JP5745583B2 - Cylinder manufacturing method and cylinder - Google Patents

Cylinder manufacturing method and cylinder Download PDF

Info

Publication number
JP5745583B2
JP5745583B2 JP2013183025A JP2013183025A JP5745583B2 JP 5745583 B2 JP5745583 B2 JP 5745583B2 JP 2013183025 A JP2013183025 A JP 2013183025A JP 2013183025 A JP2013183025 A JP 2013183025A JP 5745583 B2 JP5745583 B2 JP 5745583B2
Authority
JP
Japan
Prior art keywords
heat treatment
cylinder
molded body
stainless steel
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013183025A
Other languages
Japanese (ja)
Other versions
JP2014030852A (en
Inventor
陸廷 細川
陸廷 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jetovo
Original Assignee
Jetovo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jetovo filed Critical Jetovo
Priority to JP2013183025A priority Critical patent/JP5745583B2/en
Publication of JP2014030852A publication Critical patent/JP2014030852A/en
Application granted granted Critical
Publication of JP5745583B2 publication Critical patent/JP5745583B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、各種高圧ガスが充填されるボンベの製造方法およびボンベに関する。   The present invention relates to a cylinder manufacturing method and cylinders filled with various high-pressure gases.

従来、内容量が100CC未満となる小型高圧ガス容器(以下、ミニボンベという)に各種ガスを充填したガスカートリッジは、例えば、ソーダ水製造器,ビールサーバー等の注出力源、ライフジャケット,エアバック等の膨張源、消化器,スプレー等の噴射源として広い用途に利用されている。さらに、ミニボンベの小型軽量化が進むことにより、その利用分野が拡張しつつある。   Conventionally, gas cartridges filled with various gases in a small high-pressure gas container (hereinafter referred to as a mini cylinder) having an internal capacity of less than 100 CC include, for example, a soda water production device, a beer server and other injection power sources, life jackets, airbags, etc. It is used in a wide range of applications as an expansion source, digestive organ, spray source, and the like. Furthermore, as mini-bombs become smaller and lighter, their fields of use are expanding.

従来のミニボンベは、高耐力のMn鋼やアルミ合金を塑性加工や熱間塑性鍛造などにより加工して製造したり、プレス鏡板に口金を嵌め込み溶接して製造したり、継ぎ目無し管を周溶接して製造したりしていた。また、安全性や疲労強度等を加味すると、ボンベ本体の肉厚を厚くする必然性が生じ、ボンベ自体の重量が重くなっていた。一方、充填するガス圧を高圧にする場合であっても、肉厚を増やさなくてはならず、自ずと重量がさらに重くなっていた。
さらに、充填されるガスが耐食性を必要とする場合には、材質がMn鋼やアルミ合金では、耐食性が十分に確保できないのが現状である。
Conventional mini cylinders are manufactured by processing high-strength Mn steel or aluminum alloy by plastic working or hot plastic forging, etc., manufacturing by inserting a base into a press end plate, and circumferentially welding a seamless pipe. And manufactured. In addition, when safety, fatigue strength, and the like are taken into account, it is necessary to increase the thickness of the cylinder main body, and the cylinder itself is heavy. On the other hand, even when the gas pressure to be filled is increased, the thickness has to be increased, and the weight is naturally heavier.
Furthermore, when the gas to be filled requires corrosion resistance, the current situation is that sufficient corrosion resistance cannot be secured if the material is Mn steel or aluminum alloy.

特開平11−104762号公報Japanese Patent Laid-Open No. 11-104762 特開2005−337391号公報JP 2005-337391 A 特開2005−337392号公報JP 2005-337392 A

本発明の目的は、軽量・高耐圧で、耐食性に優れたボンベおよびその製造方法を提供することにある。   An object of the present invention is to provide a cylinder having a light weight, a high pressure resistance, and excellent corrosion resistance, and a method for manufacturing the same.

