and the diameter of the cross-sectional shape perpendicular to the side surface of the target hole punching column body is 0. It is 5 mm or more and 1 mm or less.

また、本発明の打ち抜き穴加工用パンチは、前記柱体が円柱であってもよい。   In the punch for punching holes according to the present invention, the column may be a cylinder.

また、本発明の打ち抜き穴加工用パンチは、前記柱体が角柱であってもよい。   In the punch for punching holes according to the present invention, the column may be a prism.

さらに、本発明の打ち抜き穴加工方法は、上記の打ち抜き穴加工用パンチを用いた被加工材の打ち抜き穴加工方法であって、前記下穴用パンチ部のn個の柱体それぞれの高さが前記被加工材の板厚より大きい打ち抜き穴加工用パンチを用い、該柱体の側面と垂直な断面形状が小さな柱体から順番に下穴用パンチ部を使って被加工材に下穴をn回打ち抜いた後、テーパー部により穴を押し広げ、穴の直径を目的穴の直径とすることを特徴とする。 Furthermore, the punching hole processing method of the present invention is a punching hole processing method for a workpiece using the punching hole processing punch described above, wherein the height of each of the n pillars of the pilot hole punching portion is A punch for punching holes larger than the plate thickness of the workpiece is used, and a pilot hole is formed in the workpiece using a pilot hole punch portion in order from a column having a cross-sectional shape perpendicular to the side surface of the column. After punching out once, the hole is pushed and widened by a taper portion, and the diameter of the hole is made the diameter of the target hole.

さらにまた、本発明の打ち抜き穴加工方法は、前記被加工材の材質が、鉄、あるいは、Al−Zn−Mg系合金であることを特徴とする。 Furthermore, the punched hole machining method of the present invention is characterized in that the material of the workpiece is iron or an Al—Zn—Mg alloy.

本発明により、工具の焼き付きや磨耗が起こらず、疲労強度と耐水素割れ特性の高い穴を加工することができる。   According to the present invention, a tool having high fatigue strength and high resistance to hydrogen cracking can be processed without causing seizure or wear of the tool.

打ち抜き加工を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows a punching process typically. 打ち抜き破面の特徴を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the characteristic of a punching fracture surface. 従来のテーパー付パンチによる打ち抜き加工を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the punching process by the conventional punch with a taper. 従来の異なるテーパー付パンチによる打ち抜き加工を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the punching process by the conventional different punch with a taper. 従来の異なるテーパー付パンチによる打ち抜き加工を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the punching process by the conventional different punch with a taper. 実施例1で使用した本発明における打ち抜き穴加工用パンチを示す正面図である。It is a front view which shows the punch for punching holes in this invention used in Example 1. FIG. 実施例1で用いた穴開き疲労試験片を示す平面図である。2 is a plan view showing a hole fatigue test piece used in Example 1. FIG. 実施例2、3で用いた穴開き疲労試験片を示す斜視図である。It is a perspective view which shows the hole fatigue test piece used in Example 2, 3. FIG.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

本発明者らは、打ち抜き穴の疲労強度と耐水素割れ特性を向上させる試みにおいて、従来技術を用いて、図3、図4のように下穴加工を行った後に下穴が拡径されるようなテーパー付きパンチ8を用いることで、被加工材1の打ち抜き端面の破断面を平滑化することができ、疲労強度と耐水素割れ特性に効果があることを確認できた。しかし、拡径量が大きくテーパー角度が大きくなる拡径パンチ形状を有するテーパー付きパンチ8を用いると、図5のような加工現象が起こり、拡径による破断面の平滑化が不十分にしか行えないので、疲労強度向上と耐水素割れ特性向上の効果が小さくなることを知見した。このような加工のモードが発現することを防ぐべく、拡径量を減らしてテーパー角度を小さくしたところ、拡径による破断面の平滑化は部分的には行えるがその量は少なくなり、やはり、疲労強度上昇と耐水素割れ特性上昇の効果は小さかった。   In an attempt to improve the fatigue strength and hydrogen cracking resistance characteristics of the punched hole, the present inventors expand the diameter of the prepared hole after performing the prepared hole processing as shown in FIGS. By using such a punch 8 with a taper, the fracture surface of the punched end face of the workpiece 1 can be smoothed, and it has been confirmed that there is an effect on fatigue strength and hydrogen cracking resistance. However, if a tapered punch 8 having a diameter-enlarged punch shape with a large diameter expansion amount and a large taper angle is used, a machining phenomenon as shown in FIG. 5 occurs, and the fracture surface due to the diameter expansion can only be smoothed. Therefore, it has been found that the effects of improving fatigue strength and hydrogen cracking resistance are reduced. In order to prevent such processing modes from appearing, when the taper angle is reduced by reducing the diameter expansion amount, the fracture surface can be partially smoothed by diameter expansion, but the amount is reduced. The effects of increasing fatigue strength and hydrogen cracking resistance were small.

そこで、本発明者らは、1回に開ける下穴の打ち抜き量を減らし、2回以上の下穴を開けることで、加工断面の残留応力をさらに減らすことができれば、少ない拡径量で、打ち抜き端面の疲労強度を向上することができると考えた。以下に、2回の下穴を開ける場合を例に説明する。   Therefore, the present inventors reduced the punching amount of the pilot hole to be opened at one time, and if the residual stress of the processed cross section can be further reduced by opening the pilot hole twice or more, the punching is performed with a small diameter expansion amount. It was thought that the fatigue strength of the end face could be improved. Hereinafter, a case where the pilot hole is opened twice will be described as an example.