前記目的を達成するために、本発明が採用するボンベの製造方法は、ステンレス鋼材からなる板体に深絞り加工を複数回行うことにより、有底筒形状の成形体を形成する成形体形成工程と、前記複数回の深絞り加工のうち、いずれか一の深絞り加工の前または後で、前記ステンレス鋼材を鋭敏化させる熱処理を行う鋭敏化熱処理工程と、前記鋭敏化熱処理工程の後で、前記成形体の開口側を切除する開口切除工程と、前記開口切除工程の後で、前記成形体の開口側を絞る絞り工程と、を有する。   In order to achieve the above object, the cylinder manufacturing method employed by the present invention is a molded body forming step of forming a bottomed cylindrical molded body by performing deep drawing on a plate made of stainless steel a plurality of times. And before or after any one of the multiple deep drawing processes, a sensitizing heat treatment process for performing a heat treatment for sensitizing the stainless steel material, and after the sensitizing heat treatment process, An opening excision step of excising the opening side of the molded body; and a drawing step of constricting the opening side of the molded body after the opening excision step.

上記ボンベの製造方法において、前記鋭敏化させる熱処理は、前記成形体を550〜650℃に加熱する処理であることが好ましい。   In the cylinder manufacturing method, the heat treatment for sensitization is preferably a treatment for heating the molded body to 550 to 650 ° C.

上記ボンベの製造方法において、前記鋭敏化熱処理工程の後で、前記加熱された成形体を水冷または急冷する冷却工程を有することが好ましい。   The above-described cylinder manufacturing method preferably includes a cooling step of cooling or rapidly cooling the heated molded body after the sensitizing heat treatment step.

上記ボンベの製造方法において、前記成形体の開口部に口金を溶接によって取り付ける口金取付工程を有することが好ましい。   In the above-described cylinder manufacturing method, it is preferable to include a base attaching step for attaching the base to the opening of the molded body by welding.

上記ボンベの製造方法において、前記鋭敏化熱処理工程の後で、前記成形体に前記ステンレス鋼材を固溶化する熱処理を行う固溶化熱処理工程を有することが好ましい。   In the cylinder manufacturing method, it is preferable to have a solution heat treatment step for performing a heat treatment for solidifying the stainless steel material on the compact after the sensitizing heat treatment step.

上記ボンベの製造方法において、前記固溶化する熱処理は、前記成形体を1050〜1150℃に3分以上加熱する処理であることが好ましい。   In the cylinder manufacturing method, the heat treatment for forming a solid solution is preferably a treatment for heating the compact to 1050 to 1150 ° C. for 3 minutes or more.

上記ボンベの製造方法において、前記絞り工程は、前記開口側を角度の異なった金型に対して絞り加工を順次行う工程であることが好ましい。   In the cylinder manufacturing method, it is preferable that the drawing step is a step of sequentially drawing the opening side with respect to dies having different angles.

上記ボンベの製造方法において、前記ステンレス鋼材は、オーステナイト系ステンレス鋼であることが好ましい。   In the cylinder manufacturing method, the stainless steel material is preferably austenitic stainless steel.

前記目的を達成するために、本発明が採用するボンベは、上記記載の製造方法で製造されることを特徴とする。   In order to achieve the above object, the cylinder employed by the present invention is manufactured by the manufacturing method described above.

前記目的を達成するために、本発明が採用するボンベは、0.1〜2.0mmの肉厚を有して一体成形された有底筒状のステンレス鋼材からなるボンベ本体と、前記ボンベ本体の開口部に形成される口金と、を具備することを特徴とする。   In order to achieve the above object, the cylinder employed by the present invention is a cylinder main body made of a bottomed cylindrical stainless steel material integrally formed with a thickness of 0.1 to 2.0 mm, and the cylinder main body. And a base formed in the opening.

上記記載のボンベにおいて、前記ステンレス鋼材は、オーステナイト系ステンレス鋼であることが好ましい。   In the cylinder described above, the stainless steel material is preferably austenitic stainless steel.

本発明によるボンベにあっては、材料に比較的強固で軽量なステンレス鋼材を用いることによって、軽量で耐圧性を高めたボンベを製造することが可能となる。   In the cylinder according to the present invention, it is possible to manufacture a cylinder that is lightweight and has improved pressure resistance by using a relatively strong and lightweight stainless steel material.

また、成形体形成工程の複数回の深絞り加工のうち、いずれか一の深絞り加工の後に鋭敏化熱処理工程を施すことにより、成形体の応力割れを抑制することができる。   Moreover, the stress cracking of a molded object can be suppressed by performing the sensitizing heat treatment process after any one of the deep drawing processes of the molded object forming process.

成形体に固溶化熱処理工程を施すことにより、当該成形体の磁性除去・腐食性抑制・残留応力除去を図ることができる。   By subjecting the compact to a solution heat treatment step, it is possible to achieve magnetic removal, corrosion resistance suppression, and residual stress removal of the compact.

本発明の実施形態によるミニボンベを示す斜視図である。It is a perspective view which shows the mini cylinder by embodiment of this invention. 図1中の矢視II−II方向から見た断面図である。It is sectional drawing seen from the arrow II-II direction in FIG. ミニボンベの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a mini cylinder. 鋭敏化熱処理工程において温度を変えた実験結果を示す図である。It is a figure which shows the experimental result which changed temperature in the sensitizing heat treatment process.

以下、図面を参照して本発明の実施形態について説明する。
[実施形態]
(A:構成)
図1は本発明の一実施形態に係るミニボンベを示す斜視図、図2は図1の矢視II−II方向から見た断面図である。
このミニボンベ10は、ステンレス鋼材(例えば、SUS304L)によって有底筒状に一体成形されたボンベ本体11と、ボンベ本体11の開口部15に溶接によって取り付けられ、段付き筒状の口金20と、を具備する。
ボンベ本体11は、円筒状の胴部12と、この胴部12の一方に形成された略半球状の底部13と、前記胴部12の他方に形成され、先端が開口部15となる絞り部14と、を有する。本実施形態のボンベ本体11にあっては、その直径は約40mm、全長約110mm、肉厚約1.0mmとなる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment]
(A: Configuration)
FIG. 1 is a perspective view showing a mini cylinder according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view seen from the direction of arrows II-II in FIG.
The mini cylinder 10 includes a cylinder main body 11 integrally formed in a bottomed cylindrical shape with a stainless steel material (for example, SUS304L), and a stepped cylindrical base 20 attached to the opening 15 of the cylinder main body 11 by welding. It has.
The cylinder main body 11 includes a cylindrical body portion 12, a substantially hemispherical bottom portion 13 formed on one side of the body portion 12, and a throttle portion formed on the other side of the body portion 12 and having a distal end serving as an opening 15. 14 and. In the cylinder main body 11 of this embodiment, the diameter is about 40 mm, the total length is about 110 mm, and the wall thickness is about 1.0 mm.

口金20は、大径部21と、この大径部21の一方に形成された小径部22と、前記大径部21の他方に突出形成され、外周に雄ねじ部24が刻設されたネジ部23と、を有する。そして、口金20は、その大径部21と小径部22の外周が開口部15にTIG(Tungsten Inert Gas)溶接によって固着される。   The base 20 has a large-diameter portion 21, a small-diameter portion 22 formed on one of the large-diameter portions 21, and a screw portion having a male screw portion 24 engraved on the outer periphery thereof. 23. And the outer periphery of the large diameter part 21 and the small diameter part 22 is fixed to the opening part 15 by TIG (Tungsten Inert Gas) welding.

(B:製造方法)
次に、図3を参照しつつ、ミニボンベ10の製造方法について説明する。
(B: Manufacturing method)
Next, a method for manufacturing the mini cylinder 10 will be described with reference to FIG.

(a)円板切出工程
まず、φ130mm、厚さ1mmの円板101を、ステンレス鋼材からなる板体100から切り出す。
(b)成形体形成工程
次に、前記円板101に深絞り加工を複数回行うことにより、ボンベ本体11の基材となる有底筒体104を形成する。(b−1)の1回目の深絞り処理では、円板101を大径のカップ状体102(φ80mm、高さ55mm)に成形し、(b−2)の2回目の深絞り処理では、大径のカップ状体102を小径のカップ状体103(φ50mm、高さ80mm)に成形し、(b−3)の3回目の深絞り処理では、小径のカップ状体103をさらに小径の有底筒体104(φ40mm、高さ110mm)に成形する。この成形体形成工程において、さらに小径の有底筒体104には、ボンベ本体11の底部13が形成されることになる。以下、カップ状体102,103、有底筒体104をあわせて「成形体」という。
(A) Disc Cutting Step First, a disc 101 having a diameter of 130 mm and a thickness of 1 mm is cut out from a plate body 100 made of a stainless steel material.
(B) Molded body forming step Next, the bottomed cylinder 104 serving as the base material of the cylinder main body 11 is formed by performing deep drawing on the disc 101 a plurality of times. In the first deep drawing process of (b-1), the disc 101 is formed into a large-diameter cup-like body 102 (φ80 mm, height 55 mm), and in the second deep drawing process of (b-2), In the third deep drawing process of (b-3), the large-diameter cup-shaped body 102 is formed into a small-diameter cup-shaped body 103 (φ50 mm, height 80 mm). Molded into a bottom cylinder 104 (φ40 mm, height 110 mm). In the molded body forming step, the bottom 13 of the cylinder main body 11 is formed in the bottomed cylindrical body 104 having a smaller diameter. Hereinafter, the cup-shaped bodies 102 and 103 and the bottomed cylindrical body 104 are collectively referred to as a “molded body”.