本発明の打ち抜き穴加工用パンチは、図6に示す通り、目的穴用パンチ部Dとテーパー部Cと下穴用パンチ部B、Aとが連続して一体となった打ち抜き穴加工用パンチ11である。目的穴用パンチ部Dは、柱体11dからなり、下穴用パンチ部B、Aは、2個の柱体11b、11aからなる。2個の柱体11b、11aは中心軸が目的穴用パンチ部Dの柱体11dの中心軸上に同軸となるように配列され、柱体11b、11aの側面と垂直な断面形状が目的穴用パンチ部Dの柱体11dの側面と垂直な断面形状を中心軸に向かって縮小した相似形である。目的穴用パンチ部Dの柱体11dの断面形状に対する2個の柱体11b、11aの側面と垂直な断面形状の相似比A/D,B/Dは1より小さく且つ互いに異なり、2個の柱体11b、11aは、目的穴用パンチ部Dの柱体11d側から相似比が大きい順に配列している。テーパー部Cは、円錐台や角錐台等、錐体の一部からなり、目的穴用パンチ部Dの柱体11dと、下穴用パンチ部B、Aの柱体11b、11aのうち相似比が最大の柱体11bとに挟まれ、中心軸に垂直な断面形状が、目的穴用パンチ部Dの柱体11dの側面と垂直な断面形状から下穴用パンチ部B、Aのうち前記相似比が最大の柱体11bの側面と垂直な断面形状に徐々に変化している。なお、本発明における「相似比」とは、柱体の中心軸に垂直な断面形状の面積比のことを意味している。隣接する2個の下穴用パンチ部B、Aの柱体11b、11aの側面と垂直な断面形状の直径の差は1mm以下であり、また、下穴用パンチ部B、Aの柱体11b、11aのうち相似比が最大の柱体11bの側面と垂直な断面形状の直径と、目的穴用パンチ部Dの柱体11dの側面と垂直な断面形状の直径との差も1mm以下である。「1mm以下」とした理由は、後述する実施例に示す疲労試験結果によるものである。そして、柱体11d、11b、11aは円柱若しくは角柱である。ここで、本発明における「直径」とは、柱体11d、11b、11aが角柱である場合には、側面と垂直な断面形状における対角線のうち最大の長さを意味するものとする。   As shown in FIG. 6, the punch for punching holes of the present invention is a punch 11 for punching holes in which a target hole punch portion D, a taper portion C, and pilot hole punch portions B and A are continuously integrated. It is. The target hole punch portion D is composed of a pillar 11d, and the pilot hole punch portions B and A are composed of two pillars 11b and 11a. The two pillars 11b and 11a are arranged so that the central axis is coaxial with the central axis of the pillar 11d of the target hole punch portion D, and the cross-sectional shape perpendicular to the side surfaces of the pillars 11b and 11a is the target hole. This is a similar shape obtained by reducing the cross-sectional shape perpendicular to the side surface of the pillar 11d of the punch part D for use toward the central axis. The similarity ratios A / D and B / D of the cross-sectional shapes perpendicular to the side surfaces of the two columnar bodies 11b and 11a with respect to the cross-sectional shape of the columnar body 11d of the target hole punch portion D are smaller than 1 and different from each other. The columns 11b and 11a are arranged in descending order of similarity from the column 11d side of the target hole punch portion D. The tapered portion C is formed of a part of a cone, such as a truncated cone or a truncated pyramid, and the similarity ratio between the column 11d of the target hole punch D and the columns 11b and 11a of the pilot hole punches B and A. Is sandwiched between the largest pillar body 11b, and the cross-sectional shape perpendicular to the central axis is similar to the above-described similarities among the pilot hole punch parts B and A from the cross-sectional shape perpendicular to the side surface of the pillar body 11d of the target hole punch part D It gradually changes to a cross-sectional shape perpendicular to the side surface of the pillar 11b having the largest ratio. The “similarity ratio” in the present invention means an area ratio of a cross-sectional shape perpendicular to the central axis of the column. The difference between the diameters of the cross-sectional shapes perpendicular to the side surfaces of the pillars 11b, 11a of the two adjacent pilot hole punches B, A is 1 mm or less, and the pillars 11b of the pilot hole punches B, A 11a, the difference between the diameter of the cross-sectional shape perpendicular to the side surface of the columnar body 11b having the maximum similarity ratio and the diameter of the cross-sectional shape perpendicular to the side surface of the columnar body 11d of the target hole punch portion D is also 1 mm or less. . The reason for “1 mm or less” is based on the fatigue test results shown in the examples described later. The column bodies 11d, 11b, and 11a are cylinders or prisms. Here, the “diameter” in the present invention means the maximum length of diagonal lines in a cross-sectional shape perpendicular to the side surface when the column bodies 11d, 11b, and 11a are prisms.