(c)鋭敏化熱処理工程
2回目の深絞り加工(b−2)の後に、小径のカップ状体103を鋭敏化させる鋭敏化熱処理を行う。この鋭敏化熱処理は、小径のカップ状体103を550〜650℃に加熱する処理である。ステンレス鋼を550〜650℃に加熱すると、いわゆる「鋭敏化」が起こることが知られているので、ここではこの熱処理を「鋭敏化熱処理」という。この熱処理を行うことにより、以後の絞り工程での割れの発生が抑制される(すなわち歩留まりが向上する)というデータが得られた。さらに、温度が550〜650℃に達すると、カップ状体103は水冷または急冷(空冷)される。
(C) Sensitizing heat treatment step After the second deep drawing (b-2), a sensitizing heat treatment for sensitizing the small-diameter cup 103 is performed. This sensitizing heat treatment is a process of heating the cup-shaped body 103 having a small diameter to 550 to 650 ° C. Since it is known that when stainless steel is heated to 550 to 650 ° C., so-called “sensitization” occurs, this heat treatment is referred to as “sensitization heat treatment”. By performing this heat treatment, data was obtained that the generation of cracks in the subsequent drawing process was suppressed (that is, the yield was improved). Further, when the temperature reaches 550 to 650 ° C., the cup-shaped body 103 is water-cooled or rapidly cooled (air-cooled).

鋭敏化熱処理工程において550〜650℃の範囲が最適であることは、発明者が鋭意実験した結果から得られたものである。ここで、実験結果を表1および図4に示す。この実験は、成形体の温度を500〜670℃の範囲で加熱した後の成形体の状態(クラック(割れ))を観測したものである。

Figure 0005745583
※ NGは、冷却後にクラックが発生したもの。
図4は、表1の結果をグラフ化したもので、この図4からの明らかなように、鋭敏化熱処理工程において550〜650℃の範囲が最適であることが分かる。 The fact that the range of 550 to 650 ° C. is optimal in the sensitizing heat treatment step is obtained from the results of the inventors' diligent experiments. Here, the experimental results are shown in Table 1 and FIG. In this experiment, the state (crack) of the molded body after heating the molded body at a temperature in the range of 500 to 670 ° C. was observed.
Figure 0005745583
* NG is cracked after cooling.
FIG. 4 is a graph of the results shown in Table 1. As is apparent from FIG. 4, it is understood that the range of 550 to 650 ° C. is optimal in the sensitizing heat treatment step.

(d)開口切除工程
有底筒体104の開口側を切除することにより、切除部分105が発生し、残りの部分がボンベ本体基材106となる。この開口切除工程によって、製造されるミニボンベ10の内容量が決まる。つまり、ミニボンベ10の内容量に応じて、切除部分105(ボンベ本体基材106)を決めることで、単一の金型を用いても、種々の容量のミニボンベの製造が可能となる。
(D) Opening cutting step By cutting the opening side of the bottomed cylindrical body 104, a cutting portion 105 is generated, and the remaining portion becomes the cylinder main body 106. This opening excision process determines the internal volume of the manufactured mini cylinder 10. That is, by determining the cut portion 105 (cylinder main body base material 106) according to the internal capacity of the mini cylinder 10, it is possible to manufacture mini cylinders having various capacities even if a single mold is used.

(e)絞り工程
この絞り工程は、ボンベ本体基材106の開口側を絞り込んで、絞り部14を形成する処理である。金型で一度に絞り込むと、絞り部14に割れやしわが発生するため、この工程では、角度の異なったテーパを有する複数の金型を使って、数回に分けて行われる。この絞り工程によって、先端側には、口金20を取り付けるための開口部15(φ16mm)を有する絞り部14、および筒部12が形成され、ボンベ本体11の外形が成形されることになる。
(E) Drawing process This drawing process is a process of forming the narrowed portion 14 by narrowing the opening side of the cylinder main body base 106. If the mold is narrowed at once, cracks and wrinkles are generated in the narrowed portion 14, so this process is performed in several steps using a plurality of molds having tapers with different angles. By this squeezing step, the squeezing part 14 having an opening 15 (φ16 mm) for attaching the base 20 and the cylinder part 12 are formed on the tip side, and the outer shape of the cylinder body 11 is formed.