このような打ち抜き穴加工用パンチ11を用いて、1回の加工工程で、最終形状である目的穴の直径より小さく、相似である下穴を2度、打ち抜いた後に、該下穴を目的穴の直径となるように押し広げる穴加工を行う。柱体が円柱の場合、下穴用パンチ部Aの半径raと下穴用パンチ部Bの半径rbの差(rb−ra)および下穴用パンチ部Bの半径rbと目的穴用パンチ部Dの半径rdの差(rd−rb)がいずれも0.5mm以内であり、下穴用パンチ部Aおよび下穴用パンチ部Bの高さ(中心軸方向の長さ)が、いずれも被加工材1の板厚以上であり、下穴用パンチ部Aで下穴を打ち抜き、さらに下穴用パンチ部Bで下穴を打ち抜いた後、目的穴の径まで太くなるテーパー形状の拡径部を有するテーパー部Cを用いて、被加工材1に接触し、前記下穴を前記目的穴の径へ押し広げる穴加工を行えば、少ない拡径量で打ち抜き端面の疲労強度と耐水素割れ特性を向上することができる。   Using such a punch 11 for punching holes, a pilot hole that is smaller than the diameter of the target hole, which is the final shape, is punched twice in a single processing step, and then the pilot hole is turned into the target hole. Drill holes to expand to a diameter of. When the column is a cylinder, the difference (rb−ra) between the radius ra of the pilot hole punch portion A and the radius rb of the pilot hole punch portion B and the radius rb of the pilot hole punch portion B and the target hole punch portion D The difference (rd−rb) in the radius rd of each is within 0.5 mm, and the height (length in the central axis direction) of the pilot hole punch portion A and the pilot hole punch portion B are both processed. A taper-shaped diameter-expanded portion that is equal to or greater than the plate thickness of the material 1, is punched with a pilot hole punch portion A, and further punched with a pilot hole punch portion B, and then increases to the diameter of the target hole. By using the tapered portion C to contact the workpiece 1 and perform hole processing to push the prepared hole to the diameter of the target hole, the fatigue strength and hydrogen cracking resistance of the punched end face can be reduced with a small amount of diameter expansion. Can be improved.

3回以上の下穴を開ける場合も、同様である。一般にn個の下穴を開ける場合の本発明の打ち抜き穴加工用パンチは、目的穴用パンチ部とテーパー部と下穴用パンチ部とが連続して一体となった打ち抜き穴加工用パンチである。目的穴用パンチ部は、柱体からなり、nを2以上の正の整数として、下穴用パンチ部は、n個の柱体からなる。n個の柱体は中心軸が目的穴用パンチ部柱体の中心軸上に同軸となるように配列され、柱体の側面と垂直な断面形状が目的穴用パンチ部柱体の側面と垂直な断面形状を中心軸に向かって縮小した相似形である。n個の柱体の側面と垂直な断面形状の相似比は1より小さく且つ互いに異なり、n個の柱体は、目的穴用パンチ部の柱体側から前記相似比が大きい順に配列している。テーパー部は、円錐台や角錐台等、錐体の一部からなり、目的穴用パンチ部柱体と下穴用パンチ部のうち相似比が最大の柱体とに挟まれ、中心軸に垂直な断面形状が、目的穴用パンチ部の柱体の側面と垂直な断面形状から下穴用パンチ部の相似比が最大の柱体の側面と垂直な断面形状に徐々に変化している。隣接する下穴用パンチ部柱体の側面と垂直な断面形状の直径の差は1mm以下であり、また、下穴用パンチ部の柱体のうち相似比が最大の柱体の側面と垂直な断面形状の直径と、目的穴用パンチ部柱体の側面と垂直な断面形状の直径との差も1mm以下である。「1mm以下」とした理由は、後述する実施例に示す疲労試験結果によるものである。そして、柱体は円柱若しくは角柱である。このような打ち抜き穴加工用パンチを用いて次々に下穴を拡大して行き、最後にテーパー部Cを用いて目的穴へ押し広げれば、少ない拡径量で打ち抜き端面の疲労強度と耐水素割れ特性を向上させることができる。   The same applies when the pilot hole is opened three times or more. In general, the punch for punching holes of the present invention in the case of forming n pilot holes is a punch for punching holes in which a target hole punch portion, a tapered portion, and a pilot hole punch portion are continuously integrated. . The target hole punch portion is composed of a column body, and n is a positive integer of 2 or more, and the pilot hole punch portion is composed of n column bodies. The n columns are arranged so that the central axis is coaxial with the central axis of the target hole punch column, and the cross-sectional shape perpendicular to the side surface of the column is perpendicular to the side surface of the target hole punch column. This is a similar shape obtained by reducing a simple cross-sectional shape toward the central axis. The similarity ratio of the cross-sectional shapes perpendicular to the side surfaces of the n column bodies is smaller than 1 and different from each other, and the n column bodies are arranged in descending order of the similarity ratio from the column body side of the target hole punch portion. The taper part consists of a part of a cone, such as a truncated cone and a truncated pyramid, and is sandwiched between the target hole punch part and the pilot hole punch part with the largest similarity ratio, and is perpendicular to the central axis. The sectional shape gradually changes from a sectional shape perpendicular to the side surface of the column of the target hole punch portion to a sectional shape perpendicular to the side surface of the column having the maximum similarity ratio of the pilot hole punch portion. The difference in diameter of the cross-sectional shape perpendicular to the side surface of the adjacent pilot hole punch column is 1 mm or less, and the column of the pilot hole punch unit is perpendicular to the side of the column having the largest similarity ratio. The difference between the diameter of the cross-sectional shape and the diameter of the cross-sectional shape perpendicular to the side surface of the target hole punch column is also 1 mm or less. The reason for “1 mm or less” is based on the fatigue test results shown in the examples described later. The column body is a cylinder or a prism. Using such punches for punching holes, the pilot holes are expanded one after another, and finally, if the taper part C is used to push the target holes, the fatigue strength and hydrogen cracking resistance of the punched end face can be reduced with a small diameter. Characteristics can be improved.

直径10mmの丸穴加工を対象とし、図6に示す本発明を適用した打ち抜き穴加工用パンチ11を用いて、図7に示す穴開き疲労試験片9の軸力疲労試験を実施した。図7の試験片9の打ち抜き穴10は、本発明を適用した方法(本発明例1、2)の他に、比較例として、刃先の曲率半径が0mm、直径10mmのパンチを用いた通常の1段打ち抜き方法による加工(比較例1)、及び、図6に示す打ち抜き穴加工用パンチ11の下穴用パンチ部A、Bの断面形状を変化させたものを用いた加工(比較例2〜4)も行った。被加工材には540MPa級1.6mm厚の鋼板を使用した。本発明を適用した打ち抜き穴加工用パンチ11は、例えば、本発明例1の場合を例に挙げると、図6に示す通り、目的穴用パンチ部Dとテーパー部Cと下穴用パンチ部B、Aとが連続して一体となった打ち抜き穴加工用パンチである。目的穴用パンチ部Dは円柱11d(φ10.0mm)からなり、下穴用パンチ部B、Aは、2個の円柱11b(φ9.5mm×1.8mm)、11a(φ9.0mm×1.8mm)からなる。2個の円柱11b、11aは、中心軸が目的穴用パンチ部Dの円柱11dの中心軸上に同軸に配列され、テーパー部Cは、円錐体11c(高さ1.2mm)からなり、目的穴用パンチ部Dの円柱11dと下穴用パンチ部Bの円柱11bとに挟まれ、中心軸に垂直な断面形状が、目的穴用パンチ部Dの円柱11dの側面と垂直な断面形状(φ10.0mm)から下穴用パンチ部Bの円柱11bの側面と垂直な断面形状(φ9.5mm)に徐々に変化している。下穴用パンチ部Aで下穴を打ち抜き、さらに下穴用パンチ部Bで下穴を打ち抜いた後、目的穴の径まで太くなるテーパー形状の拡径部を有するテーパー部Cを用いて、被加工材に接触し、下穴を前記目的穴へ押し広げる穴加工を行った。疲労試験条件は応力比(=最小荷重/最大荷重)を0とする荷重制御疲労試験であり、室温・大気中で行った。荷重の制御が困難となる寿命を破断寿命として、破断寿命が200万回となる応力範囲で評価した。   An axial force fatigue test of the hole fatigue test piece 9 shown in FIG. 7 was performed using a punch 11 for punching holes to which the present invention shown in FIG. The punching hole 10 of the test piece 9 in FIG. 7 is a conventional example in which a punch having a radius of curvature of the cutting edge of 0 mm and a diameter of 10 mm is used as a comparative example in addition to the method to which the present invention is applied (Invention Examples 1 and 2). Processing using a one-step punching method (Comparative Example 1), and processing using the punch hole processing punch 11 shown in FIG. 4) was also performed. A 540 MPa class steel plate having a thickness of 1.6 mm was used as a workpiece. The punch 11 for punching holes to which the present invention is applied, for example, in the case of the present invention example 1, as shown in FIG. 6, the target hole punch part D, the taper part C, and the pilot hole punch part B , A is a punch for punching holes in which A is continuously integrated. The target hole punch portion D comprises a cylinder 11d (φ10.0 mm), and the pilot hole punch portions B and A have two columns 11b (φ9.5 mm × 1.8 mm), 11a (φ9.0 mm × 1. 8 mm). The two cylinders 11b and 11a are coaxially arranged on the center axis of the cylinder 11d of the target hole punch part D, and the tapered part C is formed of a cone 11c (height 1.2 mm). A cross-sectional shape sandwiched between the cylinder 11d of the hole punch portion D and the cylinder 11b of the pilot hole punch portion B is perpendicular to the side surface of the cylinder 11d of the target hole punch portion D (φ10 .0 mm) gradually changes to a cross-sectional shape (φ9.5 mm) perpendicular to the side surface of the cylinder 11b of the pilot hole punch portion B. After punching the pilot hole with the pilot hole punch part A and further punching the pilot hole with the pilot hole punch part B, the taper part C having a taper-shaped enlarged portion that becomes thicker to the diameter of the target hole is used. Hole processing was performed in contact with the workpiece and expanding the prepared hole to the target hole. The fatigue test condition was a load control fatigue test in which the stress ratio (= minimum load / maximum load) was 0, and was performed at room temperature and in the atmosphere. The life in which the control of the load becomes difficult was regarded as the rupture life, and the evaluation was performed in the stress range where the rupture life was 2 million times.

なお、実施例と比較例の穴加工には共通のダイを用い、通常打ち抜きにおいてクリアランスが板厚の9.4%(0.15mm)になる10.3(mm)をダイ直径とした。また、穴加工時の被加工材にパンチが接触してからのストローク量は6.6mmとした。また、下穴用パンチ部Aと下穴用パンチ部Bの直径差、及び、下穴用パンチ部Bと目的穴用パンチ部Dの直径差は、下記の表1に示した通りである。   Note that a common die was used for drilling holes in the example and the comparative example, and the die diameter was 10.3 (mm) where the clearance was 9.4% (0.15 mm) of the plate thickness in normal punching. Moreover, the stroke amount after a punch contacted the workpiece at the time of drilling was 6.6 mm. The difference in diameter between the pilot hole punch portion A and the pilot hole punch portion B and the difference in diameter between the pilot hole punch portion B and the target hole punch portion D are as shown in Table 1 below.

疲労試験の結果を表1に示す。本発明を適用して穴加工を行った試験片の疲労強度は約130MPa、通常打ち抜きでは約90MPaであり、拡径用パンチの焼き付きもなく、本発明による穴加工方法の有効性を確認することができた。   The results of the fatigue test are shown in Table 1. The fatigue strength of the test piece drilled by applying the present invention is about 130 MPa, usually about 90 MPa by punching, and there is no seizure of the diameter expansion punch, and the effectiveness of the hole drilling method according to the present invention is confirmed. I was able to.