(f)口金取付工程
次に、ボンベ本体11の開口部15に口金20をTIG溶接によって固着する。この際、開口部15は内側に傾斜したテーパ面となっており、このテーパ面に口金20の大径部21と小径部22とが合わさることになり、テーパのない面よりも大きい接触面積で溶接でき、口金20をボンベ本体11に強固に固定することが可能となる。
(F) Cap attachment step Next, the cap 20 is fixed to the opening 15 of the cylinder body 11 by TIG welding. At this time, the opening 15 is a tapered surface inclined inward, and the large diameter portion 21 and the small diameter portion 22 of the base 20 are combined with the tapered surface, and the contact area is larger than that of the non-tapered surface. It can be welded, and the base 20 can be firmly fixed to the cylinder body 11.

(g)固溶化熱処理工程
今までの工程によってミニボンベ10は、ステンレス鋼材からなる円板を深絞り加工して変形することにより、ステンレス鋼材がマルテンサイト相に変態(マルテンサイト変態)して磁性化する、また先の鋭敏化熱処理によってクロム濃度が低下した部分に腐食が発生し易くなる、さらに深絞り加工によって形成されたボンベ本体には残留応力が生じる、等の状況にある。
(G) Solid solution heat treatment process The mini-bomb 10 has been magnetized by transforming the stainless steel material into a martensite phase (martensitic transformation) by deep drawing and deforming a disk made of stainless steel. In addition, corrosion is likely to occur in the portion where the chromium concentration has been lowered by the prior sensitizing heat treatment, and residual stress is generated in the cylinder body formed by deep drawing.

そこで、仕上げとして、ミニボンベ10を1050〜1150℃に3分以上加熱する固溶化処理を行う。この固溶化熱処理によって、マルテンサイト相をオーステナイト相に変態させて磁性性化したステンレス鋼材の磁性を除去し、先の鋭敏化熱処理によって結晶粒界に析出したクロム炭化物(Cr23C6)を固溶化し、絞り加工によってボンベ本体11
に生じた残留応力を緩和する。
さらに、口金20と開口部15との間の溶接部分も溶解するため、さらに強固に口金20が取り付けられることになる。
Therefore, as a finish, a solution treatment in which the mini cylinder 10 is heated to 1050 to 1150 ° C. for 3 minutes or more is performed. This solution heat treatment removes the magnetism of the stainless steel material that has been made magnetic by transforming the martensite phase to the austenite phase, and solidifies the chromium carbide (Cr23C6) precipitated at the grain boundaries by the sensitization heat treatment. Cylinder body 11 by drawing
Relieve residual stress generated in
Furthermore, since the welded portion between the base 20 and the opening 15 is also melted, the base 20 is attached more firmly.

(C:本実施形態の効果)
上述した製造方法にあっては、SUS304Lからなる円板101を変形してボンベ本体11を製造する。この際、残留応力によるボンベ本体11への割れを防止するため、深絞り加工の途中に鋭敏化熱処理を行っている。このため、ボンベ本体基材106、ボンベ本体11の状態であっても割れの発生を著しく低減することができるものの、クロム炭化物が析出されて腐食し易い状態になる。そこで、固溶化熱処理を施すことで、クロム炭化物を溶解させて耐食性を持たせる。
(C: Effect of this embodiment)
In the manufacturing method described above, the cylinder body 11 is manufactured by deforming the disc 101 made of SUS304L. At this time, in order to prevent cracking of the cylinder main body 11 due to residual stress, sensitizing heat treatment is performed during the deep drawing process. For this reason, even if it is the state of the cylinder main body base material 106 and the cylinder main body 11, although generation | occurrence | production of a crack can be reduced remarkably, chromium carbide will precipitate and it will be in the state which is easy to corrode. Therefore, by performing a solution heat treatment, the chromium carbide is dissolved to provide corrosion resistance.

深絞り加工によってSUS304Lは、オーステナイト相からマルテンサイト相に変態し、この際部材が磁性を帯びる。しかし、固溶化熱処理を施すことで、マルテンサイト相からオーステナイト相に変態させて、ボンベ本体11の磁化を除去する。   By deep drawing, SUS304L transforms from an austenite phase to a martensite phase, and at this time, the member becomes magnetic. However, by performing a solution heat treatment, the martensite phase is transformed to the austenite phase, and the magnetization of the cylinder body 11 is removed.

さらに、鋭敏化熱処理工程(c)では550〜650℃、固溶化熱処理工程(g)では1050〜1150℃に部材が加熱されるため、ボンベ本体11を成形した段階で発生する残留応力を確実に低減して、当該ボンベ本体11の割れを防止する。   Further, since the member is heated to 550 to 650 ° C. in the sensitizing heat treatment step (c) and to 1050 to 1150 ° C. in the solution heat treatment step (g), the residual stress generated at the stage of forming the cylinder body 11 is surely ensured. It reduces and the crack of the said cylinder main body 11 is prevented.

このように、本実施形態による製造方法で製造されたボンベは、通常ステンレス鋼材の成形では使用していない鋭敏化する温度で加熱した上で、ステンレス鋼材の持つ脆弱性を補って深絞り加工が施工され、仕上げに固溶化熱処理によって、磁性除去・腐食性抑制・残留応力除去という機能を備えている。
このため、本実施形態によるミニボンベ10は、ステンレス鋼材を使っているため、同
じ大きさのMn鋼等に比べて軽量で、しかも肉厚を薄くしても高耐圧とすることができるため、使用強度に優れた容器とすることができる。
しかも、磁性除去・腐食性抑制という機能を備えており衛生的にも信用できるため、高耐圧という特性と併せて、本実施形態により製造されたボンベの使用範囲を広げることが可能となる。
As described above, the cylinder manufactured by the manufacturing method according to the present embodiment is heated at a sensitizing temperature that is not normally used in forming a stainless steel material, and then deep drawing is performed to compensate for the weakness of the stainless steel material. It has a function of removing magnetic properties, suppressing corrosiveness, and removing residual stress by solution heat treatment.
For this reason, since the mini cylinder 10 according to the present embodiment uses a stainless steel material, it is lighter than Mn steel or the like of the same size, and can be used with a high pressure resistance even if the wall thickness is reduced. It can be set as the container excellent in intensity | strength.
In addition, since it has functions of removing magnetic properties and suppressing corrosiveness and can be trusted hygienically, it is possible to expand the range of use of the cylinder manufactured according to the present embodiment, together with the characteristics of high breakdown voltage.

(D:変形例)
本願発明によるミニボンベの製造方法は、前記実施形態に記載の製造方法に限るものではなく、以下のような変形例による構成・形状も考えられる。
(D: Modification)
The manufacturing method of the mini cylinder according to the present invention is not limited to the manufacturing method described in the above embodiment, and configurations and shapes according to the following modifications are also conceivable.

(1)ミニボンベ本体11の材料となるステンレス鋼材は、SUS304Lに限るものではなく、鋭敏化を起こすのであれば、他の材料、例えば、SUS316L、SUS321またはSUS347等であってもよく、要は非磁性となるオーステナイト系ステンレス鋼であればよい。 (1) The stainless steel material used as the material of the mini cylinder main body 11 is not limited to SUS304L, and may be other materials such as SUS316L, SUS321, or SUS347 as long as sensitization occurs. Any austenitic stainless steel that is magnetic may be used.

(2)鋭敏化熱処理工程(c)は、深絞り加工(b−1)〜(b−3)の工程のうち、どの工程の後で行ってもよい。或いは、深絞り加工(b−1)の前に鋭敏化熱処理を行ってもよい。要は、絞り工程(e)の前に行うのであれば、鋭敏化熱処理をいつ行ってもよい。特に、加工量の大きい工程の後で鋭敏化熱処理を行うことが好ましい。 (2) The sensitizing heat treatment step (c) may be performed after any of the steps of deep drawing (b-1) to (b-3). Alternatively, sensitizing heat treatment may be performed before deep drawing (b-1). In short, if it is performed before the drawing step (e), the sensitizing heat treatment may be performed at any time. In particular, it is preferable to perform sensitizing heat treatment after a process with a large processing amount.

(3)前記実施形態では、ボンベ本体11の開口部15に口金20を取り付けることによって、ミニボンベ10を製造していたが、本発明はこれに限らず、(e)絞り加工工程において、絞り込んだ開口側をさらに変形させて口金を一体形成してもよい。 (3) In the above embodiment, the mini cylinder 10 is manufactured by attaching the base 20 to the opening 15 of the cylinder body 11. However, the present invention is not limited to this, and (e) the cylinder is narrowed down in the drawing process. The base may be integrally formed by further deforming the opening side.