Figure 0005747448
Figure 0005747448

直径10mmの丸穴加工を対象とし、図6に示す本発明を適用した打ち抜き穴加工用パンチ11を用いて、打ち抜き加工部の耐水素割れ評価を行った。図8に示す穴開き疲労試験片12について、耐水素割れを評価するため、加工断面の割れの有無を測定した。割れの有無の測定は、打ち抜き後、24時間放置後について打ち抜き穴全周を対象に行い、割れが有るものを耐水素割れ特性×、割れがないものを耐水素割れ特性○とした。図8の試験片12の打ち抜き穴13は、本発明を適用した方法(本発明例11、12)の他に、比較例として刃先の曲率半径が0mm、直径10mmのパンチを用いた通常の1段打ち抜き方法による加工(比較例11)、及び、図6に示す打ち抜き穴加工用パンチ11の下穴用パンチ部A、Bの断面形状を変化させたものを用いた加工(比較例12〜14)も行った。被加工材には540MPa級1.6mm厚で40mm×40mmのサイズの鋼板を使用した。本発明を適用した打ち抜き穴加工用パンチは、例えば、本発明例11の場合を例に挙げると、図6に示す通り、目的穴用パンチ部Dとテーパー部Cと下穴用パンチ部B、Aとが連続して一体となった打ち抜き穴加工用パンチである。目的穴用パンチ部Dは円柱11d(φ10.0mm)からなり、下穴用パンチ部B、Aは、2個の円柱11b(φ9.5mm×1.8mm)、11a(φ9.0mm×1.8mm)からなる。2個の円柱11b、11aは中心軸が目的穴用パンチ部Dの円柱11dの中心軸上に同軸に配列され、テーパー部Cは、円錐体11c(高さ1.2mm)からなり、目的穴用パンチ部Dの円柱11dと下穴用パンチ部Bの円柱11bとに挟まれ、中心軸に垂直な断面形状が、目的穴用パンチ部Dの円柱11dの側面と垂直な断面形状(φ10.0mm)から下穴用パンチ部Bの円柱11bの側面と垂直な断面形状(φ9.5mm)に徐々に変化している。下穴用パンチ部Aで下穴を打ち抜き、さらに下穴用パンチ部Bで下穴を打ち抜いた後、目的まで太くなるテーパー形状の拡径部を有するテーパー部Cを用いて、被加工材に接触し、下穴を前記目的穴へ押し広げる穴加工を行った。   Targeting round hole machining with a diameter of 10 mm, the punching hole punch 11 to which the present invention is applied as shown in FIG. For the hole fatigue test piece 12 shown in FIG. 8, the presence or absence of cracks in the processed cross section was measured in order to evaluate hydrogen cracking resistance. The presence / absence of cracks was measured for the entire perimeter of the punched holes after punching and left for 24 hours. The cracked cracks were designated as hydrogen cracking resistance x, and those without cracks were designated as hydrogen cracking resistance ○. The punching hole 13 of the test piece 12 in FIG. 8 is a normal 1 using a punch having a radius of curvature of the cutting edge of 0 mm and a diameter of 10 mm as a comparative example, in addition to the method to which the present invention is applied (Invention Examples 11 and 12). Processing by the step punching method (Comparative Example 11) and processing using the punch hole processing punch 11 shown in FIG. ) Also went. A steel plate having a size of 40 mm × 40 mm and a thickness of 540 MPa class 1.6 mm was used as a workpiece. The punch for punching holes to which the present invention is applied, for example, in the case of Example 11 of the present invention, as shown in FIG. 6, as shown in FIG. 6, the target hole punch portion D, the taper portion C, and the pilot hole punch portion B, This is a punch for punching holes in which A is continuously integrated. The target hole punch portion D comprises a cylinder 11d (φ10.0 mm), and the pilot hole punch portions B and A have two columns 11b (φ9.5 mm × 1.8 mm), 11a (φ9.0 mm × 1. 8 mm). The two cylinders 11b and 11a are coaxially arranged on the center axis of the cylinder 11d of the target hole punch part D, and the tapered part C is formed of a cone 11c (height 1.2 mm). The sectional shape perpendicular to the central axis is sandwiched between the cylinder 11d of the punch part D for punch D and the cylinder 11b of the punch part B for pilot hole, and the sectional shape perpendicular to the side surface of the cylinder 11d of the punch part D for target hole (φ10. 0 mm), and gradually changes to a cross-sectional shape (φ9.5 mm) perpendicular to the side surface of the cylinder 11 b of the pilot hole punch portion B. After punching a pilot hole with the pilot hole punch part A and further punching the pilot hole with the pilot hole punch part B, the taper part C having a taper-shaped diameter-expanded part that becomes thicker to the intended purpose is used for the workpiece. The hole processing which contacted and expanded a pilot hole to the said target hole was performed.

なお、実施例と比較例の穴加工には共通のダイを用い、通常打ち抜きにおいてクリアランスが板厚の9.4%(0.15mm)になる10.3(mm)をダイ直径とした。また、穴加工時の被加工材にパンチが接触してからのストローク量は6.6mmとした。また、下穴用パンチ部Aと下穴用パンチ部Bの直径差、及び、下穴用パンチ部Bと目的穴用パンチ部Dの直径差は、下記の表2に示した通りである。   Note that a common die was used for drilling holes in the example and the comparative example, and the die diameter was 10.3 (mm) where the clearance was 9.4% (0.15 mm) of the plate thickness in normal punching. Moreover, the stroke amount after a punch contacted the workpiece at the time of drilling was 6.6 mm. The difference in diameter between the pilot hole punch portion A and the pilot hole punch portion B and the difference in diameter between the pilot hole punch portion B and the target hole punch portion D are as shown in Table 2 below.