(4)成形体形成工程(b)における深絞り加工の回数および絞り工程(e)における絞り加工の回数、すなわちこれらの工程で用いられる金型の数は、実施形態で説明したものに限定されない。実施形態より多い、または少ない数の金型を用いて、これらの加工が行われてもよい。 (4) The number of deep drawing operations in the molded body forming step (b) and the number of drawing operations in the drawing step (e), that is, the number of molds used in these steps are not limited to those described in the embodiment. . These processes may be performed using more or fewer dies than the embodiment.

(5)前記実施形態では、直径約40mm、全長約110mm、肉厚約1.0mmとなるボンベ本体11を製造する場合を例示して説明したが、本発明はこの寸法に限定されるものではなく、本発明による製造方法にあっては、肉厚約0.1〜2.0mm、さらに内容量100CC未満となる形状であれば製造可能である。 (5) In the above embodiment, the case where the cylinder main body 11 having a diameter of about 40 mm, a total length of about 110 mm, and a wall thickness of about 1.0 mm has been described as an example. However, the present invention is not limited to this dimension. However, in the manufacturing method according to the present invention, any shape having a thickness of about 0.1 to 2.0 mm and an inner capacity of less than 100 CC can be manufactured.

10…ミニボンベ、11…ボンベ本体、15…開口部、20…口金。 10 ... Mini cylinder, 11 ... Main cylinder body, 15 ... Opening, 20 ... Base.

Claims (2)

SUS304、SUS316、SUS321、またはSUS347系のステンレス鋼材からなる板体に深絞り加工を複数回行うことにより、有底筒形状の成形体を形成する成形体形成工程と、
前記複数回の深絞り加工のうち、いずれか一の深絞り加工の前または後で、前記ステンレス鋼材において鋭敏化を起こさせる熱処理を、550℃<T<650℃(Tは熱処理温度)の温度範囲で行う鋭敏化熱処理工程と、
前記鋭敏化熱処理工程の後で、前記加熱された成形体を水冷または急冷する冷却工程と、
前記冷却工程の後で、前記成形体の開口側を切除する開口切除工程と、
前記開口切除工程の後で、前記成形体の開口側を絞る絞り工程と、
前記絞り工程の後で、前記成形体の開口部に口金を溶接によって取り付ける口金取付工程と、
前記口金取付工程の後で、前記成形体に前記ステンレス鋼材を固溶化する熱処理を行う固溶化熱処理工程と
を有し、
前記固溶化する熱処理は、前記成形体を1050〜1150℃に3分以上加熱する処理であり、
前記絞り工程は、前記開口側を角度の異なった金型に対して絞り加工を順次行う工程である
ことを特徴とする、内容量が100cc未満のミニボンベの製造方法。
A molded body forming step of forming a bottomed cylindrical molded body by performing deep drawing on a plate made of SUS304, SUS316, SUS321, or SUS347 series stainless steel multiple times,
A heat treatment that causes sensitization in the stainless steel material before or after any one of the multiple deep drawing operations is performed at a temperature of 550 ° C. <T <650 ° C. (T is a heat treatment temperature). Sensitizing heat treatment process performed in a range,
After the sensitizing heat treatment step, a cooling step of water-cooling or rapidly cooling the heated molded body,
After the cooling step, an opening excision step of excising the opening side of the molded body,
After the opening excision step, a drawing step of squeezing the opening side of the molded body,
After the drawing step, a base attaching step for attaching the base to the opening of the molded body by welding,
Wherein after the die attachment process, possess a solution heat treatment step of performing heat treatment for solid solution to the stainless steel in the molded body,
The heat treatment for forming a solid solution is a treatment for heating the compact to 1050 to 1150 ° C. for 3 minutes or more,
The drawing process is characterized by a step of sequentially performing drawing the opening side with respect to different mold angle, method for producing a mini bomb under internal volume is 100 cc.
請求項に記載の製造方法で製造され
前記ステンレス鋼材は0.1〜2.0mmの肉厚を有し、
内容量が100cc未満である
ことを特徴とするミニボンベ。
Manufactured by the manufacturing method according to claim 1 ,
The stainless steel material has a thickness of 0.1 to 2.0 mm,
The content is less than 100cc
Mini cylinder, characterized in that.
JP2013183025A 2013-09-04 2013-09-04 Cylinder manufacturing method and cylinder Expired - Fee Related JP5745583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013183025A JP5745583B2 (en) 2013-09-04 2013-09-04 Cylinder manufacturing method and cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013183025A JP5745583B2 (en) 2013-09-04 2013-09-04 Cylinder manufacturing method and cylinder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008286571A Division JP2010112497A (en) 2008-11-07 2008-11-07 Method for manufacturing cylinder and the cylinder