耐水素割れ特性の結果を表2に示す。本発明を適用して穴加工を行った試験片では、拡径用パンチの焼き付きもなく、本発明による穴加工方法の有効性を確認することができた。   The results of hydrogen cracking resistance are shown in Table 2. In the test piece subjected to the hole machining by applying the present invention, there was no seizure of the diameter expansion punch, and the effectiveness of the hole machining method according to the present invention could be confirmed.

Figure 0005747448
Figure 0005747448

直径10mmの丸穴加工を対象とし、図6に示す本発明を適用した打ち抜き穴加工用パンチ11を用いて、打ち抜き加工部の耐水素割れ評価を行った。図8に示す穴開き疲労試験片12について、耐水素割れを評価するため、加工断面の割れの有無を測定した。割れの有無の測定は、打ち抜き後、24時間放置後について打ち抜き穴全周を対象に行い、割れが有るものを耐水素割れ特性×、割れがないものを耐水素割れ特性○とした。図8の試験片12の打ち抜き穴13は、本発明を適用した方法(本発明例21、22)の他に、比較例として刃先の曲率半径が0mm、直径10mmのパンチを用いた通常の1段打ち抜き方法による加工(比較例21)、及び、図6に示すうち抜き穴加工用パンチの下穴用パンチ部A、Bの断面形状を変化させたものを用いた加工(比較例22〜24)も行った。被加工材には500MPa級1.6mm厚で40mm×40mmのサイズのAl−Zn−Mg系合金を使用した。本発明を適用した打ち抜き穴加工用パンチ11は、例えば、本発明例21の場合を例に挙げると、図6に示す通り、目的穴用パンチ部Dとテーパー部Cと下穴用パンチ部B、Aとが連続して一体となった打ち抜き穴加工用パンチである。目的穴用パンチ部Dは円柱11d(φ10.0mm)からなり、下穴用パンチ部B、Aは、2個の円柱11b(φ9.5mm×1.8mm)、11a(φ9.0mm×1.8mm)からなる。2個の円柱11b、11aは中心軸が目的穴用パンチ部Dの円柱11dの中心軸上に同軸に配列され、テーパー部Cは、円錐体11c(高さ1.2mm)からなり、目的穴用パンチ部Dの円柱11dと下穴用パンチ部Bの円柱11bとに挟まれ、中心軸に垂直な断面形状が、目的穴用パンチ部Dの円柱11dの側面と垂直な断面形状(φ10.0mm)から下穴用パンチ部Bの円柱11bの側面と垂直な断面形状(φ9.5mm)に徐々に変化している。下穴用パンチ部Aで下穴を打ち抜き、さらに下穴用パンチ部Bで下穴を打ち抜いた後、目的まで太くなるテーパー形状の拡径部を有するテーパー部Cを用いて、被加工材に接触し、下穴を前記目的穴へ押し広げる穴加工を行った。   Targeting round hole machining with a diameter of 10 mm, the punching hole punch 11 to which the present invention is applied as shown in FIG. For the hole fatigue test piece 12 shown in FIG. 8, the presence or absence of cracks in the processed cross section was measured in order to evaluate hydrogen cracking resistance. The presence / absence of cracks was measured for the entire perimeter of the punched holes after punching and left for 24 hours. The cracked cracks were designated as hydrogen cracking resistance x, and those without cracks were designated as hydrogen cracking resistance ○. The punching hole 13 of the test piece 12 in FIG. 8 is a normal 1 using a punch having a radius of curvature of the cutting edge of 0 mm and a diameter of 10 mm as a comparative example in addition to the method to which the present invention is applied (Invention Examples 21 and 22). Processing by the step punching method (Comparative Example 21), and processing using the one in which the cross-sectional shapes of the pilot hole punch portions A and B for the punch for punching holes shown in FIG. 6 are changed (Comparative Examples 22 to 24) ) Also went. As a workpiece, an Al—Zn—Mg alloy having a size of 40 mm × 40 mm and a thickness of 500 MPa 1.6 mm was used. The punch 11 for punching holes to which the present invention is applied, for example, in the case of Example 21 of the present invention, as shown in FIG. 6, the target hole punch portion D, the taper portion C, and the pilot hole punch portion B. , A is a punch for punching holes in which A is continuously integrated. The target hole punch portion D comprises a cylinder 11d (φ10.0 mm), and the pilot hole punch portions B and A have two columns 11b (φ9.5 mm × 1.8 mm), 11a (φ9.0 mm × 1. 8 mm). The two cylinders 11b and 11a are coaxially arranged on the center axis of the cylinder 11d of the target hole punch part D, and the tapered part C is formed of a cone 11c (height 1.2 mm). The sectional shape perpendicular to the central axis is sandwiched between the cylinder 11d of the punch part D for punch D and the cylinder 11b of the punch part B for pilot hole, and the sectional shape perpendicular to the side surface of the cylinder 11d of the punch part D for target hole (φ10. 0 mm), and gradually changes to a cross-sectional shape (φ9.5 mm) perpendicular to the side surface of the cylinder 11 b of the pilot hole punch portion B. After punching a pilot hole with the pilot hole punch part A and further punching the pilot hole with the pilot hole punch part B, the taper part C having a taper-shaped diameter-expanded part that becomes thicker to the intended purpose is used for the workpiece. The hole processing which contacted and expanded a pilot hole to the said target hole was performed.

なお、実施例と比較例の穴加工には共通のダイを用い、通常打ち抜きにおいてクリアランスが板厚の9.4%(0.15mm)になる10.3(mm)をダイ直径とした。また、穴加工時の被加工材にパンチが接触してからのストローク量は6.6mmとした。また、下穴用パンチ部Aと下穴用パンチ部Bの直径差、及び、下穴用パンチ部Bと目的穴用パンチ部Dの直径差は、下記の表3に示した通りである。   Note that a common die was used for drilling holes in the example and the comparative example, and the die diameter was 10.3 (mm) where the clearance was 9.4% (0.15 mm) of the plate thickness in normal punching. Moreover, the stroke amount after a punch contacted the workpiece at the time of drilling was 6.6 mm. Further, the difference in diameter between the pilot hole punch portion A and the pilot hole punch portion B and the difference in diameter between the pilot hole punch portion B and the target hole punch portion D are as shown in Table 3 below.

耐水素割れ特性の結果を表3に示す。本発明を適用して穴加工を行った試験片では、拡径用パンチの焼き付きもなく、本発明による穴加工方法の有効性を確認することができた。   Table 3 shows the results of the resistance to hydrogen cracking. In the test piece subjected to the hole machining by applying the present invention, there was no seizure of the diameter expansion punch, and the effectiveness of the hole machining method according to the present invention could be confirmed.

Figure 0005747448
Figure 0005747448

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

1 被加工材
2 パンチ
3 ダイ
4 だれ
5 せん断面
6 破断面
7 ばり
8 テーパー付きパンチ
9 (穴開き疲労)試験片
10 打ち抜き穴
11 打ち抜き穴加工用パンチ
11a、11b、11d 柱体
12 (穴開き疲労)試験片
13 打ち抜き穴
A、B 下穴用パンチ部
C テーパー部
D 目的穴用パンチ部
DESCRIPTION OF SYMBOLS 1 Work material 2 Punch 3 Die 4 Droop 5 Shear surface 6 Fracture surface 7 Burr 8 Tapered punch 9 (Hole drilling) Test piece 10 Punching hole 11 Punching holes 11a, 11b, 11d Column 12 (Hole opening) Fatigue) Test piece 13 Punched holes A, B Punch part for pilot hole C Taper part D Punch part for target hole

Claims (5)

パンチとダイによる打ち抜き加工が施される被加工材に打ち抜き穴加工を行う打ち抜き穴加工用パンチにおいて、目的穴用パンチ部とテーパー部と下穴用パンチ部とが連続して一体となった打ち抜き穴加工用パンチであって、
前記目的穴用パンチ部は、柱体からなり、
nを2以上の正の整数として、前記下穴用パンチ部は、n個の柱体からなり、該n個の柱体は、中心軸が前記目的穴用パンチ部柱体の中心軸上となるように同軸に配列され、該柱体の側面と垂直な断面形状が前記目的穴用パンチ部柱体の側面と垂直な断面形状を中心軸に向かって縮小した相似形であり、該目的穴用パンチ部柱体の側面と垂直な断面形状に対する該n個の柱体の側面と垂直な断面形状の相似比は1より小さく且つ互いに異なり、該n個の柱体は前記目的穴用パンチ部側から前記相似比が大きい順に配列し、
前記テーパー部は、錐体の一部からなり、前記目的穴用パンチ部柱体と前記下穴用パンチ部の前記相似比が最大の柱体とに挟まれ、中心軸に垂直な断面形状が、前記目的穴用パンチ部柱体の側面と垂直な断面形状から前記下穴用パンチ部の前記相似比が最大の柱体の側面と垂直な断面形状に徐々に変化しており、
隣接する前記下穴用パンチ部柱体の側面と垂直な断面形状の直径の差、および、前記下穴用パンチ部柱体のうち相似比が最大の柱体の側面と垂直な断面形状の直径と前記目的穴用パンチ部柱体の側面と垂直な断面形状の直径との差が、いずれも0.5mm以上1mm以下であることを特徴とする、打ち抜き穴加工用パンチ。
In punching holes for punching holes in workpieces that are punched with a punch and die, punching with the target hole punch, taper, and pilot hole punch integrated in one piece A punch for drilling holes,
The target hole punch portion comprises a pillar,
When n is a positive integer of 2 or more, the prepared hole punch portion includes n column bodies, and the n column bodies have a central axis on the central axis of the target hole punch portion column body. The cross-sectional shape perpendicular to the side surface of the columnar body is a similar shape in which the cross-sectional shape perpendicular to the side surface of the target hole punching column body is reduced toward the central axis. The similarity ratio of the cross-sectional shape perpendicular to the side surface of the n number of column bodies to the cross-sectional shape perpendicular to the side surface of the punch portion column body is smaller than 1 and different from each other. Arranged in descending order of the similarity ratio,
The tapered portion is formed of a part of a cone, and is sandwiched between a pillar body having the maximum similarity ratio of the target hole punch section and the pilot hole punch section, and has a cross-sectional shape perpendicular to the central axis. The cross-sectional shape perpendicular to the side surface of the target hole punch portion column body is gradually changing from the cross-sectional shape perpendicular to the side surface of the column body, the similarity ratio of the pilot hole punch portion,
The difference in diameter of the cross-sectional shape perpendicular to the side surface of the adjacent pilot hole punch column, and the diameter of the cross-sectional shape perpendicular to the side surface of the column body having the maximum similarity ratio among the pilot hole punch columns The punch for punching holes, wherein the difference between the diameter of the cross-sectional shape perpendicular to the side surface of the target hole punch column is 0.5 mm or more and 1 mm or less.
前記柱体が円柱であることを特徴とする、請求項1に記載の打ち抜き穴加工用パンチ。   The punch for punching holes according to claim 1, wherein the column is a cylinder. 前記柱体が角柱であることを特徴とする、請求項1に記載の打ち抜き穴加工用パンチ。   The punch for punching holes according to claim 1, wherein the column is a prism. 請求項1〜3のいずれか1項に記載の打ち抜き穴加工用パンチを用いた被加工材の打ち抜き穴加工方法であって、
前記下穴用パンチ部のn個の柱体それぞれの高さが前記被加工材の板厚より大きい打ち抜き穴加工用パンチを用い、
該柱体の側面と垂直な断面形状が小さな柱体から順番に下穴用パンチ部を使って前記被加工材に下穴をn回打ち抜いた後、前記テーパー部により穴を押し広げ、穴の直径を目的穴の直径とすることを特徴とする、打ち抜き穴加工方法。
A punching hole processing method for a workpiece using the punch for punching hole processing according to any one of claims 1 to 3,
With punched hole processing punch larger than the thickness of the n-number of column body each height the workpiece of the pilot hole punch unit,
After punching a pilot hole n times in the workpiece using a pilot hole punch portion in order from a column body having a small cross-sectional shape perpendicular to the side surface of the column body, the hole is expanded by the tapered portion, A punching hole processing method, wherein the diameter is a diameter of a target hole.
前記被加工材の材質が、鉄、あるいは、Al−Zn−Mg系合金であることを特徴とする、請求項4に記載の打ち抜き穴加工方法。 5. The punching method according to claim 4, wherein the material of the workpiece is iron or an Al—Zn—Mg-based alloy.
JP2010127989A 2010-02-10 2010-06-03 Punching hole punching and punching hole machining method with improved fatigue characteristics and hydrogen cracking resistance Active JP5747448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127989A JP5747448B2 (en) 2010-02-10 2010-06-03 Punching hole punching and punching hole machining method with improved fatigue characteristics and hydrogen cracking resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010027557 2010-02-10
JP2010027557 2010-02-10
JP2010127989A JP5747448B2 (en) 2010-02-10 2010-06-03 Punching hole punching and punching hole machining method with improved fatigue characteristics and hydrogen cracking resistance

Publications (2)

Publication Number Publication Date
JP2011183453A JP2011183453A (en) 2011-09-22
JP5747448B2 true JP5747448B2 (en) 2015-07-15

Family

ID=44790356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127989A Active JP5747448B2 (en) 2010-02-10 2010-06-03 Punching hole punching and punching hole machining method with improved fatigue characteristics and hydrogen cracking resistance

Country Status (1)

Country Link
JP (1) JP5747448B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014223663A (en) * 2013-05-17 2014-12-04 株式会社ムロコーポレーション Smooth punching press working method for superhigh-hardness steel plate
CN108043961A (en) * 2017-11-24 2018-05-18 中山复盛机电有限公司 Reinforcement flattens the tiny ditch of shaping and flattens punching pin in the reinforcement on stamping products
CN107695200A (en) * 2017-11-24 2018-02-16 中山复盛机电有限公司 The mould structure in the tiny ditch of shaping stamping products is flattened in reinforcement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191623A (en) * 1984-03-09 1985-09-30 Komatsu Ltd Method of deburring hot forged product
JP3818464B2 (en) * 1997-03-24 2006-09-06 プレス工業株式会社 Piercing punch and drilling method
JPH11216523A (en) * 1998-01-29 1999-08-10 Showa Alum Corp Processing tool for hole with burring seat
JPH11333530A (en) * 1998-05-22 1999-12-07 Nkk Corp Method for punching metal plate and punching tool
JP2006289491A (en) * 2005-03-14 2006-10-26 Nippon Steel Corp Method for working high strength steel thin sheet having excellent crack resistance, and cutting blade for cutting
DE502005007009D1 (en) * 2005-10-14 2009-05-14 Gassner Gmbh & Co Kg Method and device for punching a sheet
WO2009125786A1 (en) * 2008-04-09 2009-10-15 株式会社フレックラム Shearing method

Also Published As

Publication number Publication date
JP2011183453A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5217460B2 (en) Punching method with stepped punch
US10876565B2 (en) Self-piercing rivet
JP6562070B2 (en) Shearing method
JP6142927B2 (en) Steel sheet punching tool and punching method
JP5387022B2 (en) Punching method using chamfering die and hole punching device for metal plate stretch flange processing
JP2010036195A (en) Punching method using punch having recessed part
KR20160090430A (en) The apparatus and method of quality improvement for steel plate shearing edge
JP5747448B2 (en) Punching hole punching and punching hole machining method with improved fatigue characteristics and hydrogen cracking resistance
Murakawa et al. Precision piercing and blanking of ultrahigh-strength steel sheets
JP2009241091A (en) Punching machine and method for metal sheet with inversely tapered punch and chamfered die
JP2014223663A (en) Smooth punching press working method for superhigh-hardness steel plate
US3001279A (en) Method of working hard brittle metals
KR102092162B1 (en) Shearing method
JP2009248162A (en) Punching method and punching device
JP2015036147A (en) Punch for burring processing and burring processing method
JP2020104143A (en) Punching method of punching workpiece, and punching die for punching workpiece
JP2008132509A (en) Blanking die and method for manufacturing blanked product using the same
JP6888472B2 (en) Shearing method
JP4943393B2 (en) Coining method after punching and coining punch
JP2008137073A (en) Method of punching metallic material
CN112188943B (en) Method and device for cutting a workpiece
JP2007307616A (en) Method and tool for shearing metal sheet, and metal sheet product obtained by shearing
JP2011088152A (en) Method of setting shearing condition
JP7183036B2 (en) Punching method for punched material and punching die for punched material
JP2021532989A (en) Riveting method and equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R151 Written notification of patent or utility model registration

Ref document number: 5747448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350