Publications (2)

Publication Number Publication Date
JP2014030852A JP2014030852A (en) 2014-02-20
JP5745583B2 true JP5745583B2 (en) 2015-07-08

Family

ID=50281093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013183025A Expired - Fee Related JP5745583B2 (en) 2013-09-04 2013-09-04 Cylinder manufacturing method and cylinder

Country Status (1)

Country Link
JP (1) JP5745583B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101797986B1 (en) * 2016-03-31 2017-11-15 김동진 Manufacturing method for pressure vessel
KR102268165B1 (en) * 2019-10-02 2021-06-23 주식회사 원진산업 Manufacturing method of specimen container

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293369A (en) * 1993-04-02 1994-10-21 Sony Corp Pressure-resistant container
JPH07241498A (en) * 1994-03-07 1995-09-19 Nippon Tansan Gas Co Ltd Method for generating aerosol with nonpolluting liquefied gas as propellant
JPH09166290A (en) * 1995-12-13 1997-06-24 Kanto Koatsu Yoki Seisakusho:Kk Stainless steel-made high pressure gas container and manufacture thereof
JP2001179349A (en) * 1999-10-12 2001-07-03 Hitachi Ltd Press forming deep drawing method and worked piece
US20040035871A1 (en) * 2002-08-20 2004-02-26 Thomas Chupak Aluminum aerosol can and aluminum bottle and method of manufacture
JP4119811B2 (en) * 2003-07-10 2008-07-16 宏 小島 Plastic processing method for cylindrical materials
JP4218627B2 (en) * 2004-10-29 2009-02-04 株式会社Ihi Evaluation method of heating conditions in high frequency induction heating residual stress improvement method and construction method of high frequency induction heating residual stress improvement method

Also Published As

Publication number Publication date
JP2014030852A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP5532148B2 (en) Die forging method and forged product manufacturing method
RU2573456C2 (en) Systems and methods of manufacturing and treatment of alloy ingots
Çam Friction stir welded structural materials: beyond Al-alloys
JP5745583B2 (en) Cylinder manufacturing method and cylinder
JP2010530498A (en) Tank manufacturing method
JP2010112497A (en) Method for manufacturing cylinder and the cylinder
Hadryś Mechanical properties of plug welds after micro-jet cooling
Sato et al. Evaluation of microstructure and properties in friction stir welded superaustenitic stainless steel
Sakai et al. Comparison of mechanical and microstructural characteristics in maraging 300 steel welded by three different processes: LASER, PLASMA and TIG
WO2016027808A1 (en) Internal combustion engine piston and method for manufacturing same
Abass et al. Study of solidification behaviour and mechanical properties of arc stud welded AISI 316L stainless steel
JP2007280942A (en) Spark plug and manufacturing method of same
JP2010531946A (en) Melted edge of piston combustion chamber recess
JP5982477B2 (en) Forging method for producing a piston or piston shaft
CN108115365A (en) A kind of jacket cogging forging molding process of titanium-aluminium alloy ingot casting
US20170341619A1 (en) Gas pressure container and tube element for an airbag system, and method for producing same
JP6977208B2 (en) Heat exchanger and its manufacturing method
JPH07119421A (en) Manufacture of na-sealed hollow engine valve
CN107008882A (en) The manufacture method of alloy pig
Lee et al. Manufacturing titanium and Al-Li alloy cryogenic tanks
KR101295315B1 (en) Formation method of elbow of double pipe type
US20180045370A1 (en) Gas storage container for inflator and process for manufacturing same
US20140007412A1 (en) Method for manufacturing inner structure of regenerative cooling type combustion chamber
JP4584109B2 (en) Manufacturing method of inflator housing for airbag
Chenna Krishna et al. Processing and characterization of sub-delta solvus forged hemispherical forgings of Inconel 718

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141016

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141107

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150501

R150 Certificate of patent or registration of utility model

Ref document number: 5745583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees